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	e fractional mathematical model of Maxwell’s equations in an electromagnetic 
eld and the fractional generalized thermoelastic
theory associated with two relaxation times are applied to a 1D problem for a thick plate. Laplace transform is used. 	e solution
in Laplace transform domain has been obtained using a direct method and its inversion is calculated numerically using a method
based on Fourier series expansion technique. Finally, the e�ects of the two fractional parameters (thermo andmagneto) on variable

elds distributions are made. Numerical results are represented graphically.

1. Introduction

Fractional calculus (FC) is a very useful tool in describing the
evolution of systems with memory, which typically are dissi-
pative and complex systems such as glasses, biopolymers, bio-
logical cells, porous materials, amorphous semiconductors,
and liquid crystals. Scaling laws and self-similar behavior are
supposed to be fundamental features of complex systems.
In recent decades the FC and in particular the fractional
di�erential equations have attracted interest of researchers
in several areas including mathematics, physics, chemistry,
biology, engineering, and economics [1–4].

FC theory has been used successfully in thermoelasticity
and thermoviscoelasticity, such that a quasi-static uncoupled
theory of thermoelasticity based on the fractional heat-
conduction equation was put forward by Povstenko [5]. 	e
theory of thermal stresses based on the heat-conduction
equation with the Caputo time-fractional derivative is used
by Povstenko [6] to investigate thermal stresses in an in
nite
body with a circular cylindrical hole. Sherief et al. [7]
introduced a fractional order theory of thermoelasticity.
Raslan [8, 9] has solved 1D problems in the context of
this theory and applied this theory to 2D problem of thick
plate [10]. 	e fractional parameter e�ect of this theory on
thermoelasticmaterial with variable thermal variable thermal

material properties has been studied in [11, 12]. Ezzat [13]
established a model of fractional heat-conduction equation
by using the Taylor series expansion of time-fractional order
developed by Jumarie [14].

Hamza et al. established a new mathematical model of
Maxwell’s equations in an electromagnetic 
eld in [15] and
derived a fractional model for thermoelasticity associated
with two relaxation times in [16]. A model for unsteady
thermoelectric magnetohydrodynamics (TEMHD) �ow and
heat transfer of two immiscible second-grade �uids with two
fractional parameters was introduced in [17].

	e previous work introduced by Hamza et al. [18]
describes one-dimensional problems in the context of the
theory [16] in which the electromagnetic 
eld e�ects are
ignored. 	e model in the previous work depends only upon
one fractional parameter � which does not have electric or
magnetic a�ects. Another application of this theory intro-
duced in [16] depends on two fractional parameters � and�. 	e 
rst fractional parameter � appears only in the heat
equation and is absent from both the equation of motion
and the constitutive equations. In this work, we solve a 1D
problem for a thick plate that was not solved in the context of
both theories [15, 16].

	e new model here depends on two fractional parame-
ters � and �. 	e 
rst fractional parameter � appears in the
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heat equation, the equation of motion, and the constitutive
equations.

	e e�ects of the fractional parameters corresponding to
two models [15, 16] are discussed. 	e solution is obtained in
Laplace transformed domain using a direct approach. All the
studied 
eld variables are represented graphically.

2. The Mathematical Model

	e governing fractional Maxwell’s equations in an electro-
magnetic 
eld are given by [15]

∇ ×H = J + �0 �E�� , (1)

∇ × E = −�0 	�−1�! �
�
H��� , (2)

∇ ⋅H = 0,
∇ ⋅ E = 0, (3)

where � is the order of the fractional derivative in Caputo
sense with respect to time � such that 0 ≤ � ≤ 1, �0 is
the magnetic permeability, and �0 is the electric permeability.
H and E are the magnetic and electric 
eld intensities,
respectively. J is the current density and 	 is a positive
constant.

Equation (2) is called “Fractional Faraday’s Law of Mag-
netic Induction” which was derived in [15]. 	e proof uses
Faraday’s induction law and the fractional Taylor’s series
expansion developed by Jumarie [14].

Ohm’s law for moving media states that

J = �0 [E + �0 �u�� ×H] , (4a)

where �0 is the electric conductivity of the medium (assumed
to be in
nite) and u is the displacement vector.

Since J is bounded and �0 is in
nite, it follows that
E = −�0 �u�� ×H. (4b)

	e governing equations for generalized fractional ther-
moelasticity associated with two relaxation times in the
absence of external body forces and heat sources are given
by [16] the following.

(i) 	e constitutive equations:

��� = 2���� + ������� − �1��� (1 + 	�1�! �
�

���)�, (5)

where � is the temperature of the medium, ��� are the
components of the stress tensor, the constants � and � are
Lamé’s constants, and �1 = ��(3� + 2�), where �� is the
coe�cient of linear thermal expansion and � ∈ (0, 1] is
the order of the time-fractional derivative. 	1 is a positive
constant and ��� are the components of the strain tensor.

(ii) 	e strain-displacement relations:

��� = 12 (��,� + ��,�) . (6)

(iii) 	e equation of motion:

���,� + �� = ��̈�, (7)

where � is the density assumed independent of time �, �� is
the displacement vector component, ��� are the components
of the stress tensor, and �� is the component of the Lorentz
force given by

�� = �0 (J ×H)� . (8)

(iv) 	e fractional heat equation:

��,�� = �1�0 ̇��� + ��� ( ��� +
	�0�! �
1+�

��1+�)�, (9)

where the speci
c heat at constant strain is �� and � is the
thermal conductivity. 	0 is a positive constant and �0 is a
reference temperature assumed to be such that |(�−�0)/�0| ≪1. As usual, superimposed dots denote time derivatives. 	e
convention of summing over repeated indices is used.

3. Formulation of the Problem

We consider a magnetothermoelastic thick plate of perfect
conductivity occupying the region 0 ≤ # ≤ ℓ in an initial
magnetic 
eld H0 in % direction at a uniform reference
temperature �0. 	is produces an inducedmagnetic 
eld h in
the direction of the %-axis and an electric 
eld E in the &-axis
(perpendicular toH and u).

	e #-axis is perpendicular to the surface of the plate.	e
upper surface (# = 0) of the plate is taken to be traction-free
and is subjected to a thermal shock that is a function of time.
	e lower surface (# = ℓ) of the plate is taken to be thermally
isolated and laid on a rigid foundation.

It is assumed that all the state functions depend on # and� only.
	us

u = (� (#, �) , 0, 0) ,
H = (0,*0 + ℎ, 0) ,
E = (0, 0, 5) .

(10)

In the context of generalized fractional thermoelasticity
associated with two relaxation times, the constitutive equa-
tions, the equation of motion, and fractional heat equation
can be expressed in our case as follows:

� = �		 = (2� + �) ���# − �1 (1 +
	�1�! �
�

���)�,
�		 = ���# ,
��2���2 + �1 = (2� + �) �

2��#2 − �1 (1 +
	�1�! �
�

���) ���# ,
� �2��#2 = ��� [�1�0 (���#) + ��� (1 +

	�0�! �
�

���)�] .

(11)
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Now, (1)–(4b) yield

6 = �ℎ�# − �0 �5�� , (12)

ℎ = −*0�!	�−1 �
1−�

��1−� (���#) , (13)

5 = −�0*0 ���� . (14)

From (13), (14), and (12), we obtain

6 = �0�0*0 (�2���2 ) − *0�!	�−1 �
1−�

��1−� (�
2��#2) . (15)

From (13), (15), and (8), we obtain

�1 = �0*20 ( �!
	�−1 �

1−�

��1−� (�
2��#2) − �0�0 (�

2���2 )) . (16)

We shall use the following nondimensional variables

(#
, �
) = 78 (#, �) ,
(�
, 	
0, 	
1, 	
) = 728 (�, 	0, 	1, 	) ,

�
 = �� + 2� ,

�
 = �1 (� − �0)� + 2� ,
ℎ
 = ℎ*0 ,
5
 = 5�0*07 .

(17)

Now, using the above nondimensional variables, the
system of equations of the problem will reduce to

(1 + �20) �2���2 = (1 + 9��!	1−� �
1−�

��1−�)(�
2��#2)

− (1 + 	�1�! �
�

���)�,

�2��#2 = ��� [� (���#) + (1 +
	�0�! �
�

���)�] ,
�		 = ���# ,
ℎ = −�!	1−� �1−���1−� (���#) ,
5 = −���� ,
� = ���# − (1 +

	�1�! �
�

���)�,
(18)

where

7 = √� + 2�� ,
8 = �7�� ,

9� = �0*0�72 ,
�0 = �0�0*0� ,
� = ;0�21(� + 2�) �8 .

(19)

Also, we assume that the medium is initially at rest and
the undisturbed state is maintained at uniform reference
temperature. 	en we have

� = � (#, 0) = �̇ (#, 0) = � (#, 0) = �̇ (#, 0) = 0. (20)

Now, taking the Laplace transform (denoted by an over-
bar) with parameter < of both sides of the above system of
equations, we get

(1 + �20) <2� = (1 + 9��!	1−�<1−�)(�2��#2)
− (1 + 	�1 <��! ) �,

(21)

�2��#2 = < [� (���#) + (1 +
	�0 <��! ) �] , (22)

�		 = ���# , (23)

ℎ = −�!	1−�<1−� (���#) , (24)

5 = −<�, (25)

� = ���# − (1 +
	�1 <��! ) �. (26)
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Solving (21) and (22), we obtain

{ ?4?#4 + @2 ?
2

?#2 + @1 ??# + @0} {�, �} = 0. (27)

	e corresponding characteristic equation of (27) is

�4 + @2�2 + @1� + @0 = 0, (28)

where

@2
= −< (1 + 	�0 <�/�!) (1 + 9��!	1−�<1−�) + (1 + �20) <2(1 + 9��!	1−�<1−�) ,
@1 = − �< (1 + 	�1 <�/�!)(1 + 9��!	1−�<1−�) ,

@0 = −<
3 (1 + 	�0 <�/�!) (1 + �20)(1 + 9��!	1−�<1−�) .

(29)

	e solution of (27) compatible with (22) has the form

� = 4∑
�=1
�<�������	, (30)

� = 4∑
�=1
[�2� − < (1 + 	

�
0 <��! )]�����	. (31)

Substituting (30) and (31) into (26), we get

�
= 4∑
�=1
�� [�2� − < (1 + 	

�
0 <��! ) − �< (1 +

	�1 <��! )]�����	.
(32)

Using (31), (23)–(25) become

�		 = 4∑
�=1
�� [�2� − < (1 + 	

�
0 <��! )]�����	,

ℎ = −�! (	<)1−� 4∑
�=1
�� [�2� − < (1 + 	

�
0 <��! )]�����	,

5 = −< 4∑
�=1
[�2� − < (1 + 	

�
0 <��! )]�����	.

(33)

We assume that the boundary conditions have the form

� (0, �) = E (�) ,
�� (ℓ, �)�# = 0,
� (0, �) = � (ℓ, �) = 0,

� > 0,
(34)

where E(�) is a known function of �. Equations (30)–(32) give
4∑
�=1
�<���� = E (<) ,
4∑
�=1
�2������ℓ = 0,
4∑
�=1
[�2� − < (1 + 	

�
0 <��! )]�����ℓ = 0,

4∑
�=1
�� [�2� − < (1 + 	

�
0 <��! ) − �< (1 +

	�1 <��! )]�� = 0.

(35)

4. Inversion of the Laplace Transform

We shall now outline the method used to invert the Laplace

transforms in the above equations. Let E(<) be the Laplace
transform of a function E(�). 	e inversion formula for
Laplace transforms can be written as [19]

E (�) = �
�2G ∫
∞

−∞
����E (I + J%) ?%, (36)

where I is an arbitrary real number greater than all the real

parts of the singularities of E(<). Expanding the functionℎ(�) = exp(−I�)E(�) in a Fourier series in the interval [0, 2@],
we obtain the approximate formula [19]:

E (�) ≈ E� (�) = 1270 +
�∑
�=1
7�, for 0 ≤ � ≤ 2@, (37)

where

7� = �
�@ Re [�����/�E(I + J�G@ )] . (38)

Two methods are used to reduce the total error. First, the
“Korrektur”method is used to reduce the discretization error.
Next, �-algorithm is used to reduce the truncation error and
therefore to accelerate convergence.

	e Korrektur method uses the following formula to
evaluate the function E(�):

E (�) = E�� (�) = E� (�) − �−2
�E�� (2@ + �) . (39)

We shall now describe �-algorithm that is used to accel-
erate the convergence of the series in (37). Let L be an odd
natural number and let <� = ∑��=1 7� be the sequence of
partial sums of (37). We de
ne �-sequence by

�0,� = 0,
�1,� = <�,

N = 1, 2, 3, . . . ,
��+1,� = ��−1,�+1 + 1(��,�+1 − ��,�) ,

O, N = 1, 2, 3, . . . .

(40)



Advances in Materials Science and Engineering 5

Table 1: Material properties.

� = 386W/(mK) �� = 1.78 (10)−5 K−1 7� = 381 J/(kgK) 8 = 8886.73� = 3.86 (10)10 kg/(m s2) � = 7.76 (10)10 kg/(m s2) � = 8954 kg/m3 T0 = 293K� = 0.0168 	0 = 0.025 s 	1 = 0.025 s 	 = 0.025 s
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Figure 1: Temperature distribution for di�erent time for � = � = 1.
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Figure 2: Displacement distribution for di�erent times for � = � =1.

It can be shown that [19] the sequence �1,1, �3,1, . . . , ��,1,...
converges to E(�) − 70/2 faster than the sequence of partial
sums.

5. Numerical Results and Discussion

In order to obtain the solutions for the 
eld functions in
the physical domain, we have applied the Laplace inversion
formula mentioned in the above section. FORTRAN pro-
gramming language was used on a personal computer. 	e
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Figure 3: Stress distribution for di�erent time when � = � = 1.
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Figure 4: Induced magnetic 
eld distribution for di�erent time for� = � = 1.

accuracy maintained was 7 digits for the numerical program.
For computational purposes, a copper-like material has been
taken into consideration.	e values of thematerial constants
are taken as in Table 1.

In order to investigate the e�ect of time on all 
eld
variables the computations have been carried out for � = 0.05,� = 0.1, � = 0.15, and � = 0.2. 	e results are displayed
in Figures 1–5, for the temperature, displacement, stress, and
magnetic and electric 
eld distributions, respectively.
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Table 2: Wave fronts and stress jump sizes.

Time
First wave front of the stress Second wave front of the stress

Location Discontinuity gap size Location Discontinuity gap size

0.08 # = 0.0748 1.5341611 # = 0.5046729 0.4026305

0.1 # = 0.0935 1.5374964 # = 0.6261683 0.2926325

0.15 # = 0.1495327 1.5193814 # = 0.9439253 0.1216954

0.2 # = 0.1962617 1.5351866 # = 0.7476634 (re�ected) 0.0026
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Figure 5: Induced electric 
eld distribution for di�erent time for� = � = 1.

Next, to study the e�ect of the fractional parameter �,
we take � = 0.01, � = 0.2, � = 0.5, and � = 1 when� = 0.1 and � = 1. 	is gives us Figures 6–10, for the
temperature, displacement, stress, magnetic 
eld, and electric

eld distributions, respectively.

	e remaining 
gures illustrate the e�ect of the fractional
parameter � on the 
eld variables. Figures 11–14 describe the
displacement, stress component, magnetic 
eld, and electric

eld distributions for di�erent values of �; namely, � = 0.2,� = 0.5, � = 0.9, and � = 1 when � = 0.1 and � = 1. Here
we notice that the fractional parameter � has no e�ect on the
temperature distribution.

	e conclusions from Figures 1–14 can be summarized as
follows:

(1) All of the physical variables have a 
nite speed of
wave propagation for all times when � = � = 1. 	e speed
of propagation for other values of � and � needs further
theoretical investigation.

(2) As is apparent from the order of the di�erential
equation, we have two waves. 	e locations of the two wave
fronts are the same for all functions considered. 	ese wave
fronts appear as a jump (discontinuity) in the case of the
temperature, stress, and the intensity of the electric 
eld.
On the other hand, the other two functions, namely, the
displacement and the intensity of the magnetic 
elds, are
continuous. 	e wave fronts, in this case, appear as a cusp
signifying a discontinuous 
rst derivative. Note that the 
rst
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Figure 6: Temperature distribution for di�erent � for � = 1 at � =0.1.
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Figure 7: Displacement distribution for di�erent � for � = 1 at � =0.1.

jump in the temperature is too small to appear in the graph.
For� = � = 1, the waves propagate into themedium from the
position # = 0 to 
ll a 
nite part of the region that expands
with the passage of time. We note that, for � = 0.2, this region
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Figure 8: Stress distribution for di�erent � for � = 1 at � = 0.1.
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Figure 9: Inducedmagnetic 
eld distribution for di�erent � for � =1 at � = 0.1.

has 
lled the entire body of the plate. 	e second wave has
been re�ected from the other side of the plate. 	e positions
of the wave fronts for the stress and electric 
eld distributions
as well as the size of their jump discontinuities can be found
in Tables 2 and 3.

(3) From Figure 3, we notice that for the displacement,
the 
rst wave front is located at the peaks of this function.
	e location of these peaks for di�erent times is introduced
in Table 4.

Also, we note here that the magnitude of peaks increases
with time.

(4) It is observed fromFigures 6–10 that the 
eld variables�, �, �, ℎ, and 5 are strongly a�ected by the fractional
parameter �. Increasing the fractional parameter � produces
an increase in the peaks of the displacement and decreases the
stress gap size at the location of the 
rst wave front. Similar
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Figure 10: Induced electric 
eld distribution for di�erent� for� = 1
at � = 0.1.
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Table 3: Wave fronts and electric 
eld jump sizes.

Time
First wave front of the electric 
eld Second wave front of the electric 
eld

Location Discontinuity gap size Location Discontinuity gap size

0.08 # = 0.0748 1.5456 # = 0.5046729 0.7192609

0.1 # = 0.0935 1.5477 # = 0.6261683 0.4947222

0.15 # = 0.1495327 1.5299 # = 0.9439253 0.1858727

0.2 # = 0.1962617 1.541777 # = 0.7476634 (re�ected) 0.0069
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Figure 13: Induced magnetic 
eld distribution for di�erent � for� = 1 at � = 0.1.
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Figure 14: Induced electric 
eld distribution for di�erent� for� = 1
at � = 0.1.

e�ects of the parameter � on �, �, ℎ, and 5 are also clear from
Figures 11–14.

Table 4: Wave fronts and displacement peak sizes.

Time
First wave front location (peak)

Location of 1st
wave front

Maximum value
at peak

0.08 0.0748 0.133331

0.1 0.093457945 0.1530982

0.15 0.1495327 0.1892859

0.2 0.1962617 0.224686
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