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Application of Genetic Programming for
Multicategory Pattern Classification

J. K. Kishore, L. M. Patnaik, Fellow, IEEE, V. Mani, and V. K. Agrawal

Abstract—This paper explores the feasibility of applying
genetic programming (GP) to multicategory pattern classification
problem for the first time. GP can discover relationships among
observed data and express them mathematically. Multicategory
pattern classification has been done traditionally by using the
maximum likelihood classifier (MLC). GP-based techniques
have an advantage over statistical methods because they are
distribution free, i.e., no prior knowledge is needed about the
statistical distribution of the data. GP also has the ability to
automatically discover the discriminant features for a class. GP
has been applied for two-category (class) pattern classification.
In this paper, a methodology for GP-based -class pattern
classification is developed. The given -class problem is modeled
as two-class problems, and a genetic programming classifier
expression (GPCE) is evolved as a discriminant function for
each class. The GPCE is trained to recognize samples belonging
to its own class and reject samples belonging to other classes.
A strength of association (SA) measure is computed for each
GPCE to indicate the degree to which it can recognize samples
belonging to its own class. The higher the value of SA, the better
is the ability of a GPCE to recognize samples belonging to its
own class and reject samples belonging to other classes. The SA
measure is used for uniquely assigning a class to an input feature
vector. Heuristic rules are used to prevent a GPCE with a higher
SA from swamping a GPCE with a lower SA. Experimental
results are presented to demonstrate the applicability of GP for
multicategory pattern classification, and the results obtained are
found to be satisfactory, and are compared with those of the MLC.
We also discuss the various issues that arise in our approach to
GP-based classification, such as the creation of training sets, the
role of incremental learning, and the choice of function set in the
evolution of GPCEs, as well as conflict resolution for uniquely
assigning a class.

Index Terms—Evolutionary computation, genetic programming,
pattern classification.

I. INTRODUCTION

CLASSIFICATION plays a major role in any pattern recog-
nition problem. In a typical -class pattern classification

problem, a large number of representative samples are available
for each of the classes. In multicategory pattern classifica-
tion, an input feature vector of dimensions is classified as
belonging to one of the classes. Classification has been done
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traditionally by the maximum likelihood classifier (MLC). Al-
though MLC can be used with any likelihood function, a normal
distribution is generally assumed for the input data because it
leads to minimum classification error [1]. Artificial neural net-
works have also been applied successfully for-class pattern
classification problems in the areas of remote sensing [2] and
biomedical applications [3].

Both the MLC and neural networks have the framework for a
multicategory pattern classification problem. In the MLC ap-
proach, after the mean vectors and covariance matrices have
been computed, the likelihood values are computed for each
class for a given input vector. The given input vector is assigned
to the class with maximum likelihood value [1]. The basic draw-
back of the maximum likelihood classification is that a dis-
tance-based approach for classification is adopted and a normal
distribution is assumed for the input data. In the neural-net-
work approach, a multilayered neural network withinputs
and outputs is trained with a training set. Subsequently, the
given input vector is applied to the network, and an-dimen-
sional output vector (result vector) is obtained. The given input
vector is assigned the class of the maximum output [4]. In the
neural-network approach, the basic drawback is that the optimal
configuration of the network is not knowna priori. Moreover,
training times can be quite large, and the knowledge that is rep-
resented internally in the network weights is often opaque [4].
In a multicategory pattern classification problem, apart from as-
signing a class to a given input feature vector, there is a need to
discover the underlying relationship among data and express it
in an understandable manner.

Genetic programming (GP) is gaining attention due to its
ability to discover the underlying data relationships and express
them mathematically. Although GP uses the same principles as
genetic algorithms (GAs) [5], it is a symbolic approach to pro-
gram induction, i.e., it involves the discovery of a highly fit com-
puter program from the space of computer programs that pro-
duces a desired output when presented with a particular input.
Let

be the set of functions

be the set of terminals.

The functions in the function set may include

• arithmetic operations
• mathematical functions (such as SINE, COS, EXP, LOG);
• Boolean operators (such as AND, OR, NOT);
• conditional operators [such as IF LESS THAN OR

EQUAL TO (IFLTE)];
• user-defined domain-specific functions.
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The set of possible structures, i.e., computer programs in GP,
is the set of all possible compositions of functions that can be
composed from and . GP begins with a population of ran-
domly created computer programs. Each computer program rep-
resents a potential solution. GP maintains a population of solu-
tions to a given problem. During every generation, the fitness of
each solution is evaluated, and for the next generation, the solu-
tions are selected based on their fitness. The choice of functions,
terminals, and the fitness function depend upon the problem.
The population evolves over a number of generations through
the application of variation operators, such as crossover and mu-
tation. The results of the two operators are placed in a new pop-
ulation. GP has been successfully applied to diverse problems
such as optimal control, planning in artificial intelligence, dis-
covery of game-playing strategies [6], evolution of neural net-
works [7], fuzzy logic production rules [8], automated synthesis
of analog electrical circuits [9], and in decision support for ve-
hicle dispatching [10].

The major considerations in applying GP to-category pat-
tern classification are listed below.

1) GP-based techniques are data distribution free, i.e., no
a priori knowledge is needed about the statistical distri-
bution of the data or no assumption is made as in MLC.

2) GP can operate directly on the data in their original
form.

3) GP can detect the underlying but unknown relationship
that exists among data, and express it as a mathematical
LISP expression. The generated LISPexpressions
can be used directly in the application environment.

4) GP can discover the most important discriminative fea-
tures of a class.

GP has been applied for a two-class pattern classification
problem [6]. In a two-class problem, a single GP expression is
evolved. While evaluating the GP expression, if the result of this
GP expression is 0, the input data are assigned to one class;
else they are assigned to the other class. Thus, the desired output

is 1 in the training set for one class and is1 for the other
class. Hence, the output of a GP expression is either1 (indi-
cating that the input data belong to that class) or1 (indicating
that the input sample does not belong to that class). In this paper,
a methodology for applying GP to an-category pattern classifi-
cation problem is presented. When the GP paradigm is extended
from a two-class problem to the-class problem, the following
questions arise.

As a typical GP expression returns a value (1 or 1)
for a two-class problem, how does one apply GP for the

-class pattern classification problem?

What should be the fitness function during evolution of
the GP expressions?

How does the choice of a function set affect the perfor-
mance of GP-based classification?

How should training sets be created for evaluating fit-
ness during the evolution of GP expressions?

How does one improve learning of the underlying data
distributions in a GP framework?

How should conflict resolution be handled before as-
signing a class to the input feature vector?

How does GP compare with that of the widely used MLC
for an -class pattern classification problem?
This paper addresses these questions, and demonstrates the

applicability of the GP paradigm for the-category pattern
classification problem. This paper is organized as follows.
Section II addresses the various questions that arise while
extending GP to an -class pattern classification problem.
Section III presents various statistical measures used to vali-
date a classifier. Section IV presents the experimental results
obtained. Section V discusses the important issues in our
approach to GP-based pattern classification. The conclusions
are summarized in Section VI.

II. GP-BASED CLASSIFICATION

This section addresses the questions that arise while ex-
tending GP from a two-class to an-class pattern classification
problem.

A. Formulation of the -Class Problem as Two-class
Problems

In an earlier study [6], GP was applied to a two-class pattern
classification problem. In a two-class problem, simple thresh-
olding is sufficient for a discriminant function to divide the fea-
ture space into two regions. This means that one GPCE expres-
sion is sufficient to say whether or not the given input feature
vector belongs to that class; i.e., the GP expression returns a
value ( 1 or 1). To extend GP to an -class problem, we
modify the -class problem as two-class problems. For the
sake of illustration, consider a five-class pattern classification
problem. Let be the number of samples that belong to class
, and let be the number of samples that do not belong to

class . Thus

When the five-class problem is formulated as five two-class
problems, we need five GPCEs as discriminant functions to re-
solve between and , and , and , and ,
and lastly, and . Thus, each of these five two-class prob-
lems is handled as a separate two-class problem with simple
thresholding. GP uses a function set that contains operators and
functions to evolve a GPCE as the discriminant function for the
given pair of classes present in the training set. Letbe the
output of GPCE. Then

If GPCE Class

If GPCE Class (1)

where is the input feature vector. Each GPCE partitions the
feature space differently into two regions. Thus, for an-class
problem, GPCEs are evolved. In the following sections, we
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will explain why conflicts arise in class assignment, and how
conflict resolution is handled for uniquely assigning a class to a
given input.

B. Fitness Measure

GP is guided by the fitness function to search for the most
efficient computer program to solve a given problem. A simple
measure of fitness has been adopted for the pattern classification
problem

fitness
number of samples classified correctly

number of samples used for training during evolution
(2)

C. Choice of Function Set

As GP uses a function set (FS) for evolving a GPCE, four
combinations of the function set (FS) are considered here. They
are

• arithmetic ( ) given by ;
• arithmetic and logical ( ) given by

;
• arithmetic and nonlinear ( ) given by

;
• arithmetic, logical, and nonlinear ( ) given by

;
We will show in the next section how the choice of the function
set affects the performance of GP for the-class pattern classi-
fication problem.

D. Creation of Training Sets

In a two-class problem, the pattern classification is between
two classes only, and so both the classes typically have an equal
number of samples, and only one GPCE is needed. As the

-class problem has been converted intotwo-class problems,
GPCEs are evolved, and soGPCE specific training sets

are needed. In each GPCE specific training set, the number of
samples belonging to one class (whose desired outputis 1)
is outnumbered by the samples belonging to all other classes
(whose desired output is 1). For example, in a five-class
problem, let the number of samples belonging to each class be
100. Thus, in our formulation, and . So
in the training set for class 1, the desired outputwill be 1
for 100 samples and will be 1 for 400 samples. Although
it is still a valid training set for a two-class problem, it results
in a highly skewed training set as there are more representative
samples for one category than for the other. Our experimental
results show that this skewness leads to misclassification of
input feature vectors. To overcome the skewness, one possible
option is to use a subset of the data belonging to other classes
(whose desired output is 1), so that the number of samples
belonging to a class will be the same as the number of samples
belonging to other classes. Although a balanced training set is
created in this manner, it will lead to poor learning as the data
for the other classes are not representative.

The training set should be as representative as possible for
proper learning to take place to discover the underlying data

relationships. So, we are proposing an interleaved data format
for the training set that is used to evaluate the fitness function
during evolution.

E. Interleaved Data Format

In the interleaved data format, the samples belonging to the
true class are alternately placed between samples belonging to
other classes, i.e., they are repeated. Table I illustrates the format
of the training set for class 1 in a five-class problem [
is repeated]. The desired outputof the GPCE is 1 for the
samples of the true class, and is1 for the other classes, and is
shown in parentheses.

The number of samples in the training set is increased, and
hence the time taken for evaluating fitness also increases. The
training time is proportional to the size of the training set.
Hence, the training time for evolving the GPCE of class 1 with
the skewed data set is proportional to , and for the
interleaved data format, it is proportional to .
In the next section, we will show the improvement in GPCEs
performance due to this interleaved data format.

F. Incremental Learning

After the training set is created, it is used for driving the fit-
ness function during evolution. Conventionally, all of the sam-
ples of a training set are fed to every member of the population
to evaluate its fitness in each generation. We call this “global”
learning as GP tries to learn the entire training set at every stage
of the evolution.

So here we propose incremental learning for the GP para-
digm. A subset of the training set is fed, and the size of the subset
is increased gradually over time to cover the entire training data.
For example, if there are 1000 samples in the training set, we
feed a subset (say 50 samples) first, and then increases gradu-
ally this over time (in steps of 50) to cover the entire training
data. The basic motivation for incremental learning is to im-
prove learning during evolution as it is easier to learn a smaller
task, and then to progress from a smaller task to a bigger task.

The fitness of the population is computed on the subset rather
than on the entire training set. The subset can be a certain frac-
tion (e.g., 5% of the training set), and can be user defined. Let

be the size of a GPCE specific training set;
be the increment for the subset (e.g., 5% of the training
set);
be the number of samples classified correctly;
be the number of generations before the size of the
training set is increased.

Learning is performed in a loop where the outer loop controls
the number of increments needed to cover the entire training set.
For example, if the size of the increment is 5%, then the outer
loop has 20 iterations. In each loop, the population is evolved
for generations before the subset is augmented, andde-
termines the number of timesthat the subset should be aug-
mented to cover the entire training set. The fitness function can
be written as

fitness (3)



KISHOREet al.: APPLICATION OF GP FOR MULTICATEGORY PATTERN CLASSIFICATION 245

For example, if , , and a 5% increment
is chosen, is 50 samples initially. After every
generations, the size of the training set is augmented in terms
of 50 samples until the entire training set is covered. After the
training set is covered, it becomes global learning.

G. Conflict Resolution

Evolution is performed on the training set for each class.
The fittest individual becomes the GPCE for that class. These
GPCEs are then applied to the validation set for classification.
For every input in the validation set, all of the GPCEs are ap-
plied. For every input, each GPCE returns either1 (to indicate
that the input belongs to its class) or1 (to indicate that the
input does not belong to its class). Thus, for each input, we get an

-dimensional result vector containing1 or 1 as its entries.
Note that, in this method of applying GP to an-class multicat-
egory pattern classification problem, the following three situa-
tions can arise.

1) Only one GPCE returns a value of1, and the others
return a value of 1. So, the input sample can be assigned
uniquely to a class.

2) In the presence of overlapping data distributions, it is pos-
sible for more than one GPCE to return a value of1 as
its output. For example, GPCE 1 and GPCE 3 can return a
value of 1 as their output for a given input. This means
that the input sample is classified as belonging to class 1
by GPCE 1 and belonging to class 3 by GPCE 3. There is
a need for conflict resolution when more than one GPCE
returns a value of 1 as its output.

3) In the worst case, it is possible for all GPCEs to return a
value of 1. This means that no GPCE is able to identify
the sample as belonging to its own class. Such samples
will be assigned to the reject class. In the subsequent sec-
tions, we will discuss a likely cause for such a situation.

There is a need for conflict resolution in an-class problem
unlike in a two-class problem. The conflict resolution has to
assign a unique class to the input feature vector when more than
one GPCE claims that the input belongs to its class. For this
purpose, a strength of association (SA) measure is computed for
each GPCE. The SA indicates the degree to which a GPCE can
recognize samples belonging to its own class, and reject samples
belonging to other classes. The higher the value of SA, the better
will be the GPCE in recognizing samples belonging to its own
class.

The SA measures are computed after the evolution of the
GPCEs. The training set (the GPCE specific training sets are
derived from this set) is used to generate a class count matrix
from which the SA measures are derived. The steps involved in
obtaining the class count matrix and strength of association are
as follows. The class count matrix (Table II) is of size ,
and is obtained from the training set whereis the number of
classes. For obtaining the class count matrix, all of the GPCEs
are applied on all of the samples in the training set, and the re-
sults are noted. Algorithm 1 gives the procedure for obtaining
the class count matrix, where stands for the number of sam-
ples of class for which returns 1.

TABLE I
INTERLEAVED DATA FORMAT FOR

TRAINING SET OF GPCE 1IN A FIVE-CLASS PROBLEM

TABLE II
CLASS COUNT MATRIX

Algorithm 1: Procedure for Determining
Class Count Matrix

Begin
for to

for to
;

for to classes
for to

for to GPCEs
(GPCE then

End

Ideally, the class count matrix is a diagonal matrix, where
each diagonal entry is equal to the number of samples present in
the training set for that particular class. However, due to over-
lapping data distributions, GPCEcan return a value of for
samples belonging to other classes, which leads to off-diagonal
elements in the class count matrix.

The strength of association is computed from the class count
matrix. Let be the sum of elements present in rowof the
class count matrix. Algorithm 2 gives the procedure for deter-
mining the strength of association (SA) for GPCE.

Algorithm 2: Strength of Association
Begin

for to
{
for to

}
for to

End
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The strength of association alone may not be enough for clas-
sification. It may happen that a given input feature vector is iden-
tified by its own GPCE (output 1), but another GPCE with
a greater strength of association can also identify this sample
as its own (output is 1). Such a situation leads to misclassifi-
cation because the GPCE with a higher strength of association
swamps the GPCE with a lower strength. Heuristic rules are in-
troduced to prevent this. The heuristic rules represent an em-
pirical means to reduce misclassification in the GP paradigm.
In the next section, through experimental results, we will show
one way of identifying the heuristic rules, and how these rules
improve the performance of GP-based classification.

H. Automatic Discovery of Discriminant Features

As both MLC and neural networks handle the-class pattern
classification problem directly, they use all of the features to dis-
criminate among classes. If-dimensional feature vectors are
available and only features ( ) are actually needed for
discriminating a particular class, it is difficult to identify these

features manually. There is no way in which the MLC can
discover these features. It must use all of the features for
classification. In an -input and -output neural network, a par-
ticular feature may be important for one class, and not so for an-
other class. So the weight associated with that input feature tries
to learn the data distributions for both of the classes, and may
not go to zero. Our approach to GP-based classification offers a
means to discover thesefeatures as the-category problem is
handled as two-class problems, and a GPCE is evolved inde-
pendently for each class. GP has the capability to automatically
discover the underlying data relationships among thesefea-
tures, and discard the remaining features during evolution. This
will be illustrated by our experimental results in Section IV.

III. STATISTICAL MEASURES FORVALIDATING A CLASSIFIER

After the GPCEs are obtained for each class from the
training set, the validation set is used to analyze the perfor-
mance of the GP classifier. For this purpose, the GPCEs are
applied to the validation set to obtain the classification matrix
(CM) which is of size , where is the number of classes.
A typical entry in the classification matrix shows how many
samples belonging to classhave been classified as class. For
a perfect classifier, the classification matrix is diagonal. How-
ever, in practice, due to misclassification, we get off-diagonal
elements. However, in GP, as it is possible for a result vector in
GP to have all entries as1, an additional column is needed
for the reject class, and this makes the dimension of the CM

. Algorithm 3 gives the procedure for obtaining the
classification matrix.

Algorithm 3: Procedure for Determining
Classification Matrix

Begin
for to number of classes

for to
;

for to size of validation
set

{
Apply the GPCEs on sample , and

obtain the result vector.
Perform conflict resolution.

}
is the true class of the sample
and is the assigned class.

for the reject class
End

The classification matrix is used to obtain statistical measures
for both the class level as well as the global performance of
a classifier. Class-level performance is indicated by percentage
classification and a polarization measure. Percentage classifica-
tion tells us how many samples belonging to a particular class
have been classified correctly. The polarization measure looks
at the total number of samples that were assigned to a particular
class, and indicates the fraction of the samples that were clas-
sified correctly. These can be obtained from the classification
matrix as follows:

percentage classification (for class)

polarization measure

where is the number of samples belonging to classin the
validation set.

The global indexes for a classifier [13] are the average accu-
racy and overall accuracy, which are defined as follows:

average accuracy

overall accuracy

where is the size of the validation set, andis the number
of classes.

For an ideal classifier, the percentage classification and polar-
ization measure are 1.0 for each class. The average accuracy and
overall accuracy are also 1.0. It is important to note the subtle
difference between the class count matrix and classification ma-
trix. The training set is used to derive the class count matrix, and
the strength of association for each GPCE is computed from the
class count matrix. The validation set is used to derive the classi-
fication matrix and the performance of the classifier is obtained
from the classification matrix. Also, the sum of the elements of
a row in the class count matrix need not be equal to the number
of samples belonging to that class in the training set. In the clas-
sification matrix, the sum of the elements of a row is equal to
the number of samples belonging to that class in the validation
set.

IV. EXPERIMENTAL RESULTS FORGP-BASED CLASSIFICATION

This section presents the results of GP for an-class pattern
classification problem by considering a data set containing five
classes taken from three bands of remotely sensed satellite data.
The three bands are the three feature vectors, , and .
Table III shows the spatial spread for the features, along with
the number of samples used for training the GPCEs (training set
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TS) and for their subsequent validation (validation set VS). This
data set is chosen to show the applicability of GP-based classifi-
cation for a real-world problem. In Table III, there are 169 sam-
ples belonging to class 1 in the training set, to evolve GPCE 1,
and 168 samples in the validation set for validating the GPCE 1.
Subsequently, we will consider the well-known Fisher’s iris data
set [12]. We have used GPQUICK [11] software to simulate the
GP paradigm for the -category pattern classification problem.
Table IV shows the choice of parameters for the GPQUICK soft-
ware used in the experiments. The choice of these parameters is,
however, based on empirical observation. Appendix A defines
the parameters used in Table IV. In our experiments, we have
used the maximum number of generations (5000) or 90% clas-
sification accuracy as the termination criterion.

A. Skewness in the Training Data Sets

The first set of experiments was conducted to study the effect
of skewness on the training data set on the evolution of GPCEs.
In the training set for GPCE 1, the number of samples belonging
to class 1 is 169 (i.e., the desired outputis 1), and the number
of samples belonging to other classes is 698 (i.e.,is 1). This
results in a skewed training set.

In this interleaved data format, the 169 samples belonging
to class 1 are repeated so that there are 676 samples belonging
to class 1 and 698 samples belonging to other classes, thus
avoiding the skewness. The GPCE for class 1 is obtained using
this interleaved data format. Similarly, GPCEs are obtained for
all other classes. In this manner, we can see that the training
time with an interleaved data format for class 1 is increased by a
factor of 1.58 over the training time with the skewed data format.
Note that, in Table III, while evolving GPCE for class 2, the
number of samples (training set) belonging to class 2 is 144, and
when the interleaved data format is used for learning, the total
number of samples belonging to class 2 is 576, and the number
of samples belonging to all other classes is 723. Still, there is
a slight skewness in the training set. This can be overcome by
repeating the training samples belonging to class 2 once more.
Thus, the general idea of this interleaved data format is to prop-
erly balance the number of samples belonging to one class with
the number of samples belonging to the other classes.

B. Evolution for Different Function Sets

To study the effect of function sets on GP-based classifica-
tion, we have used average accuracy as the performance mea-
sure. The function sets considered were arithmetic (A), arith-
metic and logical (AL), arithmetic and nonlinear (ANL), and
arithmetic, logical, and nonlinear (ALNL).

The evolution of the GPCEs was done with incremental and
global learning, with percentage increment (PI) indicating the
fraction of samples used for augmenting the training set after
every generations during the evolution of a GPCE.
Table V shows the average accuracy for a skewed data set for
various combinations of the function sets (FS) and percentage
increment (PI). When PI is 100, we have global learning. For
each combination of PI and FS, the GPCEs were evolved for
all classes. The class count matrix was determined, and the SA
measures were derived. The GPCEs were applied on the valida-
tion set to obtain the classification matrix and the average accu-

TABLE III
CHARACTERISTICS OF THEDATA SET USED FORGP-BASED CLASSIFICATION

TABLE IV
GPQUICK PARAMETERS

racy. For example, in Table V, with PI being 10% for increasing
the size of the training set and the function set being arithmetic
and logical (AL), the average accuracy of classification obtained
is 0.33, and is obtained as follows.

Step 1) Obtain GPCEs for all classes from the training set
(skewed) using the incremental learning procedure.

Step 2) Obtain the class count matrix, and derive the
strength of association measures (using Algorithms
1 and 2).

Step 3) Apply the GPCEs on the validation set, and obtain
the classification matrix (using Algorithm 3).

Step 4) Compute the average accuracy as explained in the
earlier section.

The same study was conducted with the interleaved data
format for the training set. The average accuracy obtained for
various combinations of function sets and percentage increment
is shown in Table VI. A typical entry in Table VI is obtained
in the same fashion, except that in Step 1), the GPCEs for
all classes are evolved with the interleaved data format of the
training set.

We have conducted a number of trials to study the effect of
the function set and role of incremental learning on the evolution
of GPCEs. Table VII gives the experimental results of 30 trials
with the arithmetic function set for different values of PI for
incremental learning. Based on our trials and from the results of
Tables V–VII, we conclude the following.

1) Incremental learning leads to better classification (av-
erage accuracy) than global learning. Also, the smaller
the percentage increment, the better is the classification.
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TABLE V
AVERAGE ACCURACY FORVARIOUS COMBINATIONS OF FS AND PI

WITH SKEWED DATA SET

TABLE VI
AVERAGE ACCURACY FORVARIOUS COMBINATIONS OF FSAND PI WITH

INTERLEAVED DATA FORMAT

2) With respect to the choice of function set, the average
accuracy with the arithmetic function set performs better
than all other function sets.

3) There is variation in the classification accuracy in
GP-based classification for every trial.

Having observed the overall performance of the GP classi-
fier, we will now see how the individual GPCEs have performed
(i.e., classwise performance) in one trial. Table VIII shows the
classwise behavior of the individual GPCEs for the skewed and
interleaved data sets with 5% incremental learning and different
combinations of the function set. The performance measures for
classwise performance study are the percentage classification
(PC) and polarization measure (PM) defined earlier. A perfect
classifier must have both the percentage classification and polar-
ization measure as 1.0 in every class, i.e., all samples belonging
to class must be classified as, and no samples of other classes
must be classified as. If a classifier has a high percentage clas-
sification and low polarization measure for a class, it means
that samples belonging to other classes are also classified as
class .

For example, from Table VIII, in the skewed data set case,
with the function set being arithmetic and logical (AL), the per-
centage classification is 1.0 for class 2 i.e., all samples belonging
to class 2 were classified properly. On the other hand, the po-
larization measure is 0.17 , i.e., all of the
samples belonging to other classes were also classified as class
2. Thus, the entire validation set is classified as class 2. So the
ratio of the number of samples that were classified correctly as
class 2 to the number of samples that were classified as class 2
is very small compared to the ideal polarization measure of 1.0.
The reason for this low polarization measure is due to the choice
of the function set. In both the skewed and interleaved training
sets, the presence of logical and nonlinear functions in the func-
tion sets can lead to polarization among the classes, i.e., one or
two classes tend to dominate over other classes. The skewness
in the data set can also lead to polarization. On the other hand,
for the interleaved data format, when the arithmetic function set
is chosen, we observe that there is high polarization for 5% in-
cremental learning (Table VIII). In Table VIII, there are many

TABLE VII
EXPERIMENTAL RESULTS OFCLASSIFICATION ACCURACY FOR30 TRIALS (T)

WITH ARITHMETIC FUNCTION SET FORDIFFERENTVALUES OFPI

classes for which both the percentage classification and the po-
larization measure are zero. These classes have been swamped
by the dominant classes. From Table VIII, it is clear that the
arithmetic function set with an interleaved data format and in-
cremental learning has given the best classwise performance.

Consider the GPCE expressions obtained for classfor the
four combinations of the function set (interleaved data format
and 5% incremental learning) which are given below.

Arithmetic ( ): (DIV(MUL(DIV(DIV )(ADD
) (MUL( ADD (DIV (ADD (DIV )(SUB
))))(ADD 71 )))(SUB(ADD 109 )(SUB 87 (SUB

14)))).
Arithmetic and Logical ( ): (SUB(SUB(IFLTE 127

(MUL (DIV (ADD )26)(ADD ))20 85)(ADD
75101)) (SUB(SUB )(DIV ))).

Arithmetic and NonLinear ( ): (DIV (DIV (SUB 63
) )(SUB (SINE (SINE (DIV (ADD (SINE ))
))) (SUB (MUL (SINE )(DIV ))(DIV )))).

Arithmetic, Logical, and NonLinear ( ): (MUL
(IFLTE (DIV (MUL )(SINE (SINE )))(DIV

) (SUB ) (MUL 44 82))(SINE (SINE 56))).
In a two-class problem, the GPCE is like a hypersurface that

divides the entire feature space into two regions. When arith-
metic operators are used, the GPCE can track the variation in
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TABLE VIII
EXPERIMENTAL RESULTS FOR5% INCREMENTAL LEARNING WITH DIFFERENTFUNCTION SETS FORBOTH SKEWED AND INTERLEAVED DATA SETS

the input feature vectors. When a logical element is used, one
of the subexpressions in the LISPS expression can return the
same value for different inputs. For example, in the GPCE for
class 1 with an arithmetic and logical function set (AL), consider
the subexpression

IFLTE 127 (MUL (DIV (ADD 1 15) 26)(ADD 1 2))

20 85)

The IFLTE function evaluates its argu-
ments as follows:

If then return else, return

For example, this subexpression will return the value 20 for
both of the input vectors (33, 43, 63) and (32, 41, 57). Hence,
in the GPCE expression for class 1, the value obtained is1.
For the same input feature vectors, the GPCE evolved with only
the arithmetic function set returns the value1. Hence, GPCEs
which have a logical element will not be able to track variation
in the input due to such subexpressions, and lead to poor classi-
fication.

Similarly, in the GPCEs that were evolved with the function
set containing a nonlinear function like the SINE function, if the
SINE function appears in the subexpression followed by a MUL
or DIV operator, it is possible for the sign to remain the same,
although the value of the GPCE changes due to variation in the
input. This leads to poor classification.

Hence, we observe that GPCEs evolved with an arithmetic
( ) function set are able to track the variation in the input data,
and thus can lead to higher classification accuracy than GPCEs
evolved with other function sets (AL, ANL, ALNL). So GPCEs
can be obtained for an-class pattern classification problem by
using the arithmetic function set, interleaved data format, and
incremental learning.

C. Analysis of GPCEs

Consider the GPCE expressions obtained for the five-class
problem discussed earlier by using the only arithmetic function
set, interleaved data format, and 5% incremental learning. The
evolved GPCEs that resulted in an average accuracy of 0.75 are
as follows.

GPCE 1: (DIV(MUL(DIV(DIV )(ADD )
(MUL( ADD (DIV (ADD (DIV )(SUB

))))(ADD )))(SUB(ADD )(SUB 87 (SUB
14)))).

The equivalent mathematical expression is given by

(4)

From the above expression, we observe that GPCE 1 returns a
value 1 only when is greater than 34 and less than 43
irrespective of the values of and . Thus, GP has found
that is the most discriminating feature for class 1.

GPCE 2: (MUL (SUB (MUL )(DIV (MUL 80
6)(MUL ))) (MUL (ADD (MUL )(MUL

))(MUL (DIV )(SUB 36 )))).
The equivalent mathematical expression is given by

(5)

From this, we observe that GPCE 2 returns a value1 when
and . Thus, GP discovers that and

are discriminant features of class 2.
GPCE 3: (DIV 105 (SUB (ADD )(DIV ))).
The equivalent mathematical expression is given by

(6)

GPCE 3 returns a value1 only when is greater than 61,
irrespective of the values of and . Here, GP discovers that

is the discriminant feature for class 3.
GPCE 4: (SUB (DIV (MUL (DIV (SUB ) 69)(SUB
(DIV 8))) (SUB (ADD 35 ) ))(DIV (MUL (DIV

(ADD 60 )(ADD ))(DIV (SUB )(ADD
))) )).

The equivalent mathematical expression is given by

(7)

GPCE 5: (ADD (ADD (DIV (ADD )(DIV
(SUB (ADD (SUB )(DIV (DIV (SUB
33)))) ) ))(ADD (SUB ) (DIV (SUB
31))))(DIV (ADD 102 (ADD (SUB (MUL )(DIV

))(SUB (ADD )(MUL 97)))) )).
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Fig. 1. Surface plot of GPCE 4 (AZ, EL) = (�60; 45):

The equivalent mathematical expression is given by

(8)

We see that GPCE 4 and GPCE 5 are complex, and hence it
was not possible to simplify them like the other GPCEs. So, we
represent them pictorially.

D. Pictorial Representation of GPCEs

Fig. 1 shows the surface plot of GPCE 4, whereas Fig. 2 shows
the surface plot of GPCE 5. The data for the surface plot have
been obtained as follows. As GPCE is a discriminant function
that gives an output of 1 or 1, it divides the feature space
into two regions that can be viewed pictorially by plotting the
surface that separates the two regions. The surface is given by
the following equation:

GPCE

i.e., all those points in the feature space for which the above
equation is satisfied lie on the surface that divides the feature
space into two regions. The data for a portion of the surface
were generated as follows:

for –

for –

Determine the value of for which GPCE

The secant rule was used to obtain the values offor the above
equation as the GPCE is a highly nonlinear function. After the

data were obtained, the plot utilities in MATLAB were used to
generate the surface.

E. SA Computation and Heuristic Rules

Table IX shows the class count matrix obtained for these
GPCEs. For example, in our five-class problem, the number of
samples for class 1 is 169. After the application of all GPCEs
on samples of class 1, we obtain the first row of the class count
matrix. The first row of the class count matrix is [155, 5, 1, 7, 6],
which means that GPCE 1 returns a value of1 for 155 samples
belonging to class 1 out of 169 in the training set, GPCE 2 re-
turns a value of 1 for 5 samples out of 169, and so on. The sum
of the elements in the row vector is 174. As mentioned earlier,
the sum of these elements need not be 169. The SA for GPCE 1
is . In the same way, SA is computed for all of
the GPCEs. Table X shows the strength of association measures
for all of these GPCEs.

The classification matrix which reflects the accuracy of a
classifier is obtained for this five-class problem by applying
these GPCEs on the validation set. While obtaining the clas-
sification matrix, the conflict resolution can be done by using
only the strength of association measures. Table XI shows the
classification matrix obtained. The average accuracy and overall
accuracy are 0.75 and 0.77, respectively.

The reasons for conflict and its resolution in GP-based multi-
category pattern classification can be further illustrated by con-
sidering the above GPCEs with the following examples.

1) If , GPCE 1 returns a value of1. Simi-
larly, if and , GPCE 2 returns a
value of 1. Thus, for samples in which
and , both GPCE 1 and GPCE 2 return
a value of 1. So, conflict resolution is needed to assign
the true class. As mentioned earlier, this is done with the
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Fig. 2. Surface plot of GPCE 5 (AZ, EL) = (�60; 45):

TABLE IX
CLASS COUNT MATRIX FOR THE GPCEs OBTAINED WITH 5% PI FOR

INCREMENTAL LEARNING AND ARITHMETIC FUNCTION SET

TABLE X
SAsFOR GPCEs OBTAINED WITH 5% PIFOR INCREMENTAL LEARNING AND

ARITHMETIC FUNCTION SET

TABLE XI
CLASSIFICATION MATRIX BASED ON SA MEASURES

help of SA measures, and the class of the GPCE with the
higher SA is assigned to the input, i.e., class 1 is assigned.

In an unlikely case, the GPCE with a higher SA
swamps the GPCE with a lower SA, and this leads to
misclassification. Consider the following hypothetical
situation. Let the samples for which and

belong to class 2, and, let the SA of GPCE
1 be greater than that of GPCE. So, class 1 is assigned
to these samples. To prevent misclassification, we can
frame the following rule.

If (34 2 36 and 2 1.031 1),

then the true class is class 2.

However, this data relationship, which has been discov-
ered by GP, is expressed by the following result vector

, which can be framed as the heuristic rule
for preventing the misclassification of such samples.

2) Similarly, if and , we observe
that GPCE and GPCE 3 return a value of1 for such
samples. If the SA of GPCE 1 is greater than that of GPCE
3 and the true class happens to be class 3, then the fol-
lowing rule can be formulated to prevent misclassifica-
tion.

If (34 2 43 and 3 62),

then the true class is class 3.

However, this data relationship will be expressed by
the following result vector , and can be
framed as a heuristic rule.

Algorithm 4 gives one possible means for identifying these
rules. Let be the number of misclassified samples in a class,
and let be the user-defined threshold for extraction of a rule.
If and the number of samples in the training set for
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a particular class is 100, then at least ten misclassified samples
must have the same result vector. We have chosen in
our experiments.

Algorithm 4 Discovery of Heuristic Rules
Begin

for to
{

Analyze result vectors for
misclassified samples in
class .

Let a particular result vector
appear times.

If , then the result
vector becomes a heuristic rule;

}
End

For example, if the result vector appears
for samples of class 5 in our five-class problem, it will be mis-
classified as class 1 since the SA of GPCE 1 is greater than the
SA of GPCE 3 and GPCE 5 . However, Algorithm 4 can identify
such a result vector as a heuristic rule, and assign the true class
(class 5) after overriding the class assigned by using only SA
measures (class 1). Similarly, heuristic rules for other classes
can be framed. The heuristic rules help in reducing misclassifi-
cation. Table XII shows the two heuristic rules obtained for our
five-class problem. Table XIII shows the classification matrix,
obtained by using both SA and heuristic rules for conflict reso-
lution.

Thus from Tables XI and XIII, it is clear that 21 samples out
of 124 samples for class 5 and 25 samples out of 213 samples
for class 3 are properly classified by the heuristic rules.

F. Performance of the MLC

Although our main objective is to show the feasibility of GP
for the -class pattern classification problem, for the sake of
completeness, we will present the results of the MLC on the
same five-class problem. The maximum likelihood classifica-
tion is based on the assumption that the probability distribu-
tion for each class is a multivariate normal distribution [1]. The
MLC is widely used for comparison. The discriminant function
in MLC is given by

(9)

where
is the -dimensional input feature vector;
is the mean feature vector for class;
is the covariance matrix for class, and is of size

;
is the number of classes.

The same validation set was used to obtain the classification
matrix for MLC, and the results obtained are presented in Table
XIV. The average accuracy and overall accuracy are 0.789 and

TABLE XII
HEURISTIC RULES FORREDUCING MISCLASSIFICATION

TABLE XIII
CLASSIFICATION MATRIX BASED ONBOTH SA AND HEURISTIC RULES

0.809, respectively. By comparing Tables XIII and XIV, we ob-
serve that GP has a higher classification accuracy than MLC,
and also has performed better for classes 1, 4, and 5, respec-
tively. But for classes 2 and 3, MLC has a higher classifica-
tion accuracy. We will further discuss the differences between
GP-based classification and MLC in Section V.

G. GP-Based Classification for Fisher’s Iris Data Set

A second example we considered is the well-known Fisher’s
iris data set [11]. There are four features, namely, sepal length
(F1), sepal width (F2), petal length (F3), and petal width (F4).
The three classes are Iris Setosa (Class 1), Iris Versicolor (Class
2), and Iris Virginica (Class 3). The data set contains 50 in-
stances for each of the three classes. The data set was scaled
by a factor of 10, and was divided equally into a training set
and a validation set. Table XV shows the characteristics of the
Fisher iris data set.

The evolution of the GPCEs was done for both the skewed
and interleaved data format with the arithmetic function set and
5% PI for incremental learning with the GP parameters shown
in Table IV.

Skewed Training Data Sets:The evolved GPCEs are given
below.

GPCE 1: (SUB (SUB (DIV 98 )(ADD
))(SUB(MUL )(MUL 25 ))).

GPCE 2: (DIV (MUL (SUB (DIV )(ADD 114
))(ADD (ADD )(SUB )))(DIV (SUB

(ADD 103 106)(MUL ))(DIV (DIV )(DIV
)))).

GPCE 3: (SUB (ADD (ADD 84 )( MUL
))(MUL (ADD )(SUB ))).

The class count matrix was obtained to determine the SA
measures. The SA measures for the GPCEs are 0.86, 0.94, and
0.64, respectively. Table XVI shows the resulting classification
matrix.

Interleaved Data Format Training Sets:The evolved GPCEs
are as follows.

GPCE 1: (MUL (SUB (SUB (MUL (SUB ))
(SUB (MUL )(DIV( ))) (ADD (SUB (MUL
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TABLE XIV
CLASSIFICATION MATRIX FOR MAXIMUM LIKELIHOOD CLASSIFIER

TABLE XV
DATA CHARACTERISTICS OFFISHER’S IRIS DATA SET

) (MUL ))(ADD (ADD ) (SUB
))))(SUB (MUL (ADD (DIV ) (MUL 62 )) (DIV

)) )).
The equivalent mathematical expression is given by

(10)

GPCE 2: (DIV (DIV (SUB ) (SUB 49 ))
(ADD (DIV ))).

The equivalent mathematical expression is given by

(11)

GPCE 3: (ADD (MUL (ADD ) (ADD ))
(ADD (MUL )(SUB 120 122))).

The equivalent mathematical expression is given by

(12)

The class count matrix was obtained and is shown in Table XVII.
The resulting SA measures for the GPCEs are 1.0, 0.86, and
0.89, respectively. Table XVIII shows the classification matrix
obtained by using SA measures only.

We will now explain how the GPCEs learned the data distri-
bution during the training phase. For this purpose, consider only
the features and . GPCE 2 will return 1 only when
is less than a particular value for a given. GPCE 3 will return

1 when irrespective of other features. This is shown
in Fig. 3. In Fig. 3, all of the points in and below GPCE
2 will return 1, and all of the points on the left of GPCE 3
will also return 1. The data points for class 1 are also shown.
GP discovers that only and are the discriminant features
in the classification between class 1 and the other two classes.

TABLE XVI
CLASSIFICATION MATRIX FOR GP WITH SKEWED TRAINING SETS

FOR IRIS DATA

TABLE XVII
CLASSIFICATION MATRIX FOR GP WITH INTERLEAVED TRAINING

SETS FORIRIS DATA SET

TABLE XVIII
CLASSIFICATION MATRIX FOR GP WITH INTERLEAVED TRAINING

SETS FORIRIS DATA SET

This is the reason why all of the samples belonging to classare
classified correctly. Similarly, to classify data points between
classes 2 and 3, GP discovers that is the discriminant fea-
ture. This is shown in Fig. 4. In Fig. 4, the curve GPCE 2 has
two regions. One region is , and the other . All
of the points in and above the curve GPCE 2 will return

in the region , and all of the points below the curve
GPCE 2 will return in the region . In Fig. 4, the
GPCE 3 is also shown for various values of .
For a given value of , all of the points on the right side of the
curve will return 1.

The data points for classes 2 and 3 are also shown in Fig. 4
for different values of , the regions for which GPCE 3 returns

1 are indicated. We observe that as the value ofincreases,
the region for which GPCE 3 returns1 shifts to the right, and
hence the confusion between classes 2 and 3 decreases.

As in the earlier example, we have compared the performance
of GP with that of MLC. Table XIX gives the results obtained
by using MLC. The results show a good agreement.

V. SOME IMPORTANT ISSUES INGP-BASED PATTERN

CLASSIFICATION

In GP, learning takes place during evolution, and is guided by
an appropriate fitness function. This evolutionary approach is
different from a statistical approach like the MLC or a trainable
classifier like the neural network which uses an error function
for updating the weights. In this section, we will discuss some
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Fig. 3. Behavior of GPCE2 and GPCE3 for data of class1:

of the important issues that arise in our approach to GP-based
pattern classification.

A. Interleaved Data Format

Both the MLC and the neural network deal with the
-class problem directly. In the MLC, a representative mean

vector and covariance matrix are computed for each class
from its own set of representative samples. Thus, samples
of classA do not influence the mean vector and covariance
matrix of classB. For a given input, the mean vectors and
the covariance matrices of all of the classes are used to de-
termine the likelihood values, and the class with the highest
likelihood value is assigned to the input. In the neural-net-
work classification, a single neural network is trained for
an -input -class problem. Consider a three-input and
five-class problem. The desired output for samples of class
1 is [0.8 0.2 0.2 0.2 0.2], [0.2 0.8 0.2 0.2 0.2 ] for class 2,
and so on. As samples are expected to be representative in
each class and the network is trained on the entire training
set during each epoch, the network is able to simultaneously
learn the decision boundaries for all of the classes. So,
the interleaved data format which was proposed in GP to
overcome skewness as the-class problem is converted into

two-class problems does not arise in both MLC and the
neural network. The interleaved data format is an artifact that

has been used to reduce skewness in the training set that is
used for an evolution of a GPCE.

B. Incremental Learning

The MLC is basically a statistical classifier. In this statistical
approach, since averaging is involved, a better estimate is made
for the mean vector and covariance matrices as the number of
samples for a class increases. The mean vector and the covari-
ance matrices characterize the data distribution for a class. There
is no learning involved in the MLC as there is neither an error
function as in a neural network nor a fitness function as in GP.
In a neural network, learning can be done in a batch mode, or
on a sample-by-sample basis, or even on a subset of the training
set. So, incremental learning has been used in neural networks
[4]. Batch mode learning is essentially global learning as the
mean error for all of the samples is computed, and updating of
weights is done only once in each epoch. On the other hand,
when the network is trained on a sample-by-sample basis, we
have incremental learning as the error for each input is deter-
mined, and the network is updated before being fed with the next
input. Thus, sample-by-sample learning represents incremental
learning taken to its limit in each epoch. However, in each epoch,
the entire training set is used. As GP is also a learning approach
like the neural network, the learning can be either global or in-
cremental. The percentage increment for incremental learning
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Fig. 4. Performance of GPCE3 for different values ofF2:

TABLE XIX
CLASSIFICATION MATRIX FOR IRIS DATA SET WITH MAXIMUM

LIKELIHOOD CLASSIFIER

can be selected by the user to gradually increase the size of the
training set during evolution.

C. Conflict Resolution

Both the MLC and the neural network have a simple approach
to conflict resolution. In the MLC, the likelihood value is com-
puted for each class by using the corresponding mean vector and
covariance matrix for a given input. The class of the maximum
likelihood value is assigned to the input. Similarly, in the neural
network, for a given input, we get an output vector. Each ele-
ment in the output vector is in the range [0, 1]. For example, in
a five-class problem, the output vector can be [0.1 0.2 0.8 0.4
0.5] for a given input. So, class 3 is assigned to the input. This
simple approach is an outcome of the-class problem being
handled directly by the neural network. In a two-class problem,

a discriminant function can return a value of1 or 1 to indi-
cate whether or not the data belong to a class. When the-class
problem is converted into two-class problems as in GP, we get
a result vector containing 1 or 1 as its entries. When more
than one GPCE returns a value of1, there is a need for conflict
resolution, which is done indirectly by using SA measures. The
SA measures indicate how well a GPCE can recognize samples
belonging to its own class, and reject samples belonging to other
classes.

D. Scope for Heuristic Rules

In both the MLC and neural network, the output vector for
a given input consists of real numbers. In the MLC, the output
vector consists of likelihood values which vary for each input.
As the likelihood values are varying, it is not possible to iden-
tify a specific likelihood value vector as an output vector that ap-
pears for misclassified samples of a particular class. Similarly, in
a neural network, the output vector has elements in the interval
[0, 1]. The output vector varies even for misclassified samples of
the same class. So, it is not possible to identify a specific output
vector, and to assign it as a rule to overcome misclassification
of certain samples belonging to a particular class. On the other
hand, in GP, as the output vector consists of1 or 1 as its en-
tries, it is possible for a specific result vector to occur for mis-
classified samples of a particular class. This result vector can
be framed as a heuristic rule to assign the true class for these
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samples. As the heuristic rule represents the data relationship
discovered by GP, the creation of the heuristic rules should be
seen as part of GP-based classification. Thus, GP gives a scope
for heuristic rules to reduce misclassification, which is a very
important attribute that is not available in either the neural-net-
work approach to classification or in the MLC.

E. Reject Class

For a particular input sample, it is possible for a result vector
to contain all 1 entries. Such a sample can be assigned to the
reject class. However, it does not affect the average accuracy and
the overall accuracy of the classifier as they are basically depen-
dent on the main diagonal of the classification matrix. As the
samples with all 1 entries in the result vector are very small
(e.g., only 10 samples out of 866 in the classification matrix
shown in Table XIII), it shows that GP can be successfully ap-
plied for an -class problem. It should be noted that it is possible
to have a reject class, even in the neural network. For example,
if all of the outputs of the neural network are very low, the input
can be assigned to the reject class. Ideally, one of the outputs
in the neural network should be high so that a class can be as-
signed to the input. As MLC is essentially a distance classifier,
the given input is always assigned to one of the classes.

A possible explanation for the reject class in GP is as follows.
The given data set is divided equally into a training set and a
validation set. If the division is done in a random manner, it can
lead to a situation where data points for a certain region of the
feature space are not present in the training set, and are present
in the validation set. In such a scenario, the GPCEs would not
be trained to recognize samples belonging to that region. So, it
is possible for all of the GPCEs to return a value of1, i.e., the
result vector will contain 1 as its entries. Such samples can
be classified as the reject class. For example, in our experiment,
five samples each in classes 4 and 5 were classified as reject
class. So, we believe that, if the training set contains samples
from all regions of the feature space, such a situation (i.e., the
reject class) is very unlikely. The presence of a reject class does
not mean that GP is lacking in generalization. But the general-
ization power of GP is only within the training data set. For data
away from the training set, it is possible for the GPCE to reject
this sample.

F. GP and AI-Based Machine Learning

The process of knowledge acquisition can be divided into
two categories: symbolic and nonsymbolic. Nonsymbolic sys-
tems represent knowledge implicitly. For example, in neural
networks, knowledge is distributed among the network connec-
tions. On the other hand, in symbolic systems like GP, knowl-
edge is expressed explicitly. Both AI-based machine learning
and GP have many similarities as they are learning systems
that build knowledge structures by using input–output exam-
ples. However, conventional AI systems have implemented ma-
chine learning by using logic and heuristics, while GP has re-
alized it by using the principles of natural evolution. While a
heuristic is used to guide the search in AI for obtaining a solu-
tion, a fitness function is used in GP to guide the search for a
solution.

VI. CONCLUSION

In this paper, we have demonstrated the applicability of GP
to an -class pattern classification problem by considering a
real-world data set taken from remotely sensed images and the
well-known Iris data set. As the-class problem has been mod-
eled as two-class problems, we needGPCEs and hence
GPCE specific training sets. If we create a training set directly, it
leads to skewness (as ), and hence poor classification.
To overcome the skewness, an interleaved data format is pro-
posed. The experimental results show that the interleaved data
format performs better than the skewed data set. We have in-
troduced incremental learning to allow learning on a subset of
the training set to simplify the task of learning during evolution.
This subset is gradually increased to cover the entire training
set. The performance of the GP classifier based on incremental
learning is better than the performance obtained using the tradi-
tional global learning.

We have also observed that the GPCEs evolved with an arith-
metic function set performed better than GPCEs evolved with
other function sets containing logical and nonlinear elements.
Hence, we have used the arithmetic function set, incremental
learning, and interleaved data format to evolve GPCEs. Each
GPCE is trained to recognize samples belonging to its own class,
and to reject samples belonging to other classes. A strength of
association measure is associated with each GPCE to indicate
the degree to which it can recognize samples belonging to its
own class. The strength of association measures are used for
assigning a class to an input feature vector. Heuristic rules can
be used to prevent a GPCE with a higher SA from swamping
a GPCE with a lower SA, which further improves the perfor-
mance of a GP classifier. For the sake of completeness, we have
also presented the results of MLC. We also observe that there is
variation in the performance of GP as it is essentially a nonal-
gorithmic approach to solving problems. However, it can auto-
matically discover the discriminant features for a class, unlike
MLC.

In our approach to GP-based classification, the choice of the
GP parameters has been largely empirical. Future work should
lie in the adaptive variation of these GP parameters, and in dis-
covering any empirical relationship among the data distributions
and in the selection of GP parameters for evolving the GPCEs.

APPENDIX A
DEFINITION OF GPQUICK PARAMETERS

1) Copy Weightage:The copy operation selects a member
of the population, and replaces it by randomly choosing
another member in the population. There is only repro-
duction and no crossover and mutation.

2) Crossover Weightage:This indicates the probability of
choosing the crossover operation.

3) Mutation Weightage:This indicates the probability of
choosing the mutation operation.

4) Crossover Weightage Annealing:This indicates the prob-
ability of introducing the offspring after the crossover op-
eration, only if it is fitter than the parent; otherwise, it is
discarded.
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5) Mutation Weightage Annealing:This indicates the prob-
ability of introducing the offspring after the mutation op-
eration only if it is fitter than the parent; otherwise, it is
discarded.

The parameters discussed above indicate the possible
operations that can be performed on the members of the
population. A roulette-wheel strategy is used to select one
of the above operations. It is important to note that the
sum of the above weightage parameters is equal to 1.

6) Crossover Rate:If operation 2) or 4) is selected, it is car-
ried out with a probability given by the crossover rate.
Generally, a high value is chosen for the crossover rate.

7) Mutation Rate:If operation 3) or 5) is selected, it is car-
ried out with a probability given by the mutation rate.
Generally, a low value is chosen for the mutation rate so
that changes in the population do not take place rapidly.

Mutation can result in one of the following three actions.

• Mutation Node:This indicates the probability of an ex-
isting sub-tree being replaced by another subtree at a given
node.

• Mutation Constant:This indicates the probability of a con-
stant value being replaced by another constant value at a
given node.

• Mutation Shrink: This indicates the probability of re-
placing an existing subtree by a randomly generated
constant at a given node.

It is important to note that the sum of these probabilities
is also equal to 1. The selection of these actions is done by
a roulette-wheel strategy. GPQUICK uses protected division
during evolution. The result of any divide-by-0 operation is
equated to unity [11].
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