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Abstract

This article deals with the generalization of natural convection flow of

Cu – Al2O3 – H2O hybrid nanofluid in two infinite vertical parallel plates. To

demonstrate the flow phenomena in two parallel plates of hybrid nanofluids, the

Brinkman type fluid model together with the energy equation is considered. The

Caputo–Fabrizio fractional derivative and the Laplace transform technique are used

to developed exact analytical solutions for velocity and temperature profiles. The

general solutions for velocity and temperature profiles are brought into light through

numerical computation and graphical representation. The obtained results show that

the velocity and temperature profiles show dual behaviors for 0 < α < 1 and 0 < β < 1

where α and β are the fractional parameters. It is noticed that, for a shorter time, the

velocity and temperature distributions decrease with increasing values of the

fractional parameters, whereas the trend reverses for a longer time. Moreover, it is

found that the velocity and temperature profiles oppositely behave for the volume

fraction of hybrid nanofluids.
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1 Introduction

In recent decades, it was acknowledged that fractional operators are appropriate tools for

differentiation as compared to the local differentiation particularly in physical real word

problems. These fractional operators can be constructed by the convolutions of the local

derivative as the kernel of fractional operators; various kernels for fractional operators

have been suggested in the literature but the most common is the power law kernel (x–α),

which is used in the construction of Riemann–Liouville and Caputo fractional operators

(see [1], p. 65–106). However, the exponential decay law exp(–αx) was used by Caputo and

Fabrizio (see [2], p. 1–13). Atangana and Baleanu developed fractional operators in the

Caputo and Riemann–Liouville sense using the generalized Mittag–Leffler law Eα(–φxα)

as a kernel (see [3], p. 763–769). All these fractional operators have some shortcomings

and challenges but at the same time this area is growing fast, and researchers devoted their

attention to this field (see [4–10] and the references therein).
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It is important to mention here that fractional order calculus has many applications in

almost every field of science and technology which includes diffusion, relaxation process,

control, electrochemistry and viscoelasticity (see [11], p. 79–85). Zafar and Fetecau ([12],

p. 2789–2769) applied Caputo–Fabrizio fractional derivative to the flow of Newtonian

viscous fluid flowing over the infinite vertical plate. Markis et al. ([13], p. 1663–1679) an-

alyzed the flow of a fractional Maxwell’s fluid. According to their report, the fractional

results showed excellent agreement with experimental work by adjusting the fractional

parameter. Alkahtani and Atangana ([14], p. 106–113) used different fractional operators

to analyze the memory effect in a potential energy field caused by a charge. They pre-

sented some novel numerical approaches to the solutions of a fractional system of equa-

tions. Vieru et al. ([15], p. 85–96) presented exact solutions for the time-fraction model of

viscous fluid flow near a vertical plate taking into consideration mass diffusion and New-

tonian heating. Abro et al. ([16], p. 1–10) presented exact analytical solutions for the flow

of an Oldroyd-B fluid in a horizontal circular pipe. Jain ([17], p. 1–11) introduced a novel

and powerful numerical scheme and implemented to different fractional order differential

equations. Some other interesting and significant studies on fractional derivatives can be

found in [18–26] and the references therein.

The nanofluid is an innovation of nanotechnology to overcome the problems of heat

transport in many engineering and industrial sectors. A detailed discussion on nanoflu-

ids with a list of applications is reported by Wang et al. ([27], p. 1–19) in a review paper.

Sheikholeslam et al. ([28], p. 71–82) numerically studied the shape effect and the external

magnetic field effect on the F3O4 –H20 nanofluid inside a porous enclosure. Hassanan et

al. ([29], p. 482–488) developed exact solutions for nanofluids with different nanoparticles

for the unsteady flow of a micropolar fluid. The literature of nanofluids has exponentially

increased and has reached a next level by introducing hybrid nanofluids which are the sus-

pensions of two ormore types of nanoparticles in the composite formwith low concentra-

tion. Hybrid nanofluids are introduced to overcome the drawbacks of single nanoparticle

suspensions and connect the synergetic effect of nanoparticles. The hybrid nanofluid is

branded to further improve the thermal conductivity and heat transport, which leads to

industrial and engineering applications with low cost (see [30], p. 262–273). Hussain et

al. ([31], p. 1054–1066) carried out an entropy generation analysis on a hybrid nanofluid

in a cavity. Farooq et al. ([32], p. 1–14) presented a numerical study on hybrid nanofluids

keeping into consideration suction/injection, entropy generation, and viscous dissipation.

In the existing literature, experimental, theoretical and numerical studies on hybrid

nanofluids are very limited. A study of a hybrid nanofluid fluid with exact solutions and

the Caputo fractional derivative even does not exist. So, there is an urgent need to con-

tribute to the literature of hybrid nanofluids using the application of fractional differential

equations.Motivated by the above discussion, the present study focused on the heat trans-

fer in hybrid nanofluid in two vertical parallel plates using fractional derivative approach.

Awater-based hybrid nanofluid is characterized herewith composite hybrid nanoparticles

of cupper (Cu) and alumina (Al2O3). The fractional Brinkman type fluidmodel with phys-

ical initial and boundary conditions is considered for the flow phenomena. The Laplace

transform technique is used to obtain exact analytical solutions for the velocity and tem-

perature profiles. Using the properties of the Caputo–Fabrizio fractional derivative the

obtained solutions are reduced to the classical form for α = 1 and β = 1. To explore the
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physical aspect of the flow parameters the solutions are numerically computed and plotted

in different graphs with a physical explanation.

2 Problem’s description

Let us consider the unsteady free convection flow of a generalized incompressible hybrid

nanofluid in two infinite vertical parallel plates at a distance d. The plates are taken along

the x-axis and the y-axis is chosen normal to it. At t ≤ 0, the plates and fluid are at rest

with ambient temperature T0. After t = 0+, the temperature of the plate at y = d rises or

lowers from T0 to TW due to which the free convection takes place. At this moment, the

fluid starts motion in the x– direction due to the temperature gradient which gives rise to

the buoyancy forces. The Brinkman type fluid model is utilized to describe flow phenom-

ena of the hybrid nanofluid. Under the assumptions of ([33], p. 1472–1488) the governing

equations of the Cu –Al2O3 –H2O hybrid nanofluid are given by

ρhnf

(

∂u(y, t)

∂t
+ β∗

bu(y, t)

)

= µhnf

∂2u(y, t)

∂y2
+ g(ρβT )hnf

(

T(y, t) – T0

)

, (1)

(ρCp)hnf
∂T(y, t)

∂t
= khnf

∂2T(y, t)

∂y2
+Q0(T – T0), (2)

together with the following appropriate initial and boundary conditions:

u(y, 0) = 0, T(y, 0) = T0, ∀y≥ 0, (3)

u(0, t) = 0, T(0, t) = T0 for t > 0

u(d, t) = 0, T(d, t) = TW for t > 0

}

, (4)

where ρhnf is the density, u(y, t) is the velocity, β
∗
b is the Brinkmann parameter, µhnf is the

dynamic viscosity, βhnf is the volumetric thermal expansion, (Cp)hnf is the specific heat,

T(y, t) is the temperature, khnf is the thermal conductivity and Q0 is the heat generation

of the hybrid nanofluid.

3 Thermophysical properties of hybrid nanofluid

This section demonstrates the modification of thermophysical properties of a conven-

tional nanofluid and a hybrid nanofluid Cu –Al2O3 –H2O in a spherical shape.

3.1 The effective density

The effective density ρnf of conventional nanofluid is defined by Aminossadati and

Ghasemi (see [34], p. 630–640) and can be expressed as

ρnf = (1 – φ)ρf + φρs, (5)

where φ is the volume concentration of the nanoparticles, ρf and ρs are the densities of the

base fluid and solid particles respectively. The mathematical expression for the effective

density of the hybrid nanofluid can be obtained by modifying Eq. (5) (see [31], p. 1054–

1066):

ρhnf = (1 – φhnf )ρf + φAl2O3ρAl2O3 + φCuρCu, (6)
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where ρhnf is the density of the hybrid nanofluid, φhnf is the volume concentration of solid

particles such that φhnf = φAl2O3 + φCu, ρf is the density of the base fluid, φAl2O3 is the

volume concentration of alumina, ρAl2O2 is the density of alumina, φCu is the volume con-

centration of cupper and ρCu is the density of cupper.

3.2 The effective dynamic viscosity

The dynamics viscosity µnf of an ordinary nanofluid is expressed by Brinkman (see [35],

p. 571) by

µnf =
µf

(1 – φ)2.5
, (7)

which leads to the following modified form for a hybrid nanofluid:

µhnf =
µf

{1 – (φAl2O3 + φCu)}2.5
. (8)

3.3 The effective volumetric thermal expansion and heat capacitance

The thermal expansion and heat capacitance are, respectively, defined by Bourantas and

Loukopoulos (see [36], p. 35–41) in the form

(βTρ)nf = (1 – φ)(βTρ)f + φ(βTρ)s, (9)

(ρCp)nf = (1 – φ)(ρCp)f + φ(ρCp)s, (10)

with the following altered form for a hybrid nanofluid:

(ρβT )hnf = (1 – φhnf )(ρβT )f + φAl2O3 (ρβt)Al2O3 + φCu(ρβT )Cu, (11)

(ρCp)hnf = (1 – φhnf )(ρCp)f + φAl2O3 (ρCp)Al2O3 + φCu(ρCp)Cu. (12)

3.4 The effective thermal conductivity

The effective thermal conductivity for a conventional nanofluid is based on Maxwell’s

model (see [37], p. 87–92), which is defined by

Knf

Kf

=
ks + 2kf – 2φ(ks – kf )

ks + 2kf + 2φ(ks – kf )
, (13)

where Knf is the thermal conductivity of the nanofluid, Ks is the thermal conductivity of

solid nanometer-sized particles and Kf is the thermal conductivity of the base fluid. For

the hybrid nanofluid, Maxwell’s model can be modified:

khnf

kf
=

φAl2O3
kAl2O3+φCukCu

φhnf
+ 2kf + 2(φAl2O3kAl2O3 + φCukCu) – 2kf φhnf

φAl2O3
kAl2O3+φCukCu

φhnf
+ 2kf – (φAl2O3kAl2O3 + φCukCu) – 2kf φhnf

. (14)

It is important to highlight here that by making φAl2O3 = 0 or φCu = 0 the effective ther-

mophysical properties of the hybrid nanofluid presented in Eqs. (8), (11), (12) and (14)

can be reduced to the effective thermophysical properties of a conventional nanofluid pre-

sented in Eqs. (7), (9), (10) and (13), respectively. Furthermore, the typo mistake made in
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Table 1 Numerical values of thermophysical properties of base fluid and nanoparticles

Material Base fluid Nanoparticles

H2O Al2O3 Cu

ρ (kg/m3) 997.1 3970 8933

Cp (J/kgK) 4179 765 385

K (W/mK) 0.613 40 400

βT × 10–5 (K–1) 21 0.85 1.67

Pr 6.2 – –

[31], p. 1054–1066) and [32], p. 1–14 has been corrected here in the expression of the

thermal conductivity for the hybrid nanofluid. The numerical values of the base fluid and

nanoparticles are given in Table 1.

4 Generalization of local model

In this section, the dimensional system is first transformed to dimensionless form using

non-similarity variables to reduce the number of variables and get rid of units. The dimen-

sionless system is then artificially converted to time-fractional form or generalized form

using the Caputo–Fabrizio fractional operator (see [2], p. 1–13). It is worth to mention

here that the fractional models are more general and convenient in the description of flow

behavior and memory effect. Moreover, the results obtained from the fractional model

are additionally realistic because by adjusting the fractional parameter the obtained re-

sults can be compared with experimental data to reach excellent agreement as obtained

by Markis et al. (see [13], p. 1663–1679). Now introducing the following non-similarity

dimensionless variables:

v =
d

νf
u, ξ =

y

d
, τ =

νf

d2
t, θ =

T – T0

TW – T0

,

into Eqs. (1)–(4) yields the following:

a0

(

∂v(ξ , τ )

∂τ
+ βbv(ξ , τ )

)

= a1
∂2v(ξ , τ )

∂ξ 2
+ a2 Gr θ (ξ , τ ), (15)

a3 Pr
∂θ (ξ , τ )

∂τ
= λhnf

∂2θ (ξ , τ )

∂ξ 2
+Qθ (ξ , τ ), (16)

v(ξ , 0) = 0, θ (ξ , 0) = 0, ∀ξ ≥ 0, (17)

v(0, τ ) = 0, θ (0, τ ) = 0 for τ > 0

v(1, τ ) = 0, θ (1, τ ) = 1 for t > 0

}

, (18)

where

βb =
d2β∗

b

ν2
f

, Gr =
d3g(βT )f

ν2
f

(TW – T0), Pr =
(µCp)f

kf
,

Q =
d2Q0

kf
, λhnf =

khnf

kf
, a0 = (1 – φ) +

φAl2O3ρAl2O3 + φCuρCu

ρf

,

a1 =
1

{1 – (φAl2O3 + φCu)}2.5
a2 = (1 – φ) +

φAl2O3 (ρβt)Al2O3 + φCu(ρβT )Cu

(ρβT )f
,
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a3 = (1 – φ) +
φAl2O3 (ρCp)Al2O3 + φCu(ρCp)Cu

(ρCp)f
,

is the dimensionless Brinkman type fluid parameter, the thermal Grashof number, the

Prandtl number and heat generation parameter, respectively. Here λhnf ,a0,a1,a2 and a3

are the constant terms produced during the calculation. The time-fractional form of

Eqs. (15) and (16) in terms of Caputo–Fabrizio fractional operator is given by

a0

a1

CFDα
τ v(ξ , τ ) +

a0

a1
βbv(ξ , τ ) =

∂2v(ξ , τ )

∂ξ 2
+
a2

a1
Gr θ (ξ , τ ), (19)

a3 PrCFDβ
τ θ (ξ , τ ) = λhnf

∂2θ (ξ , τ )

∂ξ 2
+Qθ (ξ , τ ), (20)

where CFDα
τ v(ξ , τ ), and

CFDβ
τ θ (ξ , τ ) is for the Caputo–Fabrizio fractional operators of frac-

tional order α and β . Equations (19) and (20) are the Caputo–Fabrizio generalized form

of Eqs. (15) and (16), while the initial and boundary conditions will remain the same as in

Eqs. (17) and (18). The Caputo–Fabrizio fractional operator is defined by (see [2], p. 1–13)

CFDδ
t f (t) =

N(δ)

1 – δ

∫ t

0

exp

(

–
δ(t – τ )

1 – δ

)

∂f (τ )

∂τ
dτ , 0 < δ < 1, (21)

which is the convolution product of the function N(δ)
1–δ

exp(– δt
1–δ

) and f (t) of fractional order

δ. In this study the following two properties of Caputo–Fabrizio fractional operator will

be utilized.

1. Property 1: According to Losanda and Nieto (see [38], p. 87–92) N(δ) is the

normalization function such that

N(1) =N(0) = 1. (22)

2. Property 2: taking into consideration Eq. (22), the Laplace transform of Eq. (21) yields

L
{

CFDδ
t f (t)

}

(q) =
qf̄ (q) – f (0)

(1 – δ)q + δ
, 0 < δ < 1, (23)

such that

lim
δ→1

[

L
{

CFDδ
t f (t)

}

(q)
]

= lim
δ→1

{

qf̄ (q) – f (0)

(1 – δ)q + δ

}

= qf̄ (q) – f (0) = L

{

∂f (t)

∂t

}

, (24)

where f̄ (q) is the Laplace transform of f (t) and f (0) is the initial value of the function.

5 Solution of the problem

To solve Eqs. (19) and (20) the Laplace transformmethod L{f (t)}(q) = f̄ (q) =
∫ ∞
0

f (t)e–qt dt,

will be applied by using the corresponding initial and boundary conditions from Eqs. (17)

and (18) to develop exact analytical solutions for the velocity and temperature profiles.
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5.1 Solutions of the energy equation

Applying the Laplace transform to Eq. (20) keeping in mind the definition and properties

of the Caputo–Fabrizio fractional operator defined in Eq. (21)–(24) and using the corre-

sponding initial condition from Eq. (17) yield

a3 Pr
qθ (ξ , τ ) – θ (ξ , 0)

(1 – β)q + β
= λhnf

d2θ̄ (ξ ,q)

∂ξ 2
+Qθ̄ (ξ ,q), 0 < β < 1, (25)

and after further simplification of Eq. (25)

d2θ̄ (ξ ,q)

∂ξ 2
–
b4q – b1b3

q + b1
= 0, 0 < β < 1, (26)

with transformed boundary conditions

v̄(0,q) = 0, θ̄ (0,q) = 0 for q > 0

v̄(1,q) = 0, θ̄ (1,q) = 1
q

for q > 0

}

, (27)

where

b0 =
1

1 – β
, b1 = b0β , b2 =

a3 Pr

λhnf

, b3 =
Q

λhnf

, b4 = b0b2 – b3.

The exact solution of Eq. (26) using the corresponding boundary conditions from

Eq. (27) is given by

θ̄ (ξ ,q) =
1

q

(

sinh ξ

√

b4q – b1b3

q + b1

)(

sinh

√

b4q – b1b3

q + b1

)–1

, 0 < β < 1. (28)

Equation (28) represents the solutions of the energy equation in the Laplace transformed

domain. In order to invert the Laplace transform, this equation can be written in a more

suitable and simplified form:

θ̄ (ξ ,q) =

∞
∑

n=0

(

1

q
e
–(1+2n–ξ )

√

b4q–b1b3
q+b1 –

1

q
e
–(1+2n+ξ )

√

b4q–b1b3
q+b1

)

, 0 < β < 1. (29)

Let us consider

θ̄ (ξ ,q) = θ̄1(ξ ,q) – θ̄2(ξ ,q), 0 < β < 1, (30)

where

θ̄1(ξ ,q) =

∞
∑

n=0

1

q
e
–(1+2n–ξ )

√

b4q–b1b3
q+b1 , 0 < β < 1, (31)

θ̄2(ξ ,q) =

∞
∑

n=0

1

q
e
–(1+2n+ξ )

√

b4q–b1b3
q+b1 , 0 < β < 1. (32)
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Upon taking the inverse Laplace transform, Eq. (30) yields

θ (ξ , τ ) = θ1(ξ , τ ) – θ2(ξ , τ ), 0 < β < 1, (33)

and to derive the functions θ1(ξ , τ ) and θ2(ξ , τ ), the compound formula for the Laplace

inversion is used. The function Φ̄(ξ ,q) is chosen as

Φ̄(ξ ,q) = e
–(1+2n–ξ )

√

b4q–b1b3
q+b1 = e(1+2n–ξ )

√
W1(q). (34)

According to Khan (see [39], p. 397–401), the inverse Laplace transform of the functions

Φ̄(ξ ,q) can be obtained as

Φ(ξ , τ ) = L–1
{

Φ̄(ξ ,q)
}

=

∫ ∞

0

f
(

(1 + 2n – ξ ),u
)

g(u, τ )dτ , (35)

where

f
(

(1 + 2n – ξ ),u
)

=
(1 + 2n – ξ )

2u
√

πu
e–

(1+2n–ξ )
4u , (36)

g(u, τ ) = e–b4uδ(τ ) – e–b4u
√

pu

τ
I1

√
puτe–b1τ . (37)

and

p = –b1(b3 + b4).

The values of functions f ((1 + 2n – ξ ),u) and g(u, τ ), defined in Eqs. (36) and (37), are

used in Eq. (35) yielding the following simplified form:

Φ(ξ , τ ) = e–(1+2n–ξ )
√
b4δ(τ )–

(1 + 2n – ξ )
√
p

2
√

πτ
e–b1τ

∫ ∞

0

1

u
e–

(1+2n–ξ )2

4u –b4uI1
√
puτ du. (38)

To evaluate the function θ1(ξ , τ ), we need to find the convolution product of L–1{ 1
q
} = 1

and the function Φ̄(ξ ,q) which yields

θ1(ξ , τ ) =

∞
∑

n=0

(

e–(1+2n–ξ )
√
b4 –

∫ ∞

0

∫ τ

0

(1 + 2n – ξ )
√
p

2
√

πs
e–b1s

×
1

u
e–

(1+2n–ξ )2

4u –b4uI1
√
pusduds

)

. (39)

Similarly, the function θ2(ξ , τ ) is given by

θ1(ξ , τ ) =

∞
∑

n=0

(

e–(1+2n+ξ )
√
b4 –

∫ ∞

0

∫ τ

0

(1 + 2n + ξ )
√
p

2
√

πs
e–b1s

×
1

u
e–

(1+2n+ξ )2

4u –b4uI1
√
pusduds

)

. (40)
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To reduce the solutions obtained in Eq. (33) to classical or local form, Eq. (24) is used

for the following.

For β → 1, Eq. (24) is used which reduced Eq. (25) to the following form:

d2θ̄ (ξ ,q)

∂ξ 2
– (b2q + b2)θ̄ (ξ ,q) = 0. (41)

With the solutions in the Laplace transform domain one finds

θ̄ (ξ ,q) =
1

q

sinh ξ
√

b2q – b3

sinh
√

b2q – b3
. (42)

After further simplification, Eq. (42) takes the following form:

θ̄ (ξ ,q) =

∞
∑

n=0

(

1

q
e–(1+2n–ξ )

√
b2q–b3 –

1

q
e–(1+2n+ξ )

√
b2q–b3

)

, β = 1. (43)

Taking the inverse Laplace transform, Eq. (43) gives the following local solutions for the

temperature profile:

θ (ξ , τ ) = A1(ξ , τ ) –A2(ξ , τ ), β = 1, (44)

where

A1(ξ , τ ) =
1

2

∞
∑

n=0

⎛

⎜

⎜

⎝

e
– (1+2n–ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√

τ
–

√

– b3
b2

τ )

+ e
(1+2n–ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√

τ
+

√

– b3
b2

τ )

⎞

⎟

⎟

⎠

, (45)

A2(ξ , τ ) =
1

2

∞
∑

n=0

⎛

⎜

⎜

⎝

e
– (1+2n+ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√

τ
–

√

– b3
b2

τ )

+ e
(1+2n+ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√

τ
+

√

– b3
b2

τ )

⎞

⎟

⎟

⎠

. (46)

5.2 Solution of momentum equation

Applying the Laplace transform on Eq. (19) using the corresponding initial condition from

Eq. (15) yields

a0

a1

qv̄(ξ ,q) – v(ξ , 0)

(1 – α)q + α
+
a0

a1
βbv̄(ξ ,q) =

d2v̄(ξ ,q)

dξ 2
+
a2

a1
Gr θ̄ (ξ , τ ). (47)

After further simplification of Eq. (47)

d2v̄(ξ ,q)

dξ 2
–
d5q + d1d3

q + d1
v̄(ξ ,q) = –d4θ̄ (ξ ,q), (48)

where

d0 =
1

1 – α
, d1 = αd0, d2 =

a0

a1
, d3 = d2βb,

d4 =
a2

a1
Gr, d5 = d0d2 + d3.
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In the Laplace transform domain, the exact solution of Eq. (48) is given by

v̄(ξ ,q) =
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

sinh ξ

√

d5q+d1d3
q+d1

sinh

√

d5q+d1d3
q+d1

–
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

sinh ξ

√

b4q–b1b3
q+b1

sinh

√

b4q–b1b3
q+b1

, (49)

where

W1(q) =
d5q + d1d3

q + d1
, d6 = b4 – d5,

d7 = b4d1 – b1(b3 + d5), d8 = –b1d1(b3 + d3).

In order to find the inverse Laplace transform, Eq. (49) can be written in a more conve-

nient and simplified form as

v̄(ξ ,q) =
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

∞
∑

n=0

(

e
–(1+2n–ξ )

√

d5q+d1d3
q+d1 – e

–(1+2n+ξ )

√

d5q+d1d3
q+d1

)

–
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

∞
∑

n=0

(

e
–(1+2n–ξ )

√

b4q–b1b3
q+b1 – e

–(1+2n+ξ )

√

b4q–b1b3
q+b1

)

,

0 < α,β < 1. (50)

Let us consider

v̄(ξ ,q) = v̄1(ξ ,q)×
{

v̄2(ξ ,q) – v̄3(ξ ,q)
}

– v̄1(ξ ,q)

×
{

v̄4(ξ ,q) – v̄5(ξ ,q)
}

, 0 < α,β < 1. (51)

Here

v̄1(ξ ,q) =
(q + b1)(q + b1)

(d6q2 + d7q + d8)
, (52)

v̄2(ξ ,q) =
1

q

∞
∑

n=0

e
–(1+2n–ξ )

√

d5q+d1d3
q+d1 , (53)

v̄3(ξ ,q) =
1

q

∞
∑

n=0

e
–(1+2n+ξ )

√

d5q+d1d3
q+d1 , (54)

v̄4(ξ ,q) =
1

q

∞
∑

n=0

e
–(1+2n–ξ )

√

b4q–b1b3
q+b1 , (55)

v̄5(ξ ,q) =
1

q

∞
∑

n=0

e
–(1+2n+ξ )

√

b4q–b1b3
q+b1 , (56)
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and taking the inverse Laplace transform yields

v(ξ , τ ) = v1(ξ , τ ) ∗
{

v2(ξ , τ ) – v3(ξ , τ )
}

– v1(ξ , τ ) ∗
{

v4(ξ , τ ) – v5(ξ , τ )
}

, 0 < α,β < 1, (57)

where ∗ represents a convolution product and the terms v2(ξ , τ ), v3(ξ , τ )v4(ξ , τ ) and

v5(ξ , τ ) are given by

v2(ξ , τ ) =

∞
∑

n=0

{

e–(1+2n–ξ )
√

d5δ(τ )

–
(1 + 2n – ξ )

√
p2

2
√

πτ
e–d1τ

∫ ∞

0

1

u
e–

(1+2n–ξ )2

4u –b4uI1
√
p2uτ du

}

, (58)

v3(ξ , τ ) =

∞
∑

n=0

{

e–(1+2n+ξ )
√

d5δ(τ )

–
(1 + 2n + ξ )

√
p2

2
√

πτ
e–d1τ

∫ ∞

0

1

u
e–

(1+2n+ξ )2

4u –b4uI1
√
p2uτ du

}

, (59)

v4(ξ , τ ) =

∞
∑

n=0

{

e–(1+2n–ξ )
√
b4δ(τ )

–
(1 + 2n – ξ )

√
p2

2
√

πτ
e–b1τ

∫ ∞

0

1

u
e–

(1+2n–ξ )2

4u –b4uI1
√
p2uτ du

}

, (60)

v(ξ , τ ) =

∞
∑

n=0

{

e–(1+2n+ξ )
√
b4δ(τ )

–
(1 + 2n + ξ )

√
p2

2
√

πτ
e–b1τ

∫ ∞

0

1

u
e–

(1+2n+ξ )2

4u –b4uI1
√
p2uτ du

}

, (61)

where

p2 =
d1d3 – d5d1

d2
1

.

The term v1(ξ , τ ) is numerically obtained using Zakian’s algorithm. In the literature, it is

proven that the Zakian algorithm is a stable way for the inverse Laplace transform because

the truncated error for five multiple terms is negligible ([40], p. 83).

For the velocity profile, the local solutions can be recovered by making α,β → 1 in

Eq. (47) which leads to the following solutions in the Laplace transform domain:

v̄(ξ ,q) =
d4

(b2 – d3)q – (b3 + d3)

1

q

sinh ξ
√

d2q + d3

sinh
√

d2q + d3

–
d4

(b2 – d3)q – (b3 + d3)

1

q

sinh ξ
√

b2q – b3

sinh
√

b2q – b33
, (62)

with the following simplified form:

v̄(ξ ,q) =
d9

q2 + qd10

∞
∑

n=0

(

e–(1+2n–ξ )
√

d2q+d3 – e–(1+2n+ξ )
√

d2q+d3
)
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–
d9

q2 + qd10

∞
∑

n=0

(

e–(1+2n–ξ )
√

b2q–b3 – e–(1+2n+ξ )
√

b2q–b3
)

, α,β = 1, (63)

where

d9 =
d4

b2 – d2
, d10 =

b3 + d3

b2 – d2
.

The inverse Laplace transform of Eq. (63) yields

v(ξ , τ ) = B1(ξ , τ ) – B2(ξ , τ ) – B3(ξ , τ ) + B4(ξ , τ ), α,β = 1, (64)

where

B1(ξ , τ ) =
d10

2

∞
∑

n=0

∫ τ

0

e–d7(τ–s)

⎛

⎜

⎜

⎝

e
– (1+2n–ξ )√

b2

√

d3
d2 erfc( (1+2n–ξ )

2
√
s

–
√

d3
d2
s)

+ e
(1+2n–ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√
s

+
√

d3
d2
s)

⎞

⎟

⎟

⎠

ds, (65)

B2(ξ , τ ) =
d10

2

∞
∑

n=0

∫ τ

0

e–d7(τ–s)

⎛

⎜

⎜

⎝

e
– (1+2n+ξ )√

b2

√

d3
d2 erfc( (1+2n–ξ )

2
√
s

–
√

d3
d2
s)

+ e
(1+2n+ξ )√

b2

√

–
d3
d2 erfc( (1+2n–ξ )

2
√
s

+
√

d3
d2
s)

⎞

⎟

⎟

⎠

ds, (66)

B3(ξ , τ ) =
d10

2

∞
∑

n=0

∫ τ

0

e–d7(τ–s)

⎛

⎜

⎜

⎝

e
– (1+2n–ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√
s

–
√

– b3
b2
s)

+ e
(1+2n–ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√
s

+
√

– b3
b2
s)

⎞

⎟

⎟

⎠

ds, (67)

B4(ξ , τ ) =
d10

2

∞
∑

n=0

∫ τ

0

e–d7(τ–s)

⎛

⎜

⎜

⎝

e
– (1+2n+ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√
s

–
√

– b3
b2
s)

+ e
(1+2n+ξ )√

b2

√

–
b3
b2 erfc( (1+2n–ξ )

2
√
s

+
√

– b3
b2
s)

⎞

⎟

⎟

⎠

ds. (68)

6 Results and discussion

In this article, the idea of the fractional derivative is used for the generalization of the

free convection flow of the hybrid nanofluid. The governing equations of the Brinkman

type fluid along with the energy equation is fractionalized using the Caputo–Fabrizio frac-

tional derivative. The fractional PDEs are more general and are known as master PDEs.

The momentum and energy equations are solved analytically using the Laplace transform

technique. The obtained results are displayed in various graphs to study the influence of

the pertinent corresponding parameters, such as the fractional parameters α and β , the

volume fraction of hybrid nanofluid φhnf , the heat generation parameter Q, the Brinkman

parameter βb and the thermal Grashof number Gr on velocity and temperature profiles.

Figures 1(a) and (b) and 2(a) and (b) depict the impact of the fractional parameter α

and β on the velocity and temperature profiles. From these figures, it is noticed that the

velocity and the temperature profiles show the same trend for variations in the fractional

parameters. The velocity and temperature profiles exhibited increasing behavior for in-

creasing values of α, β for a longer time. When α,β are increased, the thickness of ther-

mal andmomentum boundary layers are increased and become thickest at α,β = 1, which

corresponds to the increasing performance of the velocity and temperature profiles. This

trend of the fractional parameter is the same here for velocity and temperature profiles
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Figure 1 Variation in temperature profile against ξ

due to β

Figure 2 Variation in velocity profile against ξ due

to α and β

as reported by ([25], p. 7) for fractional nanofluids using the Caputo–Fabrizio fractional

derivatives. But this effect reverses for a shorter time in the case of fractional velocity and

temperature distributions.
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Figure 3 Variation in temperature profile against ξ

due to φhnf

Figure 4 Variation in velocity profile against ξ due

to φhnf

Figure 5 Compression of the temperature profile

against ξ for different nanofluids

The influence of φhnf on the velocity and temperature profiles is studied in Figs. 3 and

4. The trends of velocity and temperature profiles are opposite to each other. The hybrid

nanofluid velocity decreases with increasing φhnf . This can be physically justified as the

hybrid nanofluid became more viscous with increasing φhnf , which leads to a decrease

in the nanofluid velocity. Nevertheless, the temperature profile increases with increase

in φhnf when the temperature is less than 180°C. The is due to the thermal conductivity

enhancing with the enhancement of φhnf and the hybrid nanofluid conducting more heat

as a result of heat transfer increases, which leads to an increase in the temperature profile.

In Figs. 5 and 6 the temperature and velocity profiles are compared forCu–Al2O3–H2O,

Cu–H2O, Al2O3 –H2O and pure water. It is noticed that the temperature profile is higher

for Cu–H2O followed by Cu–Al2O3 –H2O, Al2O3 –H2O and pure water. This due to the

fact that the thermal conductivity of Cu is higher than hybrid nanoparticles, alumina, and

pure water. But the hybrid nanofluid is more stable. In the case of the velocity profile, the
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Figure 6 Compression of the temperature profile

against ξ for different nanofluids

Figure 7 Variation in temperature profile against ξ

due to Q

Figure 8 Variation in velocity profile against ξ due

to Q

velocity of Al2O3 –H2O is higher, followed by the velocity of Cu–Al2O3 –H2O, Cu–H2O

and pure water. It can be physically justified as the Al2O3 conducting a high quantity of

heat due to the effective thermal conductivity but being less dense. Therefore, the velocity

of Al2O3 –H2O is higher among all the fluids under consideration.

Figures 7 and 8 depict the influence ofQ on velocity and temperature profiles. It is found

that the velocity and temperature distributions increasewith increasing values ofQ.When

a larger value is assigned toQ this means that the system absorbedmore heat due to which

the intermolecular attractive force became weaker; as a result, the temperature and ve-

locity profiles increase. The effect of the Brinkman parameter is presented in Fig. 9. It is

noticed that the velocity distribution decreases with increasing values of βb. The higher

values βb correspond to stronger drag forces, which lead to the retardation of the velocity

profile. The same effect of βb is reported by [33].

The effect of Gr is studied in Fig. 10 for negative and positive values. Positive values ofGr

correspond to heating of the plate, while negative values correspond to cooling of the plate.
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Figure 9 Variation in velocity profile against ξ due

to βb

Figure 10 Variation in velocity profile against ξ due

to Gr

In this figure, it is noticed that for greater values ofGr the velocity profile shows an increas-

ing trend. This is because when Gr is increased the buoyancy forces become stronger due

to which more convection takes place; as a result, the velocity profile increases. But this

effect reverses for negative values of Gr due to cooling of the plate.

7 Concluding remarks

In this article, the idea of free convection is generalized using the Caputo–Fabrizio frac-

tional derivative. The natural convection flow of a hybrid nanofluid in two vertical infinite

parallel plates is studied. Exact analytical solutions are developed for temperature and

velocity profiles via the Laplace transform technique. The effects of various pertinent pa-

rameters are numerically studied through graphs and discuss physically. Themajor points

extracted from this study are as follows:

• The velocity and temperature profiles show an increasing behavior for increasing

values α and β being most dominant for α,β = 1 for a larger time. But this effect

reverses for a shorter time.

• The fractional velocity and temperature are more general. Hence, the numerical

values for v(ξ , τ ) and θ (ξ , τ ) can be calculated for any value of α and β such that

0 < α,β < 1.

• The temperature distribution shows a very similar variation for different shapes of the

hybrid nanoparticles, so the density of the nanoparticles is a significant factor as

compared to thermal conductivity.

• The velocity profile decreases with increasing values of φhnf but this effect is opposite

in the case of the temperature profile.



Saqib et al. Advances in Difference Equations         ( 2019)  2019:52 Page 17 of 18

• With increasing values of Gr, the free convection became dominant, increasing the

nanofluid velocity for positive values but this trend reverses for negative values of Gr.

• The velocity retards for larger values of βb due the enhancement in the drag forces.
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