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A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT), is applied to SAR along-track
interferometry (SAR-ATI) in order to estimate moving target parameters. By mapping a target’s signal onto a fractional Fourier
axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of mag-
nitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum
fractional angle α and a measured fractional Fourier position up, allowing a target to be accurately repositioned and its velocity
components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched
filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired
by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in
estimating target velocity and position parameters.
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1. INTRODUCTION

Canada’s RADARSAT-2 commercial SAR satellite, to be
launched in spring 2006, will have an experimental mode
(called MODEX for moving object detection experiment)
that will allow the full antenna to be broken into two sub-
apertures with two parallel receivers to define two indepen-
dent data channels [1]. These two subapertures, arranged to
lie along the flight path, record two echoes (the dual-receive
mode), one from each wing for every pulse transmitted at
the full antenna. The two apertures enable one to detect tar-
gets with nonzero radial velocity by providing essentially two
identical views of the observed scene but at slightly differ-
ent times. In addition to the dual-receive mode of opera-
tion, RADARSAT-2 will also support an alternating-transmit
mode where pulses are transmitted alternately from each
wing and received alternately on each wing. This mode al-
lows greater separation of the two-way phase centers in the
along-track direction and also the possibility of generating a
third phase center for three-aperture ground moving target
indication (GMTI). This mode of operation is currently be-
ing investigated in preparation for RADARSAT-2 MODEX
demonstration but is not examined in this paper, since it
has been recognized that a two-aperture approach is subop-
timum [2, 3].

It can be shown that a moving target with a slant range
velocity vr causes a differential phase shift ϕATI = 4πvrτ/λ

(τ is the time between two observations and λ is wavelength),
which may be detected by interferometric combination of
the signals from a two-channel along-track SAR system [4].
Moving target signals are embedded in the imaged station-
ary scene, which is called “clutter.” The interferometric phase
ϕATI is often used to estimate a target’s radial velocity and
azimuth shift, without considering the fact that ϕATI is cor-
rupted by the overlapping stationary clutter (cf. [5]). This
may lead to serious errors in velocity and position estimates.
In order to accurately estimate target’s true position and ve-
locity, clutter contamination of the target’s signal must be
minimized. For a two-aperture radar system, the additional
degree of freedom provided by the second aperture can be
used to cancel clutter via the subtractive displaced phase cen-
ter antenna (DPCA), providing GMTI information. How-
ever, the expended degree of freedom can no longer be used
to estimate target parameters. The ATI, on the other hand,
contains target parameter information but is contaminated
by scene clutter because the ATI method does not actually
cancel clutter in the sense of removing clutter from the tar-
get. It only nulls the clutter’s interferometric phase but does
not truly cancel the clutter as does the DPCA.

The fractional Fourier transform (FrFT) is a relatively
unknown yet powerful technique, which when used in com-
bination with the ATI, provides significant signal-to-clutter
ratio (SCR) enhancement and at the same time allows target
position and velocity parameters to be accurately estimated.
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Figure 1: A target moving in a flat-earth geometry with motion
components in x and y direction. The radar moves in a positive x
direction.

The FrFT is a generalization of the regular Fourier transform
(FT) in that the FT transforms a signal from time domain
to frequency domain, the FrFT transforms it into a frac-
tional Fourier domain, which is a hybridized time-frequency
domain. A constant-velocity target signal, which is a linear
chirp, can be focused in an optimum fractional Fourier do-
main. Moving target position and motion parameters can be
derived and expressed in terms of a best FrFT angle α and
position up, which can be computed from the experimentally
measured data.

2. THEORY

2.1. Moving target signal model

The phase history of a moving target in a flat-earth geometry,
as shown in Figure 1, can be modelled as

ϕ(t)

= −2kR(t)

=−2k

√√√[
x0 +

(
vx0−va

)
t+

ax
2
t2

]2

+
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y0 + vy0 t +
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2
t2

]2

+h2,

(1)

where R(t) is the range history of the moving target, k =
2π/λ, and v and a are target velocity and acceleration, re-
spectively. Subscript “0” denotes velocity at time zero, and x
and y are along-track and across-track components, respec-
tively. The target velocity and position at broadside time tb
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Figure 2: Time-frequency distribution of target T8 obtained via
short-time Fourier transform, showing the Doppler-shifted linear
chirp of the target overlaid on stationary background clutter (3 dB
beamwidth is also shown).
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The Taylor expansion of (1) about broadside time tb can be
written as
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where Rb is target’s slant range at broadside and
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,
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(4)

The signal of a moving target in “slow time” can, therefore,
be modelled as

s(t) = rect

[
t − tb
T

]
e jϕ(t), (5)

which is a finite-time linear chirp with duration T centered
at time t = tb. In the real signal, the “rect” function is also
modulated by the antenna pattern.

Figure 2 shows the time-frequency (TF) plot, obtained
via the short-time Fourier transform (STFT) technique
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[6], of a moving target’s range-compressed signal (T8; see
Figure 8) superimposed on a stationary residual clutter. The
target’s range-compressed signal is a linear chirp in slow
time, which appears as a slanted line in the TF plane. Because
of the target’s across-track velocity component vyb (i.e., the
first-order term in the Taylor expansion), the signal is shifted
in frequency (in this case in the negative direction). If the
target has non-negligible along-track and/or across-track ve-
locity components (vxb and vyb) with respect to platform ve-
locity va and/or non-negligible along-track acceleration ax
(i.e., the second order-terms in the Taylor expansion or the
slope of the chirp), then its signal will be rotated slightly in
the TF-plane with respect to a stationary point target. The
signal remains a linear chirp as long as the target has no
acceleration components, ax and ay , or other higher-order
terms.

2.2. Fractional Fourier transform

The fractional Fourier transform with rotational angle α of a
signal f (t) is defined as [7, 8]

Fα(u) = ℜα[ f ](u) =

∫∞
−∞

f (t)Kα(t,u)dt, (6)

where for α not equal to zero or a multiple of π, the kernel
Kα(t,u) is given by

Kα(t,u) = ce j2πa[t2+u2−2but],

a =
cotα

2
, b = secα, c =

√
1− j cotα.

(7)

The FrFT with parameter α can be considered as a gener-
alization of the conventional Fourier transform (FT). Thus,
the FrFT for α = π/2 and α = −π/2 reduces to the conven-
tional and inverse FT, respectively. Multiplying both sides of
(6) by e− j2πau2

, one obtains

e− j2πau2

Fα(u) = F̃α(u) = c

∫∞
−∞

f (t)e j2πa(t2−2but)dt. (8)

Substituting ν/2ab for u in (8), it becomes

F̃α

(
ν

2ab

)
= c

∫∞
−∞

f (t)e j2π(at2−νt)dt

=

∫∞
−∞

{
c f (t)e j2πat

2}
e− j2πνtdt

=

∫∞
−∞

gα(t)e− j2πνtdt

= Gα(ν),

(9)

where gα(t) = c f (t) exp( j2πat2). The second last line in (9)
shows that the FrFT is a variation of the standard FT. As

such, many of its properties, such as its inverse formula and
sampling theorems for band-limited and time-limited sig-
nals, can be easily derived from those of the FT by a simple
change of variable. With respect to the parameter α, the FrFT
is continuous, periodic (ℜα = ℜα+2πn, with n an integer),
and additive (ℜαℜβ = ℜα+β), and has the symmetry relation
ℜα[ f ∗](u) = {ℜ−α[ f ](u)}∗. The inverse FrFT can thus be
written as

f (t) = ℜ−α
[
Fα
]
(t) =

∫∞
−∞

Fα(u)K−α(t,u)du. (10)

The FrFT maps the signal onto a rotated (or fractional) fre-
quency axis such that the originally slanted chirp energy be-
comes perpendicular to the rotated axis and, thus, highly
compressed or focused as illustrated in Figure 3. Also shown
in Figure 3 (insert) is a “measured” moving target (T10)
mapped onto the optimum fractional frequency axis. The
target energy, as can be seen, is highly compressed. Note
that the clutter has been suppressed by subtracting the aft
channel from the fore channel after time delay compensation
(or coregistration) [9]. The observed residual clutter can be
attributed to scene decorrelation, possibly caused by scene
motions and/or by slightly different observation angles, dur-
ing the fore and aft measurements. The residual clutter (plus
noise) surrounding the signal chirp can be filtered out if de-
sired. The signal strength is dramatically increased due to
pulse compression, resulting in a significant improvement in
the signal-to-clutter ratio (SCR) and, thus, in the interfero-
metric phase estimation accuracy [10].

The pulse compression via the FrFT is more or less equiv-
alent to SAR azimuth processing via a matched filter (MF)
that matches to the coefficient of the second-order term (i.e.,
the slope of the chirp) in (3). The signal compression via
the FrFT is not dependent on the first-order term (i.e., the
Doppler shift) but only on second- and higher-order terms
in the Taylor expansion, in contrast to the matched filter
approach. In the limiting case of small observation angu-
lar interval, the FrFT method will lead to a focused target
if the target is moving at a constant velocity throughout the
synthetic aperture time or only slightly accelerating in the
across-track direction. Unlike a matched filter, which is ca-
pable of fully “matching” to the target’s motion if the motion
parameters are known, the FrFT cannot, in principle, fully
focus a target that is accelerating in the along-track direction
(i.e., ax �= 0) because ax introduces nonlinearity in the sig-
nal chirp. The across-track acceleration, on the other hand,
introduces mainly a Doppler-rate (or slope) change in the
chirp and, therefore, does not lead to significant nonlinearity
[4, 11]. The ability of a matched filter to focus an accelerat-
ing target does not necessarily mean that the target’s param-
eters can be estimated more easily than the FrFT approach.
As it turns out (to be shown in Section 3.3), the obvious ad-
vantage of the FrFT method is that it has fewer intermediate
parameters to be estimated than the MF approach in the case
of constant velocity targets, making the FrFT method a more
robust and preferred technique.



3296 EURASIP Journal on Applied Signal Processing

Compressed energy

0

20

40

60

80

100

120

140

160

D
P

C
A

m
ag

n
it

u
d

e

0 1 2 3 4 5 6 7 8 9
×103

Fractional frequency (bin)

Compressed energy

F
re

q
u

en
cy

Fr
F

fr
eq

ue
nc

y

B
cl

u
tt

er

FrF tim
e

+PRF/2

−PRF/2

Time

α
Target

Figure 3: Illustration of a target energy focused via the FrFT. The insert shows an actual moving target’s (T10) signal compressed in the
fractional frequency domain.

This paper will not consider acceleration effects further,
and from now on the subscripts b and 0 will be dropped from
the velocity terms.

3. PARAMETER ESTIMATION ALGORITHMS

In this section we will describe parameter estimation algo-
rithms based on the FrFT and then compare them to the MF
approach. The comparison addresses only the relative ease of
the two methods in accurately estimating the ATI differen-
tial phase ϕATI, which is the key intermediate parameter for
determining the target velocity components.

3.1. Negligible along-track velocity

Having detected the targets and extracted their tracks or
range histories (see Section 4 and Figure 8) from the range-
compressed but azimuth-uncompressed fore and aft data
pair, each target is individually analyzed via the following
parameter estimation algorithm. The FrFT is first applied to
each target to maximize its SCR by mapping its energy onto a
fractional Fourier axis. This is done by scanning through the
angular parameter α in (6) to maximize the SCR. Then the
ATI differential phase is computed for this optimum frac-
tional angle α to get the “best” (or the least contaminated)
ϕATI. The radial velocity vr at the broadside (also equal to
the slant range velocity) is estimated from the interferomet-
ric phase ϕATI using the relationship [12]

ϕATI =
4πτvr
λ

=
kdvyγ

va
, (11)

where τ is the time delay between the pair of received sig-
nals and d is the distance between the centers of two sub-
apertures. The ground range velocity vy is calculated from
vy = vr/ sinη, where η is the angle of incidence and γ =
sinη = yb/Rb. The along-track velocity vx, on the other hand,
is estimated from the fractional (or rotational) angle α, which
can be obtained when the target is best focused in the frac-
tional Fourier domain, that is, by setting (6) equal to a “sinc”
function:

Fα(u) =

∫∞
−∞

rect

(
t − tb
T

)
e jϕ(t)Kα(t,u)dt

=

∫ tb+T/2

tb−T/2
e jϕ(t)Kα(t,u)dt

= κsinc
[
µ
(
u− up

)]
e jϕ

′(u),

(12)

where κ and µ are constants, T is signal length centered
at broadside time tb, ϕ′(u) is signal’s phase in fractional
Fourier domain, and up is the target position on the frac-
tional Fourier axis, which can be shown to be equal to equa-
tion

up =
1

4πab

(
− 2kγvy +

2kv2
reltb
Rb

)
. (13)

Note that (12) is equal to a sinc function only when the
t2 term in the exponential of the integrand is equal to zero,
thus

α = acot

{
2N

Rbλ f 2
s

[(
vx − va

)2
+ v2

y

(
1− γ2

)]}
(14)
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or

vx = va −

√
Rbλ f 2

s cotα

2N
− v2

y

(
1− γ2

)
, (15)

where N is sample length and fs is sampling (or pulse rep-
etition) frequency. The f 2

s /N factor is introduced to con-
vert time-frequency units to dimensionless time-frequency
samples in the digitized FrFT domain. The target azimuth
shift correction ∆x can be derived by setting the derivative of
phase history (3) to zero and solving for (tc−tb), which yields
the azimuth shift correction, ∆x = va(tc − tb),

∆x =
vyvayb(

vx − va
)2

+ v2
y

(
1− γ2

) ≈
vy yb
va

=
vrRb

va
, (16)

where the approximation (≈) is valid only when va ≫ vx. In
order to calculate tb from (16), one still needs to know tc, the
time of closest approach. An alternate and better method to
estimate tb is via the FrFT, that is solving (13) for tb:

tb =
Rb

kv2
rel

(
πup

sinα
+ kγvy

)
. (17)

Expressing in dimensionless time and frequency samples (in-
stead of units of second and Hertz), (17) becomes

tb =
(
f 2
s

N

)
Rb

v2
rel

[
πup

k sinα
+

(
N

fs

)
γvy

]
. (18)

Equation (18) can also be derived from the geometry of the
signal chirp in frequency-time plane as shown in Figure 4.
From the figure, the time of closest approach tc is equal to

tc =
up

cosα
, (19)

and “tanα” is equal to

tanα =
tc − tb
fD

. (20)

Combining (19) and (20) gives

tb = tanα
(

up

sinα
− fD

)
, (21)

which can be shown to be equal to (18) when substituting for

fD = −
Nkvr
fsπ

= −
Nkvyγ

fsπ
,

tanα =
f 2
s Rbλ

2Nv2
rel

=
f 2
s Rbπ

Nv2
relk

.

(22)
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Figure 4: Derivation of tb from frequency-time geometry of target
parameters.

The new approach permits parameter estimation of vy , vx,
and xb = vatb in the fractional Fourier domain using (11),
(15), and (18) directly from range-compressed raw data
without actually forming an SAR image.

3.2. Nonnegligible along-track velocity

When examining target track (or range) histories, one ob-
serves that they have breaks and missing portions (see
Figure 8), during which times the targets appear invisible to
the radar. As a result, the centers of the tracks may not al-
ways correspond to the “broadside times” of these targets. As
can be seen in Figure 8, most tracks are not centered at their
broadside times (i.e., on the highway). Thus, one cannot de-
termine the target broadside time tb from the track history.
But more importantly (as will be shown below), this time off-
set δt of the target track center from tb, together with a non-
negligible vx (with respect to va), causes the estimate of the
target interferometric phase ϕATI to deviate from its “ideal”
value.

If the phase of the signal received at channel 1 is

ϕ1(t) = −2kR(t) = −2k
[
Rb + vyγ

(
t − tb

)
+

v2
rel

2Rb

(
t − tb

)2
]

,

(23)

then the phase of the signal at channel 2 in far-field approxi-
mation is

ϕ2(t) = ϕ1(t)− kµ(t)d, (24)

where

µ(t) ≈
vx − va
Rb

(
t − tb

)
(25)

is Taylor series expansion of the direction cosine about
broadside time tb. To coregister the two channels, the signal
received at channel 2 is forward-time-shifted by t = d/2vato
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yield a phase:

ϕ2

(
t +

d

2va

)
= −2kRb − 2kγvy

(
t − tb

)
− kγvy

d

va

− k
v2

rel

Rb

(
t − tb

)2
−

kd

Rb
ve
(
t − tb

)

= ϕ1(t)− kγvy
d

va
−

kd

Rb
ve
(
t − tb

)
,

(26)

where

ve =

(
vx − va

)2
+
(
1− γ2

)
v2
y

va
+
(
vx − va

)

=
v2

rel

va
+
(
vx − va

)
.

(27)

If the signal track is of length T and is not centered at tb
(but at tb + δt), then coregistered signals at apertures 1 and 2
can be written, respectively, as

s1 = rect

[
t − tb − δt

T

]
e jϕ1(t), (28)

s2 = rect

[
t − tb − δt

T

]
e jϕ2(t+d/2va). (29)

Substituting (28) into (6) and integrating to maximize the
target signal in fractional Fourier domain, one obtains

Fα1(u) = e jǫ1

∫ +∞

−∞
rect

[
t − tb − δt

T

]
e j(ξ1t+ν1t2)dt

= e jǫ1

∫ tb+δt+T/2

tb+δt−T/2
e jξ1tdt

= e j[ǫ1+ξ1(tb+δt)]Tsinc

(
ξ1T

2π

)
,

(30)

where

ǫ1 = −2kRb + 2kγvytb −
kv2

relt
2
b

Rb
+ 2πau2,

ξ1 = −2kγvy +
2kv2

reltb
Rb

− 4πabu,

ν1 = −
kv2

rel

Rb
+ 2πa = 0.

(31)

Again, note that the target signal is maximized in the frac-
tional Fourier domain when ν1 is equal to zero, which yields
a “sinc” function in (30) and the optimum fractional angle α
(a = cotα/2):

α = acot

(
kv2

rel

πRb

)
. (32)

Similarly, the optimum fractional Fourier transform of
the coregistered signal received at channel 2 can be shown to
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Figure 5: A simulated target’s interferometric phases with signif-
icant center offset δt in its track history. The target has velocity
components vx = −25 m/s and vy = 5 m/s. The “ideal” phase with
δt = 0 is shown as solid line. The phase deviation from the ideal
value is symmetric with respect to δt = 0.

be

Fα2(u) = e j[ǫ2+ξ2(tb+δt)]Tsinc

(
ξ2T

2π

)
, (33)

where

ǫ2 = ǫ1 −
kγvyd

va
+
ktbdve
Rb

,

ξ2 = ξ1 −
kdve
Rb

.

(34)

Therefore, the differential phase of interferogram (ϕATI =

arg[Fα1(u)Fα2(u)∗]) evaluated at optimum fractional Fourier
angle α can be shown to be equal to

ϕATI =
kdvyγ

va
+
kdve
Rb

δt, (35)

which indicates that ϕATI is also sensitive to vx if the target
track is not centered at tb. Its sensitivity is dependent on the
degree of offset δt and the target-platform velocity difference
(vx − va) in the along-track direction.

Figure 5 shows the ATI phase of a simulated moving tar-
get with its track history centered at t = tb + δt. The “ideal”
phase (i.e., when δt = 0) is shown as solid line. The target
moves at a constant velocity (vx = −25 m/s and vy = 5 m/s)
in a flat earth geometry as depicted in Figure 1. The dom-
inant term in ve in (35) is along-track velocity vx. There-
fore, large δt and vx values lead to significant deviation of
ATI phase from the ideal value. One also notes that the phase
deviation is symmetric with respect to δt = 0.

In more general cases, therefore, δt cannot be ignored
and the estimation procedure proposed in Section 3.2 can-
not be applied to obtain velocity and position estimates, if
vx is non-negligible with respect to the platform velocity va.
In order to resolve this, an additional independent equation
is needed. This can be obtained by making use of “angle-
of-arrival” information. When unregistered signals from two
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using (37) and (15). The new method takes into account the effect
of offset δt on ATI phase and yields correct parameter estimates.

identical channels are combined to form an interferogram,
its differential phase (or angle) provides angle-of-arrival in-
formation of a target, instead of its velocity information as
in the coregistered signal case. When the target is at broad-
side of the antenna beam, the distances between the target
and the two receiving subapertures should be identical and,
therefore, the phases of the two signals received at two chan-
nels should also be identical, which leads to a zero ATI phase.
However, when δt �= 0, the ATI phase computed from the
two unregistered signals is no longer zero but can be shown
to be

ϕATIu =
k
(
vx − va

)
d

Rb
δt, (36)

which is a function of both vx and δt. Substituting (36) into
(35) to eliminate unknown parameter δt and solving for vy
result in

vy =
va
kγd

{
ϕATI − ϕATIu

[
Rbλ f 2

s cotα

2Nva
(
vx − va

) + 1

]}
, (37)

which has only two unknowns, vx and vy . Target velocity
components can, therefore, be obtained from (37) and (15),
and target azimuth position from (17). The revised param-
eter estimation procedure is applied to the above simulated
target and its velocity components are estimated and plotted
in Figure 6. Using the revised approach, the target parame-
ters are now correctly estimated.

3.3. Comparison to matched-filter approach

Some of the advantages of the proposed FrFT approach
become apparent when comparing with the matched-filter

(MF) method (i.e., via SAR azimuth compression). If one as-
sumes a matched filter that matches exactly to the Doppler
rate or vrel (i.e., the second coefficient in the Taylor expan-
sion) of a constantly moving target but does not match cor-
rectly to its Doppler shift or vy (i.e., the first coefficient in the
Taylor expansion), then the reference function for azimuth
compression can be written as

h(t) = rect

[
t

Tr

]
exp

{
− j
[

2k
(
vryt +

1

2Rb
v2

relt
2

)]}
, (38)

where vry and Tr in (38) are not necessarily equal to vy and
T , respectively, in (28) and (29). The resulting ATI phase ob-
tained by solving

ϕATImf (t) = arg
[
s1(t)∗ h∗(−t)

][
s2(t)∗ h∗(−t)

]∗
(39)

can be shown to be equal [13] to

ϕATImf =
kvyγd

va
−

kγdve
2v2

rel

(
vy − vry

)
+
kdve
Rb

[
δt

2
∓

Tr − T

4

]
,

(40)

where “∓” corresponds to cases where (tc − tb − δt) > 0
and (tc − tb − δt) < 0, respectively, and tc is the azimuth-
shifted-time position of target, which is also the time of clos-
est approach if the MF is matched to the target’s Doppler rate.
In order to correctly estimate the target ATI phase, which is
a key parameter for target velocity estimation, the MF ap-
proach requires matching to vrel and vy simultaneously. This
is more difficult to accomplish than matching only to vrel as
in the FrFT case. The expression (40) also indicates that if one
does not correctly choose a vry for the reference function (i.e.,
vry �= vy), the azimuth processing actually leads to a biased or
erroneous ATI phase because of its “vy − vry” dependence.
A simulation run of a moving target with vx = −25 m/s
and vy = 5 m/s in background Gaussian clutter and using a
matched filter perfectly matched to vrel but not to vy (vry = 0),
clearly shows that the target’s ATI phase, computed via the
MF approach, deviates strongly from the ideal phase value
computed using (11), as shown as solid lines in Figure 7. The
ideal ATI phase is 110.4◦, but the SAR approach consistently
yields biased results for various SCRs. The SCR is here de-
fined to be the target’s SCR before pulse compression. Even
with sufficiently large SCR, the ATI phase is still biased at
101.2◦, which is predicted and confirmed by (40). In addi-
tion to its dependence on δt and “vry − vy ,” the MF method is
also dependent on “Tr − T ,” which means that the choice of
matched-filter length will also affect the resulting ATI phase
value.

Also shown in the figure are the results computed using
the FrFT method (shown as dots). Without a tb offset (i.e.,
δt = 0), the technique yields the ideal ATI phase, except when
the SCR is small and the ATI phase becomes severely con-
taminated by the interfering clutter. It is clear, therefore, that
the FrFT approach is superior to the MF method because the
FrFT approach requires only matching the target’s Doppler
rate, which is a relatively straight-forward and robust proce-
dure. The MF, on the other hand, involves matching not only
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Figure 7: A simulated deterministic target with vx = −25 m/s and vy = 5 m/s in a background Gaussian clutter, using a matched filter
perfectly matched to vrel but not to vy (v′y = 0). Assume δt = 0. The ideal ATI phase is 110.4◦. The FrFT and MF results are denoted by dots
and solid lines, respectively. (a) SCR = −24.4 dB; (b) SCR = −21.9 dB; (c) SCR = −20.0 dB; and (d) SCR = −6.0 dB. The signal length is
equal to the matched-filter length.

to the target’s Doppler rate but also to its Doppler shift in
order to avoid any bias, a process proven to be difficult and
unreliable due to insufficient information.

4. AIRBORNE EXPERIMENT

As part of the preparatory work for the RADARSAT-2
MODEX, airborne experiments were conducted to acquire
SAR-ATI data for typical RADARSAT-2 resolutions and an-
gles of incidence. The dataset used in this study was obtained
at Canadian Forces Base (CFB), Petawawa, on November
5, 2000, by the Environment Canada CV 580 C-band SAR

configured in its along-track interferometer mode [14]. The
study focuses on targets of opportunity (TOOs) on High-
way 17, which runs through the experimental site. The high-
way was monitored by two video cameras 600 m apart set
up along a stretch of the highway to measure TOO speeds.
The highway has a speed limit of 90 km/h, but most TOOs
monitored were 10–20 km/h over the limit. The video cam-
eras monitored over 47 vehicles during the data acquisition
period, and their measured ground speeds vg varied from
83 km/h to 120 km/h.

Targets were detected in the range-compressed raw-data
domain via a combination of the DPCA technique [9], which
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Figure 8: Range-compressed raw-data DPCA output. The horizon-
tal lines are due to motion compensation artifacts.

subtracts the aft channel from the coregistered fore channel
to suppress the background clutter, and the raw-data tar-
get detection algorithm developed by Gierull and Sikaneta
[13, 15]. The DPCA is first applied to the pair of fore and
aft channel range-compressed signal data to obtain a plot of
target track histories as shown in Figure 8. Since the targets
are azimuthally uncompressed, their energies are spread over
the slow time. Since these targets are moving on Highway
17 along the across-track direction, their track histories are
slanted in range as seen in Figure 8, indicating range walk.
Uncancelled bright stationary targets also show up in the
image, as seen in the upper right-hand corner of Figure 8
(where a small town is located), but their tracks are seen as
almost vertical (actually they are hyperbolas symmetric to
the across-track direction). In order to estimate the target
parameters, Gierull and Sikaneta’s automatic detection algo-
rithm [15] is first applied to extract their signal tracks. Eigh-
teen moving targets are detected and analyzed.

Figure 9 shows the polar plots of three (T4, T9, and T10)
of the eighteen detected targets’ interferograms. Figures 9a,
9b, and 9c are interferograms obtained from the regular
SAR-ATI processing (i.e., from the fore and aft SAR images
processed by a stationary terrain matched filter). Interfero-
grams for the same targets obtained from the FrFT process-
ing are shown in Figures 9d, 9e, and 9f. The signal points near
the zero phase radial belong to stationary clutter. As can be
seen, ATI phases obtained from the regular SAR processing
are severely contaminated by the interfering clutter and their
values are consistently lower than those obtained from the
FrFT, which gives not only much cleaner and better defined
phases but also correct values compared to their true phases.
The “true” phase is here defined to be the ϕATI that gives the
correct azimuth correction to bring a target back onto the
road (or Highway 17).

The analysis results of all eighteen targets are summa-
rized in Table 1, showing targets’ interferometric phases ϕATI

and their estimated ground velocities vg . The velocities and
azimuth shifts of 10 targets are correctly estimated by the
FrFT approach compared to only three by the regular SAR
approach.

Since all targets are either moving almost directly towards
or directly away from the radar, their radial velocities vr are
both high and ambiguous due to phase wrapping. The ve-
locity ambiguity can be resolved by using the track history
of each target, as the one shown in Figure 10 for target T1.
By converting azimuth samples to azimuth time (i.e., mul-
tiplying the number of azimuth samples by the pulse repe-
tition frequency) and range samples to range distance (i.e.,
multiplying the number of range samples by c/ fA/D, where
c is the speed of light and fA/D is A/D sampling frequency),
one obtains an average vy of +109 km/h for target T1. There-
fore, the ATI phase is expected to wrap around 2π, which
occurs at vr = 13.15 m/s (47.33 km/h). In fact, the measured
ATI phases for all targets under consideration must be un-
wrapped to yield target speeds that fall within the monitored
speed range (83 to 120 km/h). For instance, T1’s−132◦ phase
is in fact +588◦, which yields a vr = +77.3 km/h, or a ground
velocity of +106.2 km/h after taking into account the imaging
geometry.

Figure 11 plots the targets’ azimuthally-corrected posi-
tions estimated from the proposed FrFT approach. The cir-
cles represent targets in their azimuth-shifted positions and
the squares are their corrected locations. As can be seen, ten
out of eighteen targets are correctly positioned on Highway
17. The other targets are not because their SCRs remain small
(� −3 dB) even after the FrFT processing.

The estimation procedure proposed in Section 3.1 yields
good positional estimates for the 18 targets examined, even
though the majority of the target tracks may not be centered
at broadside. This is because most targets examined are mov-
ing mainly toward or away from radar with a relatively small
vx component, usually in the range of 2 to 5 m/s. This is espe-
cially true for targets T1 through T12. Therefore, track center
offsets do not significantly affect the tb estimates.

5. CONCLUSIONS

Moving target parameter estimation using FrFT methods, in
combination with the ATI, is here demonstrated for the first
time. This new proposed approach is compared to the MF
method and is shown to be less biased and more robust. In
particular, the ATI phase computed via FrFT is not depen-
dent on the target’s across-track velocity component (vy) or
its Doppler shift, which is difficult to measure experimentally
due to insufficient degrees of freedom. The phase (FrFT) de-
pends only on target’s Doppler rate, which is shown to be
measurable experimentally with a high degree of robustness.
The ATI phase via MF, on the other hand, is dependent not
only on the target’s Doppler rate but also on vy . Moreover,
the selection of MF length directly affects the ATI phase es-
timate. All these make the MF a less desirable method than
the proposed FrFT approach. The FrFT method also allows
the estimation of target’s true azimuth position xb (or the
so-called “broadside” position) directly from its measured
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Figure 9: (a), (b), and (c) are clutter-corrupted ATI signals for targets T4, T9, and T10, respectively; (d), (e), and (f) are the same targets’
ATI signals after the FrFT filtering or focussing.

Table 1: Estimated interferometric phase ϕATI and ground velocity vg of eighteen detected targets.

Target ID SAR ϕATI(degree) / vg(km/h) FrFT ϕATI(degree) / vg(km/h) “True” ϕATI(degree) / vg(km/h)

T1 −142/104.5 −132.7/106.2 −131/106.5

T2 −42/118.9 −42.8/118.7 −43/118.7

T3 0/0 −87/110.7 −157.7/98.4

T4 +32/118.7 +80/110.4 +79/110.6

T5 (Target too weak for estimation)

T6 −60/110.4 −71/108.5 −71.3/108.5

T7 +106/100.8 +103/101.3 +100/101.8

T8 +88/103.2 +85.4/103.6 +85/103.7

T9 −26/110.7 −65/104.5 −63.5/104.7

T10 −30/109.9 −85/101.1 −84/101.3

T11 −5/113.8 −70/103.4 −104.5/98.0

T12 0/0 −135/93.0 −137/92.7

T13 −60/104.2 −10/112.1 −83/100.6

T14 −47/106.0 −48/105.9 −86.5/99.8

T15 +30/124.7 +45/122.0 +44/122.2

T16 −32/124.4 −130/106.7 −150/103.1

T17 0/0 −82/115.0 −153.5/102.2

T18 0/0 +44/120.8 +98.5/111.0
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Figure 10: Track history of target T1 extracted from Figure 8.
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Figure 11: Detected moving targets in the SAR image context. The
circles represent target azimuth-shifted positions and the squares
are azimuth-corrected positions.

position up in the fractional Fourier domain without actu-
ally forming an SAR image or knowing the position of “clos-
est approach” tc.
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