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Abstract

Endometrium is a dynamic tissue that responds on a cyclic basis to circulating levels of the ovarian-

derived steroid hormones, estradiol and progesterone. Functional genomics has enabled a global

approach to understanding gene regulation in whole endometrial tissue in the setting of a changing

hormonal milieu. The proliferative phase of the cycle, under the influence of estradiol, has a

preponderance of genes involved in DNA synthesis and cell cycle regulation. Interestingly, genes

encoding ion channels and cell adhesion, as well as angiogenic factors, are also highly regulated in

this phase of the cycle. After the LH surge, different gene expression profiles are uniquely observed

in the early secretory, mid-secretory (window of implantation), and late secretory phases. The

early secretory phase is notable for up-regulation of multiple genes and gene families involved in

cellular metabolism, steroid hormone metabolism, as well as some secreted glycoproteins. The

mid-secretory phase is characterized by multiple biological processes, including up-regulation of

genes encoding secreted glycoproteins, immune response genes with a focus on innate immunity,

and genes involved in detoxification mechanisms. In the late secretory phase, as the tissue prepares

for desquamation, there is a marked up-regulation of an inflammatory response, along with matrix

degrading enzymes, and genes involved in hemostasis, among others. This monograph reviews

hormonal regulation of gene expression in this tissue and the molecular events occurring therein

throughout the cycle derived from functional genomics analysis. It also highlights challenges

encountered in using human endometrial tissue in translational research in this context.

Background
Human endometrium, the anatomic prerequisite for con-
tinuation of the species, is a dynamic tissue that responds
to the circulating steroid hormones, estradiol (E2) and
progesterone (P), throughout normal menstrual cycles
(Figure 1; and [1], review). The goals of orchestrated

events in endometrium are to permit successful nidation
of a conceptus, and in the absence of such, desquamation
of the tissue and subsequent regeneration. While the win-
dow of implantation is a temporally and spatially defined
time in the endometrial cycle in which blastocyst implan-
tation can begin, events prior to it are critical in optimiz-
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ing endometrial receptivity to embryonic implantation in
this time frame. In the absence of implantation, orderly
shedding of the tissue and hemostasis are essential to pre-
vent morbidities of hypermenorrhea, menorrhagia and
anemia ([1], review).

There are numerous approaches to assess endometrial
function, including (a) direct observation through, e.g.,
hysteroscopy or gross examination of the tissue; (b) imag-
ing techniques, including ultrasound and magnetic reso-
nance imaging; and (c) endometrial biopsy or
hysterectomy specimen tissue sections and (i) subsequent
hematoxylin and eosin staining and/or immunohisto-
chemical or in situ hybridization analysis for specific gene
products and/or (ii) simultaneous analysis of multiple
genes and gene products by array analyses for gene expres-
sion and proteins. The latter approaches (ii) have been rel-
atively recent events, in contrast to histologic evaluation
of cycle-dependent changes in endometrium, first
described over half a century ago [2]. It should be noted
that histology has been the classical approach for evalua-
tion of adequacy of the endometrium for fertility and nor-
malcy of the endometrium in clinical conditions of
abnormal uterine bleeding, where, e.g., polyps, fibroids,
and endometrial hyperplasia and/or cancer have been sus-
pected. This type of evaluation is standard of care in the
clinical setting where abnormal uterine bleeding or unu-
sual findings on ultrasound or at hysteroscopy and hyster-
ectomy have been made. However, recent studies have
called into question the utility of the endometrial biopsy
as a clinical tool for fertility evaluation and for research
because there is significant inter- and intra-observer varia-
bility and histologic delay fails to discriminate between
fertile and infertile couples [3]. Also, Murray and col-
leagues have demonstrated that histologic features fail to
distinguish reliably specific menstrual cycle days or nar-
row intervals of days [4]. Furthermore, histology rarely
gives insight into the molecular mechanisms occurring in
the tissue throughout the cycle, which may be accom-
plished through molecular phenotyping. Questions that
arise about molecular phenotyping of human
endometrium include whether this approach can (a) dis-
tinguish among the phases of the cycle; (b) define recep-
tivity to embryonic implantation; (c) identify a variety of
endometrial disorders not apparent from histologic eval-
uation of the tissue; and (d) give insight into molecular
events that occur dynamically throughout the cycle.

The genomic era has heralded a new approach for simul-
taneous analysis of genes and proteins in tissues, and this
monograph describes gene expression studies performed
on whole endometrial tissue in women and non-human
primates. The major limitation of such studies is that gene
transcription alone has been investigated in the absence
of investigation into the corresponding proteome. The lat-

ter would not only confirm gene expression profiling, but
also would give insight into proteins and protein modifi-
cations that participate in biological processes during the
endometrial cycle. Furthermore, a proteomic approach
would be welcome to detect changes in secreted proteins
and soluble endometrial biomarkers across the cycle and
in endometrial disorders. While elucidation of the
genome has been an extraordinary accomplishment dur-
ing the past decade, elucidation of the proteome, techno-
logically even more challenging and expensive, must be
conducted for a more accurate assessment of endometrial
physiology and pathophysiology.

Challenges in Using Human Tissues

The endometrium is comprised of zones that include the
functionalis (shed on a monthly basis) and the basalis
(believed to be the origin of cells for regeneration of the
tissue) ([1], review). These zones are clearly identifiable
by the naked eye in hysterectomy specimens, although
they are not separated by an anatomic barrier (e.g., mem-
brane), and thus tissue sampling often includes some cell
populations from each layer. This is particularly true with
currettings from hysterectomy specimens. Less contami-
nation from basalis endometrium is encountered in
endometrial biopsies, where the functionalis is the pri-
mary layer sampled. In addition, biopsies or selecting
only a portion of tissue in hysterectomy specimens may
result in different complements of cell types in different
specimens analyzed. This can lead to significant variabil-
ity in genes expressed in tissue biopsies during the same
cycle phase and in specimens compared in different
phases across the cycle. These issues are important to con-
sider in experiments designed to evaluate whole tissue
genome or proteome expression.

Obtaining normal human tissue, and in particular, nor-
mal hormone-dependent tissues from cycling women, for
biochemical analysis is a challenge and underscores some
important issues associated with this type of translational
research. Endometrial specimens should be obtained
from the fundus, and the operator should be careful to
avoid non-hormone-dependent parts of the
endometrium, such as the periostia. Furthermore, accu-
rate subject history annotation is important, as steroid
hormones have significant effects on endometrial func-
tion and gene expression, and excluding recent exogenous
steroid hormone use is essential. Even in this setting,
obtaining sufficient tissue for analysis can sometimes be a
challenge, as well as excessive blood in specimens to be
analyzed.

Perhaps one of the most challenging issues, however, is
how to define normal endometrial tissue. Most samples
are obtained from subjects undergoing hysterosocopy
and/or endometrial biopsy or hysterectomy for clinical
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indications such as infertility, abnormal uterine bleeding,
uterine fibroids, uterine prolapse, pelvic pain, and
endometriosis. It is rare to obtain endometrial tissue from
normal cycling subjects not on contraceptive steroids and
willing to donate their endometrium to science. Thus,
subject selection and carefully documented and validated
medical and surgical histories are critical to obtaining data
that are reproducible and meaningful.

Endometrial gene profiling

Several investigators have recently reported results of
cDNA and oligonucleotide array analyses of endometrial
gene expression in humans and non-human primates.

Figure 2 summarizes these studies with regard to phases of
the cycle analyzed, primarily for pair wise analyses [5-12],
although two studies investigated gene expression across
the cycle [13,14]. Herein, we focus on the global gene
expression profiling of human endometrium across the
menstrual cycle and select pair-wise comparisons of
phases in the studies of Talbi, Hamilton et al [14] and
Ponnampalan et al [13], which used whole genome
54,600 genes and ESTs on high density oligonucleotide
microarrays and 13, 600 cDNA arrays, respectively.

In the study by Talbi, Hamilton, et al [14], 46 subjects
were recruited, but only 22 had endometrial samples that

Cyclic changes in endometrium across the cycleFigure 1
Cyclic changes in endometrium across the cycle. Shown are hormonal profiles, cycle phases and sub-stages, and ultra-
sonographic appearance of the endometrium in early proliferative, late proliferative, and mid-secretory phases. Reproduced 
with permission of Adeza Biomedical.
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yielded sufficient and good quality RNA for subsequent
microarray analysis. Six samples either had different his-
tologic readings from two or more pathologists or had a
histologic evaluation by only one pathologist and were
designated as ''ambiguous''. This study provided the first,
whole genome-wide gene, gene ontology, and gene clus-
tering analyses across the entire menstrual cycle in normo-
ovulatory women. Different data analyses were conducted
to determine how samples clustered together (Figures 3
and 4). A completely unbiased approach, principal com-
ponent analysis (PCA, Figure 3), used the entire gene set
(54,600 probe sets); whereas hierarchical clustering anal-
ysis (Figure 4) used a more limited gene set (7,231 probe
sets from pair-wise comparisons of early secretory (ESE)
vs. proliferative (PE), mid-secretory (MSE) vs. ESE, and
late-secretory (LSE) vs. MSE)). These analyses demon-
strate several important points: (a) PCA analysis reveals
that samples with known histology cluster into cycle
phases; (b) hierarchical clustering reveals that samples
with known histology cluster into the same cycle phases as
observed with the PCA analysis; (c) hierarchical clustering
analysis reveals two major branches and several sub-
branches, with PE and ESE clustering together in the first
major branch and MSE and LSE in the second major
branch (Figure 4); (d) hierarchical clustering reveals that
samples have unique molecular profiles; (e) samples with
unknown or ''ambiguous'' histology cluster into cycle
phases that are the same by both PCA and hierarchical

clustering analysis; (f) samples cluster independently of
how they were obtained (biopsy or curetting); and (g)
samples cluster independent of the clinical indication for
which the ''normal'' specimen was obtained. Thus, this
study demonstrates that assignment of menstrual cycle
stage of ambiguous samples, based on their gene expres-
sion profiles and their cluster grouping, is a powerful
adjunct to the historical histological ''gold standard'' of
endometrial assessment. Furthermore, it demonstrates
that samples obtained at any time in the cycle have
unique molecular signatures that preclude the need to
assign a histologic phase to the sample a priori. While
unique gene signatures lead to clustering in groups
(phases), it is interesting that the molecular signatures are
not identical (Figure 4) and may be the result of, e.g., sub-
ject-to-subject variability and different complements of
cell types in different specimens.

The study of Ponnampalan et al [13] used cDNA microar-
rays to study endometrial gene expression across the men-
strual cycle. The investigators performed initial
hierarchical clustering analysis of 43 endometrial samples
that revealed two main branches: one containing men-
strual (M), early (EPE)-mid (MPE) proliferative, late pro-
liferative (LPE), and ESE-MSE, and the second containing
M, M/EPE, MSE, LSE, and LSE/M. Six outliers were subse-
quently removed for disagreement of histologic stage
between two pathologists or for poor hybridization, and

Schematic representation of microarray studies comparing cycle phases in women and non-human primatesFigure 2
Schematic representation of microarray studies comparing cycle phases in women and non-human primates. 
(See text). Symbols correspond to citations: * [5,7,9]; ** [6,8,11,12]; *** [10]; ^[13]; + [14]. With permission from reference 
[14].
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this resulted in two main branches for 37 samples. One
branch contained M, EPE-MPE, LPE-ESE, and ESE-MSE
and the other contained M, MSE-LSE, and LSE-M. Some
cycle phases had too few samples for analysis, and these
(MSE and LSE) were then merged. Thus, it is difficult to
compare gene directly expression profiles between these
two studies, due to these different approaches for data
analysis, as well as different platforms for hybridization.

Early Secretory vs. Proliferative Endometrium

During the proliferative phase, endometrium is stimu-
lated by high levels of circulating E2, and then after ovula-
tion in the early secretory phase, it is the target of low, but
rising, circulating levels of P (and E2). Thus, genes regu-
lated in ESE vs. PE may be regulated by E2 and/or P. With
regard to E2-regulated genes, insight into these derive
from a recent study on gene expression in human

Gene clustering in the endometrium: Principal component analysis (PCA) of human endometrium across the menstrual cycleFigure 3
Gene clustering in the endometrium: Principal component analysis (PCA) of human endometrium across the 
menstrual cycle. PCA was applied to all endometrial samples, and numbers refer to individual sample labels. "Ambiguous 
samples" (see text) are labeled AMB (dots in squares). Analysis reveals clustering of samples into cycle phases.With permission 
from reference [14].
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endometrium in late PE (LPE, high E2) compared to men-
strual endometrium (very low E2 levels) and E2-treated
endometrial explants, using the same Affymetrix platform
[10]. Genes up-regulated in LPE vs. menstrual
endometrium included oviductal glycoprotein-1, con-
nexin-37, olfactomedin-1, SFRP4; and down-regulated
genes included MMPs-1, -3, and -10, IL-1b, IL-8, -11,
inhibin bA, SOX4 [10]. In the study by Talbi, Hamilton et
al [14], olfactomedin-1 was down-regulated in ESE, sug-
gesting that P inhibits its expression in this phase of the
cycle. SOX4 was down regulated in LP vs. menstrual
endometrium [10], and it is also down-regulated in ESE
vs. PE [14], suggesting that E2 down-regulates this gene. A
recent study on global gene expression (12,000 genes/
ESTs) demonstrated that E2 treatment of human endome-
trial cells resulted in up-regulation of N-cadherin [15].
However, N-cadherin was down-regulated in ESE vs. PE
[14], suggesting that N-cadherin expression is inhibited

by P. Of interest, also, is the up-regulation of FOXO1A
(2.1-fold) in ESE vs. PE [14], especially in view of recent
data in breast cancer cells that demonstrate the impor-
tance of FOXO1A in E2 action [16].

In a recent study by Tan et al [17], global gene profiling of
mouse uterus during the estrous cycle was investigated
and revealed up-regulation of 17bHSD-2 in estrus versus
diestrus. This gene is the highest up-regulated gene in ESE
vs. PE in human endometrium[14]. Although the data in
mouse uterus suggest that it is E2-regulated, data are con-
vincing that 17bHSD-2 in human endometrium is regu-
lated via PR in the stroma, with paracrine factors up-
regulating it in the epithelium [18]. Up-regulation of
17bHSD-2 in human ESE vs. PE is also consistent with
results from Mustonen et al [19]. The up-regulation of
17bHSD2 suggests that direct E2 action in this phase is
beginning to be curtailed, as a prelude to more pro-

Gene clustering in the endometrium: Gene expression profiling across the menstrual cycleFigure 4
Gene clustering in the endometrium: Gene expression profiling across the menstrual cycle. The Heatmap repre-
sents relative gene expression levels in the endometrial samples across the menstrual cycle. Each horizontal line represents a 
single gene, and each column represents a single sample. Samples cluster by cycle phase (bar at bottom of the Heatmap: prolif-
erative (red), early-secretory (light blue), mid-secretory (olive), late secretory (purple) and ambiguous samples (dark blue). Rel-
ative expression of each gene is color-coded: high (red) or low (blue), as indicated in the color legend on the left side of the 
figure. Hierarchical clustering reveals sample clustering into cycle phases and unique molecular profiles. Adapted from [14], 
with permission.
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nounced curtailment in the mid-secretory phase in which
estrogen receptors are down-regulated in the stroma and
nearly completely absent in the epithelium [20-23].

Several genes are up-regulated in ESE vs. PE that are wor-
thy of mention, including MUC-1, Dkk-1 and other Wnt
family members, and IL-15 [14]. MUC-1 maintains hydra-
tion of cell surfaces, lubricates them, and protects from
microorganisms and degradative enzymes [24]. In mouse
uterus it is stimulated by E2, but it is highly up-regulated
in the secretory phase in human endometrium and is pre-
sumably P-regulated [24]. Dkk-1 is up-regulated > 6-fold
in ESE vs. PE, and recent data from our laboratory demon-
strate that it is a P-regulated gene in endometrial stromal
cells [25]. IL-15 is P-regulated and is important as a chem-
oattractant and stimulator of NK cell replication [26,27].

ESE is characterized by inhibition of cellular mitosis, in
marked contrast to the mitotic activity that occurs in PE,
and the down-regulation of numerous growth factors in
this phase further supports this conclusion [14]. Further-
more, the shift to cellular metabolism in this phase of the
cycle, compared to PE, underscores that ESE is biosynthet-
ically active, likely in preparation for embryonic implan-
tation.

Mid Secretory vs. Early Secretory Endometrium

The mid-secretory phase is replete with numerous biolog-
ical processes and molecular participants that coordi-
nately facilitate embryonic implantation. This is the most
well characterized phase of the cycle, with regard to gene
expression analysis [6,8,11,14]. Despite the fact that these
studies all used similar platforms, the number of genes in
common among ALL studies in different gene ontology
categories is surprisingly low. Of the 75 genes up-regu-
lated in MSE vs. ESE in the study by Riesewijk et al [8], 41
are identical to up-regulated genes in the study by Talbi,
Hamilton et al [14], and of the 56 down-regulated genes,
11 were the same. Of the 74 genes encoding cell surface
components, extracellular matrix components, growth
factors, and cytokines in MSE vs. ESE in the study by Car-
son et al [6], 11 were in common, and of the 76 down-reg-
ulated genes, only one was in common with Talbi,
Hamilton et al [14]. Of the 49 up-regulated genes in MSE
vs. ESE in the study by Mirkin et al [11], 14 are similarly
regulated, and of the 58 that were down-regulated, only 3
are common to Talbi, Hamilton et al [14]. These differ-
ences likely are due to multiple factors, including different
chip versions, different hybridization conditions, scan-
ners, and statistical programs for data analyses, subject-to-
subject variability, where in endometrium samples were
obtained (fundus, lower uterine segment, periostium),
different complements of cellular components in individ-
ual samples, and precisely the time in the cycle when sam-
ples were obtained. With regard to the latter, e.g.,

Reisewick et al [8]) obtained endometrial tissue strictly at
2 and 7 days after the LH surge; whereas, most other stud-
ies have samples that span groups of days in a particular
phase.

Up-Regulated Genes

Gene families that were up-regulated in MSE vs. ESE are
relevant to the cellular differentiation and cell-cell com-
munications that underlie receptivity to embryonic
implantation. These include the processes of cell adhe-
sion, suppression of cell proliferation, regulation of prote-
olysis, metabolism, growth factor and cytokine binding
and signaling, immune and inflammatory responses, and
the responses to wounding and stress [14]. Striking up-
regulation was observed with genes encoding secreted
proteins, cytokines and genes involved in detoxification
mechanisms. In the study of Ponnampalam et el [13],
pair-wise comparison of genes expressed in MSE vs. ESE
was not reported, and thus comparisons between the data
sets is not possible.

Immune genes

The most-highly up-regulated gene (61-fold) in MSE vs.
ESE is CXCL14, a chemokine that is also known as breast
and kidney expressed chemokine (BRAK). It recruits
monocytes in the setting of inflammation and without
inflammation [28], and it may be a major recruiter of
monocytes and other cell types to endometrium during
the implantation window. Leukemia inhibitory factor
(LIF) is significantly highly up-regulated in MSE vs. ESE
[14,29]. It plays a central role in endometrial receptivity in
the mouse [30,31], and increasing evidence suggests that
it is also important in humans [32]. For example, in some
women with infertility and repetitive miscarriage, low lev-
els of LIF in MSE have been reported [33,34], as have
point mutations in the coding region of the LIF gene [32].
The data set reveals, overall, an up-regulation of genes
involved in activation of the innate immune response,
including members of the complement family, antimicro-
bial peptides, and Toll-like receptor expression [14]. There
is also enhancement of chemotaxis of monocytes, T cells,
and NK cells by candidate genes CXCL14, granulysin, IL-
15, carbohydrate sulfotransferase 2, and suppression of
NK and T-cell activation. IL-15 is regulated by P (see
above), and recent evidence suggests a central role for IL-
15 in secretory phase endometrium in the recruitment of
peripheral blood CD16-NK cells into the tissue in this
phase of the cycle [35]. Many of the genes observed in our
data set were also observed in the data from Carson et al
[6], Riesewijk et al [8], and Mirkin et al [11]. The gene
expression profiles are consistent with the marked
increase in lymphocyte infiltration [2,36].
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Secretory proteins

Other genes that were highly up-regulated include
cysteine-rich secretory protein (CRISP) 3 and secre-
toglobin family 2A member 2, believed to be important in
embryonic attachment, although other functions may
exist in this time of the cycle.

Detoxification

Among the most highly up-regulated genes are those
encoding glutathione peroxidase-3 (GPX-3) and metal-
lothioneins (MT) 1G,1H,1E,1F,1L,1X, and 2A. The former
is consistent with prior observations [8,11] (and in MSE
vs. PE [5,7,37]). GPXs (anti-oxidants) and metal-
lothioneins protect cells from unstable reactive radicals
and heavy metals [38]. These are likely to protect an
embryo from free radicals and heavy metals in the very
beginning phases of implantation. Interestingly, GPXs are
selenium-dependent, and women with selenium defi-
ciency have a higher rate of infertility and miscarriage
[39].

Down-regulated genes

Among the most highly down-regulated genes in MSE vs.
ESE are secreted frizzled related protein (SFRP), olfacto-
medin 1, the progesterone receptor (PR), PR membrane
component 1, ER-a, MUC-1, 17bHSD-2, and MMP-11
[14]. Many were not found to be regulated in earlier MSE
vs. ESE microarray studies, likely due to reasons listed
above for differences in up-regulated genes among various
studies.

Progesterone regulated genes

Analysis of genes expressed in various phases of the men-
strual cycle can give insight into genes that are candidates
for regulation by P. Of interest is the regulation of genes
in MSE vs. PE from all studies in humans and non-human
primates [5,7,9] that are in common with those regulated
in ESE vs. PE [14] and MSE vs. ESE [6,8,11,14]. The result
of this comparison is shown in Figure 5. These genes are
likely to be regulated by P, either directly or indirectly,
although validation of such regulatory mechanisms
awaits further investigation. Analysis of PREs and EREs by
Borthwick et al [7] and Mirkin et al [11] support some of
these conclusions, as do studies using anti-progestins and
PR knock out of P-regulated genes in mouse uterus/
endometrium [40].

Late Secretory vs. Mid Secretory Endometrium

The transition from mid-secretory to late secretory
endometrium, in the absence of embryonic implantation,
is characterized by P withdrawal and preparation for desq-
uamation of the tissue and menstruation. Accordingly,
gene expression profiling reveals changes in genes
involved in the extracellular matrix, the cytoskeleton, cell
viability, vasoconstriction, smooth muscle contraction,

hemostasis, and transition in the immune response to
include an inflammatory response [14,41,42].

Extracellular matrix degradation

In the microarray data set for LSE vs. MSE, striking up-reg-
ulation of metalloproteinases (MMPs and ADAMs), serine
proteases [the plasminogen activators, uPA (PLAU) and
tPA (PLAT)], and their inhibitors, was observed [14]. This
is consistent with declining P levels within the tissue at
this time of the cycle and concomitant dysinhibition of
expression of these genes. P also inhibits leukocyte transit
into the endometrium [43], a process that is controlled in
the secretory phase by the stromal cell, the main cell type
that retains PR in this phase of the cycle [20-23]. uPA
(PLAU) is up-regulated in LSE compared to MSE, and can
activate TGFb1 [44]. It is regulated by tissue factor which
is also P-dependent, and it activates plasminogen which
can further activate MMPs [45]. Thus, it is likely that uPA
plays a major role in preparing the tissue for desquama-
tion. Another group of genes that are important in
endometrial breakdown are members of the TGFb family.
For example, endometrial bleeding associated factor
(EBAF) is one of the most highly up-regulated genes in
LSE vs. MSE [14]. EBAF stimulates expression proMMP-3
and -7 in proliferative phase human endometrial
explants, and P inhibits this as well as inhibition of EBAF
expression [46]. Importantly, these genes are up-regu-
lated, but tissue breakdown does not occur. This program-
ming of the endometrium in the late-secretory phase
appears to be inhospitable for embryonic implantation
and must be carefully regulated, temporally, for menses to
occur at an appropriate threshold of gene activation, and
to permit subsequent repair of the tissue for the next cycle.

Immune activity

The immune gene regulation observed in LSE vs. MSE [14]
reflects known histologic observations of an influx of pol-
ymorphonuclear leukocytes [2,36]. Fc receptors, MHC
molecules, NK molecules and T cell molecules are all up-
regulated, and it appears that the system is preparing for
immune action involving innate and adaptive immunity
(T cell specific, and antibody-mediated). The profile of
genes suggests a pro-inflammatory response, with up-reg-
ulation of IL-1, a pro-inflammatory cytokine that induces
T cell activation. In addition, IL-b and TNF-a produced by
leukocytes in the stromal compartment in the late secre-
tory phase, stimulate release of matrix degrading enzymes
that contribute to the breakdown of the vascular base-
ment membrane and connective tissue integrity in the
functionalis layer [47,48]. Also, numerous molecules in T
cell signaling/activation are up-regulated [14]. In addition
to IL-1b, other key inflammatory mediators, e.g., CXCL8
(IL-8), CCL2 (MCP-1) [42,49], and the synthesis of pros-
taglandins, by induction of COX-2 [49,50] are all up-reg-
ulated in response to withdrawal of P. The microarray data
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are consistent with a major shift from an innate immune
response in MSE to an inflammatory response in LSE
[51,52]. Such an inflammatory environment, along with
up-regulation of matrix degrading enzymes and cellular
apoptosis, teleologically would not be a receptive envi-
ronment for embryonic implantation. Indeed, we have
suggested that gene expression profiles in LSE vs. MSE
may serve to define closure of the receptive period and the
onset of the subsequent non-receptive period of endome-
trial development in normal, non-conception cycles. Of
interest are the patterns of immune gene regulation in LSE
in a conception cycle and the cross-talk between the
implanting conceptus and the maternal decidua.

Summary
Microarray analyses have provided global inspection of
the endometrium across the cycle and insight into the bio-
logical processes occurring therein. A schematic summary
of this is presented in Figure 6. It is likely that there are

microenvironments in which some processes are occur-
ring more than others, as proximity to vascularity and
immune cells may affect endometrial cellular function
and vice-versa. Remarkably in normally cycling women,
there is a regularity of cycle length that persists cycle-to-
cycle, with efficient tissue desquamation and self-limited
bleeding. Abnormalities in cycle length and receptivity to
embryonic implantation, as well as endometrial bleeding
disorders and other endometrial pathologies likely reflect
significant changes in endometrial gene expression and
(dys)regulation. Microarray analyses reviewed herein are
but the beginning of a compendium of genes identified in
understanding the dynamic changes in morphology and
function of the endometrium in health and disease. These
approaches also offer the opportunity to identify abnor-
malities in endometrium (e.g., endometrial hyperplasia,
cancer, endometriosis, endometrial polyps, and in the set-
ting of hyperandrogenemia and hyperinsulinemia). Fur-
thermore, they enable elucidation of the molecular basis

Candidate progesterone-regulated genes in human endometriumFigure 5
Candidate progesterone-regulated genes in human endometrium. Candidate genes were derived from genes com-
mon to the comparisons between early secretory endometrium (ESE) vs. proliferative endometrium (PE) and mid-secretory 
endometrium (MSE) vs. ESE (upper panel) and MSE vs. ESE and MSE vs. PE. With permission from (14).
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of these, as well as morphometric changes in the
endometrium accompanying, e.g., different types of ovar-
ian stimulation for infertility treatment [53]. They also
provide the opportunity to define molecular mechanisms
predisposing to abnormal implantation and placentation
resulting in, e.g., infertility, recurrent miscarriage and
intrauterine fetal growth restriction. Importantly, gene
expression profiling can be used to develop molecular
diagnostics of endometrial normalcy and abnormalities
and identifying molecular targets for therapeutic purposes
in endometrial disorders.
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