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Abstract. Prediction of the landslide development process

is always a hot issue in landslide research. So far, many

methods for landslide displacement series prediction have

been proposed. The support vector machine (SVM) has been

proved to be a novel algorithm with good performance. How-

ever, the performance strongly depends on the right selec-

tion of the parameters (C and γ ) of the SVM model. In this

study, we present an application of genetic algorithm and

support vector machine (GA–SVM) method with parameter

optimization in landslide displacement rate prediction. We

selected a typical large-scale landslide in a hydro-electrical

engineering area of southwest China as a case. On the basis

of analyzing the basic characteristics and monitoring data of

the landslide, a single-factor GA–SVM model and a multi-

factor GA–SVM model of the landslide were built. More-

over, the models were compared with single-factor and multi-

factor SVM models of the landslide. The results show that

the four models have high prediction accuracies, but the ac-

curacies of GA–SVM models are slightly higher than those

of SVM models, and the accuracies of multi-factor models

are slightly higher than those of single-factor models for the

landslide prediction. The accuracy of the multi-factor GA–

SVM models is the highest, with the smallest root mean

square error (RMSE) of 0.0009 and the highest relation in-

dex (RI) of 0.9992.

1 Introduction

Prediction of the landslide development process is a critical

task in landslide research (Sornette et al., 2004; Helmstetter

et al., 2004; Corominas et al., 2005; Gao, 2007). Accurate

prediction can provide a scientific guide to landslide pre-

warning and forecast and engineering control as quickly as

possible. However, it is not easy to accurately predict the

evolution behavior of landslides. This is mainly because of

geometrical complexity, nonlinearity of the displacement–

time relationships and a large number of interplaying factors,

hardly taken into account by prediction models (Crosta and

Agliardi, 2002).

The most common method of predicting the development

process is to build suitable models according to the de-

velopment mechanism and monitoring data of landslides.

So far, many models have been put forward (Saito, 1965;

Voight, 1989; Crosta and Agliardi, 2002; Lu and Rosenbaum,

2003; Feng et al., 2004; Helmstetter et al., 2004; Neau-

pane and Achet, 2004; Sornette et al., 2004; Randall, 2007;

Mufundirwa et al., 2010). They can be roughly classified

into four categories: deterministic physical models, statistics

models, nonlinear models and numerical simulation models

(Li et al., 2012). Among them, the nonlinear models are con-

sidered to have the greatest potential for coping with difficult

and complicated problems. Especially, artificial intelligence

methods represented with neural networks (NNs) have been

widely used in landslide prediction recently (Lu and Rosen-

baum, 2003; Neaupane and Achet, 2004). However, some

problems have appeared in the practical applications of NN

methods because of imperfect theory, such as being suitable

only for large data sets and having both easily occurring lo-

cal minimum and weak generalization ability. Therefore, we

need to find a better method for landslide development pre-

diction.

The support vector machine (SVM) is a new machine

learning method originally developed by Vapnik and his
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co-workers. The method works on Vapnik–Chervonenkis

(VC) dimension theory of statistic learning theory (SLT) and

structural risk minimization principle (Cortes and Vapnik,

1995). It seeks an optimal compromise between the com-

plexity (the learning accuracy for certain training samples)

and learning capacity (the predicting ability for any other

samples) of models according to limited samples, in order

to obtain the best generalization ability (Cortes and Vapnik,

1995; Cristianini and Shawe-Taylor, 2000). It can preferably

resolve problems with small samples, and nonlinear and high

dimensions. Hence, the method has been widely used in the

fields of classification and regression (Oliveira et al., 2004;

Khan et al., 2006). Recently, a few researchers have begun to

try to apply the method in landslide and slope research. For

example, Yao et al. (2008), and Ballabio and Sterlacchini et

al. (2012) applied it to landslide susceptibility mapping and

assessment and obtained good results. Samui (2008) used it

to predict safety status and factors of slopes, and indicated

that the SVM model gives a better result than the result of

artificial neural networks (ANNs) for safety factor prediction

of slopes.

Although SVM theory has been widely used in some

fields, its application results do not reach the expected re-

sults of the theory. According to the related references

(Cherkassky and Ma, 2004; Lessmann et al., 2005; Min and

lee, 2005), the selection of kernel functions and parameters

is one of main factors affecting the application results. At

present, parameters of the SVM model are manually selected

by experience, there being lack of a guide of mature theory.

Genetic algorithm (GA) is a global optimization algorithm

with good robustness, which was first suggested by John

Holland in 1975 (Goldberg and Holland, 1988). GA can be

used to automatically recognize some parameters of SVMs

(Lessmann et al., 2005; Pourbasheer et al., 2009). Hence, we

present an application of GA–SVM in landslide development

prediction.

The paper is organized as follows: Sect. 1 starts with liter-

ature associated with landslide development prediction and

features and applications of related prediction methods. Sec-

tion 2 introduces the SVM, GA and GA–SVM methods. Sec-

tion 3 presents a typical large-scale landslide case. Applica-

tion results are described in Sect. 4. Discussion and conclu-

sions are presented in Sect. 5.

2 Methodology

2.1 SVM for regression

As the detailed description of SVM theory can be found in

various references (e.g., Cortes and Vapnik, 1995; Cristianini

and Shawe-Taylor, 2000), here we only introduce some key

points of SVM for regression (SVMR).

SVMR has two types: linear regression and nonlinear re-

gression. For linear regression, first consider the problem us-

ing a linear regression function

f (x) = ω · x + b (1)

to fit the data {xi,yi}, i = 1,2, . . . ,n, xi ∈ R
n, yi ∈ R, where

ω is an adjustable weight vector, b is scalar threshold, x is the

input and y is the output, R
n is n-dimensional vector space

and R is one-dimensional vector space. In order to find a

function as flat as possible f (x) that gives a deviation ε from

the actual output (y), a smallest ω would need to be found.

It can be obtained by minimizing the Euclidean norm ‖ω‖2

(Smola and Scholkopf, 2004; Samui, 2008). This can be writ-

ten into a convex optimization problem as follows:

Minimize :
1

2
‖ω‖ ,

Subject to :

{

yi − 〈ω · xi〉 − b ≤ ε

〈ω · xi〉 + b − yi ≤ ε
(i = 1,2, . . . ,n). (2)

Considering the existence of some permissible error, slack

variables ξi and ξ∗
i are introduced into the above optimization

problem. Equation (2) becomes

Minimize :
1

2
‖ω‖ + C

n
∑

i=1

(ξi + ξ∗
i ),

Subject to :







yi−〈ω · xi〉 − b ≤ ε+ξi

〈ω · xi〉+b−yi ≤ ε+ξ∗
i

ξi, ξ∗
i ≥ 0

(i=1,2, . . . ,n), (3)

where the constant C > 0 shows the penalty degree of the

sample with error exceeding ε and is called a penalty factor.

A dual problem of Eq. (3) can be obtained by using the

optimization method.

Maximize : W
(

a,a∗
)

= −
1

2

n
∑

i,j=1

(

ai−a∗
i

)

(

aj−a∗
j

)

(

xi · xj

)

+
n

∑

i=1

yi

(

ai − a∗
i

)

− ε

n
∑

i=1

(

ai + a∗
i

)

,

Subject to :















n
∑

i=1

(

ai − a∗
i

)

= 0

ai ≥ 0

a∗
i ≤ C

i = 1,2, · · · ,n, (4)

where ai and a∗
i are Lagrange multipliers.

Solving the above optimization problem, the fitness func-

tion of SVM can be given by

f (x) = ω · x + b =
k

∑

i=1

(

ai − a∗
i

)

(xi · x) + b, (5)
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where k is the number of support vectors, and the samples

(xi, yi) corresponding to ai − a∗
i 6= 0 are support vectors.

For the nonlinear problem, the origin problem can be

mapped into a high-dimensional feature space by some

nonlinear transformation (Cristianini and Shawe-Taylor,

2000). In the feature space, the inner product operation

of linear problem can be substituted by kernel functions,

i.e., K
(

xi,xj

)

= ∅(xi) · ∅(xj ). Therefore, Eqs. (4) and (5)

can be written as

Maximize : W
(

a,a∗
)

= −
1

2

n
∑

i,j=1

(

ai − a∗
i

)

(

aj − a∗
j

)

K
(

xi,xj

)

+
n

∑

i=1

yi

(

ai − a∗
i

)

− ε

n
∑

i=1

(

ai + a∗
i

)

,

Subject to :















n
∑

i=1

(

ai − a∗
i

)

= 0

ai ≥ 0

a∗
i ≤ C

i = 1,2, . . . ,n , (6)

f (x) = ω · x + b =
k

∑

i=1

(

ai − a∗
i

)

K
(

xi,xj

)

+ b, (7)

where K
(

xi,xj

)

is a kernel function that measures the sim-

ilarity of distance between the input vector xi and the stored

training vector x (Feng et al., 2004). The meanings of other

parameters are same as for the parameters mentioned above.

At present, four basic kernel functions have been widely

used. They are (Cristianini and Shawe-Taylor, 2000)

– linear: K(xi,xj ) = (xi,xj ).

– polynomial: K(xi,xj ) = [γ · (xi,xj ) + 1]d ,γ > 0.

– radial basis function (RBF):

K(xi,xj ) = exp
(

−γ ·
∣

∣xi − xj

∣

∣

2
)

.

– sigmoid kernel: K(xi,xj ) = tanh[γ (xi,xj ) + r].

Here, γ , r , and d are kernel parameters. In this study, we

mainly used RBF as kernel function of the SVM model for

landslide prediction, because the function has strong nonlin-

ear mapping ability.

2.2 Genetic algorithm (GA)

GA, an adaptive optimizing method with overall searching

function, was devised by simulating the genetic evolution

mechanism of biology in the natural environment (Whit-

ley, 1994). The method simulates the copying, crossing and

variation phenomena in the process of natural selection and

heredity. Starting from any initial population, a group of

new better-adapted individuals can be generated by randomly

selecting, crossing and variation operations. Therefore, by

unceasing evolution from generation to generation, a best-

adapted individual (the optimal solution of the optimal prob-

lem) can be acquired at last. It has the advantages of global

optimality, implicit parallelism, high stability and wide us-

ability. The method has been widely used in computer sci-

ence, engineering management and social science (Lessmann

et al., 2005; Pourbasheer et al., 2009; Choudhry and Garg,

2009). In this study, we mainly use GA to search for the pa-

rameters (C and γ ) of the SVM model for landslide develop-

ment prediction.

2.3 GA–SVM model

In order to build an effective SVM model, the parameters (C

and γ ) of the model need to be chosen properly in advance

(Lin, 2001). The parameter C determines the tradeoff cost

between minimizing the training error and complexity of the

SVM model. With a bigger C value, the predictive accuracy

of the training sample is higher. However, this may cause

an over-training problem. The parameter γ of the RBF ker-

nel function defines a nonlinear mapping from input space to

high-dimensional feature space. The value of γ affects the

shape of RBF function. Hence, the parameters (C and γ )

have a powerful influence on the efficiency and generaliza-

tion performance of the SVM model. At present, the choice

of the parameters lacks the guide of mature theory, mainly

depending on experiences. A grid-search technique was pre-

sented by Lin (2001). However, the grid algorithm is time

consuming and does not perform very well (Gu et al., 2011).

According to some related research in different fields, GA

is proved to be a better choice to determine the parameters

(Lessmann, 2005; Pourbasheer et al., 2009). It can reduce the

blindness of human-made choice and improve the predicative

performance of the SVM model. Therefore, we choose GA

to search for the optimal parameters of the SVM model for

landslide prediction in this study. The basic flowchart of the

GA–SVM method can be seen in Fig. 1.

The algorithm can be realized by a parameter optimization

procedure designed by Y. Li of Beijing Normal University

based on the libsvm-mat toolbox, which was developed by

Lin of National Taiwan University (Chang and Lin, 2001).

3 Landslide case study

Here, we selected a typical large-scale landslide in southwest

China as a case.

3.1 Basic characteristics of the landslide

The landslide is located on the left bank of reservoir head of

a hydro-electrical power station in southwest China, which

is about 600 m away from the axis of the reservoir dam. The

landslide height is 500–700 m, and its average width and vol-

ume are about 700 m and 5 million m3 respectively. The ori-

gin slope in landslide area belongs to a monoclinic dip slope.
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Fig. 1. Basic flowchart of GA–SVM method.

The slope direction is 210–215◦. The landslide body borders

1400 m elevation, the terrain below the elevation of 1400 m is

gentle, with an average gradient of 22–25◦; while the terrain

above the elevation of 1400 m is steeper, with a gradient of

35–45◦. The landslide has three free faces, and there are sev-

eral gullies and multi-level gentle slopes on the uneven slope

face (Fig. 2).

The upper part of the landslide body is composed of basalt

with blocky structure; its lower part is composed of lay-

ered sedimentary rock. The landslide body can be divided

into three zones from upstream to downstream, according

to lithology and material composition characteristics and the

continuity of the slip surface. Zone I, an ancient landslide

area, is located in the upstream side of the landslide, with a

trench and valley landform. Zone II, a creep area of rock that

is the main deformation area of the landslide, is located in

the middle of the landslide, with a ridge landform. Zone III, a

shallow-surface landslide area, is located in the downstream

side of the landslide, with a ridge landform (Fig. 2). Our re-

search focus is on Zone II.

3.2 Monitoring data of the landslide

In order to ascertain the basic characteristics of the land-

slide and evaluate its stability and development tendency,

an overall monitoring system was gradually put in practice

in 1992 and started to operate in April 1998. The system,

based on the geological and geomorphological features of the

landslide, uses a variety of landslide monitoring techniques

and instruments with different precision to comprehensively

monitor the landslide from the surface to the underground.

The monitoring instruments have TCA 2003 automatic to-

tal station, SINCO sliding and fixed inclinometer, Ni002A

level, and MD4281 deformation measuring instruments of

rock mass. The monitoring items include precise geodetic

survey, drilling monitoring, footrill monitoring, meteorolog-

ical observations and an engineering geological survey. On

Nat. Hazards Earth Syst. Sci., 14, 525–533, 2014 www.nat-hazards-earth-syst-sci.net/14/525/2014/



X. Z. Li and J. M. Kong: Application of GA–SVM method 529

Fig. 2. The whole view of the landslide.

the landslide body of Zone II, 110 monitoring points were

set up, including 11 monitoring points of surface displace-

ment, 4 drilling monitoring points for observing deep dis-

placement of the landslide and groundwater temperature and

level, 49 monitoring points for vertical and horizontal dis-

placements of two footrill soleplates, 7 monitoring points

for groundwater flow and temperature in the footrills, and

39 crack monitoring points for surface and buildings. The

system with large scale, high accuracy and many items was

at the industry leading standard at that time. In order to en-

sure sufficient accuracy, monitoring instruments are always

regularly serviced and renewed, and intensive observations

were made after the reservoir impounding. So far, we have

accumulated a large amount of detailed monitoring data for

the landslide. The long-term and continuous monitoring data

provide a good basis for studying in detail the deformation

law and mechanism of the landslide.

In this study, we choose the footrill monitoring data of the

creep body in Zone II from April 1998 to December 2005 to

deeply analyze the relationships between the landslide dis-

placement rate and rain, reservoir water and groundwater.

The displacement rate is calculated on the basis of the mon-

itoring displacement values. For contrast, the index values

are normalized by the min–max normalization method. The

method performs a linear transformation on the original data.

Suppose that mina and maxa are the minimum and maximum

values for attribute A . The method maps a value v of A to v′

in the range [0, 1] by computing

v′ = (v − mina)/(maxa − mina). (8)

The analysis results of the landslide are shown in Figs. 3–5

after using the above transformation.

Figure 3 shows that there is a good relationship between

landslide displacement rate and rainfall, and the peaks of the

displacement rate generally lag behind the rainfall peaks. As

can be seen from Fig. 4, the impact of reservoir water level

Fig. 3. The relationship between the displacement rate and rainfall

for the landslide.

Fig. 4. The relationship between the displacement rate and reservoir

water level for the landslide.

Fig. 5. The relationship between the displacement rate and ground-

water flow for the landslide.

changes on the landslide mainly manifests in the early stages

of storing water. The displacement rate of the landslide in-

creased significantly after the reservoir started to store wa-

ter in 1998. Afterwards, the impact of the reservoir water

level on the landslide gradually decreased. The changes of

the displacement rate showed a gradual decrease trend with

the fluctuations of the water level. Figure 5 shows that there

is a significant relationship between groundwater flow and

www.nat-hazards-earth-syst-sci.net/14/525/2014/ Nat. Hazards Earth Syst. Sci., 14, 525–533, 2014
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displacement rate. They were consistent and reached peak

levels at almost the same time.

Based on the above analysis results and the engineering

geological survey results, the development process of the

landslide is affected by rain and reservoir water as well as by

other factors. However, the deformation is mainly affected by

rainfall conditions, except that the changes of reservoir water

level also had a powerful effect on the landslide in the early

stages of storing water.

4 Application results

In this section, we analyze the development of the land-

slide, based on the above-mentioned GA–SVM method and

the monitoring data analysis results. We respectively built a

single-factor GA–SVM model and a multi-factor GA–SVM

model for the landslide.

4.1 Single-factor GA–SVM prediction result

Firstly, we take the average monthly displacement rate of

the landslide from April 1998 to December 2005 (93 data

points) as a factor for building model. The earliest 62 data

points were chosen as training samples, and the other 31 were

considered as test samples. We built a single-factor SVM

model for the landslide development prediction, and deter-

mined the parameters (C and γ ) of the model by GA. The

GA had a generation number of 100, population size of 20.

The search range of C and γ parameters is [0, 100]. The

process-searched optimal parameters by GA can be seen in

Fig. 6. We obtained a best C parameter of 7.9155, and a best

γ parameter of 0.13504. The model with the best parameters

has the smallest mean square error (MSE). The prediction

result of the GA–SVM model with the optimal parameters is

shown in Fig. 7.

Figure 7 shows that the monitoring data are in good agree-

ment with the prediction result of the single-factor GA–SVM

model.

4.2 Multi-factor GA–SVM prediction result

Secondly, we take the average monthly displacement rate, av-

erage monthly reservoir water level, monthly rainfall and av-

erage monthly groundwater flow of the landslide from April

1998 to December 2005 as main factors for building a model.

Similarly, the earliest 62 data points of the four factors were

chosen as training samples, and the other 31 data points of

the four factors were considered as test samples. We also

built a multi-factor SVM model for the landslide develop-

ment prediction, and determined the parameters (C and γ )

of the model by GA. The parameters of GA and the search

range of C and γ parameters are identical to those of the

single-factor GA–SVM. The process of obtaining the param-

eters and the prediction results of this model can be seen in

Figs. 8 and 9.

Fig. 6. The fitness curve of searching for the optimal parameters of

the single-factor SVM by GA.

Fig. 7. The curves of the monitoring and predicting values of the

displacement rate of the landslide with time.

Figure 9 also shows that the monitoring data have good

agreement with the prediction result of the multi-factor GA–

SVM model.

4.3 Comparison of GA–SVM and SVM

prediction results

In order to evaluate the prediction performance of the above

GA–SVM models, we also built single-factor and multi-

factor SVM models of the landslide by using the same

training samples as the GA–SVM models, and obtained the

model parameters (C and γ ) by using the grid-search method

(Figs. 10 and 11).

The prediction accuracy of the SVM and GA–SVM mod-

els can be evaluated by two indexes. They are respectively

root mean square error (RMSE) and relation index (RI).
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Fig. 8. The fitness curve of searching for the optimal parameters of

the multi-factor SVM by GA.

Fig. 9. The curves of the monitoring and predicting values of the

displacement rate of the landslide with time.

Generally, the smaller the RMSE and the higher the RI, the

higher the accuracy of the model is. They can be calculated

by using the following formulas (Li et al., 2012):

RMSE =

√

√

√

√

√

n
∑

k=1

(X(0)(k) − X̂(0)(k))

n
, (9)

RI =

√

√

√

√

√

√

√

√

1 −

n
∑

k=1

(X(0)(k) − X̂(0)(k))2

n
∑

k=1

(X(0)(k) − X̄(0))2

, (10)

where X(0)(k) is the observed value and X̂(0)(k) is the pre-

dicted value of the models, and n and X̄(0) are the size and

average value of the data sequence X(0)(k).

Fig. 10. The 3-D contour map of the parameter selection of the

single-factor SVM model by using grid-search method.

Fig. 11. The 3-D contour map of the parameter selection of the

multi-factor SVM model by using grid-search method.

The prediction accuracy indexes of the models are shown

in Table 1. As can be seen from Table 1, the prediction mod-

els have very high accuracies, with the RI values relating the

predicting and monitoring values reaching 0.99. The accu-

racies of GA–SVM models are slightly higher than those of

SVM models, and the accuracies of multi-factor models are

slightly higher than those of single-factor models. Among

the models, the accuracy of the multi-factor GA–SVM mod-

els is the highest, with the smallest RMSE of 0.0009 and the

highest RI of 0.9992.

5 Discussion and conclusions

SVM is a new machine learning method with good

performance in solving small-sample, nonlinear and

www.nat-hazards-earth-syst-sci.net/14/525/2014/ Nat. Hazards Earth Syst. Sci., 14, 525–533, 2014
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Table 1. The accuracy comparison of the SVM and GA–SVM mod-

els for the landslide.

SVM model GA–SVM model

Evaluation Single- Multi- Single- Multi-

index factor factor factor factor

RMSE 0.0026 0.0013 0.0010 0.0009

RI 0.9935 0.9984 0.9989 0.9992

high-dimensional problems. It works on the VC dimen-

sion theory of statistic learning theory and structural risk

minimization principle (Cortes and Vapnik, 1995). It can

obtain a very complex nonlinear mapping relationship of

independent and dependent variables through the learning

of training samples. Moreover, it is a learning method

based on small samples. Building a model to using it does

not need too many training samples. It is different from

traditional statistics theory and artificial neural network

methods, which are suitable for big samples (the sample

size approaches infinity). Comparing the methods, the SVM

method has a solid theory foundation, easily deals with

high-dimensional and nonlinear problems, and can avoid

local minimum and dimension disaster problems in ANN

methods. The disadvantage of the method mainly lies in its

complicated theory. For the purpose of a wide application,

some researchers have developed some toolboxes for the

SVM method, such as the libsvm toolbox (Chang and Lin,

2001).

Despite the above advantages, the generalization perfor-

mance of the SVM models strongly depends on the right

choice of its kernel functions and the parameters (C and γ )

(Cherkassky and Ma, 2004; Lessmann et al., 2005). Hence, it

is vitally important to reasonably determine them. GA is an

adaptive optimizing method with overall searching function.

In order to avoid the blindness of the parameter selection of

the SVM model, we select GA to automatically search for

the parameters of the model for landslide prediction.

In this study, we took a complicated large-scale landslide

in a hydro-electrical engineering area of southwest China as

a case. The landslide is located in the upstream reach of a

hydropower station. Its development process is affected by

many factors, such as rain, reservoir water, groundwater and

human activity as well as the natural features of the landslide

body. Moreover, the factors interrelate and interact with each

other. We present an application of the GA–SVM method

with parameter optimization in landslide displacement rate

prediction. GA and SVM are organically combined by using

GA to automatically search for the parameters of the single-

factor and multi-factor SVM models of the landslide.

In addition, we also built the single-factor and multi-factor

traditional SVM models of landslide prediction. By compar-

ing, we find that the accuracies of the GA–SVM models are

slightly higher than those of the SVM models, and the accu-

racies of multi-factor models are slightly higher than those

of single-factor models for landslide prediction. Among the

models, the accuracy of the multi-factor GA–SVM models

is the highest, with the smallest RMSE of 0.0009 and the

biggest RI of 0.9992.

The application results indicate that SVM and GA–SVM

models have good prediction performance for landslide de-

velopment tendency, and GA is an effective way for the se-

lection of parameters of the SVM models. Because of the

complexity of landslides and diversity and randomness of

factors that influence them, the application of SVM and GA–

SVM methods in the landslide development prediction has

significant potential.
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