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Application of free energy expansions to mesoscopic dynamics
of copolymer melts using a Gaussian chain molecular model
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Groningen Biomolecular Sciences and Biotechnology Institute, Bioson Research Institute,
University of Groningen, Departmemt of Biophysical Chemistry, Nijenborgh 4, 9747 AG Groningen,
The Netherlands

~Received 3 June 1996; accepted 16 January 1997!

The present paper deals with some mathematical aspects of generalized time-dependent Ginzburg–
Landau theories for the numerical simulation of mesoscale phase separation kinetics of copolymer
melts. We shortly discuss the underlying theory and introduce an expansion of the external potential,
to be used in the dynamics algorithm, which is similar to free-energy expansions. This expansion is
valid for both compressible and incompressible multicomponent copolymer melts using a Gaussian
chain model. The expansion is similar to the well-known random phase approximation~RPA! but
differs in some important aspects. Also, the application of RPA like free energy expansions to
dynamics is new. Our derivation leads to simple expressions for the vertex coefficients, which
enables us to numerically calculate their full wave vector dependence, without assuming an ordered
morphology. We find that our fourth-order vertex is negative for some wave vectors which has
important consequences for thesimulationof mesoscopic dynamics. We propose a fitting procedure
for the vertex coefficients to overcome the computationally expensive calculation of the linear and
bilinear expansion terms in the expansion. This procedure provides analytically derived parameters
for a gradient free energy expansion, which allows for a whole new class of phase-separation
models to be defined. ©1997 American Institute of Physics.@S0021-9606~97!50216-9#

I. INTRODUCTION

A. General

The present paper deals with some important mathemati-
cal aspects of generalized time-dependent Ginzburg–Landau
theories for the numerical simulation of mesoscale phase
separation kinetics of copolymer melts. A few recent refer-
ences of groups working in this field are Refs. 1–3; two
modern reviews of coarse grained time-dependent
Ginzburg–Landau and related models are in Refs. 4 and 5.
The prototype of these types of coarse-grained models is an
M -component functional Langevin equation for conserved
order parameters of the following general form:6

]r I~r !

]t
5 (

J51

M E
V
D IJ~r ,r1!mJ~r1!dr1

2b21(
J51

M E
V

dD IJ~r ,r1!

drJ~r1!
dr11h I~r ,t !,

D IJ~r ,r1!5¹ r•L IJ~r ,r1!¹ r1
, ~1!

with particle concentration fieldsr I(r )(I51,...,M ), trans-
port coefficients L IJ , intrinsic chemical potentials
m I[dF/dr I(r ) ~F is the free energy!, b215kBT and noise
fields h I(r ,t). The noise has a Gaussian distribution with
moments dictated by a fluctuation-dissipation theorem.6–8

In the review papers and references one can find ample
examples of computer simulations of time-dependent
Ginzburg–Landau models for two-component incompress-
ible liquids with linear transport coefficients and simple
fourth-order phenomenological expansion models for the
free energy.

It is important to realize how our approach differs from
the usual phenomenological expansion methods; to this end,
we will briefly recapitulate popular expansion models. Re-
cently, Seul and Andelman presented an elegant overview of
fourth-order phenomenological free energy expansions, sum-
marizing a large variety of pattern formation models for
many different physical systems.9 These expansions contain
only the bare ingredients necessary to describe the basic
physics of competing interactions. Restricted to the special
case of incompressible copolymer melts, an example of such
a simplified fourth-order expansion for the free energy reads

F@f#5E
V
F12 tf21

1

4
uf41

1

2
bu¹fu2

2
m2

2 E
V

f~r !f~r1!

ur2r1u
dr1Gdr , ~2!

wheref[rA2rB is the order parameter andt, u, b, andm
are phenomenological coefficients. The expansion consists of
a fourth-order~Landau! expansion inf, a Cahn–Hilliard
penalty on spatial gradients and a term which introduces ef-
fective long-range interactions due to the connectivity of the
copolymer blocks. Depending on the choice of the param-
eters, this expansion may predict the geometry of various
kinds of complex patterns in copolymer melts. Some time
ago, Oono and Shiwa introduced a time-dependent
Ginzburg–Landau model to calculate the formation of pat-
terns, using essentially the same free energy expansion

]f

]t
5L¹2

dF

df
5L¹2~tf1uf32b¹2f!2m2f. ~3!

6730 J. Chem. Phys. 106 (16), 22 April 1997 0021-9606/97/106(16)/6730/14/$10.00 © 1997 American Institute of Physics



This model has been thoroughly studied, both
theoretically10,11 and numerically.12–14 Since the right-hand
side of Eq. ~3! is explicit in the order parameter and the
nonlinearity is rather modest, the numerical integration poses
no particular problems and can be accomplished with either
standard methods, or the so-called cell-dynamical systems
method.15–17

Despite the elegance of the phenomenological approach
and the simplicity of the resulting equations, it also has an
obvious drawback. The method is ill-suited for dealing with
the enormous variety of different molecular interactions
which are typically found in complex fluids. There is little
practicallity in fitting phenomenological parameters to each
different system. In addition the limited expansion may not
include the pertinent symmetries of the system under inves-
tigation.

In view of the practical importance of working with
more realistic molecular models, an extension of the theoret-
ical and simulation methods to general nonlinear transport
models and free energy functionals is clearly needed.

B. Application of free energy expansions

In our group we are investigating the practical applica-
tion of the Langevin equations to the phase separation of
polymer and surfactant mixtures, using a free energy func-
tional derived for a collection of Gaussian chains in a mean-
field environment. In this approach we try to retain as much
as possible of the underlying molecular properties, i.e., the
architecture and composition of the chains are important pa-
rameters. In previous papers we have studied the random
term,6 the numerical calculation of the Gaussian chain den-
sity functional18 and we have presented some results of ac-
tual numerical calculations of phase separation in block co-
polymer melts,19 using a local exchange form for the
transport coefficients. The latter paper also contains a full
density functional derivation of the free energy functional
and the Gaussian chain density functional for inhomoge-
neous off-equilibrium copolymer melts. In addition, a study
of appropriate nonlocal transport coefficients is in progress.

During a simulation, the external potential, which can be
derived from the free energy, has to be calculated repeatedly
from the density. This was previously done using an iterative
~time-consuming! inversion method. Here, we study the pos-
sibility of using more sophisticated explicit fourth-order free
energy expansions for speeding up the calculations. The
fourth-order expansion is derived from a functional Taylor
expansion of the free energy functional, which differs in
some subtle but important aspects from the older random
phase approximation~RPA! of Leibler.20 In our approach,
the simple scalar coefficients of the phenomenological free
energy models that were introduced in Sec. I A, are replaced
by compound spatial operators, the so-called second-, third-,
and fourth-order vertex coefficients.

There are three prerequisites for the practical applicabil-
ity of fourth-order expansion methods as accurate explicit
inversion algorithms. First, the expansion must be such that
the second- and fourth-order vertices are both positive in the

entire frequency domain, in order to ensure that the fourth-
order free energy expansion is sufficient to describe phase
separation. Second, the expansion must account reasonably
well for molecular details of the chain molecules, in particu-
lar chain architecture and composition. Third, the expansion
must indeed lead to~much! faster numerical inversion
algorithms.

We conclude that the fourth-order expansion scheme as
defined in this paper, is not yet suited for our purpose, even
if we retain all spatial properties of the second-, third-, and
fourth-order vertex coefficients. The main reason is that in
the block copolymer melt, it turns out that the fourth-order
vertex is negative for certain wave vectors and hence, a
fourth-order free energy expansion is not necessarily suffi-
cient to describe phase separation in these cases.

However, we also show that the fourth-order vertex co-
efficient is positive for most wave vectors, implying that a
fourth-order free energy expansion is sufficient for studying
the relative stability of most ordered phases in order to de-
rive a mean-field phase diagram,20–23 depending on which
lattice wave vectors are taken into account. Using the present
expansion for dynamics simulations however, requires at
least a sixth-order expansion in some cases. The second rea-
son why expansion methods are not well suited for the dy-
namic simulations is purely on the computational side. The
fourth-order expansion is cast in the form of linear, bilinear,
and trilinear operators, which are convolutions in direct
space in respectively 3, 6, and 9 dimensions. These high-
dimensional convolutions are extremely expensive computa-
tionally and cannot be used as such in numerical simulations.
For the second- and third-order vertex coefficient we have
succeeded in implementing a simple and accurate fitting pro-
cedure, which reduces the convolution kernels to a general-
ized rotationally symmetric gradient expansion in direct
space. For the fourth-order vertex coefficients our proposed
fitting scheme is no longer practical. However, our fitting
scheme leads to a whole new class of phase-separation mod-
els, with nonphenomenological parameters that are based on
microscopic information.

C. Outline of the paper

In Sec. II we briefly recapitulate the background of the
free energy functional and the Gaussian chain density func-
tional, in the framework of a highly simplified Langevin
model. For sake of argument we limit most of the discus-
sions to the case of a~block! copolymer melt. The extension
of the arguments to more general multicomponent mixtures
is trivial. In Sec. III we present the fourth-order expansions,
and we make some comparison to and show the differences
with RPA free energy expansions in Sec. III A. In Sec. IV
we discuss new properties of the vertex coefficients. In Sec.
V we discuss the fitting procedure, and the transformation to
direct space gradient expansions.

II. THEORY

Suppose we have a copolymer melt of volumeV, con-
taining n diblock copolymer chains, each of length
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N5NA1NB . We assume that the kinetic coefficients are
constant (LAA5LBB5l), we neglect any cross kinetic
terms (LAB5LBA50) and set the noise to zero. In this
highly simplified scheme the Langevin Eq.~1! reduce to a set
of two coupled diffusion equations

]rA
]t

5l¹2mA , ~4!

]rB
]t

5l¹2mB . ~5!

These equations look very simple, but are highly nonlinear
and strongly coupled through the Gaussian chain density
functional. The density functional gives a closing set of re-
lations between the chemical potentials and the density
fields. The relation can easily be derived from the intrinsic
free energy functional of the system, which is~for details see
Ref. 19!:

F@rA ,rB#52b21n ln F1b21 ln n!

2(
I
E
V
UI~r !r I~r !dr1Fnid, ~6!

F is the partition functional, the sum( I is over component
types I ~A or B! andUA(r ) andUB(r ) are external poten-
tials, conjugate to the particle density fieldsrA(r ) and
rB(r ). The nonideal free energy functionalF

nid contains the
mean-field~excluded volume and cohesive! interactions be-
tween the chains. Since in this paper we are only concerned
with the relation between the external potential and the den-
sity fields, and the mean field contains by definition only the
density fields, the precise form of the nonideal interactions is
inconsequential. Notice however that in comparing our re-
sults to Leibler’s RPA free energy expression,20 we must
remember that the RPA results are derived including the
mean field, which adds a Flory–Huggins interaction term to
the second-order vertex coefficient of the free energy expan-
sion. It is important to realize that we do not assume incom-
pressibility at this stage; the expansion is derived for a com-
pressible melt.

The Gaussian chain density functional is defined by

r I@UA ,UB#~r !5n Trc cr̂ I , ~7!

where r̂ I(r ) is a single chain microscopic density operator,
defined by

r̂ I~r ![(
s51

N

d Is
K d~r2Rs!, ~8!

d Is
K is a Kronecker delta function, with value 1 if beads is of
type I ~A or B! and 0 otherwise,Rs is the coordinate of bead
s. The single chain trace Trc is the integration over the co-
ordinate space of one chain only

Trc~• ![
1

N
E
VN

~• !)
s51

N

dRs , ~9!

where N is a normalization constant with dimension
(Length)3N. The single chain distribution functionc and the
partition functionalF are defined by

c[
1

F
expH 2bFHG1(

s51

N

Us~Rs!G J , ~10!

F[Trc expH 2bFHG1(
s51

N

Us~Rs!G J . ~11!

HG is the standard Edwards Hamiltonian for the Gaussian
chain24,25

HG5
b213

2a2 (
s52

N

~Rs2Rs21!
2, ~12!

wherea is the Gaussian bond length parameter. Finally, the
intrinsic chemical potentialsm I are related to the external
potentials via

m I5
dF

dr I
5

dFnid

dr I
2UI . ~13!

The density functional~7! is abijectiverelation between the
external potentials and the conjugate density fields.26 In our
previous work we inverted the density functional numeri-
cally by an iteration technique,19 which is very time consum-
ing. Here, the problem is to find an explicit expression for
the external potentials in terms of the density fields, by an
analytical Taylor expansion method, which can be used in
the dynamics algorithm.

III. EXPANSION METHOD

We consider deviations from the homogeneous state, for
whichr I(r )5r I

0, andUI50. The fourth order Taylor expan-
sion of the free energy in powers of the external potential is
~cf. Ref. 20!

F5Fnid1F0
id1 (

k51

4
~2b!k21

k! (
$I %k

E
Vk
G$I %k

~k! ~r ,...,r k21!

3UI0
~r !•••UIk21

~r k21!dr •••dr k21 . ~14!

The summations($I %k
are over all component types, i.e.,

$I %15I , $I %25IJ, $I %35IJK, and $I %45IJKL, and I k5I ,
J, K, or L. The superscripts indicate the order of the kernels.
The Taylor coefficients of the expansion aren-body correla-
tors which reduce ton-particle densities in the limitn→`

GI
~1!~r !5n^r̂ I&05r I

0, ~15!

GIJ
~2!~r ,r1!5n^r̂ I~r !r̂J~r1!&0 , ~16!

GIJK
~3! ~r ,r1 ,r2!5n^r̂ I~r !r̂J~r1!r̂K~r2!&0 , ~17!

GIJKL
~4! ~r ,r1 ,r2 ,r3!5n^r̂ I~r !r̂J~r1!r̂K~r2!r̂L~r3!&0 .

~18!

The averageŝ•&0[@F21 Trc(•)#U50 are single chain en-
semble averages, using the distribution function of the
Gaussian chain in the homogeneous melt. Since the homo-
geneous melt is translationally invariant, we can set
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GIJ
~2!~r ,r1!5GIJ

~2!~r2r1!, ~19!

GIJK
~3! ~r ,r1 ,r2!5GIJK

~3! ~r2r1 ,r2r2!, ~20!

GIJKL
~4! ~r ,r1 ,r2 ,r3!5GIJKL

~4! ~r2r1 ,r2r2 ,r2r3!. ~21!

Employing the translational invariance at this stage simpli-
fies the derivation of the inverse density expansion compared
to RPA considerably, as can be seen from Eqs.~26!–~28!.
The expansion of the density functional reads

r̃ I~r !5 (
k51

3
~2b!k

k! (
$I %k

E
Vk
G$I %k11

~k11! ~r2r1 ,...,r2r k!

3UI1
~r1!•••UIk

~r k!dr1•••dr k , ~22!

wherer̃ I(r ) is the deviation from homogeneous density

r̃ I~r ![r I~r !2r I
0. ~23!

Notice that we have as many order parameters as there are
component types, which are retained throughout the calcula-
tions. The inverse expansion for the external potential is
given by

UI~r !52kBT(
k51

3
1

k! (
$I %k

E
Vk

G$I %k11

~k11! ~r2r1 ,...,r2r k!

3 r̃ I1
~r1!•••r̃ I k

~r k!dr1•••dr k , ~24!

which introduces the second-, third-, and fourth-order vertex
coefficientsG IJ

(2) , G IJK
(3) , andG IJKL

(4) , respectively. By integra-
tion of the chemical potentials~13! we obtain the free energy
expansion in the density fields

F5Fnid1F0
id1kBT(

k52

4
1

k! (
$I %k

E
Vk

G$I %k
~k! ~r2r1 ,...,r2r k21!

3 r̃ I0
~r !•••r̃ I k21

~r k21!dr •••dr k21 , ~25!

where we have set the average of the external potentials to
zero @*VUI(r )dr50#.

The vertex coefficients and then-body correlators are
convolution kernels in 3, 6, and 9 dimensions, hence the
expansions have a simpler representation in Fourier space.
We define the Fourier transform of a functionf by
f (q)5*Ve

iq–r f (r )dr and the inverse transform by

f ~r !5
1

~2p!3
E
V
e2 iq–r f ~q!dq.

We then apply a one-step iteration technique~substituting
the expansions forUI in the expansions forr̃ I! to obtain
analytical relations between the vertex coefficients and the
n-body correlators in Fourier space. For simplification, we
can use a matrix notation~indicated with subscriptM ! which
may be compared to formulas~III-14!–~III-16! in Ref. 20,
but is structurally different:

I M5GM
~2!~q!GM

~2!~q!, ~26!

0M5GM
~2!~q11q2!GM

~3!~q1 ,q2!1GM
~3!~q1 ,q2!GM

~2!~q1!

^ GM
~2!~q2!, ~27!

0M5GM
~2!~q11q21q3!GM

~4!~q1 ,q2 ,q3!

1GM
~4!~q1 ,q2 ,q3!GM

~2!~q1! ^ GM
~2!~q2! ^ GM

~2!~q3!

1 3
2GM

~3!~q1 ,q21q3!GM
~2!~q1! ^ GM

~3!~q2 ,q3!

1 3
2GM

~3!~q11q2 ,q3!GM
~3!~q1 ,q2! ^ GM

~2!~q3!. ~28!

Here ^ denotes a Kronecker or direct matrix product,27

which is defined in the following way: IfA is am3n matrix
and B is a p3q matrix, thenA^B is anmp3nq matrix
given by

A^B5F a11B ••• a1nB

A � A

am1B ••• amnB
G ,

0M is the zero matrix,I M is the identity matrix. The matrices
contain all expansion kernels in a logical order component
wise, e.g., the$I ,J% element of GM

(2)(q) is given by
GIJ
(2)(q). Then-body correlators can be calculated in Fourier

space according to the formulas given in Appendix A.
Notice that the expression for relatingG (4) to the

n-body correlatorsG(2), G(3), andG(4) is different from the
usual RPA expression~Appendix B!. The relation forG (4) as
obtained from a straightforward application of the one-step
iteration technique, does not necessarily possess all physical
symmetries~such as rotational symmetry in its wave vec-
tors!. The relation can easily be symmetrized for a one-order
parameter system as is done in Ref. 20, but symmetrization
of the relations for a multicomponent compressible system
leads to very complex expressions~see Appendix B for ex-
planation!. However, our nonsymmetric relations lead to an
expansion for the external potential of the same accuracy and
can hence be used to study the applicability of fourth-order
expansions to the mesoscopic dynamics algorithms. In that
case, the physical symmetries ofG (4) are in principle not
significant, as opposed to the symmetries ofG4 in the study
of the stability of ordered phases.

A. Comparison with RPA

We want to stress that the above analysis contains some
important differences with Leibler’s RPA results.20 From the
onset, we assume that the system is a compressible collection
of Gaussian chains in a mean-field environment, whereas in
Leibler’s RPA the system is incompressible, and the Gauss-
ian chain approximation is made only after the expansion.
This implies that here we have retained two relations be-
tween two density fields and two external potentials, rather
than a single relation between one order parameter and one
effective external potential as in the Leibler RPA. However,
the underlying molecular model of ideal Gaussian chains in a
mean field is the same. In fact, from a technical point of view
we find that the route to the incompressible systemsvia the
compressible expansion of Gaussian chain statistical behav-
ior is much easier to handle than solving the RPA set di-
rectly, mainly because we make use of the translational in-
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variance of the meltbefore Fourier transformation. This
procedure also leads to different expressions for the free en-
ergy expansion and its vertex coefficients.

For a two-component incompressible system, the sepa-
rate vertex coefficients can easily be connected to the vertex
coefficients for a one-order-parameter system. In the incom-
pressible system we definef(r )[r̃A(r ) as the order param-
eter. By substitutingU(r )[UA(r )2UB(r ) and r̃B(r )
[2 r̃A(r ) we define

G~2![GAA
~2!2GAB

~2!2GBA
~2!2GBB

~2! , ~29!

G~3![GAAA
~3! 2GAAB

~3! 2GABA
~3! 1GABB

~3! 2GBAA
~3! 1GBAB

~3!

1GBBA
~3! 2GBBB

~3! , ~30!

G~4![GAAAA
~4! 2GAAAB

~4! 2GAABA
~4! 1GAABB

~4! 2GABAA
~4!

1GABAB
~4! 1GABBA

~4! 2GABBB
~4! 2GBAAA

~4! 1GBAAB
~4!

1GBABA
~4! 2GBABB

~4! 1GBBAA
~4! 2GBBAB

~4! 2GBBBA
~4!

1GBBBB
~4! . ~31!

Our combined vertex coefficientsG (2) andG (3) may now be
linked to the Leibler coefficients of the free energy expan-
sionG2 andG3 in Ref. 20 in the following manner:

G~2!~q!5G2~q,2q! ~x50!, ~32!

G~3!~q1 ,q2!5G3~q11q2 ,2q1 ,2q2!. ~33!

These relations follow from a direct comparison of Eqs.
III-22 and III-23 in Ref. 20 to Eqs.~26! and ~27! keeping
both free energy expressions in mind. Notice that the rela-
tions forG (2) andG (3) are unique and automatically possess
all physical symmetries. We explain howG (4) can be sym-
metrized in Appendix B.

IV. PROPERTIES OF VERTEX COEFFICIENTS

For a diblock copolymer compact Debye type formulas
can be derived forGIJ

(2) , GIJK
(3) , andGIJKL

(4) , in terms ofN,
NA , andNB by simply writing out all summations~see Ap-
pendix A!. We have calculated then-body correlators both
for arbitrary chain length and allq and also for the limit of
very long chains and smallq ~that is, when N→`,
a2q2/6→0 andNa2q2/6 remains finite, which is the limit
considered by the RPA!. The vertex coefficients are obtained
by inserting the formulas for then-body correlators in the
inversion relations. The formulas can in our approach readily
be calculated by computational algebra methods because
they do not involve summations over wave vectors. How-
ever, especially the formulas for the higher order vertex co-
efficients are unwieldy, and therefore, they will not be in-
cluded here. AMathematica script for generating the
analytical formulas for then-body correlators and the vertex
coefficients is available on request from the authors. As far
as we know, thefull wave vector dependence has not been

calculated before forG (3) and G (4). We will now briefly
discuss each of the combined vertex coefficients for the in-
compressible system, which is especially important for un-
derstanding how an accurate and calculatable explicit inverse
density expansion must be derived that includes all wave-
vector dependencies. Discussing the separate vertex coeffi-
cients is also possible, but is cumbersome and does not allow
comparison with low order RPA free energy expansions.

A. G (2)

This coefficient is well known and can be related toG2

in Ref. 20. See Fig. 1 for a few examples.G (2) @see Eqs.~26!
and~29!# is singular and scales withq22, hence density fluc-
tuations on scales larger than the polymer coil size are unfa-
vorable. Here we notice an additional property on monomer
length scales which is not usually discussed, but is neverthe-
less important for numerical applications. We have

lim
uqu→`

G~2!~q!5
N2

NANB
. ~34!

Hence this limit is finite for any chain length. Physically, the
limiting value indicates that if the external potential has a
period that gradually decreases to monomer length scales,
the response of the chain does not further change. As we will
see in Sec. V A, the behavior ofG (2) in general and espe-
cially the influence of the limiting value for largeuqu cannot
be neglected in a gradient free energy expansion for systems
with widespread density spectra.

B. G (3)

Assume first, without loss of generality, thatq15q2
5q. We approximate

e2~a2q2!/6'12
a2q2

6
1
a4q4

36
2
a6q6

216
. ~35!

Employing the inversion relations~27! and ~30! this yields

FIG. 1. NG (2) in the limit of very long chains as a function ofNa2q2)/6 for
different compositions. —:f51/2, ––: f51/4.
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lim
uqu→0

G~3!~q,q!52
N~NB

22NA
2 !@6130N21NANB~3123N225NANB!#

4NANB~112NANB!3
. ~36!

Hence, we find thatG (3) is not singular near the origin, in
contrast toG (2). We may investigate the limit in infinity for
q15q25q and check that the result agrees with well-known
results from, e.g., Ref. 21. We find that

lim
uqu→`

G~3!~q,q!52
N3

NA
2NB

2 ~NB2NA!. ~37!

Also notice that this limit does not depend on chain length,
but only on the ratiof[NA /NB . In the limit of very long
chains,G (3) strongly depends onf as can be seen in Fig. 2,
whereG (3) is plotted for four different values off . We see
that the optimum becomes more distinct if the asymmetry of
the chain increases. Notice that the full wave vector depen-
dence ofG (3) is depicted.

C. G (4)

First, we again emphasize thatG (4) is only comparable
to the RPA fourth-order vertex functionG4 after the extra
symmetrization step~Appendix B!. Here we study the bare
unsymmetricG (4) coefficient which was derived directly
from the one-step iteration method. In calculatingG (4) in the
limit of very long chains and smallq ~see Fig. 3,q1 , q2 , and
q3 are parallel! we find that ifq1 andq2 or q2 andq3 are
small, G (4) is negative and ifq1 and q3 are small,G (4) is
positive. Near the origin,G (4) is positive and singular. From
these results we conclude thatG (4) is not necessarily positive
in the entire Fourier domain. In calculatingG (4) for other
orientations of the three frequencies, we find thatG (4)

changes sign in many more cases. From Fig. 3 we conclude
that the area whereG (4) is negative becomes larger if the
chain becomes more symmetric~in the limit of very long

FIG. 2. NG (3) in the limit of very long chains as a function of (Na2q1
2)/6 and (Na2q2

2)/6, q1•q250. ~a! f51/4, ~b! f51/8, ~c! f51/16.
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FIG. 3. Isosurfaces ofNG (4) in the limit of very long chains as a function of (Na2q1
2)/6, (Na2q2

2)/6, and (Na2q3
2)/6. q1 , q2 , and q3 are parallel,

0.1<(Na2qi
2)/6 < 9.5 ~small irregularities are due to the isosurface calculation which is based on 1000 data points! ~a! f51/2, isosurfaceNG (4)50, ~b!

f51/2, isosurfaceNG (4)5550, ~c! f51/2, isosurfaceNG (4)51000, ~d! f51/4, isosurfaceNG (4)50, ~e! f51/4, isosurfaceNG (4)52500, ~f! f51/4,
isosurfaceNG (4)55000.
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chains!. The behavior ofG (4) seems to be singular forq1 and
q3 small, but along the other axes the function seems to
decrease only linearly.

We realize however that these results may be influenced
by the particular choice forG (4), i.e., which particular sym-
metry is chosen. We have not performed the calculations of
the symmetrizedG (4) because of the complexity, but intend
to do so for a multicomponent compressible system in the
near future.

D. Remarks

In a Ginzburg–Landau fourth-order model for the free
energy the second-order term must have a negative sign and
the fourth-order term must have a positive sign in order to
obtain the two minima that are necessary to describe a phase-
separated system.28 If we translate this concept to the case of
the copolymer melts, the second- and fourth-order terms in
the inverse density expansion must preferably have the same
sign; the second-order term changes sign if the melt is
quenched~which effectively instantaneously increases the
interaction parameterx!, which shifts part ofG (2)(q) to
negative values.

Since the expansion we consider here is more complex
than a simple polynomial~because the full wave vector de-
pendence is considered and the expansion terms consist of
high-dimensional integrals!, we must carefully examine the
consequences of the above remarks in the different limits. In
the weak segregation limit, the density may be approximated
by a single Fourier component for an ordered structure. This
Fourier component is determined by the optimumq* of
G (2). In order to describe phase-separation,

E
V4

G~4!~r2r1 ,r2r2 ,r2r2!f~r !f~r1!f~r2!f~r3!

3dr dr1 dr2 dr3

5
1

~2p!9
E
V3

G~4!~q1 ,q2 ,q3!f~2q12q22q3!

3f~q1!f~q2!f~q3!dq1 dq2 dq3 , ~38!

must be positive@remember that in the incompressible sys-
tem the order parameterf(r )5 r̃A(r )#. Since the sign of the
coefficientG (4) changes depending onq* , the sign of the
integral ~38! will depend on the density spectrum. In
the weak segregation limit uq1u5uq2u5uq* u and
uq2q12q2u5uq* u, but the angles between these vectors are
still free and are determined by the ordered mesophase under
consideration.

In the strong segregation limit and for nonordered struc-
tures, the density spectrum is much more wide spread. In this
case it is a very bad approximation to represent the density
by a single harmonic or even by multiple harmonics. Many
authors have mentioned this before in the context of the
study of the relative stability of ordered structures~e.g., Refs.
22, 23, 29, and 30!. Also in self consistent field approxima-
tions it is noted that an increasing number of basis functions
is needed in the strong segregation limit~e.g., Refs. 31–33!.

The widespread density spectrum in numerical simulations
of ordering processes in metastable irregular structures, im-
plies that there may exist a negative contribution from Eq.
~38! now, caused by the Fourier components of the density in
the part of the spectrum whereG (4) is negative. Depending
on the balance between positive and negative contributions, a
fourth-order functional Taylor expansion may no longer be
sufficient to describe the phase-separated system in a simu-
lation. In these cases, a sixth-order functional Taylor expan-
sion may have to be made to obtain an explicit expression for
the inverse density~external potential! expansion. The
fourth-order external potential expansion may however serve
as a preconditioner in the previously used iterative inversion
schemes~see Refs. 19 and 34!. As mentioned before, we
intend to study the sign of the symmetrizedG (4) in the near
future.

V. FITTING PROCEDURE

Now we return to the simplified Langevin models~4!
and ~5!. We recall that our main goal is to calculate the
¹2m I terms as efficiently as possible for numerical simula-
tions of microphase separation, given the analytical Fourier
transforms of the vertex coefficients. We do not restrict the
system to incompressibility, and hence we must examine
each of the individual coefficientsG IJ

(2) , G IJK
(3) , G IJKL

(4) , sepa-
rately. Since the expansion of the external potential~24! con-
sists of linear, bilinear, and trilinear terms, which are multi-
dimensional convolutions, one expects the numerical
calculations to become easier in Fourier space. This is partly
true. The linear term is simply a multiplication in Fourier
space, but the bilinear term still involves a complicated inte-
gration in three dimensions. This is not well suited for nu-
merical integration. This applies even more so to the trilinear
terms which are six dimensional integrations in Fourier
space. In this form the external potential expansion is not yet
suited for application in the dynamics algorithms.

The main principle of the method we propose here is that
the vertex coefficients are fitted by well-chosen polynomial
series of wave vectors. The polynomial series can easily be
inverse Fourier transformed, which results in relatively com-
pact gradient expansions. These gradient expansions can
then be discretized by traditional methods and calculated nu-
merically, which allows application of the external potential
expansion in the mesoscopic dynamics algorithms. The lin-
ear, bilinear, and trilinear terms will now be discussed in
detail.

A. Linear term

The complexity of the linear terms consists of two parts;
all G IJ

(2) scale withq22 near the origin, and allG IJ
(2) have a

plateau region for largeq @see Eq.~34!#. These properties
make it hard to calculate an accurate and compact discrete
representation in theentireq domain. We remove the singu-
larity by considering the expansion for¹2UI instead of
UI , i.e., in Fourier space we expand2q2UI(q)
52q2(JG IJ

(2)(q) r̃J(q)1••• . We have found that
q2G IJ

(2)(q) can be approximated by a series expansion of the
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form ( i50
l ci IJq

2i . ForG IJ
(2) we employ a least-squares fitting

procedure, using 10 datapoints~taking into account spherical
symmetry! and a varying number of fit functions. If the
length of the chain increases, the optimum ofG (2) shifts
towards lower frequencies, the optimum becomes more dis-
tinct and the plateau, that was discussed in Sec. IV A, be-
comes a larger part of the fit domain. Because the plateau is
hard to fit with a limited number of fit functions, the number
of fit functions increases with increasing chain length. In Fig.
4 we check the accuracy by comparing the analytical and
fitted combined vertex coefficientG (2) for the chain A8B6 for
the incompressible athermal melt. We see that the accuracy
is perfect, albeit at the cost of a rather large number of fit
functions ~eight in this case!. We can now inverse Fourier
transform the linear term in the inverse expansion and find
the approximation in direct space

¹2(
J
E
V
G IJ

~2!~r2r1!r̃J~r1!dr1

'(
J
c02¹2@c12¹2~c22••• !#r̃J . ~39!

The coefficientsci are different for each combinationIJ.

B. Bilinear term

We restrict ourselves to a demonstration of principle and
discuss only the fitting ofG IJK

(3) of a single chain architecture:
A8B6. Other architectures and longer chains can be treated
using the same fitting procedure. Compared toG IJ

(2) the num-
ber of functions to be approximated now increases by a fac-
tor of 2 ~from 4 to 8!. Because of symmetry, only six func-
tions have to be approximated effectively.

Although the combinedG (3) shows rather simple nons-
ingular behavior, the independentG IJK

(3) show more complex
and even singular behavior, which makes them harder to fit.
Again we consider¹2UI which implies that we have to fit
(q11q2)

2G IJK
(3) (q1 ,q2). We find that the premultiplication

removes the singularity in (q11q2)
2GAAA

(3) (q1 ,q2) and
(q11q2)

2GBBB
(3) (q1 ,q2); but (q11q2)

2GAAB
(3) and

(q11q2)
2GBBA

(3) are still singular in one coordinate and
(q11q2)

2GABB
(3) and (q11q2)

2GBAA
(3) remain singular in both

coordinates.
Compared toG IJ

(2) the number of data points for the least-
squares fit per function now increases from 10 to 180. The
set of data points is chosen such that it represents the char-
acteristics of the behavior of each function sufficiently. The
number of fit functions depends on the singularity inG IJK

(3) .
We find that the bilinear terms may be fitted using the fit
functions indicated in Table I.

The accuracy of the fit results is considerable, some ex-
amples forGAAA

(3) , GAAB
(3) , andGABB

(3) are given in Fig. 5. The
results for the otherG IJK

(3) are similar. The global behavior of
the analytical and fitted results is the same and the range of
the values agrees in all cases. In Fig. 6 we have plotted the
analytical and fitted results for (q11q2)

2G (3)(q1 ,q2) which
show that even though theG IJK

(3) are fitted independently, the
combinationsG (3) agree very well.

We can now again inverse Fourier transform the bilinear
terms in the approximation of the inverse density expansion.
ForGAAA

(3) andGBBB
(3) this yields an expansion of the following

form:

¹2E
V2

G IJK
~3! ~r2r1 ,r2r2!r̃J~r1!r̃K~r2!dr1 dr2

'c0r̃Jr̃K1c1r̃K~¹2r̃J!1c2r̃K~¹4r̃J!1c3r̃J~¹2r̃K!

1c4~¹2r̃J!~¹2r̃K!1c5r̃J~¹4r̃K!1c6¹
2~ r̃Jr̃K!

1c7¹
2~ r̃K~¹2r̃J!!1c8¹

2~ r̃J~¹2r̃K!!

1c9¹
2~¹2r̃J¹

2r̃K!1c10¹
4~ r̃Jr̃K!. ~40!

As before, the polynomial coefficientsci are different for
each combinationIJK. For otherG IJK

(3) that have been fitted
some extra nonlocal and gradient terms are added to the ex-
pansion, e.g., ¹(¹2r̃J)•¹(¹

2r̃K), ¹zJ•¹r̃K and
¹zJ•¹(¹

2r̃K). Here

zI~r ![E
V

r̃ I~r1!

ur2r1u
dr1 . ~41!

The use ofzI implies that the singularity has not disappeared
completely. Together this yields a rather complex rotation-
ally symmetric gradient expansion. The coefficientsci
strongly depend on the architecture and composition of the
chain. The expansion automatically includes the symmetries
of the system under investigation.

C. Trilinear term

Initially we devoted a considerable effort into finding a
systematic fitting scheme for theG IJKL

(4) functions, but unfor-
tunately we failed to do so. The reason is simply that there
are too many special cases to consider, and all of them need
careful evaluation. The magnitude of the problem may be
appreciated if it is realized that the number of independent
vertex coefficients increases from eight in the bilinear term
to 16 in the trilinear term in a binary system. Each coefficient
now depends on three wave vectors. It is also very hard,

FIG. 4. Analytical~—! and fitted~––! G (2) for A8B6 as a function ofuqu.
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because of the increased number of degrees of freedom
~from 3 to 6 in comparison toG (3)!, to decide which
datapoints and fit functions to use.

Approximations forG IJKL
(4) that can be used in deriving

new phase separation models, must be derived in such a way
that the combinedG (4) is positive in the entire frequency
domain. This approach does not contradict the conditions
necessary for a sufficient description of phase separation and
may well be a very practical solution.

A practical approximation for the trilinear term might be
a simple factorization of the following form:

¹2E
V3

G IJK
~4! ~r2r1 ,r2r2 ,r2r3!

3 r̃J~r1!r̃K~r2!r̃L~r3!dr1 dr2 dr3

'c0IJKL¹
2r̃J~r !r̃K~r !r̃L~r !

1c1IJKL¹
2zI~r !zJ~r !zK~r !. ~42!

The first term replacesG IJK
(4) by its average in the nonsingular

domain, and the second term is added to capture some of the
complex singular behavior ofG IJKL

(4) .

VI. DISCUSSION AND CONCLUSIONS

The first question we must ask ourselves is whether the
extensive mathematical analysis is really necessary to de-
scribe the dynamics of phase separation, or if a simple phe-
nomenological model can be used just as well. We find that
if we restrict ourselves to the basic physics of the problem
and concentrate on the behaviors on a coarse-grained length
scale~e.g., polymer coil size!, the simplified phenomenologi-
cal approaches outlined in the Introduction are sufficient.
However, phase separation is in principle a process on

multiple-length scales. The second order vertex coefficient
clearly shows that we must try to account for both density
fluctuations on the polymer coil size length scale as well as
for monomer-scale gradients in the interfacial regions be-
tween domains. The latter behavior is especially important in
the strong segregation limit and for the irregular metastable
structures in our simulations, where the density spectrum be-
comes broad. Hence, for the description of the physics of the
complete multiple length-scale problem we really need the
full analysis.

Next, we ask ourselves if the expansion approach pro-
vides an accurate and fast dynamical simulation. We recall
from the Introduction that there are three prerequisites for the
practical applicability of the fourth order expansion:~i! The
expansion must be sufficient to guarantee phase separation,
i.e., the fourth-order contribution must be positive,~ii ! it
must take the molecular details of the chain molecules into
account, and~iii ! it must lead to faster numerical algorithms.
We have shown that even for a simple linear copolymer melt
the fourth-order vertex coefficient as calculated in the present
paper, is negative for some wave vectors. In a study of the
relative stability of ordered phases in order to derive a mean-
field phase diagram, this need not be consequential, depend-
ing on the lattice vectors that are considered in the analysis.
If the lattice vectors are in the negative part of the frequency
domain, the ordered phase is unstable for this particular ap-
proximation. If the lattice vectors are in the positive part of
the frequency domain, the ordered phase is stable for this
particular approximation. However, in a dynamics simula-
tion the system is in principle free to choose its ‘‘own’’
preferred mesophase structure, which may have a very wide-
spread density spectrum. In that case, a negative fourth-order
contribution in the free energy may lead to amplification of

TABLE I. Coefficients times 104 in four digits accuracy for fitted (q11q2)
2G IJK

(3) for A8B6.

Fit function GAAA
(3) GAAB

(3) GABB
(3) GBAA

(3) GBBA
(3) GBBB

(3)

1 32720 2588.2 6177 4872 2961.3 55430
q1
2 21071 2104.4 24.03 33.99 2127.5 21811
q1
4 33.45 3.397 24.438 23.548 4.061 57.22
q2
2 21365 64.89 8.611 18.77 47.87 22305
q1
2q2

2 226.59 22.409 24.495 25.963 21.148 246.35
q2
4 34.33 20.7804 23.139 22.472 20.09591 58.35
(q11q2)

2 227570 260.0 2406.8 2283.5 309.1 249237
q1
2(q11q2)

2 2143.1 26.717 7.686 4.398 27.388 2244.1
q2
2(q11q2)

2 2127.3 27.791 6.968 3.963 28.714 2217.1
q1
2q2

2(q11q2)
2 5.734 0.3438 20.1505 20.02024 0.3587 9.789

(q11q2)
4 0.4985 21.670 2.825 2.154 22.127 0.8540

q1•q2 0.0 149.7 2219.7 2168.1 194.4 0.0
q1
2(q1•q2) 0.0 23.852 8.309 6.954 25.151 0.0
q2
2(q1•q2) 0.0 22.301 7.301 6.199 23.735 0.0
(q1•q2)

2 0.0 6.286 210.76 28.129 7.937 0.0
q1
2q2

2(q1•q2) 0.0 0.1835 20.7737 20.6904 0.3123 0.0
q1•q2 /q1

2 0.0 22247 2996 2247 22996 0.0
q2
2(q1•q2)/q1

2 0.0 80.66 2107.5 280.66 107.5 0.0
(q1•q2)

2/q1
2 0.0 8.571 25.936 25.352 12.49 0.0

q1•q2 /q2
2 0.0 0.0 3139 2354 0.0 0.0

q1
2(q1•q2)/q2

2 0.0 0.0 2120.1 290.08 0.0 0.0
(q1•q2)

2/q2
2 0.0 0.0 27.317 26.512 0.0 0.0
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FIG. 5. (q11q2)
2G (3) for A8B6 as a function ofx and y. ~a! Analytical result (q11q2)

2GAAA
(3) , q1•q2.0, q15x(1,1,1)t, q25y(1,1,1,)t. ~b! Fitted result

(q11q2)
2GAAA

(3) , q1•q2.0. ~c! Analytical result (q11q2)
2GAAB

(3) , q1•q2,0, q15x(21,0,1)t, q25y(1,1,21,)t. ~d! Fitted result (q11q2)
2GAAA

(3) , q1•q2,0.
~e! Analytical result (q11q2)

2GABB
(3) , q1•q250, q15x(1,0,1)t, q25y(0,1,0)t. ~f! Fitted result (q11q2)

2GAAB
(3) , q1•q250.
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completely artificial structures. Hence, we must conclude
that the fourth-order expansion is not sufficient for dynami-
cal simulations.

There are some practical difficulties in taking molecular
detail into account. In principle the vertex coefficients can be
calculated for any architecture~e.g., branched or combco-
polymers! and chain composition.35 However, the analytical
formulas for the vertex coefficients become very complex
unless the chain has a very high symmetry~such as a block
copolymer!. Their complexity makes the analytical formulas
rather impractical to use unless severe simplifications are
made.

We are not yet conclusive about the increased speed of
the numerical calculations if we employ the fourth-order ex-
pansion. We must first obtain a free energy expansion that
guarantees phase separation; either by extending the expan-
sion to sixth order or by employing a phenomenological
~symmetrized! approximation of the fourth-order vertex co-
efficient. On the other hand, the gradient expansion shows
that in direct space the bilinear term becomes more compact
than the linear term, and this is rather favorable from a com-
putational point of view.

Returning to the phenomenological free energy models
for incompressible systems outlined in the Introduction, our
expansion for the bilinear term may perhaps point to an en-
tirely new class of simplified phase-separation models for
bicontinuous systems. It is known that asymmetric chains
may lead to bicontinuous phases when the interactions are
not too strong.19,31–33,36From the data in Table I, we see that
in case of the asymmetric chain all cross terms have extra
inner-product termsq1•q2 and variants thereof, which are
absent in the pure coefficientsGAAA

(3) andGBBB
(3) . From sym-

metry considerations, we expect that the inner-products are
also important for the combined vertex coefficientG (3) in the
incompressible system. For example, if we functionally inte-
grate the term containing theq1•q2 fitfunction over the order
parameter, we find the integral

Fbc5
c

3 E
V
f¹2f2 dr , ~43!

which could provide a first order approximation for biconti-
nuity in simplified phenomenological models. Further work
to verify the conjecture is in progress.
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APPENDIX A: n -BODY CORRELATORS

The Fourier forms of then-body correlators read

GIJ
~2!~q!5

n

V (
i51

N

(
j51

N

d i I
Kd jJ

K v u i2 j u, ~A1!

GIJK
~3! ~q1 ,q2!5

n

V (
i51

N

(
j51

N

(
k51

N

d i I
Kd jJ

K dkK
K f i jk~q1 ,q2!, ~A2!

GIJKL
~4! ~q1 ,q2 ,q3!5

n

V (
i51

N

(
j51

N

(
k51

N

(
l51

N

d i I
Kd jJ

K dkK
K

3d lL
K gi jkl ~q1 ,q2 ,q3!, ~A3!

f i jk~q1 ,q2!5H v12
u i2 j uv2

uk2 j u

v12
uk2 i uv1

uk2 j u

v1
u i2 j uv2

uk2 i u

if i< j<k or k< j< i
if i<k< j or j<k< i
if j< i<k or k< i< j

, ~A4!

gi jkl ~q1 ,q2 ,q3!

5

{
v123

u i2 j uv23
uk2 j uv3

uk2 l u if i< j<k< l or l<k< j< i

v123
u i2 j uv23

u l2 j uv2
uk2 l u if i< j< l<k or k< l< j< i

v123
uk2 i uv13

uk2 j uv3
u l2 j u if i<k< j< l or l< j<k< i

v123
uk2 i uv13

uk2 l uv1
u l2 j u if i<k< l< j or j< l<k< i

v123
u l2 i uv12

u j2 l uv2
uk2 j u if i< l< j<k or k< j< l< i

v123
u l2 i uv12

uk2 l uv1
uk2 j u if i< l<k< j or j<k< l< i

v1
u i2 j uv23

u i2kuv3
uk2 l u if j< i<k< l or l<k< i< j

v1
u i2 j uv23

u i2 l uv2
uk2 l u if j< i< l<k or k< l< i< j

v2
u i2kuv13

u j2 i uv3
u j2 l u if l< j< i<k or k< i< j< l

v2
uk2 j uv12

u j2 i uv3
u i2 l u if l< i< j<k or k< j< i< l

v1
u j2 l uv13

u i2 l uv2
u i2ku if j< l< i<k or k< i< l< j

v1
u j2kuv12

u i2kuv3
u i2 l u if j<k< i< l or l< i<k< j

,

~A5!

FIG. 6. Analytical~—! and fitted~––! (q11q2)
2G (3)(q1 ,q2) for A8B6 as a

function of uq1u whereq15q2 .
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v5expS 2
a2q2

6 D , ~A6!

v i5expS 2
a2qi

2

6 D , ~A7!

v i j5expF2
a2~qi1qj !

2

6 G , ~A8!

v i jk5expF2
a2~qi1qj1qk!

2

6 G . ~A9!

In the calculations we have omitted an unimportant bead
volume parameter and have setn/V51/N.

APPENDIX B: ONE-STEP ITERATION TECHNIQUE
AND SYMMETRIZATION PROCEDURE

For a one-dimensional function the one-step iteration
technique leads to very simple expressions. Suppose the one-
dimensional functionsy andx are expanded to third order:

y5ax1bx21cx3, ~B1!

x5dy1ey21 f y3. ~B2!

We can relate the expansion coefficients ofx and y by in-
serting the expression forx in y and equating powers ofy to
third order. This leads to

15ad,

05ae1bd2, ~B3!

05a f12bde1cd3,

if all coefficients commute. These relations are unique. For a
functional expansion to third order however, the relations
need no longer all be unique. This can be illustrated by the
one-order parameter density and external potential expan-
sions. We now have the following expansions in Fourier
space@cf. Eqs.~22! and ~24!#:

r̃~q!52bG~2!~q!U~q!1
b2

2 E
V
G~3!~q2q2 ,q2!

3U~q2q2!U~q2!dq2

2
b3

6 E
V
E
V
G~4!~q2q22q3 ,q2 ,q3!

3U~q2q22q3!U~q2!U~q3!dq2 dq3 , ~B4!

U~q!52
1

b
G~2!~q!r̃~q!2

1

2b E
V
G~3!~q2q2 ,q2!

3 r̃~q2q2!r̃~q2!dq22
1

6b E
V
E
V
G~4!~q2q22q3 ,

q2 ,q3!r̃~q2q22q3!r̃~q2!r̃~q3!dq2 dq3 . ~B5!

We now insert the expression forU(q) in the expression for
r̃(q) and equate integrals of the same power inr̃. This
yields

r̃~q!5G~2!~q!G~2!~q!r̃~q!, ~B6!

05E
V
@G~2!~q!G~3!~q2q2 ,q2!1G~3!~q2q2 ,q2!

3G~2!~q2q2!G
~2!~q2!#r̃~q2q2!r̃~q2!dq2 , ~B7!

05E
V
E
V
@G~2!~q!G~4!~q2q22q3 ,q2 ,q3!1G~4!~q2q2

2q3 ,q2 ,q3!G
~2!~q2q22q3!G

~2!~q2!G
~2!~q3!

1 3
2 G

~3!~q2q22q3 ,q21q3!G
~2!~q2q22q3!G

~3!

3~q2 ,q3!1 3
2 G

~3!~q2q3 ,q3!G
~3!~q2q22q3 ,q2!

3G~2!~q3!#r̃~q2q22q3!r̃~q2!r̃~q3!dq2 dq3 .

~B8!

Sufficientconditions for these integral equations to hold are
@cf. Eqs.~26! and ~B3!#

15G~2!~q!G~2!~q!, ~B9!

05G~2!~q11q2!G
~3!~q1 ,q2!1G~3!~q1 ,q2!G

~2!~q1!

3G~2!~q2!, ~B10!

05G~2!~q11q21q3!G
~4!~q1 ,q2 ,q3!

1G~4!~q1 ,q2 ,q3!G
~2!~q1!G

~2!~q2!G
~2!~q3!

1 3
2 G

~3!~q1 ,q21q3!G
~2!~q1!G

~3!~q2 ,q3!

1 3
2 G

~3!~q11q2 ,q3!G
~3!~q1 ,q2!G

~2!~q3!. ~B11!

Now, the fourth-order relationship is not unique. In any of
the integral Eqs.~B6!–~B8! we can transform the integration
variables before equating the integral kernels. For the
second- and third-order relationships, this does not lead to
different relationships, but it does change the fourth-order
relationship. Since the integral Eq.~B8! is of the form

05E
V
E
V
kernel~q2q22q3 ,q2 ,q3!r̃~q2q22q3!

3 r̃~q2!r̃~q3!dq2 dq3 , ~B12!

we can employ either of the following variable transforms
for another sufficient relation:

q3 :5q̃2 , q2 :5q̃3 , ~B13!

q2 :5q2q̃22q3 , ~B14!

q2 :5q̃3 , q3 :5q2q̃22q̃3 , ~B15!

q3 :5q̃2 , q2 :5q2q̃22q̃3 , ~B16!

q3 :5q2q22q̃3 . ~B17!
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If we average the six resulting relationships and employ the
lower order symmetries forG(3) andG(4) we arrive at the
following relationship forG (4) in a one-order parameter sys-
tem in terms ofn-body correlators:

05G~2!~q11q21q3!G
~4!~q1 ,q2 ,q3!1G~4!

3~q1 ,q2 ,q3!G
~2!~q1!G

~2!~q2!G
~2!~q3!1G~3!~q1 ,q2

1q3!G
~2!~q1!G

~3!~q2 ,q3!1G~3!~q11q2 ,q3!

3G~3!~q1 ,q2!G
~2!~q3!1G~3!~q11q3 ,q2!

3G~3!~q1 ,q3!G
~2!~q2!. ~B18!

This automatically yields a symmetricG (4), which is directly
comparable toG4 of Leibler.

20 Hence, if we use the different
representations of the fourth-order integral equation, we sim-
ply symmetrize the fourth-order relationship. Notice how-
ever that the physical symmetries ofG (4) do not automati-
cally follow from the one-step iteration technique. In
principle we could use a similar procedure to symmetrize
G (4) in a multiple-order parameter system. Since the lower
order symmetries are now much more complex~G(4) is a
16-element matrix in a binary system! the symmetrized ex-
pression forG (4) can not easily be simplified and a very
unwieldy and hard to calculate expression remains.
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