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Application of Genetic Programming for
Multicategory Pattern Classification

J. K. Kishore, L. M. PatnaikFellow, IEEE V. Mani, and V. K. Agrawal

Abstract—This paper explores the feasibility of applying traditionally by the maximum likelihood classifier (MLC). Al-
genetic programming (GP) to multicategory patte classification  though MLC can be used with any likelihood function, a normal
problem for the first time. GP can discover relationships among gistrihytion is generally assumed for the input data because it

observed data and express them mathematically. Multicategory leads to mini lassificati 11, Artificial | net
pattern classification has been done traditionally by using the eads to minimum classification error [1]. Artificial neural net-

maximum likelihood classifier (MLC). GP-based techniques WOrks have also been applied successfullysfetlass pattern
have an advantage over statistical methods because they areclassification problems in the areas of remote sensing [2] and
distribution free, i.e., no prior knowledge is needed about the pjomedical applications [3].

statistical distribution of the data. GP also has the ability to Both the MLC and neural networks have the framework for a
automatically discover the discriminant features for a class. GP - e

has been applied for two-category (class) pattern classification. multicategory pattern classification problem. In the M_LC ap-
In this paper, a methodology for GP-basedn-class pattern Proach, after the mean vectors and covariance matrices have
classification is developed. The givem-class problem is modeled been computed, the likelihood values are computed for each
as n two-class problems, and a genetic programming classifier class for a given input vector. The given input vector is assigned
expression (GPCE) is evolved as a discriminant function for 4 the class with maximum likelihood value [1]. The basic draw-
each class. The GPCE is trained to recognize samples belonging - S o .

to its own class and reject samples belonging to other cIasses.baCk of the maximum Ilkellhoo_d_ CI"?‘SS'T'Cat'On is that a dis-
A strength of association (SA) measure is computed for each tance-based approach for classification is adopted and a normal
GPCE to indicate the degree to which it can recognize samples distribution is assumed for the input data. In the neural-net-
belonging to its own class. The higher the value of SA, the better \work approach, a multilayered neural network withinputs

is the ability of a GPCE to recognize samples belonging 1o its gnq,, outputs is trained with a training set. Subsequently, the
own class and reject samples belonging to other classes. The SA '

measure is used for uniquely assigning a class to an input feature g_lven input vector is applied to the_ netwqu, andmm.men.-
vector. Heuristic rules are used to prevent a GPCE with a higher Sional output vector (result vector) is obtained. The given input
SA from swamping a GPCE with a lower SA. Experimental vector is assigned the class of the maximum output [4]. In the

results are presented to demonstrate the applicability of GP for neural-network approach, the basic drawback is that the optimal
multicategory pattern classification, and the results obtained are configuration of the network is not knowaa priori. Moreover

found to be satisfactory, and are compared with those of the MLC. training fi b ite | dthe k ledae that i
We also discuss the various issues that arise in our approach to raining imes can be quite large, an € knowledge that 1S rep-

GP-based classification, such as the creation of training sets, the resented internally in the network weights is often opaque [4].
role of incremental learning, and the choice of function set in the In a multicategory pattern classification problem, apart from as-

evolution of GPCEs, as well as conflict resolution for uniquely signing a class to a given input feature vector, there is a need to
assigning a class. discover the underlying relationship among data and express it
Index Terms—Evolutionary computation, genetic programming, in an understandable manner.
pattern classification. Genetic programming (GP) is gaining attention due to its
ability to discover the underlying data relationships and express
|. INTRODUCTION them mathematically. Although GP uses the same principles as
genetic algorithms (GASs) [5], it is a symbolic approach to pro-
graminduction, i.e., it involves the discovery of a highly fit com-
ter program from the space of computer programs that pro-
Bes a desired output when presented with a particular input.

LASSIFICATION plays a major role in any pattern recog
nition problem. In a typicah-class pattern classification
problem, a large number of representative samples are avail
for each of then classes. In multicategory pattern classific
tion, an input feature vector af. dimensions is classified as

belonging to one of the classes. Classification has been done F =/ fa ... Jnbethe setoffunctions
T =X, Xo, ..., X, be the set of terminals.
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The set of possible structures, i.e., computer programs in GP, How should conflict resolution be handled before as-
is the set of all possible compositions of functions that can besigning a class to the input feature vector?

composed from¥” and7". GP begins with a population of ran-  How does GP compare with that of the widely used MLC
domly created computer programs. Each computer program repfor an n-class pattern classification problem?

resents a potential solution. GP maintains a population of solu-his paper addresses these questions, and demonstrates the
tions to a given problem. During every generation, the fithess gfsjicability of the GP paradigm for the-category pattern

each solution is evaluated, and for the next generation, the sQijssification problem. This paper is organized as follows.
tions are selected based on their fitness. The choice of functioggction 11 addresses the various questions that arise while
terminals, and the fitness function depend upon the problegkiending GP to am-class pattern classification problem.
The population evolves over a number of generations througRction 111 presents various statistical measures used to vali-
the application of variation operators, such as crossover and rdte a classifier. Section IV presents the experimental results
tation. The results of the two operators are placed in a new p@ftained. Section V discusses the important issues in our

ulation. GP has been successfully applied to diverse problegyroach to GP-based pattern classification. The conclusions
such as optimal control, planning in artificial intelligence, disyre summarized in Section VI.

covery of game-playing strategies [6], evolution of neural net-
works [7], fuzzy logic production rules [8], automated synthesis Il. GP-BASED CLASSIFICATION

of analog electrical circuits [9], and in decision support for ve- . ) ) )
hicle dispatching [10]. This section addresses the questions that arise while ex-

tending GP from a two-class to anclass pattern classification

Th j i i i lyi P -
e major considerations in applying GPstecategory pat problem.

tern classification are listed below.

1) GP-based techniques are data distribution free, i.e., Ao Formulation of then-Class Problem as Two-class
a priori knowledge is needed about the statistical distrRroblems

bution of the data or no assumption is made as in MLC. | an earlier study [6], GP was applied to a two-class pattern

2) GP can operate directly on the data in their origin@|assification problem. In a two-class problem, simple thresh-
form. _ _olding is sufficient for a discriminant function to divide the fea-

3) GP candetect the underlying but unknown refationshifire space into two regions. This means that one GPCE expres-
that exists among data, and express it as a mathematiggl, is sufficient to say whether or not the given input feature
LISP S expression. The generated LISRxpressions yector belongs to that class; i.e., the GP expression returns a
can be used directly in the application environment. 5, e ¢-1 or —1). To extend GP to am-class problem, we

4) GP can discover the most important discriminative fe"f‘nodify the n-class problem as two-class problems. For the
tures of a class. sake of illustration, consider a five-class pattern classification

GP has been applied for a two-class pattern classificatipfoblem. Letn; be the number of samples that belong to class
problem [6]. In a two-class problem, a single GP expressionjsand let.V; be the number of samples that do not belong to

evolved. While evaluating the GP expression, if the result of thigass; (j=1,--,3). Thus

GP expression i&0, the input data are assigned to one class;

else they are assigned to the other class. Thus, the desired output Ni=na+nz+ng+mn;
d is +1 in the training set for one class and-4 for the other No =nq + ns + ng + ns

class. Hence, the output of a GP expression is eitHe(indi-
cating that the input data belong to that class)-@r(indicating

that the input sample does not belong to that class). In this paper,
amethodology for applying GP to ancategory pattern classifi- N5 =n1+no2 +n3 +na.
cation problem is presented. When the GP paradigm is extended

from a two-class problem to theclass problem, the following When the flve—classl problem is forr_nulgtgd as five Fwo-class
questions arise. problems, we need five GPCEs as discriminant functions to re-

solve betweem; and Ny, no andN,, n3 and N3, ny, and Ny,

As a typical GP expression returns a valugl(or —1) and lastly,n; and V5. Thus, each of these five two-class prob-
for a two-class problem, how does one apply GP for the |ems is handled as a separate two-class problem with simple
n-class pattern classification problem? thresholding. GP uses a function set that contains operators and

What should be the fitness function during evolution of fqnction; to evolve a GPCE as the discr.iminant function for the
the GP expressions? given pair of classes present in the training set. Qebe the

output of GPCE Then
How does the choice of a function set affect the perfor-

mance of GP-based classification? If (GPCE(X) >0) O; =41 X € Class

How should training sets be created for evaluating fit- If (GPCE(X) 20) O; = -1 X ¢ Class @)
ness during the evolution of GP expressions?

N3z =ni+no +n4+n;
N4 =ni1 +ny +ns+n;

whereX is the input feature vector. Each GPCE partitions the
How does one improve learning of the underlying data feature space differently into two regions. Thus, forraolass
distributions in a GP framework? problem,n GPCEs are evolved. In the following sections, we
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will explain why conflicts arise in class assignment, and hovelationships. So, we are proposing an interleaved data format
conflict resolution is handled for uniquely assigning a class tdfar the training set that is used to evaluate the fitness function
given input. during evolution.

B. Fitness Measure E. Interleaved Data Format

GP is guided by the fitness function to search for the most,, y jnterleaved data format, the samples belonging to the
efficient computer program to solve a given problem. A S_'r_nplfr'ue class are alternately placed between samples belonging to
measure of fitness has been adopted for the pattern classificaigi cjasses, i.e., they are repeated. Table I illustrates the format
problem of the training set for class 1 in a five-class problem(f-1)

is repeated]. The desired outpdiof the GPCE is+1 for the
number of samples classified correctly sample_s of the true class, and+4 for the other classes, and is
~ humber of samples used for training during evolution SOWn in parentheses. . o
@) The number of samples in the_ tralr_1|ng set is |_ncreased, and
hence the time taken for evaluating fitness also increases. The
training time is proportional to the size of the training set.
C. Choice of Function Set Hence, the training time for evolving the GPCE of class 1 with

As GP uses a function set (FS) for evolving a GPCE, folfi¢ Skewed data set is proportionalstg + NV, and for the

combinations of the function set (FS) are considered here. THB{grleaved data format, it is proportional (0 — 1)n, + M.
are In the next section, we will show the improvement in GPCEs

performance due to this interleaved data format.

fitness

« arithmetic @) given by+, —, x, +;
« arithmetic and logical AL) given by

+, —, X, =, IFLTE; F. Incremental Learning
« arithmetic and nonlinear ANL) given by  After the training set is created, it is used for driving the fit-
+, = X, +, SINE; ness function during evolution. Conventionally, all of the sam-
« arithmetic, logical, and nonlinearACNL) given by ples of a training set are fed to every member of the population
+,—, x, = IFLTE SINE, to evaluate its fitness in each generation. We call this “global”

We will show in the next section how the choice of the functiotearning as GP tries to learn the entire training set at every stage
set affects the performance of GP for thelass pattern classi- of the evolution.

fication problem. So here we propose incremental learning for the GP para-
_ o digm. A subset of the training set is fed, and the size of the subset
D. Creation of Training Sets is increased gradually over time to cover the entire training data.

In a two-class problem, the pattern classification is betwe&®r example, if there are 1000 samples in the training set, we
two classes only, and so both the classes typically have an edg&d a subset (say 50 samples) first, and then increases gradu-
number of samples, and only one GPCE is needed. As @ this over time (in steps of 50) to cover the entire training
n-class problem has been converted inttwo-class problems, data. The basic motivation for incremental learning is to im-
n GPCEs are evolved, and $0GPCE specific training sets prove learning during evolution as it is easier to learn a smaller
are needed. In each GPCE specific training set, the numbetasgk, and then to progress from a smaller task to a bigger task.
samples belonging to one class (whose desired oudtjs-1) The fitness of the population is computed on the subset rather
is outnumbered by the samples belonging to all other clas$Ban on the entire training set. The subset can be a certain frac-
(whose desired output is-1). For example, in a five-classtion (e.g., 5% of the training set), and can be user defined. Let
problem, let the number of samples belonging to each class bev, be the size of a GPCE specific training set;

100. Thus, in our formulatiory; = 100 and N; = 400. So n,  betheincrement for the subset (e.g., 5% of the training
in the training set for class 1, the desired outgwtill be +1 set);

for 100 samples and will be —1 for 400 samples. Although #.  be the number of samples classified correctly;

it is still a valid training set for a two-class problem, it results »,  be the number of generations before the size of the
in a highly skewed training set as there are more representative training set is increased.

samples for one category than for the other. Our experimenta| earning is performed in a loop where the outer loop controls
results show that this skewness leads to misclassificationgg number of increments needed to cover the entire training set.
input feature vectors. To overcome the skewness, one possiblf example, if the size of the increment is 5%, then the outer
option is to use a subset of the data belonging to other clasggsy has 20 iterations. In each loop, the population is evolved
(whose desired output is1), so that the number of samplegq, n, generations before the subset is augmented qaru-
belonging to a class will be the same as the number of samplggnines the number of timeisthat the subset should be aug-

belonging to other classes. Although a balanced training sefignted to cover the entire training set. The fitness function can
created in this manner, it will lead to poor learning as the daja ritten as

for the other classes are not representative.
The training set should be as representative as possible for 6 o ne 19 N 3
proper learning to take place to discover the underlying data Itness= Ny %75 J=12 0, (Ne/ns). ®)




KISHOREet al: APPLICATION OF GP FOR MULTICATEGORY PATTERN CLASSIFICATION 245

For example, iV, = 1000, n, = 200, and a 5% increment TABLE |

i i initi _ INTERLEAVED DATA FORMAT FOR

IS chosgn,ns IS 50. samples Imtla.“y' Aftgr every, = 2.00 TRAINING SET OF GPCE 1IN A FIVE-CLASS PROBLEM
generations, the size of the training set is augmented in terms

of 50 samples until the entire training set is covered. After the class#1
training set is covered, it becomes global learning. 7y ((+1))
Tig -1
n (+1)
G. Conflict Resolution ny (-1)
n (+1)
Evolution is performed on the training set for each class. ny (-1)
The fittest individual becomes the GPCE for that class. These n (+1)
GPCEs are then applied to the validation set for classification. ns (-1)
For every input in the validation set, all of the GPCEs are ap-
plied. For every input, each GPCE returns eithér(to indicate
that the input belongs to its class) efl (to indicate that the CLASSTégbﬁT &ATRIX
input does not belongtoits class). Thus, for each input, we getan
n-dimensional result vector containirgl or —1 as its entries. GPCE | 1 2 |13]-| n
Note that, in this method of applying GP toarclass multicat- Class
egory pattern classification problem, the following three situa- I |Cu|Cn|-|-|Cn
tions can arise. ; Ciz [Coa |~ |- | Con
1) Only one GPCE returns a value ofl, and the others N N - -1 -
return a value of-1. So, the input sample can be assigned n Cin | Con | - |- Cun

uniquely to a class.
2) Inthe presence of overlapping data distributions, it is pos-
sible for more than one GPCE to return a valuetdfas Algorithm 1: Procedure for Determining
its output. For example, GPCE 1 and GPCE 3 can returrCdass Count Matrix
value of+1 as their output for a given input. This means  Begin
that the input sample is classified as belonging to class 1 for ¢=110 n

by GPCE 1 and belonging to class 3 by GPCE 3. There is for =1t =n
a need for conflict resolution when more than one GPCE Ciy; = 0;
returns a value of-1 as its output. for ¢=11to0 n/xn classes
3) In the worst case, it is possible for all GPCEs to return a for k=11t n;
value of—1. This means that no GPCE is able to identify for j=11t n/+*n GPCEs
the sample as belonging to its own class. Such samples if (GPCE;[Xi] >0, then C;; =Ci+1

will be assigned to the reject class. In the subsequent sec- End
tions, we will discuss a likely cause for such a situation.

There is a need for conflict resolution in arclass problem

S . : Ideally, the class count matrix is a diagonal matrix, where
unlike in a two-class problem. The conflict resolution has tg . . .
each diagonal entry is equal to the number of samples presentin

assign a unique class to the input feature vector when more trt'ﬁ(ra] training set for that particular class. However, due to over-

one GPCE claims that the input belongs to its class. For this

. ) [ ing data distributions, GPGEan return a value of-1 for
purpose, astrength of association (SA) measure is CompUteds%aPr'ﬁples belonging to other classes, which leads to off-diagonal

each GPCE. The SA indicates the degree to which a GPCE can . :
: . . . 8 ements in the class count matrix.
recognize samples belonging toits own class, and reject samp he strength of association is computed from the class count
belonging to other classes. The higher the value of SA, the better, . S
; : . ) . matrix. Let.S; be the sum of elements present in rowf the
will be the GPCE in recognizing samples belonging to its owr) : : . s
class class count matrix. Algorithm 2 gives the procedure for deter

. mining the strength of association (94or GPCE.
The SA measures are computed after the evolution ofithe

GPCEs. The training set (the GPCE specific training sets are

derived from this set) is used to generate a class count mathilgorithm 2: Strength of Association
from which the SA measures are derived. The steps involved in  Begin

obtaining the class count matrix and strength of associationare for i =1 to n

as follows. The class count matrix (Table I) is of sizex n, { S, =0

and is obtained from the training set wherés the number of for k=11t n
classes. For obtaining the class count matrix, all of the GPCEs S; = S, + Cig
are applied on all of the samples in the training set, and the re- }

sults are noted. Algorithm 1 gives the procedure for obtaining for i=11t n
the class count matrix, whetg; stands for the number of sam- SA; = Cy;/S;

ples of class for which j returns+1. End
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The strength of association alone may not be enough for clas- {
sification. It may happen that a given input feature vector is iden- Apply the n GPCEs on sample &, and
tified by its own GPCE (output-1), but another GPCE with obtain the result vector.
a greater strength of association can also identify this sample Perform conflict resolution.
as its own (output is-1). Such a situation leads to misclassifi- Gip = Gip +1
cation because the GPCE with a higher strength of association }
swamps the GPCE with a lower strength. Heuristic rules are in- 1 is the true class of the sample
troduced to prevent this. The heuristic rules represent an em- and p is the assigned class.
pirical means to reduce misclassification in the GP paradigm. p=n-+1 for the reject class

In the next section, through experimental results, we will show End
one way of identifying the heuristic rules, and how these rules

improve the performance of GP-based classification. The classification matrix is used to obtain statistical measures

for both the class level as well as the global performance of
a classifier. Class-level performance is indicated by percentage
As both MLC and neural networks handle thlass pattern classification and a polarization measure. Percentage classifica-
classification problem directly, they use all of the features to difion tells us how many samples belonging to a particular class
criminate among classes.sH-dimensional feature vectors arehave been classified correctly. The polarization measure looks
available and only features ¢ < m) are actually needed for at the total number of samples that were assigned to a particular
discriminating a particular class, it is difficult to identify theseslass, and indicates the fraction of the samples that were clas-

p features manually. There is no way in which the MLC casified correctly. These can be obtained from the classification
discover these features. It must use all of the features for matrix as follows:

classification. In amz-input andr-output neural network, a par-
ticular feature may be important for one class, and not so foran-  percentage classification (for clags= g;; /n;

other class. So the weight associated with that input feature tries polarization measure: g;; / Z 4

to learn the data distributions for both of the classes, and may

not go to zero. Our approach to GP-based classification offerg/aeren; is the number of samples belonging to class the
means to discover thegdeatures as the-category problem is validation set.

handled as: two-class problems, and a GPCE is evolved inde- The global indexes for a classifier [13] are the average accu-
pendently for each class. GP has the capability to automaticatycy and overall accuracy, which are defined as follows:
discover the underlying data relationships among thefea-

tures, and discard the remaining features during evolution. This average accuracy Z(qz‘i/ni)/n

will be illustrated by our experimental results in Section IV.

H. Automatic Discovery of Discriminant Features

overall accuracy= > _ ¢i/N,

lll. STATISTICAL MEASURES FORVALIDATING A CLASSIFIER whereN, is the size of the validation set, ands the number

After the n GPCEs are obtained for each class from thef classes.
training set, the validation set is used to analyze the perfor-Foran ideal classifier, the percentage classification and polar-
mance of the GP classifier. For this purpose, the GPCEs #&ation measure are 1.0 for each (_:Ia_ss. The average accuracy and
applied to the validation set to obtain the classification matrixverall accuracy are also 1.0. It is important to note the subtle
(CM) which is of sizen x n, wheren is the number of classes.difference between the class count matrix and classification ma-
A typical entryg;; in the classification matrix shows how manytrix. The training set is used to derive the class count matrix, and
samples belonging to clasbave been classified as clgsgor the strength of association for each GPCE is computed from the
a perfect classifier, the classification matrix is diagonal. Howglass count matrix. The validation set is used to derive the classi-
ever, in practice, due to misclassification, we get off-diagonfitation matrix and the performance of the classifier is obtained
elements. However, in GP, as it is possible for a result vectorfiigm the classification matrix. Also, the sum of the elements of
GP to have all entries as1, an additional column is neededa row in the class count matrix need not be equal to the number
for the reject class, and this makes the dimension of the GMsamples belonging to that class in the training set. In the clas-
n x (n+ 1). Algorithm 3 gives the procedure for obtaining thesification matrix, the sum of the elements of a row is equal to
classification matrix. the number of samples belonging to that class in the validation
set.

Algorithm 3: Procedure for Determining

Classification Matrix IV. EXPERIMENTAL RESULTS FORGP-BASED CLASSIFICATION

Begin This section presents the results of GP fomaclass pattern
for ¢=1 to n/+x number of classes n classification problem by considering a data set containing five
for j=11t0 n+1 classes taken from three bands of remotely sensed satellite data.
gi; = 0; The three bands are the three feature vedkrsF'2, and F'3.
for k& = 1to N,/x size of validation Table 11l shows the spatial spread for the features, along with

set the number of samples used for training the GPCESs (training set
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TS) and for their subsequent validation (validation set VS). This TABLE Il
data set is chosen to show the applicability of GP-based C|assiﬁ‘,_HARACTER|ST|CS OF THEDATA SET USED FORGP-BASED CLASSIFICATION
cation for a real-world problem. In Table lll, there are 169 sam- Fi o) F3

ples belonging to class 1 in the training set, to evolve GPCE 1,  (ass | Min Max | Min Max | Min Max | TS | VS
and 168 samples in the validation set for validating the GPCE 1. Class#1 | 23 35 25 45 2063 | 169 | 168
Subsequently, we will consider the well-known Fisher'sirisdata  Class#2 | 24 46 23 64 5072 | 144 [ 145
set [12]. We have used GPQUICK [11] software to simulate the  Class#3 | 22 50 2173 2281 |2141213
GP paradigm for the-category pattern classification problem. Class#4 | 2335 21 53 55 81 | 215|216
Table IV shows the choice of parameters for the GPQUICK soft-  Class#5 | 26 34 31 55 3086 125124
ware used in the experiments. The choice of these parametersiis,
however, based on empirical observation. Appendix A defines

the parameters used in Table IV. In our experiments, we have

used the maximum number of generations (5000) or 90% clas-

TABLE IV
GPQUICK PARAMETERS

sification accuracy as the termination criterion. Parameter Weightage
. . Crossover weightage 0.28
A. Skewness in the Training Data Sets Mutation weightage 0.08
The first set of experiments was conducted to study the effect ~_Crossover weightage annealing 0.20
of skewness on the training data set on the evolution of GPCEs. ~Mutation weightage annealing 0.40
Copy weightage 0.04

In the training set for GPCE 1, the number of samples belonging

to class 1is 169 (i.e., the desired outgig +1), and the number Mutation rate(Fy,) 0.1
of samples belonging to other classes is 698 @{.&s,—1). This Crossover rate(F,) 0.7
. .. ! ’ Mutation node 0.435

results ina skewed training set. _ Mutation constant 0435

In this interleaved data format, the 169 samples belonging Mutation shrink 013
to class 1 are repeated so that there are 676 samples belonging Selection strategy Tournament
to class 1 and 698 samples belonging to other classes, thus Tournament size 7
avoiding the skewness. The GPCE for class 1 is obtained using Termination criterion 5000 generations or
this interleaved data format. Similarly, GPCEs are obtained for 90% classification

all other classes. In this manner, we can see that the training

time with an interleaved data format for class 1 is increased by a ) ) ) ] )
factor of 1.58 over the training time with the skewed data formd@cy- For example, in Table V, with Pl being 10% for increasing

Note that, in Table Ill, while evolving GPCE for class 2, théhe size of the training set and the function set being arithmetic
number of samples (training set) belonging to class 2 is 144, a#ed logical AL), the average accuracy of classification obtained
when the interleaved data format is used for learning, the total0-33, and is obtained as follows.

number of samples belonging to class 2 is 576, and the numbeBtep 1) Obtain GPCEs for all classes from the training set

of samples belonging to all other classes is 723. Still, there is (skewed) using the incremental learning procedure.
a slight skewness in the training set. This can be overcome byStep 2) Obtain the class count matrix, and derive the
repeating the training samples belonging to class 2 once more. strength of association measures (using Algorithms
Thus, the general idea of this interleaved data format is to prop- 1 and 2).
erly balance the number of samples belonging to one class witlStep 3) Apply the GPCEs on the validation set, and obtain
the number of samples belonging to the other classes. the classification matrix (using Algorithm 3).

Step 4) Compute the average accuracy as explained in the
B. Evolution for Different Function Sets earlier section.

To study the effect of function sets on GP-based classifica-The same study was conducted with the interleaved data
tion, we have used average accuracy as the performance nigénat for the training set. The average accuracy obtained for
sure. The function sets considered were arithme¥ &rith- various combinations of function sets and percentage increment
metic and logical AL), arithmetic and nonlinearANL), and is shown in Table VI. A typical entry in Table VI is obtained
arithmetic, logical, and nonlineaA[NL). in the same fashion, except that in Step 1), the GPCEs for

The evolution of the GPCEs was done with incremental a@dl classes are evolved with the interleaved data format of the
global learning, with percentage increment (PI) indicating tHeaining set. _
fraction of samples used for augmenting the training set afterWe have conducted a number of trials to study the effect of
everyn, = 200 generations during the evolution of a GPCEthe function set and role of incremental learning on the evolution
Table V shows the average accuracy for a skewed data set@bSPCEs. Table VIl gives the experimental results of 30 trials
various combinations of the function sets (FS) and percentatéh the arithmetic function set for different values of PI for
increment (PI). When Pl is 100, we have global learning. Féicremental learning. Based on our trials and from the results of
each combination of Pl and FS, the GPCEs were evolved fibles V=VII, we conclude the following.
all classes. The class count matrix was determined, and the SAL) Incremental learning leads to better classification (av-
measures were derived. The GPCEs were applied on the valida- erage accuracy) than global learning. Also, the smaller
tion set to obtain the classification matrix and the average accu- the percentage increment, the better is the classification.
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TABLE V TABLE VII
AVERAGE ACCURACY FORVARIOUS COMBINATIONS OF FS AND Pl EXPERIMENTAL RESULTS OFCLASSIFICATION ACCURACY FOR30 TRIALS (T)
WITH SKEWED DATA SET WITH ARITHMETIC FUNCTION SET FORDIFFERENTVALUES OF Pl
PI 5 10 20 25 35 50 | 100 Pl 5 10 20 25 35 50 100
A 0.51]0.3810.510.3310.36 [ 0.39 | 0.40 T1 [ 0.75]0.57 | 0.54 1 0.47 | 0.48 | 0.47 | 0.53
AL 0.22(0.33]0.33]0.34{0.20{0.34|0.48 T2 10.64|0.46 | 0.38 1 0.37 [ 0.39 | 0.33 | 0.25
ANL ]0.40 [ 0.33{0.39{0.20 ] 0.20 | 0.37 | 0.22 T3 1 0.60 | 0.45|0.43 [ 0.37{0.39|0.32]0.29
ALNL | 0.20 | 0.36 | 0.20 |{ 0.20 | 0.20 [ 0.33 | 0.20 T4 10.56 | 0.50 { 0.34 | 0.36 | 0.40 | 0.39 | 0.32

T5 10641042039 (0.30}0.37]0.34]0.33
T6 | 0.55|0.48[0.39/0.37[0.420.34|0.35

TABLE VI
AVERAGE ACCURACY FORVARIOUS COMBINATIONS OF FSAND Pl WITH 17 |0.58]0.48 | 0.35 | 0.38 | 0.33 | 0.36 | 0.33
INTERLEAVED DATA FORMAT T8 052 047 035 036 039 034 025
T9 10.57 1 0.46 | 0.34 | 0.30 | 0.36 ] 0.35 | 0.32
PI 5 10 20 25 35 50 100 T1010.71]0.46 | 0.39 043 | 0.38 ] 0.33 | 0.36
A 0.75 ] 0.57 1 0.54 | 0.54 | 0.48 { 0.47 | 0.53 T11|0.63|0.46 | 0.33 | 0.32 | 0.45 | 0.50 | 0.38
AL 0.27 1 0.47 1050 { 0.20 | 0.22 | 0.42 | 0.20 T12 [ 0.6810.40 |1 0.34 1 0.24 | 0.34 | 0.33 | 0.39
ANL {0.20]0.2210.20(0.22 (0.220.38|0.38 T13]0.59 [ 0.4210.34 1 0.33 ] 0.30 [ 0.32 ] 0.33
ALNL | 0.220.22}0.20 | 0.38 | 0.20 | 0.20 | 0.35 T14 10510481033 10.3510.31)0.33]0.28

T1510.52 1 0.48 1 0.34 [ 0.25{0.33 ] 0.32 | 0.30
T16 10.67 1049 0.340.390.330.39 | 0.37
2) With respect to the choice of function set, the average T1710.64]0.40[0.39[0.47{0.35]0.33|0.35
accuracy with the arithmetic function set performs better T18 | 0.55 | 0.47 [ 0.38 | 0.36 | 0.34 | 0.28 | 0.36
than all other function sets. T19 |1 0.54 [ 0.54 | 0.53 { 0.41 | 0.34 | 0.30 | 0.26
3) There is variation in the classification accuracy in T20]0.54 | 0.41 ) 0.40 | 0.40 | 0.37 | 0.38 | 0.39
GP-based classification for every trial. T21)0.57 | 0.44 1 0.39 | 0.34 | 0.32 | 0.32 | 0.30
Having observed the overall performance of the GP classi- T2210.5310.45]040 1038 | 039 025038
fier, we will now see how the individual GPCEs have performed T23 10.66 ] 042 | 0.45 | 0.39 ] 0.22 | 0.36 | 0.39
. . . . T2410.51]0.42]0.38]0.32:0460.25)0.31
(i.e., clfassmse p.erforman.ce). in one trial. Table VIII shows the 95 1059 1 0.49 [ 0.33 1 0.39 039 | 0.40 | 0.37
plassmse behavior of the |nd|y|dual GPCEs for.the skewgd and T56 1055 | 0.50 1 0.41 1 0.40 [ 0.49 [ 0.20 | 0.34
interleaved data sets with 5% incremental learning and different To7 1064 | 050 | 0511042 1034|037 0.28
combinations of the function set. The performance measures for T8 | 0.654 | 0.42 | 0.41 | 0.34 | 0.37 | 0.33 | 0.27
classwise performance study are the percentage classification  T29 1 0.60 | 0.51 | 0.32 | 0.38 | 0.39 | 0.37 | 0.31
(PC) and polarization measure (PM) defined earlier. A perfect T30 ] 0.51{0.43 {0.37 {044 |0.52 | 0.31 | 0.33
classifier must have both the percentage classification and polar-
ization measure as 1.0 in every class, i.e., all samples belonging
to class must be classified as and no samples of other classeslasses for which both the percentage classification and the po-
must be classified as If a classifier has a high percentage cladarization measure are zero. These classes have been swamped
sification and low polarization measure for a clasg means by the dominant classes. From Table VIII, it is clear that the
that samples belonging to other classes are also classifiedaathmetic function set with an interleaved data format and in-
classi. cremental learning has given the best classwise performance.
For example, from Table VIII, in the skewed data set case, Consider the GPCE expressions obtained for clafs the
with the function set being arithmetic and logical (AL), the perfour combinations of the function set (interleaved data format
centage classificationis 1.0 for class 2 i.e., all samples belongiagd 5% incremental learning) which are given below.
to class 2 were classified properly. On the other hand, the po-Arithmetic 4): (DIV(MUL(DIV(DIV F3 — 121)(ADD
larization measure is 0.17143/866 = 0.17), i.e., all of the F2—34) (MUL(ADD F2(DIV —37 (ADD (DIV F2 F2)(SUB
samples belonging to other classes were also classified as cla85 £'1))))(ADD 71 £'3)))(SUB(ADD 109F2)(SUB 87 (SUB
2. Thus, the entire validation set is classified as class 2. So thgl 14)))).
ratio of the number of samples that were classified correctly asArithmetic and Logical AL): (SUB(SUB(IFLTE 127
class 2 to the number of samples that were classified as clag8¢®L (DIV (ADD F1 15)26)(ADD F1 F2))20 85)(ADD
is very small compared to the ideal polarization measure of 116101)) (SUB(SUB-59 F2)(DIV F'3 — 40))).
The reason for this low polarization measure is due to the choiceArithmetic and NonLinear AN L): (DIV (DIV (SUB 63
of the function set. In both the skewed and interleaved trainidg3) £'1)(SUB (SINE (SINE (DIV (ADD F2 (SINE —109))
sets, the presence of logical and nonlinear functions in the fure30))) (SUB (MUL (SINE F1)(DIV F3 25))(DIV F'3 F2)))).
tion sets can lead to polarization among the classes, i.e., one okrithmetic, Logical, and NonLinear ALNL): (MUL
two classes tend to dominate over other classes. The skewn#ssTE (DIV (MUL F3 F3)(SINE (SINE F1)))(DIV —-73
in the data set can also lead to polarization. On the other hard,13) (SUB F'1 F2) (MUL 44 82))(SINE (SINE 56))).
for the interleaved data format, when the arithmetic function setln a two-class problem, the GPCE is like a hypersurface that
is chosen, we observe that there is high polarization for 5% idivides the entire feature space into two regions. When arith-
cremental learning (Table VIII). In Table VIII, there are manynetic operators are used, the GPCE can track the variation in
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TABLE VIl
EXPERIMENTAL RESULTS FOR5% INCREMENTAL LEARNING WITH DIFFERENTFUNCTION SETS FORBOTH SKEWED AND INTERLEAVED DATA SETS

GPCE | #1 | #2 | #3 | #4 | #5 | #1 | #2 | #3 | #4 | #5
A PC {0.91|0.8610.76 00| 0.0 |092]0.850.65]0.98]0.37
PM 10.36]0.52|082(0.0]| 0.0 |0.82]0.73]0.95|0.69 | 0.96
AL PC 0010 /0.08|00) 0.0 001]097]040] 00| 0.0
PM 00 [0.17}1.00]/0.0| 0.0 [ 0.0 |0.21]0.49} 0.0 | 0.0
ANL PC 1.0 1 0.0 {099{00] 00 ]00] 10|00 | 00] 00
PM 1030} 00 |]067,00} 00| 00 )0.17] 0.0 | 0.0 | 0.0
ALNL [ PC 00]00]00100} 101400092008 0.0 ] 0.0
PM 00]001{001]00]014} 0.0 |0.17{1.00} 0.0 | 0.0

the input feature vectors. When a logical element is used, oneThe equivalent mathematical expression is given by
of the subexpressions in the LISSexpression can return the

same value for different inputs. For example, in the GPCE for F3 (14 F3){ P24 37
class 1 with an arithmetic and logical function s&tJ, consider —121(F2 — 34) (34 + F1) 4
the subexpression 72— 13 -4

(IFLTE 127 (MUL (DIV (ADD F'115) 26)(ADDF1 F2))  From the above expression, we observe that GPCE 1 returns a
20 85) value+1 only when£2 is greater than 34 and less than 43

irrespective of the values df'1 and F'3. Thus, GP has found
The IFLTE (X1, X2, X3, X4) function evaluates its argu- that F'2 is the most discriminating feature for class 1.

ments as follows: GPCE 2: (MUL (SUB (MUL F2 — 49)(DIV (MUL 80
6)(MUL F1 102))) (MUL (ADD (MUL -93 F2)(MUL
If X1 > X2, thenreturnXs3; else, returnX4. F196))(MUL (DIV F2 F2)(SUB 36F2)))).

. . . The equivalent mathematical expression is given by
For example, this subexpression will return the value 20 for

both of the input vectors (33, 43, 63) and (32, 41, 57). Hence,
in the GPCE expression for class 1, the value obtainedlis (93F2 —961'1) <49F2 +
For the same input feature vectors, the GPCE evolved with only
the arithmetic function set returns the valué. Hence, GPCES £ this, we observe that GPCE 2 returns a vajewhen

which have a logical element will not be able to track variatiog > 1.031F1 andF'2 < 36. Thus. GP discovers thatl and
in the input due to such subexpressions, and lead to poor clagsi 4re discriminant features of class 2.

fication. _ _ GPCE 3: (DIV 105 (SUB (ADD —62 F3)(DIV F3 —66))).
Similarly, in the GPCEs that were evolved with the function 114 equivalent mathematical expression is given by

set containing a nonlinear function like the SINE function, if the

480
102F1

) (36 — F'2).  (5)

SINE function appears in the subexpression followed by a MUL 105

or DIV operator, it is possible for the sign to remain the same, 1015F3 — 62 (6)
although the value of the GPCE changes due to variation in the

input. This leads to poor classification. GPCE 3 returns a valuel only whenF'3 is greater than 61

Hence, we observe that GPCEs evolved with an arithmetieespective of the values @1 andF2. Here, GP discovers that
(4) function set are able to track the variation in the input dat&;3 is the discriminant feature for class 3.
and thus can lead to higher classification accuracy than GPCESPCE 4: (SUB (DIV (MUL (DIV (SUB F2 —69) 69)(SUB
evolved with other function set#\(, ANL, ALNL). So GPCEs ['2 (DIV —67 8))) (SUB (ADD 35—72)F1))(DIV (MUL (DIV
can be obtained for am-class pattern classification problem by(ADD 60 —121)(ADD F'1 53))(DIV (SUB F1 F3)(ADD —56
using the arithmetic function set, interleaved data format, aiB))) —2)).

incremental learning. The equivalent mathematical expression is given by

C. Analysis of GPCEs 30.5(F3 — F1) <F2 + 69) <F2 4 67)
Consider the GPCE expressions obtained for the five-class  (#'1 +53)(#'3 — 56) 69 8

problem discussed earlier by using the only arithmetic function . 1 %

set, interleaved data format, and 5% incremental learning. The F1+37/°

evolved GPCEs that resulted in an average accuracy of 0.75 are

as follows. GPCE 5: (ADD (ADD (DIV (ADD —56 F3)(DIV
GPCE 1: (DIV(MUL(DIV(DIV F3—121)(ADD F2—34) (SUB (ADD (SUB F2 F3)(DIV F2 (DIV F2 (SUB F2

(MUL( ADD F2(DIV —37 (ADD (DIV F2 F2)(SUB —35 33)))) —24)—26))(ADD (SUB F2 F3) (DIV F2 (SUB F2

F1))))(ADD 71 F'3)))(SUB(ADD 109 F'2)(SUB 87 (SUB—51  31))))(DIV (ADD 102 (ADD (SUB (MUL F2 60)(DIV F3

14)))). F3))(SUB (ADD —6 F'3)(MUL F'1 97))))F'3)).
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Fig. 1. Surface plot of GPCE A, ED = (—60, 453).
The equivalent mathematical expression is given by data were obtained, the plot utilities in MATLAB were used to
generate the surface.
26(F'3 — 56) F2 60F2+ F3—97F1 +95
F34+9—-2F2  F2-31 F3 E. SA Computation and Heuristic Rules
+ F2 - F3. (8) Table IX shows the class count matrix obtained for these

GPCEs. For example, in our five-class problem, the number of

We see that GPCE 4 and GPCE 5 are complex, and hencggdnples for class 1 is 169. After the application of all GPCEs
was not possible to simplify them like the other GPCEs. So, W samples of class 1, we obtain the first row of the class count
represent them pictorially. matrix. The first row of the class count matrix is [155, 5, 1, 7, 6],
which means that GPCE 1 returns a valug-Gffor 155 samples
belonging to class 1 out of 169 in the training set, GPCE 2 re-

Fig. 1 shows the surface plot of GPCE 4, whereas Fig. 2 showgns a value of-1 for 5 samples out of 169, and so on. The sum
the surface plot of GPCE 5. The data for the surface plot hagethe elements in the row vector is 174. As mentioned earlier,
been obtained as follows. As GPCE is a discriminant functiahe sum of these elements need not be 169. The SA for GPCE 1
that gives an output of-1 or —1, it divides the feature spaceis 155/174 = 0.89. In the same way, SA is computed for all of
into two regions that can be viewed pictorially by plotting théghe GPCEs. Table X shows the strength of association measures
surface that separates the two regions. The surface is giverféyall of these GPCEs.

D. Pictorial Representation of GPCEs

the following equation: The classification matrix which reflects the accuracy of a
classifier is obtained for this five-class problem by applying
GPCE(X) =0 these GPCEs on the validation set. While obtaining the clas-

] ) ] ) sification matrix, the conflict resolution can be done by using
i.e., all those points in the feature space for which the aboygy the strength of association measures. Table XI shows the
equation is satisfied lie on the surface that divides the featygssification matrix obtained. The average accuracy and overall
space into two regions. The data for a portion of the S”rfaﬁ%curacy are 0.75 and 0.77, respectively.

were generated as follows: The reasons for conflict and its resolution in GP-based multi-
category pattern classification can be further illustrated by con-

for (172 = 27-45) sidering the above GPCEs with the following examples.

for (£'3 = 28-62). 1) If 34 < F2 < 43, GPCE 1 returns a value gf1. Simi-
Determine the value af'1 for which GPCE larly, if £2 > 1.031F1 andF2 < 36, GPCE 2 returns a
(F1, F2, F3) = 0. value of+1. Thus, for samples in whickd < F'2 < 36
andF'2 > 1.031F1, both GPCE 1 and GPCE 2 return
The secant rule was used to obtain the valudslofor the above a value of+1. So, conflict resolution is needed to assign

equation as the GPCE is a highly nonlinear function. After the  the true class. As mentioned earlier, this is done with the
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Fig. 2. Surface plot of GPCE R, EL) = (—60, 45).
TABLE IX In an unlikely case, the GPCE with a higher SA
CLASIS COUNT MATRIX FOR THE GPCEs BTAINED WITH 5% PIFOR swamps the GPCE Wlth a |OW€|' SA, and thiS |eadS to
NCREMENTAL LEARNING AND ARITHMETIC FUNCTION SET . " . . . .
misclassification. Consider the following hypothetical
GPCE | 1 2 131415 situation. Let the samples for whicdld < F2 < 36 and
Class F2 > 1.03F1 belong to class 2, and, let the SA of GPCE
I 185} 6 + 1 [ 7 |6 1 be greater than that of GPCESo, class 1 is assigned
2 2 [136] 4 | 13 |58 to these samples. To prevent misclassification, we can
3 0 |21 |213] 74 | 2 frame the following rule.
4 0 13 163 12111 0
5 122]29]20] 1 ]9 If (34 < F2 < 36 andF2 > 1.031F1),
then the true class is class 2.
TABLE X
SASFOR GPCES @TAINED WITH 5% PIFOR INCREMENTAL LEARNING AND However, this data relationship, which has been discov-
ARITHMETIC FUNCTION SET ered by GP, is expressed by the following result vector
Class T 1 > T3 T4 5 [1 1-1—1—1], which can be framed as the heuristic rule
SA 1 0.89|064|069]|074(0.58 for preventing the misclassification of such samples.
2) Similarly, if 34 < F2 < 43 andF'3 > 62, we observe
that GPCEL and GPCE 3 return a value &fl for such
TABLE XI samples. Ifthe SA of GPCE 1 is greater than that of GPCE
CLASSIFICATION MATRIX BASED ON SA MEASURES 3 and the true class happens to be class 3, then the fol-
ACT I T 2173 d 15 TRCIVS lowing rule can be formulated to prevent misclassifica-
TC tion.
1 155} 10 0 1 2 0 | 168
2 [ 1123 7 [14] 0] 0 [145 If (34 < F'2 < 43 andF3 > 62),
83 1 1]0J138] 740/ 0 [213 then the true class is class 3.
4 0 0 ;21110 5 ]216
5 [33(36]0 )5 |45]5 |124 However, this data relationship will be expressed by

Average accuracy = 0.752 Overall accuracy = 0.776 the following result vectofl —1 1-1-1], and can be

AC=Assigned Class TC=True Class RC=Reject Class fra"med as_a heuristic rUI.e' . .
Algorithm 4 gives one possible means for identifying these

rules. Letn,,, be the number of misclassified samples in a class,
help of SA measures, and the class of the GPCE with thad leta be the user-defined threshold for extraction of a rule.
higher SA is assigned to the input, i.e., class 1 is assignéd«o = 0.1 and the number of samples in the training set for
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a particular class is 100, then at least ten misclassified samples TABLE XII
must have the same result vector. We have chesen0.1 in HEURISTIC RULES FORREDUCING MISCLASSIFICATION
our experiments. 1121314 Class

=l

11-111]-1 5
|11 f-14 3

Algorithm 4 Discovery of Heuristic Rules

Begin
for i=11t n TABLE XIlI
{ CLASSIFICATION MATRIX BASED ONBOTH SA AND HEURISTIC RULES
Analyze result vectors for N AT T 3 3 T T5 TRETVS
misclassified samples in TC
class <. 1 |155] 10 | 0 | 1 [2] 0 |168
Let a partlcular. result vector 2 1 11237 8 13 101 0 145
appear m; times. 3| 1[0 163]49 0| 0 [213
If m; > a; xn;, then the result 4 0 3 1208101 5 |216
vector becomes a heuristic rule; 5 1123 | 0 5 [66] 5 | 124
}
End Average accuracy = 0.806 Overall accuracy = 0.826

For example, if the result vectdt, —1, 1, —1, 1] appears 0.809, respectively. By comparing Tables XlIl and XIV, we ob-
for samples of class 5 in our five-class problem, it will be missérve that GP has a higher classification accuracy than MLC,
classified as class 1 since the SA of GPCE 1 is greater than &l also has performed better for classes 1, 4, and 5, respec-
SA of GPCE 3 and GPCE 5 . However, Algorithm 4 can identifjjvely. But for classes 2 and 3, MLC has a higher classifica-
such a result vector as a heuristic rule, and assign the true cf@@ accuracy. We will further discuss the differences between
(class 5) after overriding the class assigned by using only $P-based classification and MLC in Section V.
measures (class 1). Similarly, heuristic rules for other classes o _ _
can be framed. The heuristic rules help in reducing misclassift- GP-Based Classification for Fisher's Iris Data Set
cation. Table XII shows the two heuristic rules obtained for our A second example we considered is the well-known Fisher's
five-class problem. Table XlII shows the classification matriXris data set [11]. There are four features, namely, sepal length
obtained by using both SA and heuristic rules for conflict resgF1), sepal width [F2), petal length£3), and petal widthF4).
lution. The three classes are Iris Setosa (Class 1), Iris Versicolor (Class

Thus from Tables XI and XIII, it is clear that 21 samples out), and Iris Virginica (Class 3). The data set contains 50 in-
of 124 samples for class 5 and 25 samples out of 213 sampdesnces for each of the three classes. The data set was scaled

for class 3 are properly classified by the heuristic rules. by a factor of 10, and was divided equally into a training set
and a validation set. Table XV shows the characteristics of the
F. Performance of the MLC Fisher iris data set.

Although our main objective is to show the feasibility of GP 1he evolution of the GPCEs was done for both the skewed

for the n-class pattern classification problem, for the sake &nd interleaved data format with the arithmetic function set and
completeness, we will present the results of the MLC on ﬂf.;'g/o P1 for incremental learning with the GP parameters shown

same five-class problem. The maximum likelihood classificd? Table IV. _
tion is based on the assumption that the probability distribu- Skeéwed Training Data Setsthe evolved GPCEs are given
tion for each class is a multivariate normal distribution [1]. Thielow.

MLC is widely used for comparison. The discriminant function GPCE 1:(SUB (SUB (DIV 98 F2)(ADD F4
in MLC is given by F1))(SUB(MUL F'4 F1)(MUL 25 £2))).

GPCE 2: (DIV (MUL (SUB (DIV F1 F4)(ADD 114
—30))(ADD (ADD —103 F2)(SUB F1 — 11)))(DIV (SUB

. P | — _ )ty Tl e
Gi(X) = —In 3| = (X = my)" > (X —my), (ADD 103 106)(MUL F'3 F'4))(DIV (DIV —44 F4)(DIV F3
; 2, ..., 1n

i=1, ) F3y)).
GPCE 3: (SUB (ADD (ADD 84 F4)( MUL F2
where F2))(MUL (ADD F'3 — 67)(SUB F4 86))).

X  isthem-dimensional input feature vector; The class count matrix was obtained to determine the SA
m; IS the mean feature vector for class measures. The SA measures for the GPCEs are 0.86, 0.94, and
3;  isthe covariance matrix for clagsand is of sizen x  0.64, respectively. Table XVI shows the resulting classification

m; matrix.
n is the number of classes. Interleaved Data Format Training Setsfhe evolved GPCEs

The same validation set was used to obtain the classificatiare as follows.
matrix for MLC, and the results obtained are presented in Table GPCE 1: (MUL (SUB (SUB (MUL F'3 (SUB F3 F1))
XIV. The average accuracy and overall accuracy are 0.789 g&UB (MUL —52 F2)(DIV( F4 F1))) (ADD (SUB (MUL
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TABLE XVI
CLASSIFICATION MATRIX FOR GP WITH SKEWED TRAINING SETS

FOR IRIS DATA

AC| 1123 |RC|VS

TC

1 1221310 0 25

2 01200 5 25

3 010|115 O 25

TABLE XIV
CLASSIFICATION MATRIX FOR MAXIMUM LIKELIHOOD CLASSIFIER
AC 1 2 3 4 1 5(VS
TC
1 147 | 15 0 0 6 | 168
2 0 132 8 3 2 | 145
3 0 0 1757 37 | 1 | 213
4 5 0 16 191 | 4 | 216
5 0 36 | 21 11 | 56124

Average accuracy = 0.789 Overall accuracy = 0.809

Average accuracy = 0.76 Overall accuracy =0.76

TABLE XVl

TABLE XV CLASSIFICATION MATRIX FOR GP WITH INTERLEAVED TRAINING
DATA CHARACTERISTICS OFFISHER'S IRIS DATA SET SETS FORIRIS DATA SET
Class Fi ) F3 F4_|TS|VS AC| 112|315
Min Max | Min Max | Min Max | Min Max TC
Iris Setosa 43 58 29 42 10 19 15 25 | 25 1 12510107125
Iris Versicolor 50 70 20 34 30 51 10 18 25 1 25 2 025 4|25
Iris virginica 57 79 25 34 45 69 17 25 25 | 25 3 0 3 25] 25
TABLE XVIlI

F1 F3) (MUL F2 F4))(ADD (ADD —109 F1) (SUB F1
F1))))(SUB (MUL (ADD (DIV F1— 30) (MUL 62 F2)) (DIV
F1 F2)) F1)).

CLASSIFICATION MATRIX FOR GP WITH INTERLEAVED TRAINING
SETS FORIRIS DATA SET

The equivalent mathematical expression is given by AC| 112 (3]|VS
TC

. F4 1 |25/ 0] 0]2

<<<F3* (I'3—-F1)+ <02F2+ ﬁ)) 710 2213 135

3 10]107125]25

- (Fl*F3—F2*F4+F1—109))*

(G5 rer2)«(72)) -#1)) - 0o

GPCE 2: (DIV (DIV (SUB F2 — 113) (SUB 49 F3))
(ADD F4 (DIV —108 F3))).
The equivalent mathematical expression is given by

Average accuracy = 0.96 Overall accuracy=0.96

This is the reason why all of the samples belonging to dass
classified correctly. Similarly, to classify data points between
classes 2 and 3, GP discovers th& is the discriminant fea-
ture. This is shown in Fig. 4. In Fig. 4, the curve GPCE 2 has
two regions. One region 83 < 49, and the othef'3 > 49. All
of the points inf'3 and £'4 above the curve GPCE 2 will return
—+1 in the region/'3 < 49, and all of the points below the curve
GPCE 2 will return+1 in the regionF'3 > 49. In Fig. 4, the
GPCE 3is also shown for various valuedt#(20, 25, 30, 35).
For a given value of 2, all of the points on the right side of the
curve will return+1.

The data points for classes 2 and 3 are also shown in Fig. 4
for different values of'2, the regions for which GPCE 3 returns

1 are indicated. We observe that as the valuEdfncreases,

The class count matrix was obtained and is shown in Table XV||. . . : )
The resulting SA measures for the GPCEs are 1.0, 0.86, %ng region for which GPCE 3 returasl shifts to the right, and

0.89, respectively. Table XVIII shows the classification matrixezg?nt?r?ecé);rfliuesrlZQ;ritvr:Tec#Zizecsofnag?egd?ﬁgrejr?grsﬁance
obtained by using SA measures only. p'e, P P

gf GP with that of MLC. Table XIX gives the results obtained

(F2+113) % F3
(49 — F3)(F3+ F4— 108)

GPCE 3: (ADD (MUL (ADD —20 F'3) (ADD F'3 F4))
(ADD (MUL F'2 — 58)(SUB 120 122))).
The equivalent mathematical expression is given by

11)

(F3—20) * (F3+ F4) — (58F2 + 2). (12)

We will now explain how the GPCEs learned the data distrj- .
bution during the training phase. For this purpose, consider on ¥ using MLC. The results show a good agreement.
the featured’3 and F'4. GPCE 2 will return—1 only whenf'4
is less than a particular value for a gives. GPCE 3 will return
—1whenF'3 < 20 irrespective of other features. This is shown
in Fig. 3. In Fig. 3, all of the points i'3 andF'4 below GPCE  In GP, learning takes place during evolution, and is guided by
2 will return —1, and all of the points on the left of GPCE 3an appropriate fithess function. This evolutionary approach is
will also return—1. The data points for class 1 are also showwlifferent from a statistical approach like the MLC or a trainable
GP discovers that only'3 and F'4 are the discriminant featuresclassifier like the neural network which uses an error function

in the classification between class 1 and the other two classkes.updating the weights. In this section, we will discuss some

V. SOME IMPORTANT ISSUES INGP-BASED PATTERN
CLASSIFICATION
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Fig. 3. Behavior of GPCE and GPCE3 for data of clasd.

of the important issues that arise in our approach to GP-basext been used to reduce skewness in the training set that is
pattern classification. used for an evolution of a GPCE.

A. Interleaved Data Format B. Incremental Learning

Both the MLC and the neural network deal with the The MLC is basically a statistical classifier. In this statistical
n-class problem directly. In the MLC, a representative meapproach, since averaging is involved, a better estimate is made
vector and covariance matrix are computed for each cldss the mean vector and covariance matrices as the number of
from its own set of representative samples. Thus, sampkamples for a class increases. The mean vector and the covari-
of classA do not influence the mean vector and covariana@nce matrices characterize the data distribution for a class. There
matrix of classB. For a given input, the mean vectors ands no learning involved in the MLC as there is neither an error
the covariance matrices of all of the classes are used to fleaction as in a neural network nor a fitness function as in GP.
termine the likelihood values, and the class with the highdst a neural network, learning can be done in a batch mode, or
likelihood value is assigned to the input. In the neural-netn a sample-by-sample basis, or even on a subset of the training
work classification, a single neural network is trained foset. So, incremental learning has been used in neural networks
an m-input n-class problem. Consider a three-input anf#t]. Batch mode learning is essentially global learning as the
five-class problem. The desired output for samples of clasgan error for all of the samples is computed, and updating of
1is [0.8 0.2 0.2 0.2 0.2], [0.2 0.8 0.2 0.2 0.2 ] for class 2yeights is done only once in each epoch. On the other hand,
and so on. As samples are expected to be representativaviren the network is trained on a sample-by-sample basis, we
each class and the network is trained on the entire trainihgve incremental learning as the error for each input is deter-
set during each epoch, the network is able to simultaneoustyned, and the network is updated before being fed with the next
learn the decision boundaries for all of the classes. Soput. Thus, sample-by-sample learning represents incremental
the interleaved data format which was proposed in GP lkearning takentoits limitin each epoch. However, in each epoch,
overcome skewness as theclass problem is converted intothe entire training set is used. As GP is also a learning approach
n two-class problems does not arise in both MLC and tHike the neural network, the learning can be either global or in-
neural network. The interleaved data format is an artifact thetemental. The percentage increment for incremental learning
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Fig. 4. Performance of GPGHor different values off'2.
TABLE XIX a discriminant function can return a value-pi or —1 to indi-
CLASSIFICATION MATRIX FOR IRIS DATA SET WITH MAXIMUM cate whether or not the data belong to a class. When-tlass
LIKELIHOOD CLASSIFIER R . .
problem is converted into two-class problems as in GP, we get
ACl1]2]3]Vs a result vector containing-1 or —1 as its entries. When more
TC than one GPCE returns a valuejof, there is a need for conflict

1 [2561010[25
2 10(24]| 1425
3 101} 2123]25

resolution, which is done indirectly by using SA measures. The
SA measures indicate how well a GPCE can recognize samples
belonging to its own class, and reject samples belonging to other
classes.

Average accuracy =0.96 Overall accuracy = 0.96

D. Scope for Heuristic Rules
can be selected by the user to gradually increase the size of th

. : . fh both the MLC and neural network, the output vector for
training set during evolution.

a given input consists of real numbers. In the MLC, the output
vector consists of likelihood values which vary for each input.
As the likelihood values are varying, it is not possible to iden-
Both the MLC and the neural network have a simple approatify a specific likelihood value vector as an output vector that ap-
to conflict resolution. In the MLC, the likelihood value is com-pears for misclassified samples of a particular class. Similarly, in
puted for each class by using the corresponding mean vector anteural network, the output vector has elements in the interval
covariance matrix for a given input. The class of the maximuf, 1]. The output vector varies even for misclassified samples of
likelihood value is assigned to the input. Similarly, in the neurdgihe same class. So, it is not possible to identify a specific output
network, for a given input, we get an output vector. Each elgector, and to assign it as a rule to overcome misclassification
ment in the output vector is in the range [0, 1]. For example, of certain samples belonging to a particular class. On the other
a five-class problem, the output vector can be [0.1 0.2 0.8 (hand, in GP, as the output vector consistg-dfor —1 as its en-
0.5] for a given input. So, class 3 is assigned to the input. Thiges, it is possible for a specific result vector to occur for mis-
simple approach is an outcome of theclass problem being classified samples of a particular class. This result vector can
handled directly by the neural network. In a two-class problerhe framed as a heuristic rule to assign the true class for these

C. Conflict Resolution
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samples. As the heuristic rule represents the data relationship VI. CONCLUSION

discovered by GP, the creation of the heuristic rules should be . o
seen as part of GP-based classification. Thus, GP gives a scog8 this paper, we have demonstrated the applicability of GP

for heuristic rules to reduce misclassification, which is a vely @n7-class pattern classification problem by considering a

important attribute that is not available in either the neural-ndgal-world data set taken from remotely sensed images and the
work approach to classification or in the MLC. well-known Iris data set. As the-class problem has been mod-

eled asn two-class problems, we needGPCEs and hence
GPCE specific training sets. If we create a training set directly, it
leads to skewness (as < N;), and hence poor classification.
For a particular input sample, it is possible for a result vectdb overcome the skewness, an interleaved data format is pro-
to contain all-1 entries. Such a sample can be assigned to thesed. The experimental results show that the interleaved data
reject class. However, it does not affect the average accuracy émehat performs better than the skewed data set. We have in-
the overall accuracy of the classifier as they are basically dep@mduced incremental learning to allow learning on a subset of
dent on the main diagonal of the classification matrix. As thiae training set to simplify the task of learning during evolution.
samples with all-1 entries in the result vector are very smalhis subset is gradually increased to cover the entire training
(e.g., only 10 samples out of 866 in the classification matriet. The performance of the GP classifier based on incremental
shown in Table XII1), it shows that GP can be successfully ajearning is better than the performance obtained using the tradi-
plied for ann-class problem. It should be noted that it is possiblgonal global learning.
to have a reject class, even in the neural network. For examplewe have also observed that the GPCEs evolved with an arith-
if all of the outputs of the neural network are very low, the inpuhetic function set performed better than GPCEs evolved with
can be assigned to the reject class. Ideally, one of the outpotiser function sets containing logical and nonlinear elements.
in the neural network should be high so that a class can be Bence, we have used the arithmetic function set, incremental
signed to the input. As MLC is essentially a distance classifiggarning, and interleaved data format to evolve GPCEs. Each
the given input is always assigned to one of the classes. =~ GPCEis trained to recognize samples belonging to its own class,
A possible explanation for the reject class in GP is as followand to reject samples belonging to other classes. A strength of
The given data set is divided equally into a training set anda&sociation measure is associated with each GPCE to indicate
validation set. If the division is done in a random manner, it cahe degree to which it can recognize samples belonging to its
lead to a situation where data points for a certain region of toen class. The strength of association measures are used for
feature space are not present in the training set, and are preagsigning a class to an input feature vector. Heuristic rules can
in the validation set. In such a scenario, the GPCEs would s used to prevent a GPCE with a higher SA from swamping
be trained to recognize samples belonging to that region. ScaiGPCE with a lower SA, which further improves the perfor-
is possible for all of the GPCEs to return a value-df, i.e., the mance of a GP classifier. For the sake of completeness, we have
result vector will contain-1 as its entries. Such samples caalso presented the results of MLC. We also observe that there is
be classified as the reject class. For example, in our experimagiriation in the performance of GP as it is essentially a nonal-
five samples each in classes 4 and 5 were classified as refgstithmic approach to solving problems. However, it can auto-
class. So, we believe that, if the training set contains sampleatically discover the discriminant features for a class, unlike
from all regions of the feature space, such a situation (i.e., the_C.
reject class) is very unlikely. The presence of a reject class doesn our approach to GP-based classification, the choice of the
not mean that GP is lacking in generalization. But the gener@p parameters has been largely empirical. Future work should
ization power of GP is only within the training data set. For dat& in the adaptive variation of these GP parameters, and in dis-
away from the training set, it is possible for the GPCE to rejecbvering any empirical relationship among the data distributions
this sample. and in the selection of GP parameters for evolving the GPCEs.

E. Reject Class

F. GP and Al-Based Machine Learning
APPENDIX A

The process of knowledge acquisition can be divided into DEFINITION OF GPQUICK PARAMETERS

two categories: symbolic and nonsymbolic. Nonsymbolic sys-

tems represent knowledge implicitly. For example, in neural 1) Copy WeightageThe copy operation selects a member
networks, knowledge is distributed among the network connec-  of the population, and replaces it by randomly choosing
tions. On the other hand, in symbolic systems like GP, knowl-  another member in the population. There is only repro-
edge is expressed explicitly. Both Al-based machine learning  duction and no crossover and mutation.

and GP have many similarities as they are learning systems2) Crossover Weightagerhis indicates the probability of
that build knowledge structures by using input—output exam-  choosing the crossover operation.

ples. However, conventional Al systems have implemented ma-3) Mutation Weightage:This indicates the probability of
chine learning by using logic and heuristics, while GP has re-  choosing the mutation operation.

alized it by using the principles of natural evolution. While a 4) Crossover Weightage Annealinghis indicates the prob-
heuristic is used to guide the search in Al for obtaining a solu-  ability of introducing the offspring after the crossover op-
tion, a fitness function is used in GP to guide the search for a  eration, only if it is fitter than the parent; otherwise, it is
solution. discarded.



KISHOREet al: APPLICATION OF GP FOR MULTICATEGORY PATTERN CLASSIFICATION 257

5) Mutation Weightage Annealind:his indicates the prob-  [8] A.N.Edmonds, “Genetic programming of fuzzy logic production rules,”

6)

7)

Mutation can result in one of the following three actions.

Iti

ability of introducing the offspring after the mutation op- in Proc. IEEE Int. Conf. Evol. CompytL995, pp. 765-770.

. v if it is fi h h - oth . ... [9] J.R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap, “Au-
eration only If It Is nitter than the parent; otherwise, It Is tomated synthesis of analog electrical circuits by means of genetic pro-

discarded. gramming,” IEEE Trans. Evol. Compuytvol. 1, no. 2, pp. 109-128,
The parameters discussed above indicate the possibje 1997

. 10] I. Benyahia and J. Y. Potvin, “Decision support for vehicle dispatching
operations that can be performed on the members of th[e using genetic programming|EEE Trans. Syst., Man, Cybern, wol.

population. A roulette-wheel strategy is used to selectone 28, no. 3, pp. 306314, 1998.
of the above operations. It is important to note that thd11l A. Singleton, “Genetic programming with C++Byte, pp. 171-176,

fthe ab ight t . lto 1 Feb. 1994.
sSum or the above weightage parameters is equal to 1. [12] R. A. Fisher, “The use of multiple measurements in taxonomic prob-

Crossover Ratelf operation 2) or 4) is selected, it is car- lems,” Ann. Eugenicspt. I, vol. 7, pp. 179-188, 1936.

ried out with a probability given by the crossover rate.[13] T. Yoshida and S. Omatu, “Neural network approach to land cover

. . mapping,” IEEE Trans. Geosci. Remote Sensingl. 32, no. 5, pp.
Generally, a high value is chosen for the crossover rate. 1103-1108, 1994.

Mutation Rate:lf operation 3) or 5) is selected, it is car-
ried out with a probability given by the mutation rate.
Generally, a low value is chosen for the mutation rate so

; ; ; 5 J. K. Kishore received the B.Tech. degree in elec-
that changes in the population do not take place rapidly = ~ i trical engineering from IIT Madras in 1987, and the
M.Tech. degree in electronics from IIT Bombay in
1989. He is currently working toward the Ph.D. de-
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Mutation ConstantThis indicates the probability ofacon- " * B ?ecl,f’fgogf;eitg,bgfgoS};”thng“’a'lﬁrif’ Q,gf°,{;“831;‘;gn
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given node. ) ~ computer systems for satellites developed at the

. e - ISRO Satellite Center, Bangalore. He is presently the Section Head for the
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s important to note that the sum of these probabilities

Mutation Node:This indicates the probability of an ex-
isting sub-tree being replaced by another subtree at a gi
node.

is also equal to 1. The selection of these actions is done by

a roulette-wheel strategy. GPQUICK uses protected divisit

durin

equated to unity [11].
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