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Abstract 

Background:  Recent advances in deep learning techniques have led to improved diagnostic abilities in ophthal-
mology. A generative adversarial network (GAN), which consists of two competing types of deep neural networks, 
including a generator and a discriminator, has demonstrated remarkable performance in image synthesis and image-
to-image translation. The adoption of GAN for medical imaging is increasing for image generation and translation, 
but it is not familiar to researchers in the field of ophthalmology. In this work, we present a literature review on the 
application of GAN in ophthalmology image domains to discuss important contributions and to identify potential 
future research directions.

Methods:  We performed a survey on studies using GAN published before June 2021 only, and we introduced various 
applications of GAN in ophthalmology image domains. The search identified 48 peer-reviewed papers in the final 
review. The type of GAN used in the analysis, task, imaging domain, and the outcome were collected to verify the 
usefulness of the GAN.

Results:  In ophthalmology image domains, GAN can perform segmentation, data augmentation, denoising, domain 
transfer, super-resolution, post-intervention prediction, and feature extraction. GAN techniques have established an 
extension of datasets and modalities in ophthalmology. GAN has several limitations, such as mode collapse, spatial 
deformities, unintended changes, and the generation of high-frequency noises and artifacts of checkerboard patterns.

Conclusions:  The use of GAN has benefited the various tasks in ophthalmology image domains. Based on our 
observations, the adoption of GAN in ophthalmology is still in a very early stage of clinical validation compared with 
deep learning classification techniques because several problems need to be overcome for practical use. However, 
the proper selection of the GAN technique and statistical modeling of ocular imaging will greatly improve the perfor-
mance of each image analysis. Finally, this survey would enable researchers to access the appropriate GAN technique 
to maximize the potential of ophthalmology datasets for deep learning research.

Keywords:  Generative adversarial network, Ophthalmology image, Deep learning, Data augmentation, Domain 
transfer
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Background
Over the past decades, ophthalmologic images have 
gained a huge interest because of their importance in 
healthcare to prevent blindness due to ocular diseases 
and to decrease their socioeconomic burden worldwide 
[1]. In particular, the widespread availability of fundus 
photography and optical coherence tomography (OCT) 
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provides an opportunity for early detection of diabetic 
retinopathy, age-related macular degeneration, and glau-
coma [2]. However, there are still many constraints on the 
use of data-driven artificial intelligence (AI) models in 
ophthalmology. Ocular imaging data have been expand-
ing globally [3], but there is a shortage of high-quality 
images and pathological data from patients to train AI 
models [4]. In addition, there are many diagnostic ocu-
lar imaging modalities such as color fundus photography, 
retinal OCT, ultra-widefield fundus photography, retinal 
angiography, ultrasonography, corneal tomography, and 
anterior segment OCT. Because imaging techniques dif-
fer from each other in terms of structural complexity and 
image dimensionality, the need for cross-modality image 
processing methods has increased to improve the disease 
prediction models.

In recent years, generative adversarial network (GAN) 
has become the technique of choice for image genera-
tion and translation in the field of medical imaging [5]. 
GAN, which is a new type of deep learning developed by 
Ian Goodfellow [6], can automatically synthesize medi-
cal images by learning the mapping function from an 
arbitrary distribution to the observed data distribution, 
which is the process of extracting mathematical relation-
ships from data distributions for matching input to out-
put data. As deep learning requires more data to build 
better accurate models, the medical research community 
requires more databases from various imaging modalities 
such as computed tomography (CT) and magnetic reso-
nance imaging (MRI) [7]. Accordingly, many experiments 
have been performed to demonstrate the benefit of using 
GAN, which can generate realistic synthetic images. Pre-
vious publications in radiology have shown that the appli-
cation of GAN includes data augmentation, denoising, 
super-resolution, domain transfer between modalities, 
and segmentation [8]. They demonstrated that the poten-
tial gains from GAN can improve deep learning models 
for pathological conditions and can support clinicians for 
diagnosis using complex medical images. While medical 
image processing using GAN has been actively studied in 
radiology [9], there have been relatively few studies using 
GAN in the field of ophthalmology image domains.

A previous literature review showed that the adop-
tion of GAN for medical imaging is increasing rapidly 
[10], but it is not familiar to researchers in the field of 
ophthalmology. Since ophthalmology imaging tech-
niques are becoming more important for diagnosing 
ocular diseases, the use of GAN will gradually increase 
to achieve a more accurate diagnosis. In this work, we 
present a literature review on the application of GAN 
in ophthalmology image domains to discuss important 
contributions and identify potential future research 
directions. This paper attempts to guide future research 

on image processing in the ophthalmic domain through 
the proper application of GAN techniques.

Review
Overview
We detail the studies using GAN for ophthalmology 
image domains from available literature. We sum-
marized how GAN was utilized in the field of oph-
thalmology imaging. The type of GAN used in the 
analysis, task, imaging domain, and outcome of the 
application of GAN were collected to verify its useful-
ness. We searched for potentially relevant literature in 
PubMed, Embase, and Google Scholar databases using 
the following search strategy: ((generative adversar-
ial network) OR (GAN) OR (deep generative model)) 
AND ((ophthalmology) OR (diabetic retinopathy) OR 
(age-related macular degeneration) OR (fundus pho-
tography) OR (optical coherence tomography)). The 
initial selection of studies was performed based on 
texts with titles and abstracts. We included only peer-
reviewed articles published before June 2021. Arti-
cles that did not contain original research using GAN 
were excluded. Only articles written in English were 
included in the study, and studies without a specific 
description of the GAN model were excluded. In the 
case of multiple publications of the same research, we 
regarded them as one study. The initial search yielded 
855 articles. Of these, 806 were removed because 
their studies or manuscripts were not related to either 
GAN or ophthalmology images. A further three were 
excluded because they were duplicates of other stud-
ies in the list or were not research articles. Finally, 48 
articles were included in the final literature review. To 
limit bias in the search, additional searches were per-
formed using other common ocular diseases (such as 
dry eye, conjunctivitis, cataract, glaucoma, retinal vein 
occlusion, central serous chorioretinopathy, and stra-
bismus) and other imaging modalities found in the 
previous search. However, no additional research arti-
cles were obtained.

Since a comprehensive list of ophthalmology image 
datasets has been provided in previous studies [3, 11], 
we found no reason to discuss ocular image datasets in 
this work. Traditional data augmentation refers to an 
increase in the number of training examples through 
the rotation, flipping, cropping, translation, and scaling 
of existing images to improve the performance of deep 
learning models, and can also be used to train GAN 
models. Generally, most GAN techniques rely on large 
amounts of annotated data, although several studies 
have targeted data augmentation in a small amount of 
pathological data.
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GAN techniques
This section provides the general concepts of GAN for 
analyzing ophthalmology images, especially the archi-
tectures most frequently encountered in the literature 
reviewed. The basic structure of a GAN is called a vanilla 
GAN [6]. The architecture of the vanilla GAN consists of 
two separate deep learning models, including the genera-
tor, which synthesizes candidate samples based on the 
data distribution of the original dataset, and a discrimina-
tor, which tries to distinguish the synthesized candidate 
samples from the real samples from the original dataset. 
These two modules are trained simultaneously because 
the gradient information is back-propagated to the gen-
erator to increase realistic image synthesis capabilities 
and to the discriminator to increase real/fake discrimi-
nating capabilities. After vanilla GAN was introduced, 
GAN was highlighted because of its ability to generate 
realistic synthetic images based on the original dataset. 
Figure 1 illustrates the structure of the vanilla GAN and 
retinal images generated. In the example of retinal image 
synthesis, vectors of late space are randomly selected ini-
tially; however, after training, they obtain an appropriate 
functional relationship with the generated image. Ran-
domly generated images and original real retinal images 
are classified by the discriminator and this result is back-
propagated and reflected in the training of both the gen-
erator and the discriminator. Finally, the desired outcome 
after training the GAN is that the pixel distributions from 
the generated retinal images should approximate the 
distribution of real original retinal images. According to 
the original paper describing GAN, the generator is like 
a team that produces counterfeit money, which wants 

to use counterfeit money without it being detected, and 
the discriminator is like the police detecting counterfeit 
money. The competition between the two teams results 
in better counterfeiting [6]. After image generation using 
GAN was popularized, novel GAN techniques were con-
stantly developed in the machine learning community. 
In this review, we found that most studies on ophthal-
mology images have used progressively growing GAN 
(PGGAN), conditional GAN, Pix2pix, and cycle-consist-
ent GAN (CycleGAN).

Currently, vanilla GAN is not widely used because 
of its low-quality outputs and instability during train-
ing. However, it has been the basis of recent GAN vari-
ant techniques (Table  1). A deep convolutional GAN 
(DCGAN) is based on the vanilla GAN by replac-
ing the building block with fully convolutional layers 
[10]. Wasserstein GAN is an improved version of the 
vanilla GAN that uses a metric of the distance between 
two probability distributions (Wasserstein distance) 
as a loss function [12]. PGGAN is an extension of the 
vanilla GAN with a progressively growing generator 
and discriminator to generate realistic high-resolution 
images. The main concept of PGGAN is to build gener-
ators and discriminators, starting from a low-resolution 
to a high-resolution network. The newly added layers 
model fine-grained details as the training progresses. 
As the images are generated from a random noise vec-
tor, the original PGGAN cannot generate new instances 
with objects in the desired condition. Additionally, 
StyleGAN is a variant of PGGAN that adds the style 
transfer function in a conditional setting to the archi-
tecture of PGGAN [13]. Style and feature changes in 

Fig. 1  An illustration of a basic architecture of GAN (vanilla GAN) for retinal image synthesis. The generator transforms a noise vector z from the 
distribution p(z) into a synthesized retinal image xg . The discriminator distinguishes the synthetic and real retinal images based on the distributions 
of xg and xr , respectively. The generated image samples form a distribution pg(x) , which is desired to be an approximation of pr(x) from real image 
sample, after successful training
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synthetic images can be performed using an additional 
mapping network for the latent space in the generator 
of StyleGAN.

In many cases, synthetic images should be generated 
with the desired properties to adopt GAN for medi-
cal purposes. A conditional GAN is an extended archi-
tecture of vanilla GAN, where both the generator and 
discriminator are trained using not only the original 
dataset but also additional conditioning variables [14]. 
To achieve good image generation performance in multi-
ple domains, researchers have modified the generators of 
conditional GAN in various deep learning architectures. 
Currently, conditional GAN includes many types of GAN 
models because the condition variable can be any vari-
able including a single status variable [15], images of the 
same or different domains [16], masked images [17], and 
guided heatmap images [18]. If the conditional variable 
is set as an image, the training dataset should commonly 
contain aligned image pairs. The most widely used form 
of conditional GAN is Pix2pix, which contains an image-
to-image translation framework [19]. Instead of using a 
conventional encoder-decoder as a generator, Pix2pix 
adopts a U-Net-like architecture with skip connections to 
generate synthetic images from the input images. In Pix-
2pix, the discriminator is used at the local image patch 
level to improve the performance. The GAN architecture 
for a super-resolution task (SRGAN) was developed by 
adopting a conditional GAN and perceptual loss [20]. 
However, conditional GAN models, including Pix2pix, 
have a critical disadvantage in that the shortage of paired 
datasets restricts their application to real problems.

Recently, CycleGAN was developed to generate images 
without matching paired images [21]. CycleGAN involves 
the simultaneous training of two generators and two dis-
criminators. The CycleGAN adopts a cycle consistency, 
which is based on the idea that the output of the first 
generator can be used as input to the second generator, 
and the output of the second generator should be like the 
original image. This cycle consistency allows CycleGAN 
to learn the characteristics of the two image domains 
to transfer the domains without any paired dataset. The 
weights for the training parameters of CycleGAN mod-
ules can be tuned depending on the image domain or 
task. CycleGAN can perform denoising by mapping clean 
and noisy domains from unpaired training data [22]. Cur-
rently, variants of CycleGAN, such as StarGAN [23] and 
its variants [24], have been introduced to achieve high 
performance in a multiple domain transfer problem. The 
characteristics of typical GAN techniques and examples 
of general tasks in general medicine (especially radiology) 
and ophthalmology fields are summarized in Table  1. 
It should be noted that there are several cases where it 
is not classified as a specific type of GAN because the 

custom architectures of GAN were commonly designed 
for each imaging domain.

Applications in ophthalmology
Here, we survey the literature on GAN for ophthalmology 
image domains. Applications are introduced according to 
the type of tasks of GAN models, including segmentation 
(15 studies), data augmentation (11 studies), denoising (8 
studies), domain transfer (8 studies), super-resolution (4 
studies, two studies overlap with denoising), post-inter-
vention prediction (3 studies), and feature extraction (2 
studies). Figure 2 shows examples of the applications of 
GAN. Figure 3 shows the number of studies based on the 
tasks of the GAN and image domains. Some studies that 
handled the two image domains were double-counted. 
Most studies have focused on the generative aspect of 
GAN, and only two studies, f-AnoGAN [25] and AMD-
GAN [26] adopted the discriminative aspect with feature 
extraction. The survey showed that segmentation was 
the most studied task in GAN in ophthalmology. Among 
ophthalmology imaging domains, fundus photography 
(24 studies) has been most frequently analyzed using 
GAN in the literature. GAN has also been used in vari-
ous imaging domains, including retinal OCT (15 studies), 
retinal angiography (7 studies), ultra-widefield fundus 
photography (scanning laser ophthalmoscopy, 3 studies), 
anterior segment OCT (two studies), periorbital facial 
image for orbital diseases (1 study), ocular surface image 
(1 study), corneal topography (1 study), meibography 
infrared imaging (1 study), and in vivo corneal confocal 
microscopy (1 study). If one study deals with two modali-
ties, it was reviewed and double-counted if necessary. 
Although conditional GAN is most frequently mentioned 
in the survey, it is difficult to conclude that it has been 
most widely used because the conditional GAN mod-
els refer to a wide variety of deep learning structures for 
each study. A table detailing the literature is provided for 
each section of the application.

Segmentation
Image segmentation is a task where pixels or areas in 
an image are assigned a category label. Segmentation is 
the most frequently studied (14 studies) focusing on the 
identification of structures such as retinal vessels, retinal 
layers, and optic nerve. Identifying pathological areas on 
the ocular images can help clinicians to diagnose more 
accurately, and thus segmentation is an important task 
for developing AI models for medicine. Table 2 shows a 
summary of the literature review for the segmentation 
task using GAN.

GAN techniques are typically used to segment reti-
nal vessels from fundus photographs. For decades, reti-
nal vessel segmentation has been a challenging problem 



Page 6 of 19You et al. Eye and Vision             (2022) 9:6 

in the computer science community because vessels 
have various widths, colors, tortuosity, and branching. 
After conditional GAN was applied to this problem [27], 
many variants of the conditional GAN were proposed by 
modifying the architectures. In particular, Son et al. [28] 

improved the conditional GAN using a generator based 
on U-Net, similar to the Pix2pix architecture. To improve 
segmentation performance, some studies employed 
patch-based GAN [29], multi-kernel pooling layers [30], 
topological structure-constrained models [31], large 

Fig. 2  Examples of applications of GAN in ophthalmology image domains. a Post-intervention prediction for decompression surgery for thyroid 
ophthalmopathy [15] and anti-vascular endothelial growth factor (VEGF) therapy for neovascular age-related macular degeneration [66]. b 
Denoising in fundus photography [53] and peripapillary optical coherence tomography (OCT) [16]. c Super-resolution for optic nerve head 
photography [56]. d Domain transfer for fundus photography to angiography [62] and ultra-widefield to classic fundus photography (re-analysis 
in this work) [63]. e Data augmentation for ocular surface images [46] and anterior segment OCT [82]. f Segmentation for corneal sub basal nerves 
in in vivo confocal microscopy images [37]. Most images were generated according to publicly available datasets and the methods of each 
study (some cases are based on our own dataset)

Fig. 3  Number of studies that were reviewed in this work grouped according to tasks and image domains. a Study objectives in the application of 
GAN. b Ophthalmology image domains for the use of GAN. If one study deals with two issues, it was reviewed and double-counted appropriately
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receptive fields [32], and symmetric equilibrium genera-
tors with attention mechanisms [17]. Since most of these 
studies have been conducted using limited annotated 
vessel datasets without collaboration with ophthalmolo-
gists, validation with real patient data was not performed.

In addition, accurate cup-to-disc ratio calculation 
based on optic disc segmentation is an important prob-
lem for evaluating optic nerve damage and glaucoma. 
Damage to the optic nerve increases the cup-to-disc 
ratio, which is difficult to compare with the naked eye if 
the damage is small. In recent studies, GAN was useful 
for segmenting the optic disc and cup in fundus photo-
graphs using patch-based conditional GAN [33] and 
Wasserstein GAN [34]. The cup-to-disc ratio, a clini-
cally used measurement to assess glaucoma progression, 
can be directly calculated from the optic cup and disc 
segmentation using conditional GAN [35]. This study 
showed comparable performance in assessing the cup-to-
disc ratio for glaucoma screening.

Another application found in the literature is the seg-
mentation of retinal layers in OCT images. Retinal lay-
ers consist of the vasculature, neurons, glia, and their 
connections, and each layer changes differently under 
pathological conditions. Pix2pix was successfully applied 
to segment the retinal nerve fiber layer, Bruch’s mem-
brane, and choroid-sclera boundary in peripapillary reti-
nal OCT images [36]. GAN was also applied to evaluate 
corneal pathological conditions using in  vivo confocal 
microscopy images [37]. In this study, the segmentation 
of corneal sub basal nerves was achieved using a condi-
tional GAN to detect corneal diseases. The meibomian 
gland can be evaluated by the GAN to segment the area 
of the meibomian glands in meibography infrared images 
[38]. In this study, the conditional GAN outperformed 
U-Net and masked regions with convolutional neural 
networks (mask R-CNN).

Data augmentation
The development of a machine-learning model requires 
enough data. Imbalanced data is a barrier to the training 
model, and the lack of data often presents in many medi-
cal problems because of barriers to access and usability 
[3]. Traditional data augmentation is commonly unable 
to extrapolate the generated data, which leads to data bias 
and suboptimal performance of trained models. Many 
researchers have shown that data augmentation using 
GAN techniques can provide additional benefit over 
traditional methods [8]. Recently, GAN techniques have 
been widely used to synthesize realistic medical images 
for data augmentation. Here, 11 studies investigated data 
augmentation for ophthalmology imaging domains (see 

Table 3). Several studies using GAN have focused on fun-
dus photography and retinal OCT image generation to 
augment training datasets for machine learning.

In recent years, generating realistic fundus photo-
graphs has become a challenging issue. DCGAN was 
initially used to generate synthetic peripapillary fundus 
photographs [39]. The machine learning model based on 
DCGAN showed better diagnostic performance for glau-
coma detection than conventional deep learning models. 
Burlina et al. evaluated the performance of a PGGAN to 
generate realistic retinal images [40]. In their study, two 
retinal specialists could not distinguish real images from 
synthetic images. Zhou et  al. used a conditional GAN 
to generate high-resolution fundus photographs based 
on structural and lesion mask images [17]. The multi-
channel generator technique, which trains multiple GAN 
models for each feature such as exudates, microaneu-
rysms, and bleeding, was used to augment fundus pho-
tographs to overcome the imbalance of data to build a 
diabetic retinopathy detection model [41].

The generation of synthetic retinal OCT is another 
important task for data augmentation in the development 
of machine-learning models for automated OCT diag-
nosis. By integrating both normal and pathological data, 
GAN can generate synthetic OCT images with various 
pathological grades for data augmentation [42]. Zheng 
et al. showed that realistic retinal OCT images could be 
generated using PGGAN, which could improve the clas-
sification performance of deep learning models [43]. Data 
augmentation based on conditional GAN also improved 
the segmentation performance of retinal OCT images 
[44]. CycleGAN was applied to OCT data augmentation 
for rare retinal diseases in a few-shot learning system 
design [45]. GAN has been used for data augmentation of 
anterior OCT images for angle-closure glaucoma, ocular 
surface images for conjunctival disease [46] and corneal 
topography images for keratoconus detection [47].

Denoising & super‑resolution
Image enhancement tasks such as denoising and super-
resolution are important because ophthalmology images 
generally suffer from limitations of the device, the skill 
of the examiner, variations of ocular anatomy, and trans-
parency of the visual axis. Image quality may affect the 
diagnostic performance using ocular images although 
the device and software offer suppression of noise and 
artifacts. As each imaging domain has characteristic 
noise and artifacts, several research groups have tried 
to develop data-driven GAN models tailored to each 
domain. There are 10 studies investigating denoising or 
super-resolution for ophthalmology imaging domains 
(detailed in Table 4).
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To remove speckle noise in retinal OCT images, a 
conditional GAN model with Wasserstein distance and 
perceptual loss was proposed [48]. Huang et  al. showed 
that both super-resolution and noise reduction can be 
performed simultaneously using a conditional GAN 
[49]. Cheong et al. built DeShadowGAN using manually 
masked artifact images and conditional GAN with per-
ceptual loss and demonstrated the effectiveness of the 
model in removing shadow artifacts [16]. Similarly, con-
ditional GAN has also been applied to remove speckle 
noise in peripapillary retinal OCT [50] and anterior 
segment OCT [51]. However, image denoising methods 
using conditional GAN can match low- and high-quality 
image pairs; however, these data are typically unavailable 
in the medical field. Therefore, Das et al. used CycleGAN 
for super-resolution and noise reduction in retinal OCT 
images to facilitate unpaired image datasets [52].

Fundus photography has several artifacts and noise, 
including overall haze, edge haze, arcs, and lashes. In 
a super-resolution problem, artificial manipulation to 
reduce image resolution is possible. Since it is difficult 
to collect paired clean and artifact fundus photographs, 
CycleGAN has been used to improve the image quality 
of fundus photography [53, 54]. These studies showed 
that CycleGAN can effectively reduce artifacts to pro-
vide clearer retinal images to clinicians. PGGAN was 
also shown with a conditional design that was applied 
to super-resolution fundus photography [55]. Ha et  al. 
adopted that to generate high-resolution synthetic optic 
disc images with a 4-times up-scaling using SRGAN [56].

Domain transfer
Most machine learning works have performed the devel-
opment and validation of data from the same domain. To 
build a more generalized machine-learning model, data 
from different domains might be fused through domain 
transfer, which is the transfer between different imag-
ing modalities. The domain transfer task of GAN is the 
cross-modality image synthesis process by which images 
are generated for one modality based on another. Cross-
domain modality using the domain transfer technique 
has shown the possibility of obtaining additional clinical 
information without additional examinations [57]. Eight 
studies using GAN mainly focused on domain transfer 
for ophthalmology imaging domains (shown in Table 5). 
Notably, several studies that used image transfer genera-
tors were categorized as data augmentation tasks because 
they focused on image synthesis tasks. The concept of 
conditional GAN has been used in most studies because 
the generator must have an image input channel as a con-
ditional variable for domain transfer. Generally, GAN 
models without conditional inputs can generate new 
images infinitely by adjusting the latent vector, whereas 

one input corresponds to one output image in typical 
conditional GAN. GAN techniques allow for more high-
dimensional image transformation and realistic outputs 
than simple pixel-level transformation.

Initially, Costa et  al. demonstrated that a conditional 
GAN can be used to generate realistic fundus photo-
graphs guided by masked vessel network images [58]; 
an autoencoder was used to synthesize new retinal ves-
sel images apart from training the GAN. Zhao et al. also 
built a conditional GAN model that emphasizes the 
ability to learn with a small dataset [59]. Extending the 
conditional GAN, modified Pix2pix synthesized realis-
tic color fundus photographs to enlarge the image data-
set based on multiple inputs of the vessel and optic disc 
masked images [60]. Wu et al. showed that retinal auto-
fluorescence images could be synthesized based on reti-
nal OCT data using a conditional GAN framework [61]. 
In that study, en-face OCT images from volumetric OCT 
data were successfully transformed into synthetic auto-
fluorescence images to detect geographic atrophy regions 
in the retina. Tavakkoli et  al. demonstrated that realis-
tic retinal angiography images with diabetic retinopathy 
were generated via conditional GAN using fundus pho-
tographs [62]. Although the model was trained using a 
limited angiography dataset without detailed phase infor-
mation, the study showed the potential of image domain 
transfer for the diagnosis of diabetic retinopathy. Based 
on CycleGAN, ultra-widefield fundus photography can 
be transformed into classic color fundus photography 
to integrate retinal imaging domains [63]. In contrast, 
a study converting classic fundus photography to ultra-
widefield fundus photography via CycleGAN was also 
reported [64]. Larzaridis et  al. demonstrated that time-
domain OCT could be converted to spectral-domain 
OCT using conditional GAN with Wasserstein distance 
and perceptual loss, showing that the integrated dataset 
fused by the GAN improved the statistical power of the 
OCT measurements.

Post‑intervention prediction
The aim of post-intervention prediction is to gener-
ate an image that explains how the anatomical appear-
ance changes after treatment. Three studies investigated 
post-intervention prediction tasks for ophthalmology 
imaging domains (detailed in Table 6). As post-interven-
tion results are represented as images in several medi-
cal fields, this task is useful to clinicians and patients to 
understand how the intervention will affect the progno-
sis of diseases. However, the included studies have sev-
eral limitations in terms of short-term follow-up periods 
for prediction and unstandardized interventions [65]. 
In addition, attention should be paid to interpreting the 
results because anatomical prediction after treatment is 
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not necessarily related to functional outcomes such as 
visual acuity.

Yoo et al. proposed a postoperative appearance pre-
diction model for orbital decompression surgery for 
thyroid ophthalmopathy using a conditional GAN 
[15]. Although the experiment was performed at a 
relatively low resolution, the results show the poten-
tial of GAN as a decision support tool for oculoplastic 
and cosmetic surgeries related to the orbit. Two stud-
ies demonstrated that conditional GAN models could 
predict OCT images after anti-vascular endothelial 

growth factor (anti-VEGF) injection based on pre-
injection OCT images with exudative age-related mac-
ular degeneration. Liu et  al. showed that the Pix2pix 
model could generate synthetic post-injection OCT 
using pre-injection images to estimate the short-term 
response [66]. Lee et  al. designed a conditional GAN 
with a multi-channel input for anti-VEGF injection 
[67]. The model was trained using both pre- and post-
injection OCT images as well as fluorescein angiog-
raphy and indocyanine green angiography to predict 
post-injection OCT.

Table 3  Summary of literature review for data augmentation task using GAN in ophthalmology imaging domains

GAN = generative adversarial network; DCGAN = deep convolutional GAN; OCT = optical coherence tomography; PGGAN = progressively growing GAN

Publication Basic technique Domain Summary

Diaz-Pinto et al. [39] DCGAN Peripapillary fundus photography (optic disc 
photo)

DCGAN was able to generate high-quality synthetic 
optic disc images

Burlina et al. [40] PGGAN Fundus photography The GAN technique was used to synthesize high-
resolution realistic fundus images serving as proxy 
data sets for use by retinal specialists and deep 
learning models

Zheng et al. [43] PGGAN Retinal OCT (spectral domain) The image quality of real images vs. synthetic OCT 
images generated by GAN was similar; the synthetic 
OCT images were able to serve as augmentation of 
training datasets for deep learning models

Zhou et al. [17] Conditional GAN Fundus photography To generate a large amount of balanced training 
data, the GAN model synthesized high-resolution 
diabetic retinopathy fundus images which can 
be manipulated with arbitrary grading and lesion 
information

Wang et al. [41] Multi-channel 
GAN (modified 
vanilla GAN)

Fundus photography The model generated a series of sub-fundus images 
corresponding to the scattering diabetic retinopa-
thy features and made full use of both labeled and 
unlabeled data

He et al. [42] Label smoothing 
GAN (modified 
vanilla GAN)

Retinal OCT The GAN model generated the synthetic unlabeled 
images from limited OCT training samples, and the 
mixing of the synthetic images and real images can 
be used as training data to improve the classification 
performance

Yoo et al. [45] CycleGAN Retinal OCT GAN generated OCT images of rare diseases from 
normal OCT images and increased the accuracy of 
diagnosing rare retinal diseases with few-shot clas-
sification

Kugelman et al. [44] Conditional GAN Retinal OCT (patch level) GAN was feasible to generate patches that are visu-
ally indistinguishable from their real variants and 
improved the segmentation performance

Zheng et al. [82] PGGAN Anterior Segment OCT The synthetic OCT images generated by GAN 
appeared to be of good quality, according to the 
glaucoma specialists, and the deep learning model 
for angle-closure detection was improved using 
both synthetic and real images

Yoo et al. [46] CycleGAN, PGGAN Ocular surface image To improve the diagnostic accuracy, GAN was 
adopted to perform data augmentation of ocular 
surface images with conjunctival melanoma

Abdelmotaal et al. [47] Pix2pix Corneal topography (Scheimpflug images) The synthesized images showed plausible subjec-
tively- and objectively-assessed quality. Training 
deep learning with a combination of real and 
synthesized images showed better classification 
performance to detect keratoconus
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Feature extraction
Another task that did not belong to these categories was 
feature extraction, including out-of-distribution detec-
tion. This task focuses on the discriminative aspect of 
GAN because the studies have directly used GAN archi-
tectures to detect pathologies. Two studies have used 
the concept of GAN in ophthalmology image domains 
(Table  7). Schlegl et  al. proposed an anomaly detection 
method using a GAN in the retinal OCT domain [25]. 
This GAN model estimated the latent space via inverse 
mapping learning from the input images and calculated 
anomaly scores from the feature space of normal sam-
ples. This anomaly detection architecture has been suc-
cessfully extended to other areas, such as industrial 
anomaly detection or chest lesion detection in X-ray 
images [10]. Xie et al. built a modified conditional GAN 
model for ultra-widefield fundus photography to improve 
the detection of retinal diseases [26]. They used an atten-
tion encoder for feature mining in the generator and 

designed a multi-branch structure in the discriminator to 
extract image features.

Other applications
Here, we address several studies that did not fit our 
search criteria, but the applications are noteworthy. A 
localization task refers to the identification of a region of 
interest rather than a specific pixel segmentation. Zhang 
et al. performed retinal pathology localization in fundus 
photography using CycleGAN [68]. In this localization 
task, the pathological area was detected by subtract-
ing the synthesized normal image from the pathological 
image.

Image registration is another task finding the geomet-
ric transformation to structurally align images. It is also 
important in automated analysis of multimodal image 
analysis such as domain transfer. For example, a data-
set for conditional GAN requires additional image reg-
istration of aligned image pairs for successful training. 

Table 5  Summary of literature review for domain transfer task using GAN in ophthalmology imaging domains

GAN = generative adversarial network; OCT = optical coherence tomography

Publication Basic technique Domain Summary

Costa et al. [58] Conditional GAN Vessel image → Fundus photography The study proposed a vessel network to retinal image 
translation framework producing simplified vessel 
tree and realistic retinal images by estimating latent 
space. Autoencoder was used to synthesize new 
retinal vessel images apart from training of GAN

Zhao et al. [59] Conditional GAN Vessel image → Fundus photography Retinal image synthesis can be effectively learned in 
a data-driven fashion from a relatively small sample 
size using a conditional GAN architecture

Yu et al. [60] Pix2pix (with 
ResU-net genera-
tor) (conditional 
GAN)

Vessel image → Fundus photography To enlarge training datasets for facilitating medical 
image analysis, the multiple-channels-multiple-
landmarks (MCML) was developed to synthesize 
color fundus images from a combination of vessel 
and optic disc masked images

Wu et al. [61] Conditional GAN Volumetric retinal OCT → Fundus autofluorescence The en-face OCT images were synthesized from 
volumetric retinal OCT by restricted summed voxel 
projection. The fundus autofluorescence images 
were generated from en-face OCT images using GAN 
to identify the geographic atrophy region

Tavakkoli et al. [62] Conditional GAN Fundus photography → Fluorescein angiography The proposed GAN produced anatomically accurate 
fluorescein angiography images that were indistin-
guishable from real angiograms

Yoo et al. [63] CycleGAN Ultra-widefield fundus photography → Fundus 
photography

Ultra-widefield images were successfully translated 
into traditional fundus photography-style images by 
CycleGAN, and the main structural information of the 
retina and optic nerve was retained

Ju et al. [64] CycleGAN Fundus photography → Ultra-widefield fundus 
photography

The CycleGAN model transferred the color fundus 
photographs to ultra-widefield images to introduce 
additional data for existing limited ultra-widefield 
images. The proposed method was adopted for 
diabetic retinopathy grading and lesion detection

Lazaridis et al. [91, 108] Wasserstein 
GAN + percep-
tual loss (condi-
tional GAN)

Time-domain OCT → spectral-domain OCT Time-domain OCT was converted to synthetic spec-
tral-domain OCT using GAN. The model improved 
the statistical power of the measurements when 
compared with those derived from the original OCT
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Mahapatra et  al. showed that an autoencoder based on 
GAN architecture provided better registration perfor-
mance for fundus photography and retinal angiography 
images [69].

Current limitations of GAN techniques
We found that GAN has several limitations that research-
ers should take note of (Fig.  4). First, mode collapse, 
which is a phenomenon that continues to output the 
same results, is a well-known problem of GAN [70]. To 
avoid this failure caused by a model stuck in a local mini-
mum, more variant training data or additional data aug-
mentation techniques are needed. Many GAN models 
were trained with no guarantee of convergence. Second, 
spatial deformities frequently occur when there are small 
training images without spatial alignment. In particular, 
in domain transfer using conditional GAN, paired images 
with structural and spatial alignment are critically chal-
lenging and require additional image registration in a 
preprocessing to obtain high-quality medical images [57, 
63]. Third, unintended changes could occur in image-to-
image translation because of the different data distribu-
tions of the structural features between the two image 
domains. For example, if only one domain contains many 
images with glaucoma in a domain transfer task, Cycle-
GAN can produce glaucomatous changes during image 
synthesis. Noise can be represented as unintended out-
liers/confounders and unintended fake features can be 
generated from noise for a generator in several GAN 
models [26]. Fourth, high-frequency noises and artifacts 
of checkerboard patterns are often detected in images 
synthesized by a generator with deconvolution [53]. 
Novel techniques have been developed to reduce noise 
and artifacts [71].

GAN and its variants generally consist of two or more 
deep learning modules, for example, two generators 
and two discriminators in CycleGAN, and thus training 
GAN tends to be unstable compared to a single deep 
learning module [15]. A problem of vanishing gradients 
may also occur if the discriminator performs well, and 
the generator learns too slowly. Therefore, tuning the 
hyperparameters is sometimes important, and training 
can be stopped early to obtain better synthetic images. 
However, the occurrence of these problems depends on 
the amount of data and the distribution of embedded 
pixels and is unpredictable.

In our experience, most of the problems from train-
ing GAN models are solved to some extent by increas-
ing the amount of clinical data extracted from a variety 
of patients if the technique is appropriately selected. 
Although GAN is widely used for data augmentation, 
several previous studies using GAN for image-to-image 
translation also suffered from small amounts of data, 
similar to other deep learning algorithms [45]. As novel 
algorithms are emerging to solve these problems [72], 
GAN will eventually be easy to use for image process-
ing in ophthalmology.

Additionally, there is no standard metric for evalu-
ating the performance of GAN for realistic image syn-
thesis [73]. It now relies on subjective judgments from 
researchers and clinicians relevant to ophthalmology 
imaging [40]. Previous studies adopted classic image 
similarity indices, such as mean squared error, mean 
absolute error, and structural similarity index [15], but 
they are unable to evaluate the realism of synthetic 
images. Several studies have shown an improvement in 
the diagnostic performance of machine learning after 
GAN-based data augmentation [43, 46], but it does not 

Table 6  Summary of literature review for post-intervention prediction task using GAN in ophthalmology imaging domains

GAN = generative adversarial network; OCT = optical coherence tomography

Publication Basic technique Domain Intervention Summary

Yoo et al. [15] Conditional GAN, CycleGAN Periorbital facial images Orbital decompression surgery The developed model trans-
formed preoperative facial input 
images into predicted postopera-
tive images for orbital decom-
pression for thyroid-associated 
ophthalmopathy

Liu et al. [66] Pix2pix (conditional GAN) Retinal OCT Intravitreal anti-vascular 
endothelial growth factor 
injection

The model generated individual-
ized post-therapeutic OCT images 
that could predict the short-term 
response of treatment for age-
related macular degeneration

Lee et al. [67] Conditional GAN (multi-channel 
inputs)

Retinal OCT (with fluorescein 
angiography and indocyanine 
green angiography)

Intravitreal anti-vascular 
endothelial growth factor 
injection

The trained model generated 
post-treatment optical coherence 
tomography (OCT) images of 
neovascular age-related macular 
degeneration
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guarantee that GAN produces realistic images. This 
problem arises from the application of GAN not only 
in ophthalmology but also in all medical areas [10] and 
will continue to be a drawback for using GAN.

Discussion
We surveyed the literature relevant to GAN in oph-
thalmology image domains to guide future studies on 
image processing in ocular images. To our knowledge, 
this work is the first comprehensive literature review 
on the use of GAN techniques in ophthalmology image 
domains. Recently, a review of GAN in ophthalmology 
was reported, but the scope was limited to image synthe-
sis in fundus photography and OCT [73]. GAN research 
has thrived in the medical field because machine learn-
ing is data-hungry to achieve a more accurate diagnosis. 
In this review, we highlighted the various uses of GAN 
in that it can perform segmentation, data augmentation, 
denoising, domain transfer, super-resolution, post-inter-
vention prediction, and feature extraction. The num-
ber of publications relevant to this field has also grown 
consistently as GAN techniques have become popular 
among researchers. We found that GAN can be applied 
to most ophthalmology image domains in the literature. 
As imaging plays a crucial role in ophthalmology, GAN-
based image synthesis and image-to-image translation 
will be highly valuable in improving the quantitative and 
personalized evaluation of ocular disorders. Despite the 
increasing use of GAN techniques, we also found that it 
faces challenges for adaptation to clinical settings.

Recently, a previous paper suggested that the utility of 
GAN in image synthesis is unclear for ophthalmology 
imaging [73]. However, GAN techniques have shown 
better performance in the fields of radiology and pathol-
ogy than other generative deep learning models, such 

as autoencoders, fully convolutional networks (FCNs), 
and U-nets [74, 75]. In the anomaly detection task for 
retinal OCT, GAN models including AnoGAN, Pix2pix, 
and CycleGAN outperformed a traditional autoencoder 
model, which simply learns latent coding of unlabeled 
image data [76]. FCN and U-Net are well-established 
deep generative models for detection and segmentation 
tasks for biomedical imaging domains [77]. As these do 
not consider the detailed features of the output images, 
the GAN framework can improve the image synthesis 
performance of the FCN and U-Net models [78]. A pre-
vious study on retinal vessel segmentation showed that 
conditional GAN outperformed U-Net and other genera-
tive techniques [28]. Given this trend, GAN is expected 
to improve image analysis technologies in various tasks. 
A more accurate comparison and benchmarking of GAN 
techniques will be enabled by future studies and more 
clinical data.

The proper selection of the GAN technique and statis-
tical modeling of ocular imaging will improve the perfor-
mance of each image analysis. In this review, we found 
that a broad range of custom architectures from GAN 
variants was used for different tasks. There is no evidence 
of a particularly superior GAN technique. Researchers 
can analyze ocular images by newly defining the cus-
tom objective functions of the GAN to fit the specific 
task and domain. For example, Cheong et  al. modified 
the conditional GAN model to effectively denoise OCT 
images using a custom loss function including content, 
style, total variation, and shadow losses [16]. Moreover, 
researchers can incorporate prior information about each 
imaging domain to develop GAN models for specific 
tasks. For example, researchers have suggested several 
statistical distributions of retinal structures and noise 
modeling in OCT images [79]. Statistical modeling using 

Table 7  Summary of literature review for feature extraction task using GAN in ophthalmology imaging domains

GAN = generative adversarial network; OCT = optical coherence tomography

Publication Basic technique Domain Target Summary

Schlegl et al. [25] f-AnoGAN (Wasserstein 
GAN + latent space mapping)

Retinal OCT Intra-retinal fluid detection 
(OCT anomaly detection)

The GAN based unsupervised 
learning of healthy training data 
was trained with fast mapping 
from images to encodings in the 
latent space. Anomalies were 
detected via a combined anomaly 
score based on an image recon-
struction error

Xie et al. [26] Conditional GAN (with attention 
encoder and multi-branch 
structure)

Ultra-widefield fundus 
photography (scanning laser 
ophthalmoscopy)

Features for retinal diseases The GAN based on the atten-
tion encoder and multi-branch 
structure was used to extract 
features for retinal disease detec-
tion. The discriminator in GAN was 
modified to build the classifier to 
detect the disease images
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prior information improved the performance of segmen-
tation of retinal layers and detection of diabetic retin-
opathy in OCT [80]. Since GANs are also mathematical 
models for learning the statistical relationship of distribu-
tions of training and target data [6], statistical modeling 
using a prior domain knowledge is expected to improve 
GAN performance. To adopt this concept in GAN for 
medical imaging, various mathematical attempts and val-
idations are needed in future studies.

Several studies have shown that GAN can be a good 
choice in overcoming data shortages and lack of large 
annotated datasets in ophthalmology [81]. Burlina et  al. 
showed that a deep learning model trained with only syn-
thetic retinal images generated by PGGAN performed 
worse than those trained with real retinal images (0.9706 
vs. 0.9235 considering the area under the receiver oper-
ating characteristic curve) [40]. However, several stud-
ies have shown that machine learning models trained 
with data integrating both real and GAN-based synthetic 
images can outperform those trained with real images in 
retinal OCT [43], anterior segment OCT [82], ocular sur-
face image [46], and corneal topography [47]. GAN was 
also used for data augmentation of OCT images with rare 
retinal diseases in a semi-supervised learning manner 
[45]. Studies have shown that GAN-based data augmen-
tation can provide a tool to solve an over-fitting prob-
lem in imbalanced datasets owing to the lack of available 
pathological samples. The image synthesis ability of GAN 
also provides patient privacy because synthetic images 
preserve characteristics as they become unidentifiable. 
The synthetic data preserve the manifold in the feature 
space of the original dataset [83]. It might be possible that 
machine learning researchers release the synthetic data-
set generated by GAN instead of a real dataset to dem-
onstrate their model if there is a problem with patient 
privacy. Additionally, the annotation of the dataset can be 

incomplete and inaccurate because it is time-consuming 
and laborious. According to a previous report regarding 
cell segmentation in microscopy images, GAN can be a 
solution for this weak annotation problem [84].

Studies using image-to-image translation frameworks 
of GAN have focused on segmentation, domain trans-
fer, denoising, super-resolution, and post-intervention 
prediction. The denoising function of the GAN may be 
effective in decreasing the effect of adversarial attacks 
in ophthalmology image domains [85]. Recently devel-
oped GAN architectures, such as Pix2pix and CycleGAN, 
have been widely applied in medical image domains 
[27]. However, these techniques require spatial align-
ment between the two image domains to obtain high-
quality results. Therefore, additional image registration is 
required before the GAN performs a domain transforma-
tion [57]. If the structures in the images are not aligned, 
the GAN may perform an image-to-image translation 
with deformed results in synthetic images. In this review, 
we found that only one study performed image registra-
tion to align the retinal structures between classic fundus 
photography and ultra-widefield fundus photography to 
improve the performance of CycleGAN [63]. We antici-
pate that this image alignment issue for training GAN 
models will be highlighted when data from various cent-
ers measured from multiple devices are collected. More 
research is needed, but recent studies have shown that 
GAN can also provide solutions to this image alignment 
issue [69, 86].

As the deep learning techniques associated with 
GAN have been developed, the scope of medical image 
processing is rapidly expanding. For example, when 
GAN was first introduced, simple vessel segmentation 
was the most frequent application of GAN. The recent 
work of Tavakkoli et al. achieved a significant advance-
ment in the retinal vessel segmentation problem 

Fig. 4  Examples of problems encountered using GAN techniques. a Mode collapse where the generator produces limited varieties of samples. b 
Spatial deformity due to small training images without spatial alignment. c Unintended changes due to the difference of data distribution between 
two domains. d Checker-board artifacts in synthetic images. All of the images were generated according to publicly available datasets and the 
standard GAN methods
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because their conditional GAN model provides real-
istic retinal fluorescein angiography, which can be 
used in a clinical setting [62]. Novel image process-
ing techniques using unpaired image datasets, such as 
CycleGAN, have extended the range of training image 
domains, so ocular images from more diverse modali-
ties are expected to be used for developing AI sys-
tems [38, 63]. Multi-domain GAN models that handle 
images from various domains at once have also been 
developed to fuse data for more accurate diagnosis. 
For example, Lee et  al. reported a conditional GAN 
using multi-domain inputs analyzing OCT and fluo-
rescein angiography to predict more accurate post-
treatment retinal state prediction [67]. In the future, 
new GAN techniques such as StyleGAN [13], which is 
excellent at extracting and transforming features, and 
StarGAN [23], which performs multi-domain transfor-
mation, are also expected to be used in the ophthal-
mology imaging domains to solve clinical problems. To 
adopt this rapid technical development, future stud-
ies require multidisciplinary (clinician–engineer) col-
laboration and collection of more multi-domain ocular 
images. Clinicians need to feedback to engineers to 
improve the technical completeness of GAN.

Most studies included in this review used train-
ing and validation datasets extracted from the same 
study group. We found that no clinical trials have been 
conducted that explored the use of GAN. Machine 
learning techniques, including GAN, do not guaran-
tee performance in external datasets independent of 
training sets. It has not been confirmed whether data 
augmentation through GAN can increase the diag-
nostic accuracy of AI systems for ocular diseases in 
real clinics. A GAN can be used to bridge the domain 
gap between training and external data from different 
sources [64]. If difficult access to reliable annotated 
data from multiple data sources remains problem-
atic, domain adaptation can be considered to address 
the generalization issue [87]. Domain adaptation via 
the domain transfer function of a GAN may provide a 
chance to use a machine learning system in different 
settings. For example, retinal images taken with ultra-
widefield fundus photography can be analyzed by an 
AI system developed with FP via domain transfer using 
GAN [63, 64]. Although GAN has several shortcom-
ings, its ability to adapt to domains and expand data 
by generating realistic images can increase generaliz-
ability and may help to increase the use of machine 
learning algorithms in ophthalmology image domains. 
However, further studies are required to determine 
whether the application of GAN techniques will 
improve the diagnostic performance of machine learn-
ing models in real world clinical situations.

Conclusion
The findings of this work suggest that the direction 
of deep learning research in ophthalmology has ben-
efited from GAN. GAN techniques have established 
an extension of datasets and modalities in ophthal-
mology. The adoption of GAN in ophthalmology is 
still in its early stages of clinical validation compared 
with deep learning classification techniques because 
several problems need to be overcome for practical 
use. However, the proper selection of a GAN tech-
nique and statistical modeling of ocular imaging will 
improve the performance of each image analysis. We 
hope that this review will fuel more studies using 
GAN in ophthalmology image domains. More accu-
rate algorithms for the detection of pathological oph-
thalmic conditions would be enabled by selection of 
proper GAN techniques by maximizing the potential 
of ophthalmology datasets.
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