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A new era of cutting-edge technologies and advancements in analytical platforms and omics 

sciences is disruptively bringing a paradigm shift in fundamental and translational research. 

Metabolomics is one of the omics strategies that yields big data and has gained popularity in a 

wide spectrum of applications. Among various analytical platforms used in metabolomics, gas 

chromatography mass spectrometry (GC-MS) allows the measurement of thermally stable 

(volatiles and semi-volatiles) metabolites, with an advantage of spectral reproducibility. Cereal 

and legume-based fermented foods are part of the food culture in various countries throughout the 

world. Thus, this review provides an overview of recent applications of GC-MS-based 

metabolomics in the food fermentation field, specifically cereal and legume-based fermented 

foods. This emerging use of metabolomics in food fermentation studies illustrates the potentials of 

this omics science to elucidate metabolome landscapes of fermented foods. Such insights would 

advance our predictive understanding of fermentation processes and molecular descriptions of 

resultant food products; a necessary step for improvements and sustainability in food industry. 

Furthermore, the review echoes the current need of collaborative efforts in the scientific 

community (in this field) to harness and maximise the potentials of metabolomics in food 

fermentation studies.

Keywords: Fermentation, fermented foods, metabolomics, metabolites, GC-MS metabolomics, 

multivariate data analysis

1 Introduction

In the field of life sciences, one of the notable technological advancements is chromatography 

coupled with mass spectrometry. Over the last decade, this hyphenated analytical platform has 

been developed to increase reliability and sensitivity (Lesur et al., 2016; Groger et al., 2020).  

Chromatography coupled with mass spectrometry has become a central and widely used analytical 

system in metabolomics. The latter is a multidisciplinary science that aims to analyse the entire 

complement of small molecular weight molecules (≤1500 Da) within a biological or chemical 

matrix of interest. The application of metabolomics spans a wide range of fields including 

medicine, biological and life sciences, nutrition, agriculture, and more recently in food science and 

technology research (Tugizimana et al., 2013; Adebo et al., 2017a; Adamski, 2020; Feng et al., 

2020).

Particularly in food science research, the term foodomics (a fusion of two words, food and 

‘omics’) was created in 2009 and refers to the study of food and nutrition through the application A
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of omics technologies (Cifuentes, 2009). This discipline encompasses a number of omics routes 

including proteomics, transcriptomics, and metabolomics used to unravel basic molecular food 

mechanism in relation to health (León et al., 2018; Li et al., 2020). Advancement in this regard is 

expanding existing knowledge in different food sectors including food safety and microbiology, 

food processing, food microbiology, food traceability and food authenticity, food contamination 

and fraud, and within food functionality. In this context, metabolomics has been applied as a 

reliable analytical approach to elucidate the global biochemical changes and biotransformation of 

metabolites in food processes, such as fermentation (Adebo et al., 2017a; Singh et al., 2017; Park 

& Kim, 2019; Wang et al., 2020). The latter is an age-long food processing technique involving 

the transformation of substrates through microbial activities (Adebo, 2020). Such a process leads 

to several modifications that could alter metabolite levels and/or synthesize new ones (Kohajdova 

& Karovicova, 2007; Adebo & Medina-Meza, 2020; Kewuyemi et al., 2020a). 

Cereals and legumes are major staple crops and primary source of nutrients to millions of people 

all over the globe (Patil et al., 2016; Oghbaei et al., 2016). These food groups are frequently 

fermented into alcoholic and non-alcoholic beverages, gruels, porridges, etc. (Blandino et al., 

2003; Adebo et al., 2017b; Adebo, 2020). Depending on the substrate, typical metabolites could 

include but are not limited to flavor/aroma related constituents (volatiles), products of proteolytic 

actions (amino acids and peptides), alcohol-related compounds, starch and carbohydrate fractions, 

and secondary metabolites (including phytochemicals) (Verbeke et al., 2015; Adebo et al., 2017a; 

Adebo et al., 2019; Raghuvanshi et al., 2019). Understanding such a complex and 

multidimensional metabolic space with diverse concentrations, chemical structures, affinity, and 

polarities, can be somewhat challenging using classical and conventional techniques. Hence, 

metabolomics – involving the global qualitative and quantitative profiling of metabolites in a 

biological matrix – can provide a comprehensive characterisation of the products of food 

processes. This positions metabolomics as a desirable approach for providing better insight as well 

as understanding the multifunctionality and complexities of cereal and legume fermented foods 

(CLFFs).

Capillary electrophoresis-mass spectrometry (CE-MS), gas chromatography-mass spectrometry 

(GC-MS), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance 

(NMR) are the most frequently used analytical platforms in metabolomics studies (Adebo et al., 

2017a; Adamski, 2020; Ten-Doménech et al., 2020). Other analytical platforms used in 
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metabolomics include Fourier Transform Infrared (FTIR) and Raman spectroscopy. GC-MS 

platform, the focus of this review, has been widely used in metabolomic studies. The analytical 

aspects of current GC-MS technologies worth noting include high resolution (in both GC and MS 

technologies), advancements and improvements in ionisation processes, reproducible 

fragmentation pattern (which is an advantage for compound identification) as well as fewer matrix 

effects. Thus, in this review, an overview on the use of GC-MS-based metabolomics for the study 

of CLFFs is appraised and discussed. Focus was mainly on recent studies CLFF-GC-MS-based 

metabolomics studies between 2010 – 2020.

2 Fundamentals of metabolomics

2.1 Metabolomics approaches and study design step for fermented foods

Metabolomics, like other ‘omics’ sciences, employs either targeted or untargeted approaches. The 

former is often a hypothesis-driven approach, focusing on a pre-defined class or specific group of 

metabolites and often with an absolute quantitative description of measured metabolites. 

Untargeted metabolomics on the other hand, is a data-driven approach, and aiming at a wide 

coverage of the metabolome under consideration, generating metabolic patterns with a relative 

quantitative description of the measured metabolite (Cevallos-Cevallos et al., 2009; Mozzi et al., 

2013; Tugizimana et al., 2013; Adebo et al., 2017a). The intended biological question of the study 

determines the study design and choice of approach to follow. Theoretically, an untargeted 

approach leads to the generation of hypotheses, which can then be investigated further with a 

targeted study, focusing on selected metabolites or class of specific metabolites.

Experimentally, irrespective of the analytical platform used, a metabolomics study follows a 

general multi-step workflow (Figure 1). Furthermore, being at the interface between chemistry, 

biology, data science, chemometrics, and computer science, metabolomics is a multidisciplinary 

field, which makes metabolomics study a team effort (Tugizimana et al., 2013). With a biological 

or research question in mind, the study and experimental design is the first step of metabolomics 

workflow through which key aspects of the downstream steps are critically assessed and designed 

– defining the (biological) system under consideration (e.g. CLFFs), metabolomics approach to 

use (untargeted vs. targeted), statistical considerations (e.g. sample size, number of samples per 

groups,  batches and replicates), extraction method(s) to apply, an analytical platform to use, 

planning of the data mining methodologies, and timeframe of the study (Tugizimana et al., 2013). 

This experimental design step is critical and essential to ensure the success of the study whilst A
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minimising errors, ensuring a necessary scientific rigour and meeting minimum requirements (as 

defined by the Metabolomics Standard Initiative) (MSI, 2005). In carrying out the downstream 

experimental steps, it is pertinent to minimise sources of unwanted variation using standard 

experimental operating procedures across biological replicates and batches, at both pre- and during 

analytical steps (Tugizimana, et al., 2013; Adamski, 2020). Detailed descriptions of the 

metabolomics multistep workflow have been extensively covered and presented in several 

literatures, some of which are cited herein (Villas-Bôas et al., 2005; Dettmer et al., 2007; Álvarez-

Sánchez et al., 2010; Gu et al., 2011; Dunn et al., 2012; Dunn & Hankemeier, 2013; Tugizimana 

et al., 2013; Fiehn, 2017). However, it may suffice here to provide an overview of some of these 

metabolomics workflow steps, highlighting key considerations and critical aspects for a successful 

metabolomics work. 

2.1.1 A pre-analytical step: extraction of metabolites and sample preparation

Once the study system has been confirmed and all aspects mentioned as previously outlined 

above, metabolites to be measured must be extracted and prepared for the analytical step. Since 

CLFFs could come in various forms of solids, semi-solids or liquid forms, aspects relating to 

experimental sample preparation include pulverising, homogenisation, lyophilisation as well as 

drying (e.g. freeze drying, liquid nitrogen) after which metabolites (or analytes of interest) are 

extracted (Adebo et al., 2017a; Hyeon et al., 2020). 

Extraction is essentially needed to release metabolites from the (biological) matrix and may 

require optimisation during targeted analysis (to reduce interferences of unwanted chemical 

species) and in untargeted analysis (to improve metabolite coverage metabolites) (Roberts et al., 

2012; Gbashi et al., 2017; Wang et al., 2019). Several extraction procedures such as direct solvent 

extraction, liquid-liquid continuous extraction, QuEChERS (quick, easy, cheap, effective, rugged, 

and safe) method, simultaneous steam distillation and extraction, solid-phase microextraction 

(SPME), headspace, solid-phase extraction (SPE), solvent-assisted flavor evaporation (SAFE) 

among others, are employed for the release of metabolites from CLFF matrices (Jo et al., 2011; 

Adebo et al., 2019; Mu et al., 2019; Wang et al., 2020). 

While the QuEChERS method illustrates a single-step acetonitrile extraction and dispersive SPE, 

the direct solvent extraction involves blending analyte with an organic solvent (acetonitrile, 

acetone, ethyl acetate, chloroform, ethanol or methanol) (Lee et al., 2014; Lorenzo & Pico, 2017). 

Both solvent extraction processes often require further derivatisation step to increase analyte A
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volatility, for analyses on a GC-MS system (Lee et al., 2016; Yin et al., 2017; Hyeon et al., 2020). 

Through common chemical derivatisation reactions (acylation, alkylation, or silylation) applied in 

GC analysis, the derivatised compounds become less polar moieties and could thus be eluted from 

a GC column with enhanced separation and sensitivity (Dettmer et al., 2007; Cooray & Chen, 

2018). For SPME, divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) is the 

commonly coated fiber used in CLFFs, for volatile compounds adsorption (Park & Kim, 2019; Saa 

et al., 2019). This SPME-based method is solvent-free and offers high sensitivity (Balestra et al., 

2015). As such, SPME is well-established with GC-MS (SPME-GC-MS) and provides good 

reproducibility, high-throughput analyses, and better metabolite detection for volatiles (Iijima, 

2014; Lee et al., 2019). At relatively low temperature (40±20 oC), SAFE involves the vaporisation 

of volatiles from non-volatile analyte under ultra-high vacuum (Jo et al., 2011). However, not all 

metabolites in CLFFs can possibly be acquired and detected using a single extraction process and 

analytical platform. Only a multi-extraction and multi-platform approach can provide an ideal 

comprehensive coverage and holistic characterisation of metabolites present in CLFFs.

2.1.2 Analytical step: data acquisition, sample analysis

Data acquisition in the form of separation and subsequent detection of metabolites follows the 

metabolite extraction and sample preparation step. In this case of GC-MS-based metabolomics 

approach, while the separation of sample components is done using GC, the detection of these 

metabolites is chiefly accomplished through an MS system. Quality control and assurance (QC 

and QA) for sample analysis step are critical considerations to ensure the quality of the generated 

data: i.e. to minimise (or eliminate) analytical bias, background noise, unwanted (analytical) 

variation, artefacts. The QA and QC step also ensures stability, reproducibility and repeatability. 

More details on practical guidelines in this regard are available in the literature (Bouhifd et al., 

2015; Broadhurst et al., 2018; Barnes, 2020). GC-MS systems (in which electron impact / EI 

ionization method is used) generates reproducible ion fragmentation patterns, which made it 

possible to build spectral libraries for metabolite identification such as the Feihn metabolomics 

library, combined chemical dictionary (Chapman and Hall/CRC), Golm metabolome database, 

Wiley library (W8N05ST; Agilent Technologies Inc.), NIST/EPA/NIH National Inst. of Standards 

and Technology (NIST) library, Mass Bank as well as Palisade (Dettmer et al., 2007; Fiehn, 2017) 

making it an integral tool for metabolite identification, providing analyte-specific detection, high-

chromatographic metabolite resolution and quantification, as well as the capability to identify 

unknowns (Dettmer et al., 2007; Fiehn, 2007). A
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The technological advancements in GC-MS instrumentations has led to the emergence of a 

comprehensive two-dimensional (2D) GC (GC × GC) hyphenated with modern high resolution 

mass spectrometry, having high sensitivity in full-spectrum-acquisition mode, and fast scan speeds 

(Cajka, 2013; Adebo et al., 2019). Furthermore, current MS systems coupled to GC platforms are 

also available as hybrid systems, combining different mass analysers, such as triple quadrupole 

(QqQ), Q-Orbitrap, TOF-MS, and Q/TOF-MS with high mass accuracy measurement and multi-

level fragmentation capabilities (Adahchour et al., 2005; Lorenzo & Pico, 2017). The application 

of these modern mass spectrometric techniques for target and untargeted analysis of volatile/semi-

volatile analytes in CLFFs, combined with the use of relevant spectral libraries (e.g. those 

mentioned above), has provided a better and comprehensive characterization of metabolites 

present in CLFF samples.

2.1.3 Post-analytical step: handling and mining metabolomics data

Following data acquisition on a GC-MS system, the generated data are mined through a multistep 

pipeline that comprises data extraction, pre-processing, pre-treatment and application of 

chemometrics and statistical methods. Data mining, a crucial and essential step in metabolomic 

workflows, can be carried out in two different approaches: (i) the chemometrics approach, in 

which the metabolites are not firstly identified (or annotated), but their spectral patterns are 

statistically evaluated to extract relevant spectral features that related to key questions of the study; 

and (ii) targeted profiling approach, in which most of the metabolites are firstly annotated (or 

identified) and then various statistical methods are applied to extract information related to the 

study. The choice of the approach to follow would depend on the study design and availability of 

resources. 

Data pre-processing methods includes noise filtering, peak detection and peak alignment. In 

addition, data pre-treatment or data correction comprises data normalisation, centering, scaling, 

batch effect correction and data integrity checking (Tugizimana et al., 2013). Both pre-processing 

and pre-treatment assist in data cleaning to emphasise only relevant information. These steps 

inevitably determine the quality and quantity of the information obtained and subsequently the 

knowledge acquired. For chemometrics and statistical modelling, multivariate methods (both 

unsupervised and supervised approaches) are applied. These include the classical principal 

component analysis (PCA) – an unsupervised method for dimensionality reduction and data 

exploration, and hierarchical clustering analysis (HCA) for sample clustering. Furthermore, A
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supervised multivariate methodologies such as partial least square (PLS) and its variants (e.g. 

partial least square discriminant analysis (PLS-DA), orthogonal partial least square discriminant 

analysis (OPLS-DA)) are applied to interrogate the data in supervised manner for sample 

classification and extracting significant metabolites that discriminate sample groups (Tugizimana 

et al., 2013). 

There are currently several public and license-based software tools, resources and bioinformatics 

platforms available for this step of data mining and interpretation. Some of the tools commonly 

used (and applicable for CLFF-metabolomic data) include ChromaTOF, Mass Hunter, XCMS, 

MetaboAnalyst, KEGG and ChemStation.

2.2 Some advantages and limitations of GC-MS platform in metabolomics 

According to Lu et al. (2018) and Fiehn (2017), due to the availability of standardised libraries 

and constant electron ionization used to accumulate mass spectra and chromatographic retention 

times of over 500, 000 compounds, GC-MS platform is regarded as the gold standard analytical 

system in metabolomics, particularly for small and thermally stable metabolites. In GC-MS-based 

metabolomics, due to less ionisation artefacts and reproducible ion fragmentation, peak picking 

and spectral similarities search (against spectral databases) can be achieved with high confidence 

(Qualley & Dudareva, 2009; Fiehn, 2017). Subsequently, there are computational tools available 

for GC-MS-derived spectral data, such as automated mass spectral deconvolution software 

(AMDIS), which may not be readily available for LC-MS platforms (Lee et al., 2012). Other 

advantages of GC-MS worth pointing out (though arguably) include minimal ion suppression and 

matrix effects, and a relatively ease of use, in terms of analyses time and operating costs ease of 

use (in terms of analyses time and operating costs) (Gowda & Djukovic 2014; Mastrangelo et al., 

2015; Fjeldsted, 2016; Lorenzo & Pico 2017; Beale et al., 2018).

Furthermore, as highlighted in Section 2.1.1, not all metabolites in CLFFs can be directly 

measured by conventional GC system, hence thermally unstable compounds such as some primary 

metabolites commonly found in CLFFs such as sugars, organic acids and amino acids requires an 

additional derivatisation step. However, derivatisation has its challenges in that subsequent 

detection and measurement is based on using the derivative as a proxy for the target compound. 

Hence, ensuring the completion of the derivatisation reaction as well as using the right 
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concentration of derivatising agent is essential for optimal transformation of the analyte into the 

derivatised form for GC measurement (Beale et al., 2018). 

Despite the advantages of GC-MS highlighted above and those that can be found in the literature 

cited herein, this analytical platform also has some inherent limitations. The latter include the mass 

range of ca. 50–600 Da, limiting the metabolome coverage, and a sample preparation step that can 

be laborious if derivatisation is included. For instance, mass range covered by LC-MS systems is 

wider compared to that of GC-MS platforms, and for NMR and FTIR (though less sensitive), there 

is less sample preparation (or no metabolite extraction) needed.  NMR platforms though less 

sensitive compared to MS systems, are nondestructive and offer an unbiased assessment of a 

complex sample, allowing the simultaneous identification and quantification of diverse 

metabolites (Simler et al., 2016). 

3 GC-MS based metabolomics of CLFFs

The process of food fermentation is an age-long practice, generally aims to convert edible 

substrate into improved products by the action of microorganisms; naturally/spontaneously 

induced or starter aided (Kewuyemi et al., 2020b). Particularly for CLFFs, the main microbes 

involved in this process are lactic acid bacteria, molds, and yeasts. These fermentative microbes 

synthesise diverse active-intracellular enzymes which stimulate the bioconversion of 

macromolecules (carbohydrates, proteins, and lipids) into beneficial metabolites such as volatile 

compounds (amino acid, fatty acid, peptides, phenols etc.) with enhanced substrate properties 

including better nutritional composition, sensory, and functional properties (Park & Kim, 2019; 

Adebo & Medina-Meza, 2020; Kewuyemi et al., 2020a). Cereals and legumes are typical 

substrates for fermentation and present readily available functional and nutraceutical benefits 

(Adebo et al., 2017b; Verni et al., 2019; Adebo, 2020). Understanding the beneficial and complex 

transformation in their preparation has necessitated the growing application of GC-MS-based 

metabolomics for the investigation of CLFFs (Table 1). Various studies in this context are 

discussed in the ensuing sub-sections.

3.1 Cereal-based FFs

As exemplified in Table 1, metabolomics can indeed aid in understanding the fermentation process 

of foods. Recent studies have demonstrated the robustness of this ‘omics’ approach for CLFFs by 

investigating varying biological question to present detailed insight of fermentation process. More 

specifically, the untargeted route was well-established to describe the fermentation process of A
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cereal-based foods (alcoholic and non-alcoholic beverages, bread, dough, gruel, among others). 

Seo et al. (2016) described the metabolic changes in Makgeolli (a traditional fermented rice wine) 

during alcoholic fermentation and aging using GC-MS based untargeted metabolomics to 

determine the fermentative behaviours of yeast strains. The study reported that fermentation 

progressed rapidly during the early fermentation period and decreased levels of glucose and 

phosphoric acid was observed while other identified metabolites increased. The observed 

metabolite changes were attributed to the different fermentation behaviours induced by the 

cultured yeast strains. On the other hand, during the aging period (up to 70 days), metabolites 

present in the product barely changed. A similar metabolomics approach was adopted by Mu et al. 

(2019) to investigate the relationship between metabolites and fermentation time of black 

glutinous rice wine. Through liquid extraction, subsequent derivatisation [methoxy amination and 

addition of N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA)], analysis on gas chromatography 

time of flight mass spectrometry (GC-TOF-MS) system and applying multivariate data analysis 

(MVDA), the authors reported the presence of 28 significantly different metabolites (SDMs) and 

50% of these metabolites (phenolic acid, organic acid, and sugar) where enriched at 60 h. Using 

pathway analysis, the authors also revealed that alanine, aspartate, and glutamate metabolism, 

starch and sucrose metabolism, and pentose phosphate pathway were most relevant to pre-

fermentation, with 60 h identified as the potentially optimal time for pre-fermentation of black 

glutinous rice wine (Mu et al., 2019). 

Another study on rice wine characterized the volatile organic compounds (VOCs) during Chinese 

rice wine aging (Wang et al., 2020). The study identified 94 VOCs as aging markers for 

discrimination of short-aged (0-3 years) rice wines (alcohols, phenols and their derivatives, 

sulfides, small esters and acids) and long-aged (5-15 years) wines (aldehydes, aromatics, furans, 

ketones, most acids and esters). Song et al. (2020) demonstrated untargeted and targeted analyses 

to identify potential markers for the classification of volatile composition in strong aroma-type 

baijiu samples (distilled liquor) from different geographical origins. Their findings indicated 29 

potential markers and 22 marker compounds were selected for distinguishing the liquor samples. 

The discrimination ability was closely correlated to the characteristic flavour compounds (acid, 

alcohols, esters, furans, sulfides, and pyrazine). The targeted approach also revealed the markers 

had great discrimination power to differentiate the baijiu samples and connected the geographical 

origin to the composition of baijiu samples. Yin et al. (2017) reported 62 intracellular metabolites 

of lager beer flavour compound synthesised on an industrial scale. The most dominant metabolite A
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group identified was amino acids and concentrations recovered decreased towards the end of 

fermentation, probably assimilated by the fermenting yeast for synthesis of aroma-active 

metabolites at different fermentation stages. 

By employing GC-MS based metabolomics, Ferri et al. (2016) examined the effect of two wheat 

flours and different Lactobacillus plantarum strains on the flavouring and antioxidant 

characteristics of fermented sourdough. Their result for KAMUT khorasan wheat-fermented 

dough showed a high correlation between a group of volatiles (alcohols, carbonils, dodecanoic 

acid, and 1,3-hexadiene) and polyphenolic compounds. For durum wheat sourdough, a different 

pattern of volatile molecules (acids, alcohols, carbonils, and hydrocarbons) was highly correlated 

with epigallocatechin, epigallocatechin-gallate, flavonoids, and total polyphenols. In addition, a 

simultaneous increase of sensorial and health beneficial compounds of the dough was dependent 

on specific combination of L. plantarum strains and wheat flour type. Both the mature and 

immature grains of these two wheat types were fermented by a sourdough made of L. spp. and 

Saccharomyces cerevisiae to investigate the volatilome of sourdoughs (Saa et al., 2019). Using 

SPME-GC-MS-based metabolomics, the study indicated that sourdough process generates 

different volatile compounds compared to industrial fermentation (reference sample). Specifically, 

the volatilome of sourdough KAMUT khorasan including short chain fatty acids was most 

promising.

The development of yeast-free wheat doughs with different content of glucose and NaCl and 

fermentation by comparatively using Zymomonas mobilis strains had been demonstrated (Nissen 

et al., 2020a). These authors reported that Z. mobilis strains produced about 10 mg ethanol/g 

dough, with maximum dough volumes (640-680 mL) attained after 2 h leavening while the 

presence of NaCl in the dough reached comparable values after 6 h. They also recorded unique 

signatures of the strains for the production of nonanoic and undecanoic acids, 2-hexadecenal, (E), 

L(+)-tartaric acid diethyl ester, and 3-decen-5-one, 4-methyl, (E). Nissen et al. (2020b) evaluated 

the effect of addition level of hemp seed flour and sourdough fermentation on the production of 

VOCs in gluten-free bread. In comparison to standard breads, the result of the study showed an 

increased concentration of antimicrobial compounds, a typical flavouring profile, and a larger 

spectrum of bioactive VOCs. Also, an increased in fermentation metabolites, mainly, acetic acid, 

ethanol, 1,4-butanediol, and 2-butanone-3-hydroxy were also observed.
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The metabolite profile of rice koji produced using Aspergillus oryzae and Bacillus 

amyloliquefaciens at different fermentation times was carried out by Lee et al. (2016). They 

reported differences in the koji samples with respect to their fermentative species and duration of 

fermentation. In particular, rice koji fermentation by A. oryzae was associated with carbohydrate 

metabolism intermediates, fatty acids, and serine-derived amino acids whilst rice koji induced by 

B. amyloliquefaciens was linked to the presence of aromatic and branched chain amino acids, 

lysophospholipids, and flavonoids.  The differential volatile metabolite profiles of two WG-

sorghum types (high tannin and low tannin) and derived fermented products (WG-ting) obtained 

via controlled and spontaneous fermentation was descriptively elucidated by Adebo et al. (2019). 

SDMs reported include cyclic compounds, esters, fatty acid derivatives, ketone, organic acids, 

pesticides, phenol and a sugar derivative. Thus, the study demonstrated that the inherent metabolic 

profile of raw sorghum led to differential metabolic changes in WG-ting and could subsequently 

have dietary and health implications.

An attempt to understand the role of fermentative microbes in volatile metabolite formation 

focused on diverse approaches to compare metabolic characteristics and determine microbe-

specific metabolites in fermented rice by diverse lactic acid bacteria, molds, and yeasts (Park & 

Kim, 2019). The study findings revealed that metabolic changes in fermented rice via molds 

inoculation were relatively more activated compared to other microbes. The correlation analysis of 

the volatile compounds in fermented rice with specific microbes indicated that the branched-chain 

volatiles were closely associated to Aspergillus oryzae whereas acetic acid had strong relationship 

with Lactobacillus plantarum. Kum et al. (2015) investigated the volatile profiles of rice-koji 

doenjang inoculated with three types of Aspergillus species and fermentation was done over a 

range of durations. The early phase fermentation of the samples was reported to be dominated by 

carbonyls while at the latter stage of fermentation long-chain fatty acid esters were considerably 

enhanced. The formation of the fatty acid derivatives was suggested as distinctive flavour 

components of rice-koji doenjang. Fermentation as a value addition process was used to process 

brewer’s spent grain (BSG) inoculated with food grade Rhizopus oligosporus (Cooray & Chen, 

2018). The metabolite variations of the fermented BSG showed significant increased level of 

changes in amino acids, antioxidants, citric acid and vitamins, thus, such insight of metabolite 

changes could pave way for novel application. 

3.2 Legume based FFs
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Most studies have channeled considerable attention to the elucidation of metabolite changes in 

fermented soybean products using GC-MS-based metabolomics (Table 1). These include starter 

ingredient (Koji, for the preparation of koji-derived fermented products), fast-fermented bean paste 

(cheonggukjang and soksungjang), fermented paste (doenjang) and others (douchi, meju, moromi, 

soy sauce, and tempe or tempeh). Seo et al. (2018a) and Seo et al. (2018b) studied koji produced 

from soybean and a combination of cereals. Using a combination of SPME-GC-MS and GC-TOF-

MS-based metabolomics, Seo et al. (2018a) compared the volatile organic compounds and 

primary metabolites in koji samples fermented individually with Bacillus amyloliquefaciens and 

Aspergillus oryzae. Through these integrated approaches, the authors concluded that the volatile 

profile of koji is largely determined by the inocula choice, which modifies the primary metabolites 

in koji substrates, subsequently influencing its aroma characteristics. Same authors also adopted 

GC-TOF-MS-based study to unravel the effects of varying substrates (soybean, wheat, and rice) 

and same inocula (A. oryzae and B. amyloliquefaciens) on metabolite compositions of koji (Seo et 

al., 2018b). The substrates influenced primary metabolite compositions in koji types with soybean 

greater than wheat and rice. Among the inocula choice for the koji types, A. oryzae was observed 

to have stimulated higher carbohydrates, lipid derivative, and organic acids levels while B. 

amyloliquefaciens produced higher amino acids levels, suggesting that the metabolomic approach 

showed promising applications toward production optimisation, bioprocess and quality control of 

koji products.

Some studies have demonstrated the metabolite profiling of fast-fermented soybean pastes 

(cheonggukjang and soksungjang) during fermentation with focus on answering varying biological 

questions. Baek et al. (2010) and Kim et al. (2012) investigated cheonggukjang inoculated with 

different Bacillus strains and metabolites changes with respect to fermentation times were 

revealed. On one hand, distinct patterns of amino acids, organic acids, sugars, and sugar alcohols 

were reported according to the fermentation period (0-72 h) whereas significant differences in pre-

determined metabolite contents were dependent on the inocula strains (Baek et al., 2010). 

Similarly, Kim et al. (2012) indicated that the separation of metabolites in cheonggukjang samples 

was mainly influenced by the fermentation duration (0-72 h). Using a targeted approach, Park et 

al. (2010) examined the changes in pre-defined metabolites (amino acids, fatty acids, and organic 

acids) of cheonggukjang and reported the major components (such as citric acid, tryptophan, 

leucine, among others) differentiated fermented samples according to fermentation duration (0-50 

h). Furthermore, Oh et al. (2016) determined the metabolite profiles of four types of A
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cheonggukjang with added garlic using untargeted metabolic approach. The addition of garlic 

decreased the levels of four amino acids whereas high level of metabolic components with positive 

correlation with antioxidant activities was observed. The elucidated metabolite changes of 

cheonggukjang therefore suggested that fermentation period and additives may play important role 

in metabolic differences of fermented foods. 

Studies on soksungjang have compared the metabolite profile of buckwheat soksungjang samples 

(BSs) obtained via traditional and commercially modified methods or inoculated with multiple 

microbial starters (Park et al., 2017; Park et al., 2019). Based on the fermentation type and 

fermentation period, accelerated changes and differences in the volatile compounds of commercial 

BSs were reported compared to the traditional type (Park et al., 2017). In a follow up study, 

variations in the volatile profile of BSs (mainly, acids, benzenes, and esters) were found to depend 

on the microbial starter combinations as well as fermentation periods (Park et al., 2019). These 

findings may provide insight for optimising the fermentation process of BS.    

Fermented soybean pastes with longer fermentation period have also been investigated using 

metabolomic approach. Jeong et al. (2017) determined the effect of bacterial species on the 

volatile compound profiles of fermented sterilised soybeans. In comparison with uncultured 

fermented soybean, Enterococcus faecium and Tetragenococcus halophilus fermented beans 

produced similar volatile compound profiles whereas Bacillus licheniformis and Staphylococcus 

succinus induced vital volatile compounds (2,3,5,6-tetramethylpyrazine, 3-methylbutyl acetate, 

and phenylmethanol) that differentiated the fermented soybean flavour. The latter starter 

candidates, B. licheniformis and S. succinus along with T. halophilus have also been used as 

different starter combinations to ferment sterilised soybeans with the addition of NaCl, and 

corresponding effects on volatile compounds profiles were determined thereof (Jeong et al., 2019). 

At a good cell growth, B. licheniformis and S. succinus significantly contribute to the production 

of a specific volatile compound profile. However, the concentration increases in NaCl from 1.5 to 

14% in the mixed culture showed dominance of the starters were shifted to T. halophilus. Soybean 

culture containing S. succinus and 7% NaCl was reported to produce decisive volatile compounds; 

3-methylbutan-1-ol and octan-3-one. Moreover, the authors demonstrated that the flavor profile 

and microbial dominance of the soybean culture can be manipulated by the inclusion of NaCl 

(Jeong et al., 2019).
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Park and Kim (2020) investigated the differences in metabolite profiles of fermented soybeans 

induced by various microbial starters. Using the PLS-DA analysis for volatile metabolite profiles. 

Their study revealed that the fungi group was evidently discriminated from the bacteria group. 

Regarding metabolic pathways, the formation of fatty acids-derived volatiles was higher in the 

bacteria group while that of branched-chain aliphatic alcohols and esters increased in the fungi 

group. As such, depicting the microbial-specific role and impact on the metabolites produced 

during soybean fermentation. In another study by Sun et al. (2019), differentially induced 

metabolite profiles in soybean pastes were shown by two strains. The result obtained revealed that 

α-ketoglutaric acid-derived amino acid and oxaloacetate-derived type synthesis are predominant in 

Penicillium glabrum GQ1-3 and Aspergillus oryzae HGPA20, respectively. They concluded that 

the different pathways of amino acid synthesis lead to the distinct nutrients and umami substances 

in the fermented soybean pastes.

Doenjang is also a type of fermented soybean paste. Using commercial and traditional procedures 

for the preparation of doenjang, Jo et al. (2011) used GC-MS metabolomics to describe 

differences in the volatile compounds of commercial samples. Metabolites reported were ethanol, 

ethyl esters, and maltol while acids, carbonyls, furans, phenols, and pyrazines were found in 

traditional doenjang samples. Similarly, Lee et al. (2017) investigated the metabolite profiles of 

doenjang samples produced via industrial and modified industrial manufacturing processes with 

specific microbial inocula and reported that the metabolites quantified showed distinct patterns 

with respect to fermentation processes. In addition, they revealed that the metabolism of amino 

acids, fatty acids, and sugars were associated with Zygosaccharomyces rouxii, Bacillus velezensis 

and A. oryzae, respectively. Jeong et al. (2020) used Enterococcus faecium, Staphylococcus 

succinus, and A. oryzae in the production of doenjang and investigated the effect of bacterial 

starters on flavour production during fermentation process. GC-MS metabolomics revealed that 

flavour development in the doenjang samples cultured with bacterial starters were related to 2-

methylbutanoic acid, 3-methylbutanoic acid and acetic acid, as the important volatile compounds. 

It could therefore be suggested that doenjang composition and final quality may be significantly 

influenced by the microbial population involved in manufacturing process. Likewise, Lee et al. 

(2014) conducted a comprehensive GC-MS metabolomic profiling of doenjang at different steps 

of its industrial processing. At the following steps; meju fermentation, brining, and doenjang 

aging, increases in some primary metabolites such as amino acids, fatty acids, and 

monosaccharides were suggested according to their metabolic pathways.A
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Li et al. (2019) evaluated the dynamics of metabolome of douchi fermentation by using untargeted 

GC-TOF-MS-based metabolomics. The metabolites of different fermentation times were 

compared using MVDA techniques (PCA and OPLS-DA). The authors reported separation of the 

metabolites within 15 days of fermentation, with no discrimination reported after 15 days of 

fermentation. Results obtained also suggested that fermentation of douchi was finished in 15 days, 

with levels of metabolites such as alanine, lysine, putrescine, myo‐inositol and L-malic acid 

varying significantly throughout the processes. Using GC-MS-based metabolomics, Kadar et al. 

(2018) effectively classified tempe from seven cities in Indonesia and three different production 

processes in Indonesia. The study also identified metabolites that are associated with the 

differently processed tempe to include amino acids, organic acids, other compounds, sugars, and 

some unknown compounds. According to these authors, the differences in the metabolome of 

various tempe samples may be due to different ambient temperature of each region that affected 

microbial communities during tempe fermentation.

Given the above studies, the metabolomic approach based on GC-MS has enhanced the 

comprehensive understanding of the distinct characteristics of CLFFs. These are relatively to the 

effect of several factors including substrate composition, additives (NaCl and garlic), fermentation 

time, fermentative microbes, and fermentation type. The fundamental knowledge of these factors 

will enable the prediction of optimal fermentation time, optimal flour/microbes/microbial strain 

combination, monitor fermentation process as well as determine volatile metabolite 

markers/SDMs, among others. All as a whole may suggest better food quality for the development 

of novel CLFFs with uniform characteristics. Furthermore, valuable insights of metabolomics data 

could accelerate the acceptance and rational promotion of promising innovative products such as 

yeast-free leavened doughs, gluten free bread, and nutrient-rich food waste (BSG).

4 Challenges of metabolomics in CLFF studies in a developing world

One of the main challenges related to the development, realisation and establishment of 

metabolomics research in CLFF field, particularly in the developing world, is the cost involved in 

such (fundamental and translational) studies. For instance, a modern high-resolution GC-TOF-MS 

system may cost above US$800,000, and such amount does not include the running and 

maintenance costs. It is worth noting also that in addition to GC-MS systems, other analytical 

platforms, such as LC-MS may be required for better coverage of the chemical space of CLFFs. 

The few metabolomics studies to have utilised other analytical systems (Table 1) reflect the low 
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possibility of adopting a multi-platform metabolomics approach. The latter has also its own 

challenges related to data fusion and integration, in additional to cost involved. Fund accessibility 

is significantly limited in the developing world; and subsequently, national and private research 

(academic and non-academic) institutions often have no means to afford these analytical platforms 

required for metabolomics studies. 

In addition to cost, another bottleneck in the establishment of metabolomics research in the 

developing world is training (in metabolomics) and awareness (or publicity) of the metabolomics 

field and its applicability potentials in food science and technology. In Africa, for instance, 

metabolomics or fundamentals of this multidisciplinary omics science are not yet incorporated in 

academic institutions curricula. This limits the pool of skilled scientists that would adventure into 

metabolomics-related philosophy and research; affecting subsequently the popularity of the field. 

Furthermore, much effort is still needed by scientists working in the food metabolomics field at 

propagating the application of metabolomics in the food industry, particularly in the developing 

world. It is in the view of the authors that, with a growing metabolomics community in South 

Africa (https://www.metabolomics-sa.co.za/), the field of metabolomics will gradually expand and 

mature in Africa; but more efforts are still needed.  

5 Future direction and conclusion

The emergent application of metabolomics in food science, particularly in food processes, is still 

necessary to mature and be integrated with other approaches in the field. Much more still needs to 

be done by researchers in this field and the challenges highlighted in Section 4.0 also re-

emphasises the need for more collaboration among food scientists/technologists and the 

metabolomics community. The recent studies highlighted in this review also suggests that the 

application of GC-MS-based metabolomics for CLFFs is undeniably gradually gaining momentum 

and providing insights in resolving the chemical diversity and metabolic information involved in 

fermentation (Figure 2). Since metabolite concentration varies from one source to another and 

some metabolites with lower concentrations may have important regulatory effects, the detection 

of these trace-level metabolites presents a challenge for MS-based metabolomics. Therefore, 

advancements around the combined use of multiple separation, extraction methods and the 

analytical capabilities of GC-MS instrumentation such as GC-MS/MS, GC×GC-ToFMS and 

recently LC×GC combo all with improved sensitivities would also provide a better overview of 

the constituents in fermented foods. Considering the plethora of fermented foods around the 
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world, much more still needs to be done in bridging this knowledge gap. However, a proper 

understanding of metabolomics workflow is still essential and in its infancy for the study of 

CLFFs. This implies the need for adequate metabolomics training and more frequent use in the 

food science and technology community. The weaknesses encountered in one metabolomics 

approach is usually the respective strengths of the other, hence the integration of metabolomics 

approaches with other omics methods (meta-analysis) will significantly contribute to a more 

detailed and comprehensive characterization of the fermentation processes under investigation and 

leading to better understanding and more discoveries.
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Table 1: Some recent studies on GC-MS based metabolomics of cereal and legume-based fermented foods 

Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

Cereal based FFs        

Beverages (alcoholic and non-alcoholic)        

Black glutinous 

rice 

Black glutinous 

rice wine 

Untargeted Methoxy- 

amination and 

addition of 

BSTFA 

GC-TOF-MS ChromaTOF 

4.3X, LECO-

Fiehn Rtx5 

database 

PCA, OPLS-

DA, Metabo 

-Analyst 

Amino acids, organic acids, fatty 

acids, phenolic acids, sugars, 

and sugar alcohols 

To investigate the relationship 

between metabolites and 

fermentation time 

Mu et al. (2019) 

Cereals Baijiu Untargeted 

and 

targeted* 

None GC×GC-

TOFMS 

ChromaTOF PCA, PLS-

DA 

Alcohol, esters, furan, ketones, 

organic acid, pyrazine, and 

sulphur containing compounds 

To connect the geographical 

origin to the volatile 

composition of baijiu samples  

Song et al. 

(2020) 

Rice Chinese rice 

wine 

Untargeted None HS-SPME-

GC-MS 

SPE-GC-MS 

Chemstation 

XCMS 

PLSR Acids, alcohols, aldehydes, 

aromatics, ethyl esters, furans, 

ketones, lactones, pyrazines, 

sulfides, phenols and their 

derivatives 

To characterize VOCs during 

Chinese rice wine aging  

Wang et al. 

(2020) 

Rice Makgeolli Untargeted 

 

Methoxy- 

amination and 

addition of 

MSTFA 

GC-MS Chemstation PCA, OPLS-

DA 

Amino acids, organic acids, 

polyols, and sugars 

To investigate the metabolic 

changes in Makgeolli during 

alcoholic fermentation and 

aging   

Seo et al. (2016) 

NR Lager beer Untargeted Methoxy- 

amination and 

addition of 

MSTFA 

GC-MS Agilent MSD  PCA, PLS Alcohols, amino acids, fatty 

acids, organic acids, and sugars 

To explore the global 

intracellular metabolite profiles 

of lager yeast during brewing 

fermentation 

Yin et al. (2017) 

Dough, gruel, bread         

Wheat Yeast-free 

doughs 

Targeted None SPME-GC-

MS 

NR PCA, K-

means 

clustering 

Organic acids, esters, aldehydes, 

and ketones 

To profile the volatile 

compounds in yeast-free dough 

Nissen et al. 

(2020a) 

Maize, rice, and Gluten-free bread Untargeted None SPME-GC- NR PCA, K- Alcohols, aldehydes, alkenes, To evaluate the effect of flour Nissen et al. A
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Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

hemp seed  MS means 

clustering 

ketones, and organic acids addition and sourdough 

fermentation on the production 

of VOCs in gluten-free bread 

(2020b) 

Sorghum  Ting Untargeted None GC-HRTOF 

-MS 

XCMS PCA, OPLS-

DA 

Benzene, cyclic compounds, 

esters, fatty acid derivatives, 

ketones, organic acids, pesticide, 

furan,phenols, and sugar 

derivatives 

To descriptively elucidate 

metabolic profiles of sorghum 

types and derived fermented 

products obtained via 

controlled and spontaneous 

fermentation 

Adebo et al. 

(2019) 

Wheat (durum 

and KAMUT 

khorasan)  

Fermented dough Untargeted NR SPME-GC-

MS 

Chemstation 

XCMS 

HCA Acids, alcohols, carbonils, 

esters, and hydrocarbons 

To determine the optimal 

flour/microbial strain 

combinations for sourdough 

preparation. 

 

Ferri et al. 

(2016) 

Wheat  

(Durum and 

KAMUT 

khorasan) 

Bread Untargeted None SPME-GC-

MS 

Chemstation 

XCMS 

CAP Aldehydes, alcohols, carboxylic 

acids, esters, hydrocarbons, 

ketones, organic acids, and 

phenols 

To investigate the metabolites 

profile in sourdoughs prepared 

from different wheat samples 

at varying maturation stage 

Saa et al. (2019) 

Rice Koji Untargeted Methoxy- 

amination and 

addition of 

MSTFA 

GC-TOF-MS  ChromaTOF 

MetAlign 

PCA, PLS-

DA, OPLS-

DA 

Amino acids, fatty acids, organic 

acids, phenolic acids, vitamins, 

sugars and sugar alcohols 

To identify differences 

between the metabolites in rice 

koji inoculated with 

Aspergillus oryzae or Bacillus 

amyloliquefaciens 

Lee et al. (2016) 

Others          

Brewer’s spent 

grain (BSG) 

Fermented BSG Untargeted Methoxy- 

amination and 

addition of 

MSTFA 

GC-MS Agilent 

MassHunter 

and Agilent 

Mass Profiler 

PCA, OPLS-

DA 

Amino acid, aminophenol, 

amino fatty acids, carbohydrates, 

tricarboxylic acids, and vitamin 

To investigate the constituents 

of fermented BSG using 

different extraction solvent and 

derivatization method 

Cooray and 

Chen (2018) 

Rice Fermented rice Untargeted None SPME-GC- NR PLS-DA Amino acid derivatives, To compare the volatile Park and Kim A
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Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

 MS benzenes, butanediol, ethanol, 

fatty acid and their derivatives, 

furans, lactone, and sulfur-

containing compounds 

compound profiles of 

fermented rice derived using 

different fermentative microbes 

(2019) 

Rice and soybean Rice-koji 

doenjang 

Untargeted  None SPME-GC-

MS 

NR PCA, PLSR Alcohols, benzenes and benzene 

derivatives, carbonyls, esters, 

furans and furan derivatives, 

hydrocarbons, miscellaneous, 

organic acids, phenols, and 

sulfur-containing compounds 

To investigate the volatile 

profiles of rice-koji doenjang 

inoculated with three types of 

Aspergillus species and 

fermented over a range of 

periods  

Kum et al. 

(2015) 

Legume based FFs         

Starter ingredient         

Soybean, wheat Koji Untargeted Methoxy 

amination and 

addition of 

MSTFA 

SPME-GC-

MS, GC-

TOF-MS 

ChromaTOF 

Metalign 

PCA, PLS-

DA 

Alcohols, aldehydes, aliphatic 

hydrocarbons, aromatic 

hydrocarbons, carboxylic acids, 

esters, furans, ketones, lactones, 

phenols, pyrazines, sulfur-

containing compounds, 

miscellaneous 

compounds 

To compare the VOCs and 

primary metabolites in koji 

samples fermented individually 

with Bacillus 

amyloliquefaciens 

and Aspergillus oryzae 

Seo et al. 

(2018a) 

Soybean, wheat, 

rice 

Koji Untargeted Methoxy 

amination and 

addition of 

MSTFA 

GC-TOF-MS ChromaTOF PCA, PLS-

DA 

Amino acids, fatty acids, 

nucleosides, phenolic acids, 

organic acids, sugar and sugar 

alcohols, vitamin 

To unravel the effects of 

varying substrates (soybean, 

wheat, and rice) and inocula 

(Aspergillus oryzae and 

Bacillus amyloliquefaciens) on 

metabolite compositions of koji 

Seo et al. 

(2018b) 

Fast-fermented bean paste         

Soybean Cheonggukjang Targeted BSTFA GC-TOF-MS NR PCA, PLS- Amino acids, organic acids, To investigate the pre- Baek et al. A
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Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

DA sugars, and sugar alcohols determined metabolite profile 

of cheonggukjang fermented 

with different Bacillus strains 

(2010) 

Soybean Cheonggukjang Targeted Methoxy 

amination and 

addition of 

BSTFA 

GC-MS NR PCA Amino acids, fatty acids, and 

organic acids 

To assess changes in pre-

defined metabolites during the 

fermentation of cheonggukjang 

Park et al. 

(2010) 

Soybean Cheonggukjang Untargeted Methoxy 

amination and 

addition of 

MSTFA 

GC- and CE-

TOF-MS 

 

Databridge PCA, PLS-

DA 

Alcohols, amines, amino acids, 

carbohydrates, inorganic acids, 

ketones, lactone, nucleosides, 

miscellaneous, organic acids, 

and vitamin B3, 

To investigate the metabolite 

changes in cheonggukjang as a 

function fermentation time and 

inoculated Bacillus strains 

Kim et al. 

(2012) 

Soybean Cheonggukjang untargeted Methoxy 

amination and 

addition of 

MSTFA 

GC-TOF-MS ChromaTOF 

MetAlign 

PCA, PLS-

DA, OPLS-

DA, Box and 

whisker plot 

analysis 

Amino acid, fatty acid, organic 

acid, organic compound, sugar 

and sugar alcohol 

To demonstrate the metabolite 

profile in four types of 

Cheonggukjang 

Oh et al. (2016) 

Soybean, 

buckwheat 

Soksungjang Untargeted None SPME-GC-

MS 

NR PLS-DA Alcohols, benzenes and benzene 

derivatives, carbonyls, esters, 

furans and furan derivatives, 

hydrocarbons, organic acids, 

phenols, pyrazines, sulfur-

containing compounds, and 

miscellaneous compounds 

To profile and compare the 

volatile compounds of 

buckwheat Soksungjang 

samples prepared using two 

different methods 

Park et al. 

(2017) 

Soybean, 

buckwheat 

Soksungjang Untargeted None SPME-GC-

MS 

NR PLS-DA Alcohols, aldehydes, aliphatic 

hydrocarbons, benzenes and 

benzene derivatives, esters, 

furans, ketones, lactones, 

organic acids, phenols, 

To investigate the changes and 

differences in the volatile 

profiles of buckwheat 

Soksungjang inoculated with 

multiple microbial starters 

Park et al. 

(2019) 
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Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

pyrazines, sulfur-containing 

compounds, terpenes, and 

miscellaneous compounds 

Fermented paste          

Soybean Fermented 

soybean  

Untargeted None SPME-GC-

MS 

NR PCA Alcohols, carbonyls, esters, 

furans, organic acids, pyrazines, 

and other compounds 

To analyze the volatile 

compounds produced by 

selected starters during 

soybean culture  

Jeong et al. 

(2017) 

Soybean Fermented 

soybean 

Untargeted None SPME-GC-

MS 

NR PCA Alcohols, carbonyls, esters, 

furans, organic acids, and 

pyrazines  

To investigate the effect of 

starter candidates and NaCl on 

the volatile compound profiles 

produced from soybean 

cultures   

Jeong et al. 

(2019) 

Soybean Soybean paste Untargeted Methoxy 

amination and 

addition of 

BSTFA 

GC-MS ChromaTOF 

4.3X, LECO-

Fiehn Rtx5 

database 

PCA, OPLS-

DA, 

MetaboAnal

yst 

Amino acids and their 

derivatives, organic acids, sugars 

and sugar alcohols, other 

compounds 

To determine metabolites 

differences during the 

fermentation of soybean paste 

using two strains. 

Sun et al. 

(2019) 

Soybean Fermented 

soybean 

Untargeted 

 

Methoxy 

amination and 

addition of 

MSTFA 

GC-TOF-MS ChromaTOF 

 

PCA, OPLS-

DA, HCA 

Amino acids, fatty acids, organic 

acids, and sugars 

To investigate the effect of 

fermentation by Aspergillus 

oryzaeand Bacillus subtilis on 

soybean substrates extracted at 

different temperatures 

Hyeon et al. 

(2020) 

Soybean Fermented 

soybean 

Untargeted Methoxy 

amination and 

addition of 

BSTFA 

SPME-GC-

MS 

GC-TOF-MS 

NR PLS-DA Volatiles: benzenes, 

carbohydrates-derived, 

fatty acids-derived, furans, 

isoleucine-derived, lactones, 

leucine-derived, phenols, short-

chain, sulfur-containing, valine-

derived, and others 

To investigate the differences 

in volatile and non-volatile 

metabolites induced in 

fermented soybeans by various 

microbial starters 

Park and Kim 

(2020) 
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Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

Non-volatiles: amino acids, fatty 

acids, organic acids, sugar and 

sugar alcohols 

Soybean Doenjang Untargeted None SAFE-

GCMS 

SPME-GC-

MS 

NR PCA Alcohols, benzenes and benzene 

derivatives, carbonyls, esters, 

furan and furan derivatives, 

hydrocarbons, phenols, 

pyrazines, pyrroles, organic 

acids, sulfur-containing 

compounds, and miscellaneous 

To investigate the 

comprehensive volatile profile 

of traditional and commercial 

doenjang samples using two 

different extraction methods 

Jo et al. (2011) 

Soybean Doenjang Untargeted Methoxy 

amination and 

addition of 

MSTFA 

GC-TOF-MS ChromaTOF 

metAlign 

PCA, PLS-

DA 

Amino acids, fatty acids, organic 

acids, miscellaneous, sugar and 

sugar derivatives 

To comprehensively 

investigate the metabolite 

profiles of doenjang at various 

steps of its industrial 

production process 

Lee et al. (2014) 

Soybean Doenjang Untargeted Methoxy 

amination and 

addition of 

MSTFA 

GC-TOF-MS MetAlign PCA, PLS-

DA 

Amino acids, fatty acids, organic 

acids, sugar and sugar 

derivatives 

To contrive a correlative model 

twining the comparative 

metabolomes for doenjang 

industrial and modified 

industrial manufacturing 

processes 

Lee et al. (2017) 

Soybean Doenjang Untargeted None SPME-GC-

MS 

NR PCA Alcohols, carbonyls, esters, 

furans, organic acids, phenols, 

pyrazines and others 

To examine the effect of 

Enterococcus faecium, 

Staphylococcus 

Succinus,and Aspergillus 

oryzae on flavour production in 

doenjang fermentation 

Jeong et al. 

(2020) 

Others          

Soybean Cheonggukjang, Untargeted Methoxy GC-TOF-MS ChromaTOF PCA, PLS- Amino acids, fatty acids, organic To demonstrate non-targeted Kwon et al. A
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Produce Fermented food 

product 

Approach Derivatization Analytical 

platform 

Data 

processing 

platform 

Data mining 

tool 

Metabolite groups reported Biological question/primary 

aim of study 

Reference 

doenjang, 

doubanjiang, 

miso, natto, and 

tianmianjiang 

amination and 

addition of 

MSTFA 

MetAlign DA acids, sugar and sugar 

derivatives, and other 

compounds 

metabolite profiling of 

traditional fermented soybean 

products 

(2019) 

Soybean Douchi Untargeted Methoxy 

amination and 

addition of 

BSTFA 

GC-TOF-MS ChromaTOF 

4.3X, LECO-

Fiehn Rtx5 

database 

PCA, OPLS-

DA 

Aldehyde, amino acids, ester, 

organic acids, sugars 

To evaluate dynamics of the 

metabolome of douchi during 

fermentation 

Li et al. (2019) 

Soybean Meju Untargeted Methoxy 

amination and 

addition of 

BSTFA 

GC-MS/MS Vx Capture, 

XCMS 

PCA, PLS-

DA 

Amino acids, organic acids, 

sugars and sugar alcohols 

To comprehensively examine 

the metabolite profile of meju 

Lee et al. (2012) 

Soybean Soy sauce Untargeted None SPME-GC-

MS 

SBSE-GC-

MS 

NR PCA, PLS-

DA 

Alcohols, aldehydes, benzene 

and benzene derivatives, esters, 

furan and furan derivatives, 

hydrocarbons, ketones, lactones, 

organic acids, phenols, 

pyrazines, pyrones, pyrroles, 

nitrogen-containing compounds, 

and sulfur-containing 

compounds 

To investigate changes in 

profiles of soy sauce volatile 

compounds during long-term 

fermentation using SPME and 

SBSE 

Lee et al. (2019) 

Soybean Tempe Untargeted Methoxy 

amination and 

addition of 

MSTFA 

GC-MS GCMS 

solution, 

MetAlign, 

AIoutput 

version 1.30 

PCA Amino acids, organic acids, 

other compounds, sugars, 

unknowns 

To investigate the metabolic 
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Figure 1: An overview of the metabolomics workflow 
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Figure 2: Metabolomic analysis of cereal and legume based fermented foods by GC-MS 4 
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