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The PID controller is by far the most dominating form
of feedback in use in the process industries, due to its
functional simplicity and performance. In this work,
we apply a generalization of the PID, namely the frac-
tional controller PID?, to the heat diffusion system.
For the PID? tuning are used four performance in-
dices, to find the optimum controller settings by taking
advantage of the fractional order 3. The effect of ac-
tuator saturation and the required control energy are
also analyzed.

Keywords: fractional calculus, control, diffusion sys-
tems, ISE, ITSE, IAE, ITAE

1. Introduction

Fractional calculus (FC) is a generalization of integra-
tion and differentiation to a non-integer order o € C, be-
ing the fundamental operator ,D?, where a and ¢ are the
limits of the operation {1, 2].

In the last years, FC has been used increasingly to
model the constitutive behavior of materials and phys-
ical systems exhibiting hereditary and memory proper-
ties. This is the main advantage of fractional derivatives
in comparison with classical integer models, where these
effects are simply neglected. It is well-known that the
fractional-order operator s appears in several types of
problems. The transmission lines, heat flow or the diffu-
sion of neutrons in a nuclear reactor are examples where
the half-operator is the fundamental element. On the other
hand, diffusion is one of the three fundamental partial dif-
terential equations of mathematical physics [3].

In this paper we investigate the heat diffusion system in
the perspective of applying the FC theory. A fractional-
order PID algorithm is presented and compared with the
classical scheme. The fractional PI*D# controller in-
volves an integrator of order @ € R+ and a differentiator
of order B € R~

Bearing these ideas in mind, the paper is organized as
follows. Section 2 gives the fundamentals of fractional-
order control systems. Section 3 introduces the heat diffu-
sion system and describes its simulation. Section 4 points
out several control strategies for the heat system and dis-
cusses the results. Finally, section 5 draws the main con-
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clusions and addresses perspectives towards future devel-
opments.

2. Fractional-Order Control Systems

Fractional controllers are characterized by differential
equations that have, in the dynamical system and/or in
the control algorithm, an integral and/or a derivative of
fractional-order. Due to the fact that these operators are
defined by irrational continuous transfer functions, in the
Laplace domain, or infinite dimensional discrete transfer
functions, in the Z domain, we often encounter evalua-
tion problems in the simulations. Therefore, when ana-
lyzing fractional systems, we usually adopt continuous or
discrete integer-order approximations of fractional-order
operators [4-6].

The mathematical definition of a fractional derivative
and integral has been the subject of several different ap-
proaches [1,2]. One commonly used definition is given
by the Riemann-Liouville expression (o > 0):

1 da . f(r)
(n—a)dr® /a (t—1)% "1

n—1l<oa<n . ... ... (D

dart

aD:xf(t):F

where f(¢) is the applied function and I'(x) is the Gamma
function of x. Another widely used definition is given by
the Griinwald-Letnikov approach (@ € R):

5]
DT = fim e Y (e @

where 4 is the time increment and [x] means the integer
part of x.

The “memory” effect of these operators is demon-
strated by Eqgs. (1) and (2), where the convolution inte-
gral in Eq. (1) and the infinite series in Eq. (2), reveal the
unlimited memory of these operators, ideal for modelling
hereditary and memory properties in physical systems and
materials.

An alternative definition to Egs. (1) and (2), which re-
veals useful for the analysis of fractional-order control
systems, is given by the Laplace transform method. Con-
sidering vanishing initial conditions, the fractional dif-
Jerintegration is defined in the Laplace domain, F(s) =
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L{f(t)}, as:
L{,D¢f(t)} =s*F(s), aeR. . . ... (3

An important aspect of fractional-order algorithms can
be illustrated through the elemental control system, with
open-loop transfer function G(s) = Ks™% (1 < a < 2)
in the forward path. The open-loop Bode diagrams of
amplitude and phase have correspondingly a slope of
—~20a dB/dec and a constant phase of —a7r/2 rad over the
entire frequency domain. Therefore, the closed-loop sys-
tem has a constant phase margin of PM = 7 (1 — o/2) rad,
that is independent of the system gain K, and the closed-
loop system is robust against gain variations exhibiting
step responses with an iso-damping property [7, 8].

In this paper we adopt discrete integer-order approx-
imations to the fundamental element s* (¢ € R) of a
fractional-order control (FOC) strategy. The usual ap-
proach for obtaining discrete equivalents of continuous
operators of type s* adopts the Euler, Tustin and Al-
Alaoui generating functions.

It is well known that rational-type approximations fre-
quently converge faster than polynomial-type approxima-
tions and have a wider domain of convergence in the com-
plex domain. Thus, by using the Euler operator w(z™!) =
(1-2z"1)/T, and performing a power series expansion
of [w(z™1)]% = [(1 —z7")/T]* gives the discretization
formula corresponding to the Griinwald-Letnikov defini-
tion (2):

-1

Da(z-l):<1:TZ_> :I;h“(k)zk. @

ha(k)z(%>a<k—lf‘_l ) )

A rational-type approximation can be obtained by ap-
plying the Padé approximation method to the impulse re-
sponse sequence (5) h*(k), yielding the discrete transfer
function:

() = bo+biz '+ 4 bpz "
R

=Y )z * (©
k=0

where m < n and the coefficients a; and by are deter-
mined by fitting the first m +n+ 1 values of A%(k) into
the impulse response A(k) of the desired approximation
H(z™1). Thus, we obtain an approximation that has a per-
fect match to the desired impulse response h%(k) for the
first m +n+ 1 values of k. Note that the above Padé ap-
proximation is obtained by considering the Euler operator
but the determination process will be exactly the same for
other types of discretization schemes.

3. Heat Diffusion
The heat diffusion is governed by a linear unidimen-
sional partial differential equation (PDE) of the form:

du %u
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Saturation
Controller Heat System

R(s) +%£Jﬂ_)@ M(s) b N(s) co u(sﬂ
5

Fig. 1. Closed-loop system with PID controller G,.

where £ is the diffusivity, ¢ is the time, u is the temperature
and x is the space coordinate. The system (7) involves the
solution of a PDE of parabolic type for which the standard
theory guarantees the existence of a unique solution [9].

For the case of a planar perfectly isolated surface we
usually apply a constant temperature Up at x = 0 and ana-
lyzes the heat diffusion along the horizontal coordinate x.
Under these conditions, the heat diffusion phenomenon is
described by a non-integer order model:

U(x,s):%G(s), Gis)=eVE . ... @

where x is the space coordinate, Uy is the boundary con-
dition and G(s) is the system transfer function.

In our study, the simulation of the heat diffusion is per-
formed by adopting the Crank-Nicholson implicit numeri-
cal integration based on the discrete approximation to dif-
ferentiation as [10]:

—rulj+1,i+ 1)+ Q+r)ulj+ 1, —rulj+1,i—1]
= rulj,i+ 1]+ @ —rulji+ulji=1] . . .©

where r = kAt(Ax?)~!, {Ax, At} and {i, j} are the in-
crements and the integration indices for space and time,
respectively [11].

4. Control Strategies

The generalized PID controller G.(s) has a transfer
function of the form:

G, (s) = M(s) _ K, [1 b +Tdsﬁ] . (10)

E(s) Tis®
where & and f8 are the orders of the fractional integrator
and differentiator, respectively. The constants K, T; and
T are correspondingly the proportional gain, the integral
time constant and the derivative time constant.

Clearly, taking (a, B) = {(1,1),(1,0),(0,1),(0,0)} we
get the classical {PID, PI, PD, P} controllers, respectively.
The PI®D# controller is more flexible and gives the possi-
bility of adjusting more carefully the closed-loop system
characteristics.

In the sequel, we analyze the system of Fig. 1 by adopt-
ing a fractional PID? tuned by the minimization of an in-
tegral performance index.

In a previous work was demonstrated that the PIDA
controller applied to an heat system reveals better re-
sults than the classical PID controller tuned through the
Ziegler-Nichols open loop (ZNOL) heuristic [12,13]. In
fact, the ZNOL does not produce satisfactory results giv-
ing a significant overshoot, a large settling time and a time
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Fig. 2. The PID# parameters (Kp, T;, T4) versus JB for the
ISE and ITSE criteria.

delay. The fractional dynamics of the system points out
other strategies, namely the adoption of fractional control
algorithms.

In this sub-section we analyze the closed-loop system
under the action of the fractional PID? controller given by
the transfer function (10) with ¢ = 1and 0 < § < 1. The
fractional derivative term TdsB in expression (10) is imple-
mented through a 4™-order Padé discrete rational transfer
function of type (6) and it is used a sampling period of
T=0.1s.

The PID? controller is tuned by minimizing a perfor-
mance index. We analyze and compare four indices that
measure the response error, namely the integral square er-
ror (ISE), the integral time square error (ITSE), the inte-
gral absolute error (IAE) and the integral time absolute
error (ITAE) criteria defined as:

ISE= [ [r(t)—c(@®)]Pdr . . .. .. .. (11)
/
I'I‘SEz/t[r(t)—c(t)]zdt C (1)
0
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Fig. 3. The PID? parameters (Kp, T, Ty) versus B for the
IAE and ITAE criteria.

IAE=/|r(t)—c(t)|dt R O
0

ITAEzi/tVO)—cUﬂdL RS V)
0

Another important performance index consists on the
energy E,, at the PID? controller output m(z) given by the
expression:

T,
En= [ m?(t)d: . (15)
/

where T, is the time window needed to stabilize the sys-
tems output c(t).

A step reference input R(s) = 1/s is applied at x =
0.0 m and the output u(t) = ¢(t) is analyzed for x = 3.0 m,
without actuator saturation. The heat system is simulated
for 3000 seconds. Figs. 2 and 3 illustrates the variation of
the fractional PID parameters (K, T, T;) as function of
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Fig. 4. Step responses of the closed-loop system and the
controller output for the ISE and the IAE indices, with a
PIDP controller, § = 40 and x = 3.0 m.
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Fig. 5. Step responses of the closed-loop system and the
controller output for the ISE and the IAE indices, with a
PIDPcontroller, § = o0 and x = 3.0 m.

the order’s derivative B, for the criteria (11)-(14).

In Fig. 2 the curves reveal that for < 0.4 the parame-
ters (K, T;, 1) are slightly different, for the two ISE and
ITSE criteria, while for 8 > 0.4 they lead to almost simi-
lar values. This fact indicates a large influence of a weak
order derivative on system’s dynamics. However, for the
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Fig. 6. Step responses of the closed-loop system and the
controller output for the ITSE and the ITAE indices, with a
PIDP controller, § = 40 and x = 3.0 m.

criteria IAE and the ITAE the curves reveal almost similar
values.

To further illustrate the performance of the fractional-
order controllers a saturation nonlinearity is inserted in
series with the controller G.(s) of Fig. 1, yielding:

|m| < &

ml > 5 (19

— m’
n(m) = {  sign(m),
where sign(m) is the signal function.

The controller performance is evaluated for & =
{40,...,100} and 6 = e which corresponds to a system
without saturation. For the PID? we use the same param-
eters obtained previously, without considering the satura-
tion.

Figures 4 and 5 depict the step responses ¢(¢) of the
closed-loop system and the corresponding controller out-
put m(t), for the PIDP tuned in the ISE and IAE perspec-
tives, with 6 = 40 and & = oo, respectively. The controller
tuning yields the parameters ISE: {K,, T;, T;, B} = {3,
23, 90.6, 0.875} and IAE: {K, T;, Ty, B} = {1.7, 18.3,
99.9, 0.85}. Figs. 6 and 7 show the corresponding step
responses for the PIDP tuned according with the ITSE
and ITAE for § = 40 and & = o, respectively. In these
cases, the controller parameters yield ITSE: {Kp, T;, Ty,
B} = {1.8, 17.6, 103.6, 0.85} and ITAE: {K,,T;, T,
B} ={1.0,13.8,119.0,0.85}.

The step response resulting from the minimization of
ISE for 8 = o reveals small overshoot and rise time, but
a poor settling time, when compared with the IAE case.
Both indices lead to a zero steady-state error. Never-
theless, the controller output for the ISE reveals larger
variations than those occurring for the IAE. For a satura-
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Fig. 7. Step responses of the closed-loop system and the
controller output for the ITSE and the ITAE indices, with a Fig. 8. Control action energy E,, for the ISE and ITSE in-
PIDAcontroller, 8 = « and x = 3.0 m. dices versus 0 < B <1, when & = {40,...,100} and & = <.

tion level of 6 = 40 we verify similar conclusions; how-

ever, the overshoot, the settling time and the amplitude of o
the controller output decreases smoothly. When we an-

alyze the ITSE and the ITAE indices, both for § = 40 o
and & = o, we can draw similar conclusions to those ob-

tained for the ISE and the TAE, but we verify an improve- 1ot

ment of all the parameters of the transient and steady state
responses, namely a diminishing of the settling time for . .
both cases. 20 25 BOIAE 35 40

In conclusion, the IAE reveals a better transient re- T T T
sponse than the one obtained through the ISE. The step re-
sponse and the controller output are also improved when
the saturation level & is diminished. Moreover, for the
IAE the step response has almost no overshoot. <

Figures 8 and 9 depicts the energy of the control action
E,, as function of the ISE and the ITSE, or the IAE and
the ITAE indices, when 0 < 8 < 1, for § = {40,...,100}
and & = oo, respectively. As can be seen, the energy E,,
for ISE increases rapidly for 0 < 8 < 0.875, while for

400 500 600 700 800 900 1000 1100 1200

B > 0.875 the energy increases smoothly. In the ITSE g
case the same conclusions can be outlined for 8 = 0.85.

Similar conclusions can be draw for the IAE and the Fig. 9. Control action energy E,, for the IAE and ITAE
ITAE indices, both for § = 0.85. For the IAE and the indices versus 0 < B < 1, when § = {40,...,100} and 6 =
ITAE criteria the values of these indices and the variation oo,

of E,, versus & is more pronounced.
In conclusion, for 0.85 < B < 0.875 we get the best .
controller tuning, superior to the performance revealedby ~ >- Conclusions

the classical integer-order scheme studied in [8, 9]. .
This paper presented the fundamental aspects of the FC

theory and demonstrated that FC is a modelling paradigm
allowing a deeper understanding of physical phenomena.
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In this perspective, we studied the heat diffusion system
and its control using classical and fractional PID schemes.
The results show the superior performance of the FC
based algorithm. The PID? tuning according with the
ISE, ITSE, TIAE, ITAE performance indices lead to good
responses in the time domain. The energy index of the
control action, points out a slight superior performance of
the ISE and the ITSE indices. With these results, it can
be establish a tradeoff between a fast transient response, a
small overshoot, or a low energy of the control action.

References:
[1] K.B. Oldham and J. Spanier, “The fractional calculus,” Academic
press, London, 1974.
[2] I Podlubny, “Fractional differential equations,” Academic Press,
San Diego, 1999.
[3] R.Courant and D. Hilbert, “Methods of Mathematical Physics, Par-
tial Differential Equations,” Wiley Interscience II, New York, 1962.

{4] L Podlubny, “Fractional-order systems and PI*D* controllers,”
IEEE Trans. Automatic Control, Vol.44(1), pp. 208-214, 1999.

[5] Y.-Q.Chen, C.-H. Hu, and K. L. Moore, “Relay Feedback Tuning of
Robust PID controllers with [so-Damping Property,” IEEE Transac-
tions on systems, man, and cybernetics - part B, 35(1), pp. 23-31,
2003.

[6] R.C.Dorf and R. H. Bishop, “Modern Control Systems,” Addison-
Wesley, New York, 1990.

[71 R. S. Barbosa, J. A. T. Machado, and 1. M. Ferreira, “Tuning of
PID controllers based on Bode’s ideal transfer function,” Nonlinear
Dynamics, 38(1/4), pp. 305-321, 2004.

[8] L Petrds and B. M. Vinagre, “Practical application of digital frac-

tional order controller to temperature control,” Acta Montanistica

Slovaca, 7(2), pp. 131-137, 2002.

J. T. Machado, I. Jesus, J. B. Cunha, and J. K. Tar, “Fractional Dy-

namics and Control of Distributed Parameter Systems,” Intelligent

Systems at the Service of Mankind, Vol.2, pp. 295-305, 2006.

[10] I.Crank, “The Mathematics of Diffusion,” Oxford Univ. Press, Lon-
don, 1956.

{11] C. F. Gerald and P. O. Wheatley, “Applied Numerical Analysis.”
Addison-Wesley, USA, 1999.

[12] 1. S. Jesus, R. S. Barbosa, J. A. T. Machado, and J. B. Cunha,
“Strategies for the Control of Heat Diffusion Systems Based on
Fractional Calculus,” Proc. IEEE Int. Conf. on Computational Cy-
bernetics, Estonia, 2006.

[13] LS.Jesus,J. A. T. Machado, and J. B. Cunha, “Fractional Dynamics
and Control of Heat Diffusion Systems,” Proc. The 26th IASTED
Int. Conf. on Modelling, Identification and Control - MIC 2007,
Innsbruck, Austria, 2007.

9

=

Vol.11 No.9, 2007

Application of Fractional Calculus in the Control of Heat Systems

Name:
Isabel S. Jesus

Affiliation:
Assistant Professor, Dept. of Electrotechnical
Engineering, Institute of Engineering of Porto

Address:

Rua Dr. Anténio Bernardino de Almeida, 4200-072 Porto, Portugal
Brief Biographical History:

1999 ‘Licenciatura’ in Electrical and Computer Engineering at the
Institute of Engineering of Porto

2002 MSc in Electrical and Computer Engineering at the Faculty of
Engineering of the University of Porto

2007 Ph.D. degree in Electrical Engineering at the University of
Trés-os-Montes and Alto Douro, Portugal

Main Works:

e I S. Jesus, J. A. T. Machado, and J. B. Cunha, “Application of Genetic
Algorithms to the Implementation of Fractional Electromagnetic
Potentials,” ECT 2006 - The Fifth Int. Conf. on Engineering
Computational Technology - Civil-Comp Press, Las Palmas, Spain, Sept.
2006.

o I.S. Jesus, J. A. T. Machado, and J. B. Cunha, “Fractional Electrical
Dynamics in Fruits and Vegetables,” 2nd IFAC workshop on Fractional
Differentiation and its Applications FDA - 2006, Portugal, July 2006.

o 1. S. Jesus, R. S. Barbosa, J. A. T. Machado, and J. B. Cunha, “Strategies
for the Control of Heat Diffusion Systems Based on Fractional Calculus,”
[EEE-ICCC 2006 - [EEE Int. Conf. on Computational Cybernetics,

pp. 3-8, Estonia, Aug. 2006.

Name:
J. A. Tenreiro Machado

Affiliation:
Coordinator Professor, Dept. of Electrotechnical
Engineering, Institute of Engineering of Porto

Address:

Rua Dr. Anténio Bernardino de Almeida, 4200-072 Porto, Portugal
Brief Biographical History:

‘Licenciatura’ (1980), Ph.D. (1989), and ‘Agregation’ (1995) degrees in
Electrical and Computer Engineering at the Faculty of Engineering of the
University of Porto, Portugal

Main Works:

e J. A. T. Machado and A. M. S. F. Galhano, “Benchmarking Computer
Systems for Robot Control,” IEEE Trans. on Education, Vol.38, No.3,

pp. 205-210, Aug. 1995.

e J. A. T. Machado, “Fractional-Order Derivative Approximations in
Discrete-Time Control Systems,” Systems Analysis-Modelling-Simulation,
Gordon & Breach Science Publishers, Vol.34, pp. 419-434, 1999.

e J. A. T. Machado, “A Probabilistic Interpretation of the Fractional-Order
Differentiation,” Journal of Fractional Calculus & Applied Analysis, Vol.6,
No.1, pp. 73-80, 2003.

e J. T. Machado and L. Jesus, “A Suggestion From the Past?,” FCAA -
Journal of Fractional Calculus and Applied Analysis, Vol.7, No.4,

pp- 403-407, 2004.

e J. A. T. Machado, 1. S. Jesus, and A. Galhano, “Fractional Order
Electromagnetics,” Signal Processing, Elsevier, Vol.86, pp. 2637-2644,
2006.

Journal of Advanced Computational Intelligence 1091

and Intelligent Informatics



