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Abstract

Successful application of fuzzy control to an optimum control problem relies on
the ability to make appropriate inferences from fuzzy information. In the
reservoir operation problem, the operational rule adopted for simulation of the
performance of a reservoir under historical or generated inflows, demands, etc.
usually relates to the concept of an optimum release for the ‘current’ period.
The main source of uncertainty in this process arises from the prediction of the
value of the inflow during the current period. The value of this inflow is
generally known in terms of its distribution. Since the storage volume at the
end of each period is highly dependent on this inflow, it also is influenced by this
uncertainty. Most stochastic simulation techniques for reservoir operation,
however, operate on the basis of strict compliance to, or interpolation of, the
operating policies and use as input stochastically generated inflows to account
for the inflow uncertainty. Little attention, if any, is given to accounting for
uncertainty in the decision itself. Since the optimum release decision obtained
from a 3-state variable (storage volume at the beginning of the current period,
the inflow in the previous time period, and the reservoir release during the
current period) stochastic dynamic program is based on evaluation of the
expected value of the return to the system, such a release decision should only
be considered as a ‘guide’ such that, in certain circumstances, deviation of the
release decision from the operating rule might be necessary. In this paper, a
rational approach for selecting a release decision different from that envisaged
in the operation rule is derived from application of the principles of fuzzy
inference. The approach is demonstrated by application to the Wadaslintang
Reservoir in Prembun, Central Java, Indonesia.
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1 Introduction

The advantages and limitations of a wide range of simulation and optimisation
techniques for reservoir operation have been addressed in many studies (e.g.,
Yeh'"). In attempting to exploit the advantages of simulation and optimisation
techniques, the system analyst generally applies optimisation to obtain a broad
view of optimal operation policies and then uses simulation to evaluate the
efficiency and effectiveness of the policies in more detail. In studies of the
operation of reservoirs, some attempts have also been made to embed a one-
time-step re-optimisation technique within a simulation process to determine
how much water to be released during the current-time period (Tejada-Guibert
et al."* and Johnson et al.”).

The optimisation technique most popular for reservoir operation is
stochastic dynamic programming technique (SDP). This popularity is due in part
to the ability of the technique to incorporate easily the stochastic nature of
streamflow, to handle non-linearities in the objective function and constraints,
and to address almost any configuration of reservoir system. Successful
applications of SDP can be found, for example, in Terry et al."> and Bras et al.?

An important by-product of SDP optimisation is the ‘cost-to-go’ values
for the whole discretisation grid for the reservoir storage and inflow values.
Some researchers have reported that implementation of the ‘cost-to-go’
function within the simulation process can be used as guidance for a more
optimum operation (Tejada-Guibert et al.'* and Braga et al.' ). Braga et al.’
used the ‘cost-to-go’ function obtained from multi-reservoir SDP model for re-
optimisation of one reservoir at a time within the simulation process. Tejada-
Guibert et al.'"* solved the spline SDP for the two reservoir Shasta-Trinity
system and then used the ‘cost-to-go’ function by-product in the re-optimisation
of the implemented policy within a simulation process.

Both approaches are based on the fact that the ‘cost-to-go’ function is
calculated at the grid points, normally the mid points, of the intervals of the
discretised variables. In the simulation, and also, in real-world operation,
however, the state variable value of either inflow or reservoir storage or both
may fall anywhere in the interval associated with a particular grid point, and
rarely, if ever, falls at the actual grid point. To address this situation, and also to
avoid possible constraint violations arising from the actual condition being some
distance from the grid point value, the operating policies obtained from the
optimisation technique need to be adjusted either by an interpolation and
adjustment approach, or by one-step re-optimisation.

It should be noted that these two approaches emphasize avoiding
violation of the constraints. The approaches, therefore, tend to have the greatest
impact if the reservoir state occurring as a result of application of the ‘optimal’
operating policy is close to the constraint boundaries. The inconsistency
between the use of grid points of the state variable interval to derive operating
policies during the optimisation process and the use of actual values of the
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reservoir state variables in the one-step re-optimisation within the simulation
process should also be acknowledged as it may result in the release volume
which is actually selected being different from that defined by the derived
operating policies.

In this paper, explicit consideration of the likelihood of the value of the
state variable not being exactly at the corresponding grid point is proposed
through application of the fuzzy membership function concept in both the SDP
and the simulation processes. The underlying issue addressed in the paper is
whether the influence of conditions in adjacent storage intervals should be
considered if, during the optimisation process, the storage volume does not fall
exactly at the mid-point of the interval, or more correctly lies close to the
boundary with a neighbouring interval, This issue is examined in the context of,
if, during the simulation process, the actual storage volume does not fall close
to the grid-point of a storage interval, the process of identifying the optimal
operating policy necessity to move from crisp operating policies to inferenced
policies. The degree of the membership function of a particular value of actual
storage volume in the circumscribing classes of fuzzy storage intervals is
employed in this assessment. The approach has particular relevance to
answering the question of which storage interval which actually posseses or
contains a particular storage volume, and therefore, which storage interval
determines the associated ‘cost-to-go’ function value to be considered in the
optimisation process and the resulting operating policy.

The framework of this paper is generation of operating policies through
application of 3-state-variable stochastic fuzzy dynamic programming
(Suharyanto and Goulter'”) followed by evaluation of the performance of the
system by implementing the derived operation policies through a simulation
process. The contribution of the paper lies in the application of the membership
function concept from fuzzy set theory to i) assess the influence of adjacent
storage intervals during the optimisation process and ii) provide a mechanism
for assessing the necessity of complying with or deviating from the derived
operating policies during the simulation process.

2 Mathematical Formulation

2.1 Stochastic Fuzzy Dynamic Programming (SFDP)

Let the storage volume be divided into NS intervals, with sharp or crisp
boundaries between each interval, and where Sy, represents the mid-point of the
k" storage class interval at the beginning of the current time period t. The
possible reservoir releases are also discretised into NR classes, with R,,
representing the mid-point of the release class r during month z. (The reservoir
storage and the reservoir release are discretised according to the Savarenskiy’s
scheme.) The monthly inflow ranges are similarly discretised into NI intervals.
The term @, is the representative inflow of class or interval j during month ¢.
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The representative inflow of each class interval is determined, if there is
adequate historical data falling in the interval, by taking the mean of inflows
falling within that interval, or else, by taking the mid-point of the interval.

Consider now a reservoir operating within an environment in which it has
to meet specified target demands, e.g., irrigation demands. Let the demand in
time period ¢ be denoted by 7,. The continuity equation for this simple situation
is:

S =8, Q0 —R, - L ¢y

r.t
where L, is the loss through evaporation, seepage, etc. from the reservoir during
time period f and S,,, is the resulting storage volume at the end of period ¢, i.e.,
at the beginning of period t+17. S, which will fall into one of the storage
intervals defined at the end of period ¢, i.e., at the beginning of period t+1, is
constrained to lie in the feasible storage volume range, i.e.,
S

<S,,,<S Vi )

min,t +1 max,t +1

where Syinees and Spas are the minimum and maximum storage volumes,
respectively, during time period #+/.

A typical simple objective function for this type of system is minimisation
of the sum of the square of deviations of the actual releases from target releases
if the release value is outside the acceptable range of the target value. In this

case, this short-term return may be expressed in an exponential functional form
as used by Karamouz and Houck® and shown in Equation (3 ).

—(LJIOBO
1580K|e "/ - if R, <0807,
B, =400 if 0.80T, <R, <120T, (3)
L1120
0388K: e( i ) —e"? if R, >1207,

where K; and K, are weighting constants on under and over achievement of the
target release respectively, the value of release between 0.80 7, and 1.20 T,
represents the safe range of releases within which no penalty is incurred, and
B, is short-term return as a consequence of releasing R,, during period z. Note

r.
that the short-term return in Equation (3) is calculated on the basis of the
deviation of the release from the respective target demands. An additional
penalty function on the deviation of the storage from a pre-determined target
storage volume can also be incorporated in Equation (3).
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Proceeding backwards in time, the general recursive equation of the
stochastic crisp dynamic programming is given in Equation (4) below :

NI
£ (k)= min{s,,, S e g (w)} @

R, €R, j=1

where f"(k,i) is the optimum objective function associated with being in

storage interval or class k at the beginning of period r with n periods of the
optimisation remaining and having observed an inflow in interval i during the
previous time period. R, is the set of possible discretised releases in time period

t. PH”. is the probability, given that the inflow observed during the previous

time period -/ falls into the flow interval Q;.,, that the inflow during the
period ¢ will be in class j, resulting, when the release is R,,, in a storage level in
class [ at the end of time period z.

The value of the term f%'(/,j) in this process is the long-term return

associated with the storage class interval [ which encloses the value of S;,, when
the inflow in the current time period is in class j. Note that in this process, the
determination of which storage class is actually enclosing the value of S,.; is
decided on the basis of crisp interval. As long as the value of S,., is within the
interval, it does not matter whether it is actually at the grid-point or close to the
interval boundary or anywhere in between. Similarly, the process does not
consider the influence of adjacent storage intervals, as only the value of

f(1, j) of the enclosing storage interval is used in the determination of the

optimal release decision. This type of formulation is, therefore, referred to as
Stochastic Crisp Dynamic Programming (SCDP) wherein crisp storage and
inflow class intervals are adopted.

For each initial current period storage state k, the optimum objective
function value is obtained by minimising the right hand side of Equation (4) with
respect to all of the possible discretised release decision values. This SCDP
formulation is essentially equivalent to that of Butcher”.

The following additional chance constraints may also be imposed in this
formulation to exercise control on the probability of violation of the minimum
and maximum storage volumes.

p[Sl +1 2 Smin,y+l ] s Pmin (5)
p[Sr+I < Shax +1]S P (6)

where P, and P, are the acceptable limits of the probability of violation of
the minimum storage volume and the maximum storage volume, respectively.

A fuzzy modification of the above general recursive equation is based
upon the observation discussed above that the value of S.., can lie anywhere
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within an enclosing storage interval. This situation raises the issue of the
potential influence of adjacent intervals in the determination of which f,2,'(1, j)

values are most appropriate to use. In this study, the storage intervals are
considered as fuzzy intervals with some degree of overlap of the membership
functions of adjacent storage intervals for particular storage values. The
membership functions for the fuzzy storage intervals considered in this study are
either triangular or trapezoidal in form as shown in Figure 1.

This strategy is directed at facilitating a mechanism for assessment of non-
specificity of a particular storage volume within storage volume intervals, i.e., at
addressing explicitly the fact that the actual storage in a storage class interval
can lie anywhere within that class range, and for evaluation of the influence of
the adjacent storage intervals and their associated long-range returns in the
determination of the optimal release decision.

The modification of the general recursive formulation required to
incorporate these fuzzy concepts is shown in Equation (7) where the previous
long-term return is determined by selecting the storage interval, among the
‘triggered’ storage intervals, which gives the minimal weighted long-term
return. ‘Triggered’ storage intervals in this context refer to those storage
intervals for which the actual storage volume has a non-zero membership
function value. The use of this minimal weighted long-term return was shown
previously by Suharyanto and Goulter' to be more appropriate than other
inferencing approaches.

NI
1 (k.i)= min{Bm +Y P j)} (7

R €R j=1

where u* is the class of the storage interval which results in:

N f,"+71 : (M’ j)]
S Vulu; ()>00 (8)
mum[ () s, ()

wherept (u) is the membership level of the actual storage volume at the end

of time period ¢, i.e., at the beginning of time period +/, in storage class u. The
‘triggered” storage intervals are defined mathematically as those intervals with

B, (u)> 0.0.

In order to account for the economic value of the long-term return, i.e.,
the economic values of the long-term returns of deficits and surpluses. Equation
(7) becomes :

NI l
“(ki)=mini B, + P 1 (%, 9)
[ (ki) IRIIEIE{ 4 Z} y (1+d)f' /)}

Xl
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where d is the seasonal discount rate.
2.2 Implementation of Operating Policies

During the simulation process, the implemented operating policy is chosen such
that it results in the most minimum weighted current time period ‘cost-to-go’
value. The selection of the minimum weighted ‘cost-to-go’ value is shown
mathematically in Equation (10).

[ i
mjni%} k| 1y (k)>00 (10)

where CTG, (R, (k,i)) is the current time period ‘cost-to-go® function as a
consequence of adopting release policy Ri(k,i). Hs, (k) is the ‘triggered’ level or

the membership level of storage interval k for the actual storage volume S,. Note
that this minimal selection process is equivalent to that used in the optimisation
procedure in which the ‘cost-to-go’ value is weighted by the reciprocal of its
membership level.

The value of CTG,(R,(k,i)) is calculated through a one-time-step re-

optimisation procedure as shown in Equation (11).

CTG,(R,(k,i)):{ +ZP" CTG,,, (1", )} (11)

j=1

where CFGHl(u*,j) is the long-term ‘cost-to-go’ value obtained as a by-

product of the optimisation process. The storage interval which gives the
minimum weighted cost-to-go’ value, u* is the class of storage interval which
results in:

CTG,, (u, J
min[——M] Yu \psm (u)>00 (12)
N O

A discount rate factor can be incorporated in Equation (11) through :

CTG,(R,(k,i)):{ o) +2P,',‘ (1+d) GM(Lf,j)} (13)
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3 Application and Discussion

The methodology described above was applied to the Wadaslintang reservoir
which is located on the Bedegolan river in Central Java, Indonesia. The
reservoir is used primarily to supply water to the surrounding irrigation areas,
for hydro power generation of 2x8 MW capacity, low flow augmentation, and
to meet other domestic, municipal, and industrial demands. The reservoir has
minimum and maximum capacities of 30.0 million cubic metres (mcm) and
432.0 mem, respectively.

In this study, the reservoir is operated to meet the irrigation demands only
which are assumed to have a far higher priority than other demands. The
formulation presented in this paper, however, is easily modified to incorporate
other types of objectives. K; and K; are both assigned values of 10°% in this
study. The irrigation target demands incorporated in the optimisation and the
simulation processes are those demands which must be met at least 90.0 % of
the time. Discount rate values of 0.0% and 20.0% were used in the study. Note
that 20.0% is in fact a realistic value for the economic situation in Indonesia
where the case study is located. The values of NI, NS, and NR used in the study
were 5, 20, and 25, respectively. The starting storage volume for the simulation
process was 30.0 mem.

Evaluation of the operating policies generated by the SCDP and SFDP
formulations was performed through simulation of the reservoir for 25 years of
operation. A sequence of 25 years of stochastically generated inflow was used
in these simulations. This inflow sequence was generated by 3-parameter log-
normal transformation (McMahon and Mein'?). The overall performance of the
reservoir was evaluated on the basis of the Expected Annual Deviation (EAD)
which indicates the extent to which the actual releases from the system deviate
from the target releases. A comparison of the EAD values resulting from the
SCDP and SFDP approaches is shown in Table 1. Additional system
performance measures used in the evaluation were reliability and resiliency as
defined by Hashimoto et al.’ and vulnerability which is defined as the average of
maximum deficit ratio to its respective target demand as used in, for example,
Tickle and Goulter'®. The values of those additional performance measures for
the two approaches are shown in Tables 2(a) and 2(b).

It can be seen from Tables 1 and 2 that for a discount rate equal to 0.0%,
the SFDP approach does not produce significant improvements in values of
EAD over those obtained from SCDP approach. The improvements which did
occur were only of the order of 4.0% for the triangular membership function
and about 6.0% for the trapezoidal membership function. With the discount rate
equal to 20.0%, however, it can be seen that the EAD values resulting from the
SFDP were significantly better, in some cases over 90.0%, than those obtained
from the corresponding SCDP model. This result gives an indication of the
important influence of the true present time economic value of the long-term
returns of deficit and surplus and is, in fact, a more realistic approach.
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It was also observed that the EAD values obtained by incorporating
trapezoidal storage intervals were consistently lower, i.e., more optimal, than
those obtained using triangular storage intervals. This phenomenom may be
partly a result of the fact that, during the process of minimal inferencing for
trapezoidal storage intervals, it is only the influence (return) of the adjacent
‘triggered’ storage interval which is actually weighted by the reciprocal of its
‘triggered’ level. The return in the storage interval which would ‘crisply’
circumscribe the actual storage volume is essentially not weighted (increased)
because its ‘triggered’ level is always unity. This mechanism, therefore, results
in a more strict selection criteria through which the model will adopt the
consequence or the ‘cost-to-go’ value associated with any adjacent ‘triggered’
storage interval only if the influence of the adjacent ‘triggered’ storage interval
is very strong, i.e., the adjacent storage is part of a significantly more optimum
path. In another words, a change to the optimum path which occurs as a result
of considering the condition in adjacent storage intervals indicates a very strong
pull to that new ‘optimal’ path.

For the triangular membership function storage interval, on the other
hand, a weighting is applicable to all the ‘triggered’ storage intervals, including
that interval which would ‘crisply’ circumscribe the actual storage volume. As a
consequence, this approach is less ‘strict’ than that of the trapezoidal
membership function storage interval in the sense that even though the optimal
policy may change due to consideration of the impacts of adjacent intervals,
such changes do not necessarily indicate that there is very strong pull to that
new ‘optimal’ path.

4 Conclusion

It has been demonstrated that Stochastic Fuzzy Dynamic Programming (SFDP)
approaches, using either a triangular or trapezoidal fuzzy membership function
for the storage intervals, are able to identify a more ‘optimum’ path and,
therefore, improved operating policies compared to those obtained from
traditional Stochastic Crisp Dynamic Programming (SCDP). Results from the
optimisation process show that the Expected Annual Deviation (EAD) values
resulting from SFDP using triangular membership functions for the storage
intervals are always bigger, i.e., less optimal, than those observed for SFDP
using trapezoidal membership function. The simulated system performance
measures resulting from different discount rates also show that the operating
policies resulting from the application of the SFDP approaches are clearly
superior to those obtained from SCDP for higher values of discount rate
factors.

These results demonstrate the value of using fuzzy theory concepts in
addressing issues arising from the discretisation of storage required for dynamic
programming and from the associated inability, when using traditional crisp
stochastic dynamic programming formulation, to address the potential impact of
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actual storage values being some distance from the representative grid point for
the storage interval in which that actual storage volume falls and perhaps being
close to an adjacent storage interval which has a significantly different release
policy and associated return. Ongoing work on this topic by the authors is
expected to expand and validate further the concept of using fuzzy set theory in
optimisation of reservoir operation.
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Figure 1: Membership Functions of the Storage Intervals.
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Table 1. Expected Annual Deviation (EAD) Values Obtained from SCDP and
Two Approaches of SFDP.

EAD

Program Discount Rate (%) 0.0 20.0
SCDP 3.00x10° 2.08x10°
SFDP Triangular 2.87x10° 1.36x10"
Storage Interval (4.63) (93.44)

Trapezoid 2.81x10° 1.22x10*

Storage Interval (6.39) (94.13)

Note : Values in parentheses show percentage of improvement compared to the

SCDP results

Table 2.a Simulation Results for Discount Rate = 0.0 %.

Simulation results by Implementing the
Operating Policies Obtained From :

Performance SFDP with SFDP with SCDP
Measures Triangular Trapezoidal

Storage storage

Intervals Intervals
plfail] 28.667 28.333 29.333
plfull] 0.000 0.000 0.000
plempty] 0.000 0.000 0.000
pI[R_in_safe_range] 58.000 58.000 57.000
pl[R<safe_range] 28.667 28.333 29.333
p[R>safe_range] 13.333 13.667 13.667
Reliability 71.333 71.667 70.667
Resiliency 45.349 47.059 46.591
Total Deviation 1.447x10 1.471 x10" | 1.684 x10’
Vulnerability 35.000 35.600 34.700
Max_deficit_ratio 0.700 0.700 0.800
Mean_storage 177.300 178.200 178.600
CV_storage 0.441 0.439 0.423
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Table 2.b Simulation Results for Discount rate =20.0%.

Simulation results by Implementing the
Operating Policies Obtained From :
Performance SFDP with SFDP with SCDP
Measures Triangular Trapezoidal
Storage storage
Intervals Intervals
plfail] 18.000 19.333 28.000
pifull] 0.000 0.000 0.000
plempty] 1.000 1.333 0.000
p[R_in_safe_range] 71.333 71.333 59.667
p[R<safe_range] 17.000 18.667 28.000
p[R>safe_range] 11.667 10.000 12.333
Reliability 82.000 80.667 72.000
Resiliency 66.667 62.069 46.429
Total Deviation 1.451x10’ 1.478x10" | 1.515x10
Vulnerability 40.500 39.000 35.500
Max_deficit_ratio 0.900 1.000 0.800
Mean_storage 167.700 166.300 177.300
CV_storage 0.478 0.484 0.434
Table 3. Influence of Discount Rate to EAD Values.
EAD

Program | Discount 0.0 5.0 10.0 15.0 20.0

Rate (%)
SCDP 3.00x10° | 2.74x10° | 2.26x10° | 1.96x10° | 2.08x10°
SFDP Triangular | 2.87x10° | 1.10x10° | 7.47x10* | 3.84x10* | 1.36x10*

Storage (4.63) (59.73) | (66.87) |(80.37) | (93.44)

Interval

Trapezoid | 2.81x10° | 9.91x10* | 3.53x10* | 2.61x10* | 1.22x10*

Storage (6.40) (63.82) | (84.37) | (86.64) | (94.13)

Interval

Note : Values in parentheses show the percentage of improvement compared to
the SCDP results




