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Background: Analysis of the human connectome using functional magnetic resonance

imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts

to discover the neural underpinnings of human cognition and neurological disorders.

In general, brain connectivity patterns from fMRI data are classified as statistical

dependencies (functional connectivity) or causal interactions (effective connectivity)

among various neural units. Computational methods, especially graph theory-based

methods, have recently played a significant role in understanding brain connectivity

architecture.

Objectives: Thanks to the emergence of graph theoretical analysis, the main purpose of

the current paper is to systematically review how brain properties can emerge through the

interactions of distinct neuronal units in various cognitive and neurological applications

using fMRI. Moreover, this article provides an overview of the existing functional and

effective connectivity methods used to construct the brain network, along with their

advantages and pitfalls.

Methods: In this systematic review, the databases Science Direct, Scopus, arXiv,

Google Scholar, IEEE Xplore, PsycINFO, PubMed, and SpringerLink are employed for

exploring the evolution of computational methods in human brain connectivity from 1990

to the present, focusing on graph theory. The Cochrane Collaboration’s tool was used to

assess the risk of bias in individual studies.

Results: Our results show that graph theory and its implications in cognitive

neuroscience have attracted the attention of researchers since 2009 (as the Human

Connectome Project launched), because of their prominent capability in characterizing

the behavior of complex brain systems. Although graph theoretical approach can be

generally applied to either functional or effective connectivity patterns during rest or

task performance, to date, most articles have focused on the resting-state functional

connectivity.
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Conclusions: This review provides an insight into how to utilize graph theoretical

measures to make neurobiological inferences regarding the mechanisms underlying

human cognition and behavior as well as different brain disorders.

Keywords: brain connectivity, functional connectivity, effective connectivity, fMRI, brain networks, graph theory,

small-world, connectome

INTRODUCTION

The human brain comprises ∼86 billion neurons
connected through ∼150 trillion synapses that allow
neurons to transmit electrical or chemical signals to other
neurons (Pakkenberg et al., 2003; Azevedo et al., 2009).
Studies on modeling the human brain as a complex system
have grown remarkably as neuroscientists seek to understand
the comprehensive information underlying cognition, behavior,
and perception (Bassett and Bullmore, 2006; Reijneveld et al.,
2007; Bullmore and Sporns, 2009, 2012; He and Evans, 2010;
Friston, 2011; Craddock et al., 2013; Park and Friston, 2013).
Exploring the human brain from the viewpoint of connectivity
patterns reveals important information regarding the structural,
functional, and causal organization of the brain. Among the
connectivity techniques, functional, and effective connectivity
have been the focus of the computational studies in recent years
(Friston, 1994, 2011; Farahani and Karwowski, 2018). Functional
connectivity refers to the temporal correlations among spatially
remote neurophysiological events, whereas effective connectivity
refers to the causal interactions between neuronal units of
the brain network (Friston, 1994). Computational methods
for functional brain connectivity are generally divided into
model-based and model-free (Li et al., 2009a). For the analysis
of effective brain connectivity, methods such as Granger
casualty, dynamic causal modeling, and Bayesian networks
have been of interest to researchers (Friston, 2009; Zhang
et al., 2015). Further, the human connectome (i.e., mapping
the connectivity patterns of the human brain) has become an
increasing topic of interest in the area of human neuroscience
and can be studied using network science and graph theory
(Sporns et al., 2005; Kelly et al., 2012; Van Essen et al., 2012;
Sporns, 2013c).

The human brain is one of the most complex networks in
the world, and studies on its static and dynamic properties
have undergone explosive growth in recent years (Bullmore
and Sporns, 2012; Sporns, 2013b; Kriegeskorte and Douglas,
2018). The advances in graph theory and network neuroscience
(i.e., the study of the structure or function of the nervous
system) offer an opportunity to understand the details of this
complex phenomenon and its modeling (Vecchio et al., 2017;
Sporns, 2018). Graph theoretical approaches have set up a
mathematical framework to model the pairwise communications
between elements of a network. In human neuroscience,
graph theory is generally applied to either functional or
effective connectivity. However, most studies have been
devoted to functional connectivity (Bullmore and Sporns, 2009;
Goldenberg and Galván, 2015).

Graph-based network analysis reveals meaningful
information about the topological architecture of human
brain networks, such as small-worldness, modular organization,
and highly connected or centralized hubs (Bullmore and Sporns,
2009, 2012; He and Evans, 2010; Meunier et al., 2010; Bullmore
and Bassett, 2011; van den Heuvel and Sporns, 2013). Small-
worldness is a property of some networks in which most nodes
are not neighbors of each other but can be reached from every
other node by a small number of steps. This characteristic is well
suited to the study of complex brain dynamics, and it confirms
efficient information segregation and integration in the human
brain networks with low energy and wiring costs (Watts and
Strogatz, 1998). Recent studies demonstrate that the small-world
property of brain networks experiences topological alterations
under different cognitive loads and during development (Bassett
et al., 2011; Braun et al., 2015; Cao et al., 2016; Liang et al., 2016),
as well as in neurological and mental disorders (Xia and He,
2011; Fornito et al., 2012; Filippi et al., 2013; Dai and He, 2014;
Stam, 2014; Fornito and Bullmore, 2015; Gong and He, 2015;
Abós et al., 2017; Fleischer et al., 2017; Hojjati et al., 2017; Jalili,
2017; Miri Ashtiani et al., 2018). These alterations may provide
novel insights into the biological mechanisms underlying human
cognition, as well as health and disease.

Recent advances in neuroimaging have enabled mapping of
the human connectome in different applications (Van Essen
et al., 2012; Fornito et al., 2015). Brain function can be
localized through neuroimaging techniques that assess changes in
metabolism via positron emission tomography (PET) or changes
in blood oxygenation level-dependent (BOLD) responses via
fMRI. Structural pathways can be captured using diffusion
tensor imaging (DTI), in which MRI is applied to trace white
matter tracts. Finally, the timing of brain activity and its
locus can be determined from electroencephalogram (EEG) or
magnetoencephalogram, which respectively, measure electrical
and magnetic signals outside the skull. Used separately or
together, these techniques constitute the neuroimaging toolkit of
scientists investigating the physiology of human brain networks
(Chugani et al., 1987; Ogawa et al., 1990; Pfurtscheller and Lopes,
1999; Le Bihan et al., 2001). Among them, fMRI and PET offer a
relatively low temporal resolution but have a significant spatial
resolution, making them particularly useful for determining
where neural signals are generated (Mehta and Parasuraman,
2013). However, PET scanning can measure the blood flow
changes in an area of ∼5–10 cubic millimeters while fMRI can
resolve down to 3 cubic millimeters and even lower. Moreover,
PET scanning is much more expensive than fMRI and requires
radioactive isotopes to work (Friston et al., 1996). During the
last two decades, there has been an explosion of fMRI studies
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mapping neural functions to distinct parts of the brain at rest or
during task performance (Greicius et al., 2003), however, more
attention has been directed toward resting-state fMRI (rs-fMRI)
data (Lee et al., 2013).

The main purpose of this paper is to review the recent
studies utilizing graph-based methods to analyze connectivity
patterns in the human brain network using fMRI data. We
expect to see whether the recognition of brain connectivity
properties by graph theory (as measured by fMRI) has been
effective in understanding the mechanisms underlying human
cognition compared to the traditional approaches. The remaining
sections are organized as follows. Section Methodology presents
the methodology and criteria used for selecting papers to be
studied in the current paper, as well as data synthesis and validity
risk assessment. Section Theoretical Background: Connectivity
Patterns Using fMRI first summarizes existing methods for
examining the brain network connectivity, which are categorized
into functional and effective patterns (3.1 and 3.2), then, focuses
on the graph-theoretic concepts required for analyzing the
brain connectivity architecture (3.3). Section Results provides
the results of literature search, study characteristics, validity
assessment of the considered studies, as well as a general overview
of the selected articles. Then, section Discussion discusses
the potential implications and applications of graph theory
in human cognition (5.1), as well as common neurological
illnesses (5.2). Finally, section Challenges and Future Directions
highlights challenging issues and future perspectives in this
rapidly growing field.

METHODOLOGY

This systematic review was conducted based on the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines (Moher et al., 2010). The starting point
for this systematic review was a protocol where the research
questions and the search strategy were specified to reduce the
effect of research expectations on the review. Furthermore,
the literature searches and systematic review adhered to the
Cochrane Collaboration guidance (Higgins et al., 2011), to
minimize the risk of bias and error.

Research Questions
Based on the objectives of this systematic review described in the
abstract, the following research questions were derived and form
the basis of this literature review:

• RQ1: How has the computational methods for modeling the
brain connectivity patterns using fMRI evolved?

• RQ2: How can research of mapping the human connectome
using fMRI be classified?

• RQ3: What is the significance of graph-based approaches
among the identified toolkit for brain connectivity analysis?

• RQ4: With the advent of graph theory in cognitive
neuroscience, what applications have been studied in
modeling human cognition and psychiatric disorders?

• RQ5: What can be learned from current graph-based
research in human connectome that will lead to topics for
further investigation?

Search Strategy
The search strategy was able to first explore the search space
properly, and secondly, exploit the relevant material with a
rigorous evaluation process. Current and seminal research
literature in the realm of fMRI brain connectivity focusing
on graph-based methods including peer-reviewed journal
articles, textbooks, reference books, proceedings, and conference
presentations were considered key sources for this systematic
review. During the exploration phase, the bibliographic search
was carried out using a list of academic databases and search
engines such as Science Direct, Scopus, arXiv, Google Scholar,
IEEE Xplore, PsycINFO, PubMed, and SpringerLink. To meet
the eligibility criteria for creating search space, articles must
have been published after 1990, the time when fMRI technique
was invented, with the following keyword combinations in the
title, keywords or abstract: (“graph theory” or “graph analysis”
or “network analysis” or “connectome” or “connectomics”
or “small-world” or “modularity” or “topological change” or
“topological pattern” or “functional connectivity” or “effective
connectivity” or “brain connectivity” or “connectivity analysis”
or “brain network” or “network connectivity” or “functional
network”) and (“fMRI” or “functional MRI” or “functional
magnetic resonance imaging”). These criteria resulted in a
narrowing of the focus to identify the population addressing the
research questions.

Eligibility Criteria
Published original articles with the following features were
included in the current study: (a) be written in English; (b) be
peer reviewed; (c) identify, describe, or use empirical and/or
modeled graph-based methods to quantify and/or compare
connectivity patterns in the human brain network; (d) be
applied to fMRI data. Other exclusion criteria were: (a) book
chapters; (b) papers which upon review were not related to the
research questions; (c) opinions, viewpoints, anecdotes, letters,
and editorials. Two authors (FVF and WK) independently
screened the titles and abstracts to find the relevant papers based
on the inclusion and exclusion criteria and any discrepancies
were resolved through discussion.

Quality Assessment
Risk of bias in individual studies was assessed by two
authors independently (FVF and WK) using the Cochrane
Collaboration’s tool (Higgins et al., 2011). The following
domains were evaluated: random sequence generation,
allocation concealment, blinding of participants, blinding
of outcome assessment, incomplete outcome data, selective
outcome reporting. To evaluate the quality of evidence across
studies, we examined for lack of completeness (publication bias)
and missing data from the included studies (selective reporting
bias). The risk of missing studies is heavily dependent on the
selected keywords and the limitations of the applied search
engines. To mitigate this risk, a well-known and heavily cited
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set of papers was employed to construct the keyword search
list in an iterative process. Accordingly, a Pareto analysis of the
top keywords was conducted to assess the quality of selected
keywords in search strategy.

An important concern to the validity of evidence across
studies is the issue of limited attention span (i.e., the length
of time a person can concentrate on a task without becoming
distracted) for reviewing the sheer volume of identified scientific
articles. To put it another way, the likelihood of erroneously
omitting relevant articles as well as information from the
included studies increases due to the repetitive and monotonous
nature of reviewing a large number of papers for content under
perceived and/or real-time constraints. Reduction of this risk was
achieved by breaking up the articles into controllable, discrete
quantities of 20–40 articles depending on article length, and
providing sufficient time separation between reviews. Moreover,
to prevent the formation of taxonomy with insufficient breadth
when categorizing selected articles, an iterative content analysis
method was employed to assure adequate classes for every new
concept encountered in the literature review.

THEORETICAL BACKGROUND:
CONNECTIVITY PATTERNS USING FMRI

Brain connectivity investigations using fMRI time-series were
initiated in the mid-1990s and provided a new tool for
researchers, especially neuroscientists, to study the human brain
network with high precision. Computational methods available
for brain connectivity are divided into two general categories:
functional connectivity and effective connectivity (Friston, 1994,
2011). Briefly, functional connectivity provides information
about the statistical dependencies or temporal correlations
between spatially remote neurophysiological events, whereas
effective connectivity is concerned with the directed influence
of brain regions on each other (Friston, 2011). In the following,
we will review the computational methods that are presented
in the literature for investigating both types of connectivity
with a greater focus on graph theoretical approaches in separate
sections (Figure 1).

Functional Connectivity
Functional connectivity refers to the temporal correlations
between BOLD signals from spatially remote brain regions
(Friston et al., 1993; Lee et al., 2003). Functional connectivity
methods in fMRI studies are broadly divided into model-
based (e.g., cross-correlation, coherence analysis, and statistical
parametric mapping) and model-free (e.g., decomposition-based
analysis, clustering, and mutual information) groups.

Model-Based Methods
Model-based methods typically identify brain connectivity
networks by selecting one or more “seed” regions and then
determining whether there is a linear link between seed regions
and other regions using predefined criteria (Li et al., 2009a).
Despite their widespread use and simple interpretation in
identifying functional connectivity, the requirement for prior
knowledge (particularly in rs-fMRI), dependency on the seed

selection, and the inability to detect non-linear forms of
interaction, restrict the discovery of all plausible functional
architectures (Farahani and Karwowski, 2018).

Cross-correlation and coherence
Cross-correlation analysis is the most traditional method for
testing functional connectivity, which is defined bymeasuring the
correlation between the BOLD signals of any two brain regions
(Cao and Worsley, 1999). The computational complexity of this
method is extremely high when calculating the correlation of two
series at all lags (Cecchi et al., 2007). Fortunately, a large number
of fMRI studies have overcome this drawback by computing only
the correlation with zero lag due to the short duration of the
hemodynamic response of blood (Friston et al., 1994b; Saad et al.,
2001). Moreover, correlations are sensitive to the shape of the
hemodynamic response function (HRF), which causes variations
across different individuals and different brain areas (Miezin
et al., 2000; Lee et al., 2001). Furthermore, a high correlation
may be observed among regions that practically have no blood
flow fluctuations. Uncontrolled physiological noise in the brain
(e.g., from cardiac and respiratory variations) can also result in
high correlations between brain regions (Friston et al., 1994a).
To address these problems, Sun et al. (2004) suggested a new
measure, termed coherence, which is the spectral representation
of correlation in the frequency domain.

Statistical parametric mapping (SPM)
SPM is another model-based approach used to detect region-
specific effects (e.g., brain activation patterns) in neuroimaging
data, such as fMRI and PET, using a combination of the general
linear model (GLM) and Gaussian random field (GRF) (Friston
et al., 1991). The GLM helps estimate the parameters describing
the spatially continuous data by performing a univariate test
statistic on each voxel. GRF theory is applied to address the
multiple comparisons problem for continuous data (i.e., images)
when making statistical inferences over a volume of the brain, an
approach similar to the Bonferroni correction for the analysis of
discrete data (Worsley et al., 1992).

Model-Free Methods
In contrast to seeds-based methods, model-free methods need
no seeds selection. Also, model-free methods may be beneficial
in studies where there are no temporal or spatial patterns,
as well as in quantifying non-linear neuronal interactions
(Farahani and Karwowski, 2018).

Decomposition-based analysis
PCA can express the fMRI data with a linear combination
of orthogonal contributors that have the greatest impact on
the data variance. Each contributor contains a pattern of time
variability (or a principal component) multiplied by a pattern
of spatial variability (or an eigen map). The created eigen maps
reflect the connectivity architecture of the brain (Baumgartner
et al., 2000; Worsley et al., 2005). Despite the ability to explore
the whole-brain connectivity, PCA fails to detect activations
when the contrast-to-noise ratio is low (Baumgartner et al.,
2000). Also, how to select the optimal number of components
has become an open question. Thus, PCA commonly serves
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FIGURE 1 | Taxonomy of existing methods for modeling functional and effective connectivity patterns using fMRI. Each of the identified methods can be represented

in terms of a graph, where the nodes correspond to cortical or subcortical regions and the edges represent (directed or undirected) connections (Bullmore and

Sporns, 2012); thereby all of them can be further examined with graph-theoretic measures.

as a preprocessing step in fMRI studies through dimension
reduction (Li et al., 2009a). Another decomposition-based
method, called independent component analysis (ICA), attracted
the attention of researchers in rs-fMRI studies. The major
difference between ICA and PCA is that the components in
ICA should be as independent as possible (Comon, 1994;
Hyvärinen and Oja, 2000). Note that a violation of component
independence would reduce the efficiency of ICA (Calhoun et al.,
2001). Furthermore, finding the optimal number of independent
components is controversial because choosing a small number
of components can have a significant effect on ICA results
(Ma et al., 2007), particularly when used for decoding purposes
(Douglas et al., 2011, 2013). Finally, ICA cannot discriminate
between signals of interest and signals of no interest (e.g.,
physiological noise, unexplained signal variations), leading to
overfitting and invalid assessment of statistical significance. To
address this pitfall, Beckmann and Smith (2004) proposed a
probabilistic ICA that allows for non-square mixing when there
is Gaussian noise.

Clustering
The primary goal of clustering algorithms is to group voxels
or regions of interest into different clusters based on the
similarity between their BOLD time courses (Golay et al.,
1998). Hierarchical clustering, k-means, fuzzy clustering (fuzzy
c-means), self-organizing maps, graph-based, and bootstrap
analysis are themost well-known algorithms used in fMRI studies
(Chuang et al., 1999; Ngan and Hu, 1999; Cordes et al., 2002;
Golland et al., 2008; van den Heuvel et al., 2008a; Bellec et al.,
2010; Lee et al., 2012). Among these methods, the largest volume
of studies utilizes hierarchical and fuzzy clustering. Hierarchical
clustering seeks to construct a hierarchy of clusters based on an
agglomerative or divisive strategy (Rokach and Maimon, 2005).
Although this method exhibits good efficacy in the presence of
respiratory or cardiac noise, its high computational complexity is
a serious limitation when examining the whole brain connectivity
(Cordes et al., 2002). Fuzzy c-means (FCM) is a method in
which each data point has a membership value to each cluster,
rather than entirely belonging to one cluster as k-means. This
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algorithm performs optimization by updating memberships and
cluster centers until convergence (Lee et al., 2012; Lahijanian
et al., 2016). It’s worth noting that, given the non-Euclidean
nature of MRI data, the use of Euclidean distance in FCM-
based algorithms may lead to an invalid result (Farahani et al.,
2015, 2018). van den Heuvel and Hulshoff Pol (2010) compared
the results of clustering algorithms to those of decomposition-
based methods and reported a high level of overlap. Future
studies may, therefore, pay more attention to these algorithms
and, by eliminating the above issues, achieve more acceptable
performance in human neuroscience.

Mutual information (MI)
MI is an information theoretic concept that quantifies the
shared information (undirected) between two random variables
(Grassberger et al., 1991; Kraskov et al., 2004). Equivalently,
the MI is a model-free technique that does not require any
a priori assumptions about the connectivity patterns among
variables, thus, it can be applied to detect both linear and non-
linear correlations (Wilmer et al., 2012). Tsai et al. (1999) were
among the first to present a theoretical framework for using MI
to calculate the fMRI activation map. To further explore the
strengths and pitfalls of this method in comparison to other
functional connectivity measures, refer to Wang et al. (2014a)
and Bastos and Schoffelen (2016).

Effective Connectivity
The primary goal of effective connectivity analysis is to assess
causal interactions between neuronal units of the brain network
(Friston, 1994). Studies in this area help researchers better
understand the mechanisms underlying neuronal dynamics (Wu
et al., 2014; Farahani and Karwowski, 2018). In the following, we
review the existing effective connectivity methods with their pros
and cons in greater detail.

Model-Based Methods
Granger causality (Granger, 1969) is the most traditional model-
based method for directional interactions that can be easily
implemented. However, Granger causality appears to encounter
difficulties when applied to fMRI data due to the underlying
assumptions in its modeling (Wen et al., 2013; Dang et al.,
2017). Two other model-based methods for analyzing effective
connectivity are dynamic causal modeling (Friston et al., 2003)
and structural equations modeling (McIntosh and Gonzalez-
Lima, 1994). Despite the coherent interpretations provided by
these methods, they are highly dependent on prior knowledge,
so their application in analysis of rs-fMRI data is limited
(Fox and Raichle, 2007).

Granger casualty (GC)
The core idea behind GC is that X “Granger-causes” Y if Y can
be better predicted using the histories of both X and Y than the
past of Y alone (Granger, 1969). Accordingly, past data from
one brain region can help estimate the current state in another
region. Due to the time mismatch between sampling interval and
neural events, the causality method cannot be applied directly
to the fMRI signals because it leads to the prediction of causal

relationships in BOLD signals rather than neuronal responses
(Smith et al., 2011, 2012). To tackle this issue, GC analysis
is typically performed by fitting a linear vector autoregressive
(VAR) to the time series (Seth, 2010; Friston et al., 2013; Seth
et al., 2015). However, linear methods are not suitable for testing
GC in higher moments (e.g., the variance). Non-linear and non-
parametric models are used to solve this problem (Dhamala et al.,
2008; Roebroeck et al., 2011). Wen et al. (2013) pointed out that
several factors may hamper the neural interpretability of GC,
such as low sampling rates (Lin et al., 2014), latency mismatches
in HRF across distinct brain regions, and the presence of noise.
Their findings reflect that GC is a viable method for analyzing
fMRI signals when associated confounds are controlled.

Dynamic causal modeling (DCM)
DCM is based on a general bilinear state equation that quantifies
how variations in neural activity in one node are affected by
the activation in another node under predefined stimuli (Friston
et al., 2003; Stephan et al., 2010). This equation involves a variety
of information including the coupling between brain regions,
changes in the coupling strength as a result of experimental
conditions, and the direct effects on a region (Friston, 2009).
DCM provides a powerful statistical platform that estimates
the experimental modulation of both intrinsic and extrinsic
connections in the brain, and the Bayesian model comparison
is executed to choose the best-fitted model (Goldenberg and
Galván, 2015). Perhaps the biggest disadvantage of DCM is that
it is not exploratory and requires prior knowledge about the
hypotheses andmodel specification to be implemented. However,
a recent trend has emerged for comparing numerous models in
a more exploratory manner using a post hoc analysis, wherein
only the largest model is inverted while all of the reduced models
would be searched quickly (Friston et al., 2011). Friston et al.
pointed out that GC and DCM play complementary roles in
analyzing the causal interactions (Friston et al., 2013). In fact, GC
can be used generically to any specified time series to identify the
coupling between neuronal units, making helpful insights into
the dynamic behavior of the human brain in different situations.
One might then continue effective connectivity analyses in a
hypothesis-driven manner to obtain a further interpretation of
the neuronal interactions using DCM (Daunizeau et al., 2011).
Notably, although both build upon model selection, they have
a fundamental difference. Model selection in DCM is based on
a direct comparison between all models (Penny, 2012), whereas
in GC this involves testing for the presence of GC followed
by selecting the VAR model order using Akaike or Bayesian
information criteria (Bressler and Seth, 2011).

Model-Free Methods
Past efforts to detect effective connectivity mostly relied on
model-based methods such as GC or DCM. Model-free methods
including probabilistic Bayesian networks, Markov models, and
transfer entropy have been developed to determine non-linear
forms of directed interactions. These methods do not require
a priori assumptions on connectivity patterns due to their
exploratory nature (Ramsey et al., 2010), but lagged interactions
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between fMRI time-courses may be a common shortcoming for
most of them (Dang et al., 2017).

Bayesian network (BN)
BN is a probabilistic model well suited for representing the
conditional dependencies over a set of random variables through
a directed acyclic graph (DAG) (Friedman et al., 1997). Each edge
indicates a dependency between two variables (nodes), where the
lack of connection between any pair of nodes reflects conditional
independence. Each node has a probability distribution: In
root nodes, this is prior probability, while in child nodes this
is the conditional probability (Das, 2004; Daly et al., 2011).
Gaussian BN (Li et al., 2009b) and discrete dynamic BN (DBN)
(Rajapakse and Zhou, 2007; Zeng and Ji, 2010) are the most
commonly used techniques in this area. Due to the static
nature of Gaussian BNs, they are unable to explicitly model the
temporal interactions between multiple processes in different
parts of the brain (Rajapakse and Zhou, 2007). Compared with
Gaussian BN, discrete DBN is not limited by linear assumptions,
and it can model temporal processes via a first-order Markov
chain (Rajapakse and Zhou, 2007). However, the presence of
multinomial distribution in the nodes of discrete DBN causes
discretization of the data, leading to a huge loss of information.
To overcome the primary limitations of both methods, Wu et al.
(2014) proposed a method called Gaussian DBN based on a
first-order linear dynamic system.

Transfer entropy (TE)
TE is a non-parametric approach measuring the transfer of
information between joint processes based on information theory
(Schreiber, 2000). Because of its non-linear nature, this method
is able to properly detect directional connectivity even if there is
a wide distribution of interaction delays between the two fMRI
signals (Vicente et al., 2011; Sharaev et al., 2016). Although TE
and GC are relatively equivalent for Gaussian variables (Barnett
and Seth, 2009), TE needs much less computational time than
GC for high model orders and greater numbers of nodes. In
addition, TE does not assume any particular model as underlying
the interactions, therefore, its sensitivity to all order correlations
becomes a privilege for exploratory analyzes over GC or other
model-based methods (Vicente et al., 2011; Montalto et al.,
2014). However, contrary to the model-based methods, it is
more difficult to interpret this measure in functional connectivity
analysis due to its generality (Bastos and Schoffelen, 2016).

Graph Theory: Analysis of the Brain as a
Large, Complex Network
The first application of graph theory and network analysis can be
traced back to 1736 when Leonhard Euler solved the Königsberg
Bridge Problem (Euler, 1736). In this regard, a graph consists of a
finite set of vertices (or nodes) that are connected by links called
edges (or arcs). Following the emergence of promising results in
electrical circuits and chemical structures in its early applications,
graph theory has now become influential in addressing a large
number of practical problems in other disciplines, such as
transportation systems, social networks, big data environments,
the internet of things, electrical power infrastructures, and

FIGURE 2 | A network can be designed as binary (A) or weighted (B) graphs,

and can represent the direction of causal effects (C,D) among different regions.

biological neural networks (Watts and Strogatz, 1998; Boccaletti
et al., 2006; Schweitzer et al., 2009).

The turning point of the complex brain network studies using
graph theory goes back to the introduction of the “Human
Connectome” (Sporns et al., 2005). In graph theory, an N×N
adjacency matrix (also called a connection matrix) with the
elements of zero or non-zero indicates the absence or presence
of a relationship between the vertices of a network with N nodes.
By extracting different metrics from this matrix, one can obtain a
topological analysis of the desired graph (e.g., the human brain
network). A brain graph may be classified as either directed
or undirected (Figure 2) based on whether the links between
vertices carry directional information (e.g., causal interaction).
Up to now, most human brain investigations have been devoted
to the undirected networks because of the technical constraints
surrounding the inference of directional networks (Liao et al.,
2017). A brain graph can also be categorized as either weighted or
binary (Figure 2) based onwhether the links between vertices can
take different values. For instance, in a white matter anatomical
network taken by diffusion MRI, we can obtain a weighted
network using various information, such as fiber number,
fiber length, and fractional anisotropy (Fornito et al., 2013;
Zhong et al., 2015).

In 1998, Watts and Strogatz showed that many social,
biological, and geoscience-based networks have a very striking
organization, called “small-world” architecture, that makes them
act as regular networks, while they occasionally experience
random activity (Watts and Strogatz, 1998; Figure 4C). Small-
world networks represent the shortest path between each pair
of nodes in the network using the minimum number of edges.
In small-world networks, the clustering coefficient (also referred
to as transitivity) is high, and the average path length is short.
These two characteristics are the result of a natural process
to satisfy the balance between minimizing the resource cost
and maximizing the flow of information among the network
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components (Bassett and Bullmore, 2006; Meunier et al., 2010;
Bullmore and Sporns, 2012; Chen et al., 2013; Samu et al., 2014).
Liao et al. (2017) explained in detail why the human brain
network is expected to have a small-world architecture. The
metabolic and wiring costs in connections among anatomically
adjacent brain areas are lower than those among distant brain
regions (Bullmore and Sporns, 2012). Theoretical examinations
have pointed out that the brain regions are more likely to interact
with their neighboring areas to reduce the whole metabolic costs,
while at the same time they need to have a small number of
long-distance connections among themselves to accelerate data
transmission (Sik et al., 1995; Karbowski, 2001; Bullmore and
Sporns, 2012; Vertes et al., 2012; Chen et al., 2013). In agreement
with theoretical studies, empirical investigations have also proved
the dispersion of a few long connections among a plethora of
short connections in the human brain network (Salvador et al.,
2005; Hagmann et al., 2007; He et al., 2007).

The main capability of graph theory in neuroscience studies
is usually unveiled after the construction of a functional brain
network. Several measures can be used to assess the topological
patterns of different networks such as clustering coefficient,
modularity, average path, small-worldness, assortativity, and
node centrality, which have been described in detail (Sporns et al.,
2004; van den Heuvel et al., 2008b). Typically, one cannot claim
which measures are more suitable for studying the brain network
(Bullmore and Sporns, 2009), but given the complex structure of
the human brain, measures that can represent the small-world
properties of the brain network are of great importance (He and
Evans, 2010; Liao et al., 2017). This critical property arises with
the help of hubs (i.e., highly connected nodes in a network),
causing the creation of local clusters (Bullmore and Sporns, 2009;
Jain, 2011). In the following, we discuss how to build a brain
connectivity network using fMRI data and then explain the main
measures that can be extracted from the brain network with the
help of graph theory.

Construction of Functional Brain Network Using fMRI
In Figure 3, we illustrate the main steps used to extract a
complex network from fMRI in graph theoretical analysis.
Initially, a number of pre-processing steps including slice timing
correction, realignment, image co-registration, normalization
based on segmentation, and spatial smoothing, are performed
on the acquired fMRI data. Note that, the choice and ordering
of the preprocessing steps may affect the extent of final graph
measures (Gargouri et al., 2018). Then, to explore the large-
scale brain network, an appropriate parcellation scheme such
as anatomical automatic labeling atlas is applied to divide the
entire brain into several cortical and subcortical anatomical units
(Tzourio-Mazoyer et al., 2002). This is followed by extracting
the time series of each parcel by averaging the time courses
of all voxels within that certain region. Next, one of the
connectivity methods reviewed in the previous parts, such
as cross-correlation, is conducted to determine the pairwise
associations between the time series of brain parcels, representing
the functional connectivity network (i.e., correlation matrix).
A binary connectivity matrix (i.e., adjacency matrix) is then
obtained by thresholding the values of the correlation matrix.

Finally, key topological properties that characterize the local
and global architecture of the brain network connectivity can
be obtained using the Brain Connectivity Toolbox (http://www.
brain-connectivity-toolbox.net/; Rubinov and Sporns, 2010).
These characteristics are explained in the following.

Computation of Graph Measures
In this subsection, the most commonly used graph metrics for
characterizing the functional brain network are described in two
main groups: global and local properties. Most of these criteria
are applicable to any type of binary, weighted, and directed
networks. In addition to visualizing these properties in Figure 4

(global metrics) and Figure 5 (local metrics), respectively, their
corresponding formulas can be accessed on https://sites.google.
com/site/bctnet/measures.

Global properties
Global measures are primarily aimed at revealing: (a) functional
segregation and (b) functional integration of information flows
within the brain network; (c) small-worldness; (d) network
resilience against failure (Rubinov and Sporns, 2010; Sporns,
2013a). Segregation refers to the degree to which network
elements form specialized communities, and integration provides
insight into the efficiency of global information communication
or the ability to combine distributed information (Watts and
Strogatz, 1998). Clustering coefficients and modularity are
the most common metrics that quantify the properties of
topological segregation in brain networks (Newman, 2004;
Boccaletti et al., 2006; Rubinov and Sporns, 2010; Figure 4A).
In brain networks, anatomically adjacent or functionally
connected areas are generally considered as modules. Various
studies have demonstrated that networks based on modular
structure generally reflect the properties of small-world networks
(Bullmore and Sporns, 2009; Fortunato, 2010; He and Evans,
2010; Meunier et al., 2010; Sporns and Betzel, 2016). On the
other side, functional integration is typically measured by the
characteristic path length that quantifies the ability for global
information integration (Boccaletti et al., 2006; Rubinov and
Sporns, 2010; Figure 4B). The small-world property displays an
optimal balance between network segregation and integration,
and is dedicated to graphs in which most nodes are not neighbors
but can be reached by any other node with the minimum possible
path length (Achard, 2006; Humphries et al., 2006; Humphries
andGurney, 2008; Figure 4C). Eventually, assortativity quantifies
network resilience against random or deliberate damages in the
main components, which is one of the most significant issues in
network science (Noldus and Van Mieghem, 2014; Figure 4D).

Local properties
In network science, hubs refer to nodes with a high nodal
centrality and thus profoundly affect the network topology.
Hub nodes of a network are divided into two categories, the
connector or provincial, based on the high or low participation
coefficient defined for them, respectively. Connector hubs tend
to interconnect nodes between different modules, while the
provincial hubs are responsible for linking nodes in the same
module (He et al., 2009; Power et al., 2013; Figure 5A).
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FIGURE 3 | Schematic representation of brain network construction and graph theoretical analysis using fMRI data. After processing (B) the raw fMRI data (A) and

division of the brain into different parcels (C), several time courses are extracted from each region (D) so that they can create the correlation matrix (E). To reduce the

complexity and enhance the visual understanding, the binary correlation matrix (F), and the corresponding functional brain network (G) are constructed, respectively.

Eventually, by quantifying a set of topological measures, graph analysis is performed on the brain’s connectivity network (H).

The easiest way to detect hubs in a network is to calculate
the nodal degree, i.e., counting the edges connected to each
node. Also, plotting the degree distribution P(k) of a certain
network provides valuable information about the presence
of hubs in it, e.g., the existence of several high degree
nodes in scale-free networks is accompanied by power-law
distribution (Barabási and Albert, 1999). Furthermore, other
commonly used indexes for measuring the nodal centrality
include betweenness, closeness, and eigenvector, participation
coefficient, and PageRank (Boccaletti et al., 2006; Rubinov and
Sporns, 2010; Zuo et al., 2012; Figure 5B).

RESULTS

Literature Search
Following the PRISMA guidelines (Moher et al., 2010), a
summary of the identification, screening, and selection of
studies for inclusion in this review is displayed in Figure 6. At
the first step, 1,193 papers were identified. Next, 579 papers
remained after removing duplicates. Papers published before
2005 accounted for only 5% of all papers, reflecting the novelty of
the terminology and the research area. In the third step, relevant
scientific articles were selected from the remaining 579 papers
using a formal abstract screening process that incorporated pre-
determined inclusion and exclusion criteria. Inclusion criteria at
this step required the research to: (a) be written in English; (b)

be peer reviewed; (c) identify, describe, or use empirical and/or
modeled graph-based methods to quantify and/or compare
connectivity patterns in the human brain network; (d) be
applied to fMRI data. Other exclusion criteria were: (a) book
chapters; (b) papers which upon review were not related to the
research questions; (c) opinions, viewpoints, anecdotes, letters,
and editorials. Application of inclusion and exclusion criteria at
this step yielded 202 eligible articles (roughly 35% of the original
papers). At the fourth step, the full text of these 202 articles
were studied in detail to confirm that they met same criteria as
the third step. After the fourth step, 163 publications remained
for review.

Study Characteristics
Sample size across studies ranged from 5 to 763 participants. The
mean, mode, median, and standard deviation for the participants
in all the study samples were 116.73, 40, 60, and 158.87,
respectively. The included studies were published from 1998
to 2018 and organized into three taxonomies (Figure 7). The
first group deals with the topological concepts of graph theory
for the discovery of the brain as a large and complex network,
which account for 34% of the selected articles. Then, papers that
have applied graph theory in terms of human cognition and
behavior for quantifying or comparing connectivity patterns in
the brain network have been considered, accounting for 26%
of the selected articles. Finally, applications of graph theory
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FIGURE 4 | Summary of global graph measures. (A) Segregation measures include clustering coefficient, which quantify how much neighbors of a given node are

interconnected and measures the local cliquishness (i.e., the extent to which the neighbors of a node can build a complete graph); modularity, which is related to

clusters of nodes, called modules, that have dense interconnectivity within clusters but sparse connections between nodes in different clusters. On the one hand,

dense communications within a certain module increase the local clustering and, consequently, enhance the efficiency of information transmission in the given

module. On the other hand, a few connections between different modules integrate the global information flow, which is associated with a reduction in the average

path length in the graph (B) Integration measure include characteristic path length, which measures the potential for information transmission, determined as the

average shortest path length across all pairs of nodes. (C) A regular network (left) displays a high clustering coefficient and a long average path length, while a random

network (right) displays a low clustering coefficient and a short average path length. A small-world network (middle) illustrates an intermediate balance between regular

and random networks (i.e., they consist of many short-range links alongside a few long-range links), reflecting a high clustering coefficient and a short path length. (D)

The assortativity index measures the extent to which a network can resist failures in its main components (i.e., its vertices and edges). Notably, communication

between hubs in assortative networks leads to covering each other’s activities when a particular hub crashes, but the performance in disassortative networks will drop

sharply due to the presence of vulnerable hubs.

in mental disorders were reported, which account for 40% of
the selected papers. In particular, the detailed frequency and
percentage of the referenced papers in the last two categories are
shown, separately.

Quality Assessment
The Cochrane collaboration’s tool (Higgins et al., 2011) was
used to assess the risk of bias in each trial (Figure 8). The
articles were categorized as: (a) low risk of bias, (b) high risk
of bias, or (c) unclear risk of bias for each domain. Using
Cochrane collaboration we judged most domains to be unclear
or not reported. Eventually, the overall quality of the studies was
categorized into weak, fair, or good, if <3, 3, or≥4 domains were
rated as low risk, respectively. Among 163 studies included in the
systematic review, 52 were categorized as good quality, 39 were
fair quality, and 72 were low quality.

General Overview
In this part, a general overview of the selected papers is presented
in terms of publication trend, keyword analysis, and frequency

of authors. Such findings provide a novel perspective on the
evolution of computational methods for modeling the brain
connectivity patterns and the importance of graph theory among
them, addressing research questions 1, 2, and 3.

To observe the evolution of the theme, Figure 9 displays
the number of reviewed publications, year by year. This
figure illustrates the researchers’ special attention to human
connectome studies, especially the emerging role of graph
analysis in topological explorations of the complex brain
connections since 2009. Most articles are concentrated between
2009 and 2018 (92% of the selected publications), which is
expected to increase dramatically in the next years. Interestingly,
the Human Connectome Project (HCP) was launched in 2009
with the National Institutes of Health sponsorship, which is in
line with these findings (Nih.gov., 2009).

Pareto analysis of the top keywords is shown in Figure 10.
Obviously, the words “graph theory,” “fMRI,” “resting-state,”
“functional connectivity,” and “small-world” were among the
most used keywords in the reviewed papers (50% of the listed
keywords). By this finding, it can be interpreted that those
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FIGURE 5 | Basic concept of network centralities. (A) Hubs (connector or provincial) refer to nodes with a high nodal centrality, which can be identified using different

measures. (B) The degree centrality is defined as the number of node’s neighbors. The betweenness centrality measures the node’s role in acting as a bridge between

separate clusters by computing the ratio of all shortest paths in the network that contain a given node. The closeness centrality quantifies how fast a given node in a

connected graph can access all other nodes, hence the more central a node is, the closer it is to all other nodes. The eigenvector centrality is a self-referential

measure of centrality that considers the quality of a link, so that being connected to a central node increases one’s centrality in turn; the red colored node is more

central than the gray colored node, although their degrees are equal. The participation coefficient of a node represents the distribution of its connections among

separate modules. PageRank is a variant of eigenvector centrality, used by Google Search to determine a page’s importance; the PageRank of an undirected graph is

statistically similar to the degree centrality, but they are generally distinct. Note that the size of the nodes in all cases is proportional to the node degree, and the red

nodes (except in the eigenvalue centrality) are the most central with respect to the corresponding definition of centrality, even though their degree are low.

FIGURE 6 | Flow diagram of the methodology and selection processes used in this review. It follows the guidelines of PRISMA (Moher et al., 2010).
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FIGURE 7 | Categorization of included studies.

FIGURE 8 | Assessing the risk of bias using the Cochrane collaboration’s tool.

fMRI studies that have benefited from graph theory have: (a)
been mostly carried out during resting-state than experimental
task, which is in line with the HPC claim (Smith et al., 2013);
(b) concentrated more on functional connectivity than effective
connectivity; (c) considered a pivotal role for the small-world
phenomenon in constructing the human brain architecture.

Figure 11 displays a reference analysis through the sample.
The most cited authors by the articles in our sample were
Olaf Sporns, Karl Friston, Yong He, and Edward T Bullmore,
with 17, 15, 14, and 13 references, respectively. Unsurprisingly,
Sporns and Bullmore stand out as two of the pioneers of the
network neuroscience and connectomics. It was through the
study of Bullmore and Sporns (2009), entitled “Complex brain
networks: graph theoretical analysis of structural and functional

systems,” that complex analysis of human brain connectivity
became widespread in the world.

DISCUSSION

Deeper discussions about the leading applications of graph
theory in cognitive and behavioral topics, as well as different
neurological and psychiatric illnesses are provided in two
separate subsections. Considering the weaknesses and strengths
of these implications provides an insight into how to utilize
graph measures to make neurobiological inferences regarding
the mechanisms underlying neuronal dynamics, in line with
questions 4 and 5 of the research.
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FIGURE 9 | Selected papers per year (publishing trend).

FIGURE 10 | Pareto analysis of top keywords. fMRI, Functional magnetic resonance imaging; DMN, default mode network; ADHD, Attention-deficit/hyperactivity

disorder; MCI, Mild cognitive impairment; SVM, Support vector machine; ICA independent component analysis.

Cognitive and Behavioral Applications of
Graph Theory
Recent advances in neuroimaging modalities combined with
graph theoretical approaches have opened new avenues toward
studying the neural mechanisms underlying human cognition
and behavior from the view of interregional brain interactions
(Park and Friston, 2013; Pessoa, 2014; Sporns, 2014; Medaglia
et al., 2015; Petersen and Sporns, 2015; Kriegeskorte and
Douglas, 2018). Cognition involves a range of neuronal actions
for knowledge assimilation and integration through thinking,
experience, and the senses. Cognition contains manifestations of

attention, comprehension, memory, decision making, reasoning,
judgment, and executive functions (Mesulam, 1998). In the
following, some of the applications of graph theory are presented
in revealing human behavioral and cognitive performance, as
well as the role of different large-scale brain networks in
various conditions.

Human Intelligence and Brain Topology
Human intelligence refers to the marvelous and subtle function
of human cognition, which is generally characterized by
complex reasoning, conceptual thinking, and learning swiftly
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FIGURE 11 | Frequency of the authors in the references.

from experiences (Guilford, 1967). An early review of brain
imaging studies has linked human intelligence to the structure
and function of spatially distributed regions (Jung and Haier,
2007), indicating the possible importance of interactions between
several regions, particularly in the frontal and parietal areas.
Recently, many studies have focused on the relationship between
general intellectual ability and small-world characteristics
in intrinsic functional networks for describing individual
differences in general intelligence (van den Heuvel et al., 2009;
Langer et al., 2012; Hilger et al., 2017a). According to these
studies, better intellectual performance was associated with
shorter characteristic path length, the nodal centrality of hub
regions in the salience network, as well as the efficiency of
functional integration between the frontal and parietal areas
(Jung and Haier, 2007). Through an analysis of rs-fMRI data,
Wu et al. (2013) illustrated that intelligence quotient is positively
correlated with nodal properties in the attention-related network
and is negatively correlated with nodal properties in the default
mode, emotion, and language systems. However, although these
findings suggest that general intelligence is profoundly affected
by the functional integration of spatially distributed regions,
they could not provide sufficient information as to whether
and how human intellectual performance is associated with
the brain’s modular architecture. To address this issue, Hilger
et al. (2017b) proposed that intelligence involves the nodal
characteristics of functional connectivity within and between
different brain modules (especially in the parietal and frontal
areas), not global modularity properties or whole-brain ratios of
distinct node types.

Topological Changes Across the Lifespan
The human brain goes through remarkable functional changes
during the lifespan, from birth to adulthood. Modeling the
lifetime trajectory of the functional connectome, multiple studies

detected striking age-related alterations in highly connected hub
areas mainly within the default mode, attentional, sensorimotor,
and visual regions via rs-fMRI (Meunier et al., 2009; Fransson
et al., 2011; Hwang et al., 2013; Wu et al., 2013; Betzel et al.,
2014; Cao et al., 2014b; Grayson and Fair, 2017; Finotelli et al.,
2018; Gozdas et al., 2018). Most of them also reported that
local efficiency and the rich club coefficient (a metric that
measures the extent to which well-connected nodes also connect
to each other) were incremental until adulthood in healthy
subjects and then dropped with aging, while global efficiency
remained almost unchanged over the lifetime regardless of the
early years after birth (Gao et al., 2011). Cao et al. (2014b) further
identified changes in the number and strength of connections
that were created to achieve an optimal balance between the
wiring costs and communication efficiency over the lifespan
(Bullmore and Sporns, 2012).

Moreover, inverse trajectories of change between long and
short connections suggest a continuous reorganization in the
functional brain network with aging, leading to significant
behavioral and cognitive differences throughout an individual’s
life. Regarding modularity, there are somewhat mixed findings.
Some have argued for little change in modularity during brain
development (Fair et al., 2009) and aging (Meunier et al., 2009),
while Cao et al. reported a linear downward trend (Cao et al.,
2014b). In this regard, combining other functional neuroimaging
techniques, as well as performing structure-function studies,
will help elucidate the neural substrates underlying cognitive
and behavioral differences during developmental stages
(Shah et al., 2018).

Working Memory Performance and Network

Efficiency
Working memory is a psychological construct for the temporary
storage and manipulation of the information required to
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perform intricate cognitive tasks such as reasoning and decision-
making (Diamond, 2013). Stanley et al. (2015) compared the
functionality of working memory between young and older
adults in an n-back experiment by quantifying the local and
global measures in their brain networks. They demonstrated that
lower local efficiency corresponds to the better performance of
working memory in both groups. In contrast, increasing global
efficiency has been correlated with high functionality in young
adults but with a slight deficiency in older adults. Seeking to
prove the right intraparietal sulcus as an area responsive to
manipulations of working memory load, Markett et al. (2018)
used rs-fMRI to show that centrality measures in this region
correlate inversely with working memory capacity. In another
fMRI study, Gong et al. (2016) analyzed how active learning from
action video games affected the neuroplasticity of the brain by
testing the integration of working memory- (central executive)
and attention-related (salience) neural networks. By assessing
the graph theoretical properties between advanced and amateur
players, they revealed that long-term playing would enhance the
functional integration within and between working memory and
attention systems.

Effect of Cognitive Loads on the Brain Modularity
In the last decade, studies on dynamic reconfiguration of human
brain topology during different cognitive tasks have attracted
widespread attention. Researchers believe that such functional
brain networks adapt flexibly to their cognitive demands while
preserving the modular structure (Bassett et al., 2011; Fornitoa
et al., 2012; Braun et al., 2015; Liang et al., 2016). In the course
of dynamic reorganization, the parietal and frontal brain regions
that hold several connector (inter-modular) hubs are discerned
to play crucial roles by regulating their brain-wide connections
(Cole et al., 2013; Braun et al., 2015). For instance, intensifying
cognitive loads during a working memory task is associated with
increased integration between different modules of the brain
network (Kitzbichler et al., 2011; Braun et al., 2015; Liang et al.,
2016). Furthermore, flexibility and the inter-modular integration
of frontal areas are associated with high performance on working
memory tasks (Braun et al., 2015).

Regarding mental state analysis, notable studies have
shown that modularity corresponds negatively to the level of
consciousness by comparing the functional brain network in
individuals who experienced non-rapid eye movement sleep and
those in wakefulness (Boly et al., 2012; Tagliazucchi et al., 2013).
The common point of all these findings is that an increased
cognitive load or consciousness level brings about greater global
integration of the neural networks (i.e., reducing the modularity
coefficient). However, further studies are needed to make this
claim more robust.

Role of the Default Mode Network in Behavioral

Performance
Comparing the brain topological alterations during a cognitive
task and resting-state using fMRI data helps identify areas that
affect human behavioral performance. Desalvo et al. (2014)
used a graph-based approach to explore variations in functional
brain organization during semantic decision making compared

with rest in healthy participants. They observed that differences
were generally associated with the language-related and DMN
regions. More importantly, they found greater intra-modular
communication in these regions during decision making (i.e., a
decrease in distributed connectivity), whereas the inter-modular
communication was stronger at rest.

Moreover, Lin et al. (2016) analyzed whether cognitive
behavior correlates with the functional connectivity of the DMN
in healthy subjects, both while at rest and during an attentional
task. Quantifying the static and dynamic nodal properties within
the DMN, they revealed the importance of the default network,
especially the posterior cingulate areas, on human cognitive
performance. Finally, Sadaghiani et al. (2015) investigated the
relationship between ongoing alterations in baseline connectivity
patterns and behavioral performance through a continuous
auditory detection task. Interestingly, their results indicated a
reduction in modularity (i.e., increasing integration efficiency)
before misses compared with hits and task-free rest, mostly in
the DMN areas and visual networks. These findings augment
our understanding about the key role of the DMN in behavioral
performance at rest and during a task; however, its association
with other brain regions in more complex cognitive tasks, such
as reasoning and executive functions, requires further studies.

Behavioral Performance in Natural Environments and

Everyday Settings
One of the fascinating areas of cognitive neuroscience in recent
years is neoroergonomics; that is to say, the behavioral analysis
of the human brain performance with regard to environments,
work, technology, and everyday settings (Parasuraman and
Rizzo, 2008). Qian et al. (2013) studied the topological changes
of the brain connectome during passive hyperthermia using rs-
fMRI data. Despite maintaining economic small-worldness in
both normal and hyperthermia conditions, the brain networks of
heat-exposed subjects exhibited decreased clustering coefficients,
as well as decreased local efficiency and small-worldness indices,
suggesting a tendency toward a random network. They also
conducted an attention network test (ANT). Their findings
were highly relevant to global measure alterations and pre-
frontal local efficiency, indicating behavioral disorders during
environmental heat exposure in executive attention but not in
alerting or orienting.

Furthermore, functional imaging analyses on mental fatigue
have indicated that declines in performance from fatigue are
associated with brain topological alterations such as a decrease in
small-world properties and global efficiency, as well as functional
changes in the fronto-parietal network and connected areas
in the thalamus and the striatum (Petruo et al., 2018). In
particular, graph-based investigations using fMRI data express
that long-range connectivity is changed when the effects of
fatigue appear (Sun et al., 2014, 2017). For instance, Sun et al.
(2017) studied the effects of a mid-task break on enhancing local
efficiency and reported no significant impact of rest breaks on
task performance. In general, such studies help to understand
the neural mechanisms of fatigue; thus, by adopting a suitable
recovery approach, one can try to improve human performance
during cognitive tasks.
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Disorganization of Brain Networks in
Neurological and Psychiatric Disorders
Disconnection in a brain made up of localized but linked
specialized regions results in functional impairment, associating
with atypical integration of distributed brain areas. Catani and
Ffytche (2005) elaborated the rises and fall of disconnection
syndromes and pointed out that many neurological disorders
can be explained via these syndromes, in line with the studies of
pioneers in neurology and psychiatry such asMeynert,Wernicke,
and Dejerine. Studies in the field of complex brain networks
have demonstrated that analyzing the network properties and
metrics derived from brain topology using rs-fMRI can help
neurologists distinguish patient groups from control subjects
in mental disorders (Bassett and Bullmore, 2009; Wang et al.,
2010; Stam, 2014; Zhou et al., 2017). In the following, several
studies that have used graph theory to investigate common
neurological disorders, comprising epilepsy, Alzheimer’s disease
(AD), multiple sclerosis (MS), autism spectrum disorder
(ASD), and attention-deficit/hyperactivity disorder (ADHD),
are discussed. However, other mental disorders were also
found in recent graph-based literature, including schizophrenia,
Parkinson’s disease, insomnia, major depression, obsessive
compulsive disorder (OCD), borderline personality disorder
(BPD), and bipolar disorder (Armstrong et al., 2016; Kambeitz
et al., 2016; Manelis et al., 2016; Xu et al., 2016; Algunaid et al.,
2018; Díez-cirarda et al., 2018; Li et al., 2018; Zhi et al., 2018), but
their contribution is negligible and more attention is required in
future research.

Epilepsy
Epilepsy is a chronic neurological disorder that is accompanied
by aberrations in brain activity, resulting in recurring seizures
and occasionally loss of consciousness (Hauser and Hesdorffer,
1990). Temporal lobe epilepsy (TLE) is the most prevalent form
of epilepsy with partial seizures (Bernhardt et al., 2015). In two
interesting rs-fMRI studies using network analysis, Výtvarová
et al. (2017) and Dong et al. (2016) described the contribution
of basal ganglia thalamocortical circuitry to the whole-brain
functional connectivity in TLE. Although the detection and
removal of epileptogenic lesions are necessary for the abolition
of seizures, many studies have shown that seizures in TLE
originate from abnormalities in the epileptogenic network rather
than from lesions (Rosenow and Lüders, 2001; Cooray et al.,
2015); thus, seizure recurrence is observed following ∼40% of
epilepsy surgeries within 5 years (Spencer, 2002). Therefore,
the application of graph theory, along with clinico-radiological
findings, helps to better understand the network mechanisms
behind a cognitive decline in focal epilepsies, particularly TLE,
and offers promising diagnostic biomarkers (Chiang and Haneef,
2014; Onias et al., 2014; Wang et al., 2014b; Pedersen et al., 2015;
Ridley et al., 2015; Iyer et al., 2018).

Vlooswijk et al. examined small-world properties in patients
with TLE using rs-fMRI (Vlooswijk et al., 2011). In contrast to
healthy subjects, they found a disruption of both local segregation
[opposed to Wang et al. (2014b)] and global integration in
patients with epilepsy. They confirmed the association between
the IQ score and information processing performance, whether

it is specialized or serial. The correlation between average
path length and intellectual capability has been indicated by
other experiments as well (van den Heuvel et al., 2009). To
conclude, these results support the hypothesis that localization-
related epilepsy leads to cognitive impairments by inducing
global changes in the brain network instead of a localized
disruption only.

Apart from TLE, other types of epilepsy such as childhood
absence epilepsy (CAE) and sleep-related hypermotor epilepsy
(SHE) have recently been investigated by researchers (Wang
et al., 2017; Evangelisti et al., 2018). CAE is a common generalized
epilepsy syndrome with a presumed genetic cause, characterized
by episodes of sudden, profound impairment of consciousness
without loss of body tone, appearing in otherwise healthy school-
aged children. Wang et al. (2017) compared centrality measures
between CAE patients and healthy controls and hypothesized
that hub nodes inside the DMN and thalamus in CAE patients
were clearly damaged. In other work, Evangelisti et al. (2018)
reported topological alterations mainly in basal ganglia and
limbic system in SHE patients.

Alzheimer’s Disease
The AD is a chronic and progressive neurodegenerative disorder
that leads to deficits in memory and cognitive brain functions
(Albert et al., 2011). The AD can be described as a disconnection
syndrome because of the altered structural and functional
connectivity architecture of the brain in those suffering from
this disease (Pievani et al., 2011). Aging is naturally associated
with some cognitive decline, but if this inefficiency is exacerbated
in an individual’s brain, one could experience mild cognitive
impairment (MCI), which is an intermediate phase between
age-related cognitive decline and dementia (Petersen, 2002).
Statistical surveys report that ∼15% of adults over 65 years old
experience MCI (amnestic MCI or non-amnestic MCI) and that
more than half of these cases convert to dementia in 5 years
(Farlow, 2009). Early detection of the AD in subjects with MCI
can prevent the progression of these impairments via disease-
modifying treatments (Allison et al., 2014). Fortunately, the
combination of graph theory and rs-fMRI has been able to act
as a disease biomarker and reveal large-scale disconnection that
is present before onset of AD symptoms (Wang et al., 2013; Brier
et al., 2014; Dai and He, 2014; Botha and Jones, 2018).

By examining the brain network characteristics on functional
connectivity, researchers concluded that individuals with AD
exhibited degeneration of specific brain hubs, reduced clustering
coefficients and path lengths very close to the values of random
networks (Supekar et al., 2008; Sanz-Arigita et al., 2010; Dai
et al., 2015; delEtoile and Adeli, 2017), similar to the results of
researchers who worked on other imaging modalities (de Haan
et al., 2009, 2012; Stam et al., 2009; Kim et al., 2015; Jalili, 2017).
Also, other studies revealed that cognitive impairment in the AD
was associated with a weakness in modular interconnectivity and
hubs destruction (Brier et al., 2014) and significant alterations
within the default network (Toussaint et al., 2014; Zhong et al.,
2014). These findings were in parallel with a global decrease in
long-distance functional connections especially between frontal
and caudal brain regions (Sanz-Arigita et al., 2010). On the whole,
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the degeneration and randomization of the brain functional
architecture in patients with AD indicates a great loss of global
information integration. These results are highly associated with
the anterior-posterior disconnection phenomenon and its role in
the AD.

Moreover, authors combined graph theoretical approaches
with advanced machine learning methods (here, support vector
machines) to explore functional brain network alterations and
classify individuals with AD using rs-fMRI (Khazaee et al., 2015,
2016; Hojjati et al., 2017). Further, by conducting statistical
analysis on the brain networks of individuals with MCI who
converted to AD (MCI converter) and those with stable MCI
(MCI non-converter), they identified areas underlying this
conversion (Hojjati et al., 2017). To sum up, these papers
highlighted the efficiency of combining graph theory and
machine learning for early detection of AD based on rs-fMRI
connectivity analysis.

Multiple Sclerosis
MS is a chronic, degenerative, and heterogeneous autoimmune
disease of the central nervous system, leading to physical, mental,
or psychiatric problems (Marrie, 2017). Functional recovery in
MS is achieved by repair of damage through remyelination
and functional reorganization, which are the striking hallmarks
of this disease (Filippi and Agosta, 2009). Most studies of
functional connectivity based on graph theory in MS include
analysis of rs-fMRI data (Gamboa et al., 2014). In one such
study, Schoonheim et al. (2014) sorted the brain regions of
interest based on their connectivity patterns using eigenvector
centrality mapping (ECM) and reported MS-related differences
for centrality in specific regions. As a result, decreased ECM
values in sensorimotor and ventral stream areas were associated
with clinical disability. In contrast, the thalamus and posterior
cingulate demonstrated increased centrality as well as higher
connectivity to regions with low centrality. To this end, the
authors suggested a rerouting of thalamic communications to
overcome the continuous inflammatory activity.

In two other studies, Shu et al. (2016) and Liu et al. (2017)
compared the topological changes of functional connectome in
individuals with clinically isolated syndrome (i.e., the earliest
stage of MS) and MS patients. Their graph-based results
indicated that disrupted network organization emerged in the
earliest stage of MS, with a lesser degree relative to MS.
Also, the extent of network alterations was correlated with
cognitive impairment and physical disability only in MS patients.
Importantly, Eijlers et al. (2017) attempted to demonstrate how
abnormalities in functional network hierarchy are related to
cognitive impairment in MS patients. Patients were classified
into three categories: cognitively impaired, mildly cognitively
impaired, and cognitively preserved. The centrality indices
indicated that the occipital, sensorimotor, and hippocampal areas
for all three patient groups became less central than healthy
controls, while cognitively impaired patients displayed extensive
centrality growth in areas making up the DMN compared to
other groups. Their results can be interpreted as reflecting
the hallmark alterations in functional networks of cognitively

impaired patients with increased relative importance (centrality)
of the DMN.

Taken together, major changes in topological parameters of
the brain network have been observed in the sensorimotor,
cingulate, and frontotemporal cortex, as well as in the thalamus
(Schoonheim et al., 2014, 2015; Tewarie et al., 2015; Faivre et al.,
2016; Rocca et al., 2016; Eijlers et al., 2017). The thalamus is often
known as a relay organ between several cortical and subcortical
regions, taking part in a large variety of neurological functions
such as motor, sensory, integrative, and higher cortical functions
(Minagar et al., 2013). Thus, thalamic degeneration may lead to
cognitive dysfunction and physical disability in patients with MS,
even in the early stages of the disease (Benedict et al., 2013).

Autism Spectrum Disorder
ASD is a complex neurodevelopmental disability characterized
by difficulties in communication and behavior (Roux et al.,
2012). The increasing prevalence of ASD over the last decade
has underlined the need for medical assessment to identify
the symptoms and signs of this disorder (Johnson and Myers,
2007). However, there are possible challenges in autism screening
because of the uncertainty associated with the symptoms and
neurobiological properties (Ecker et al., 2013; Mastrovito et al.,
2018). These properties lead to great heterogeneity in the subjects
and are the reason for the spectrum of the disease (Lenroot and
Yeung, 2013; Jeste and Geschwind, 2014).

The contribution of rs-fMRI studies based on graph theory
for autism exploration is considerable (Redcay et al., 2013;
Rudie et al., 2013; Di Martino et al., 2014; Keown et al., 2017;
van den Heuvel et al., 2017; Kazeminejad and Sotero, 2018).
Authors in Rudie et al. (2013) and Keown et al. (2017) compared
the brain topology in patients with ASD and healthy controls.
They concluded that modularity, clustering coefficient, and local
efficiency are relatively reduced in ASD (i.e., inefficiency of
information transmission in a particular module) while global
communication efficiency is increased (shorter average path
lengths). As another example, Redcay et al. (2013) observed
an increase in betweenness centrality and local connections by
analyzing the prefrontal brain areas in adolescents with ASD.
Moreover, the structure of the hub nodes was significantly
changed in ASD (Itahashi et al., 2014; Balardin et al., 2015).
Altogether, abnormalities in the functional architecture of the
autistic brain were reported in both local and global metrics.
Considering the huge discrepancies between subjects regarding
local parameters (Finn et al., 2015), it was unclear whether
such local parameters can be applied alone as a biomarker for
ASD screening. To answer this question, Sadeghi et al. (2017)
examined both local and global parameters extracted from rs-
fMRI data and observed that distinctive features were only
among the local parameters.

Attention-Deficit/Hyperactivity Disorder
ADHD affects about 3–5% of children globally (Nair et al., 2006).
Wang et al. (2009) were the first to explore the spontaneous
connectivity patterns of whole-brain functional network in
patients with ADHD and healthy controls using graph analysis
of rs-fMRI. They reported that the functional networks in both
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groups represented an economic small-world behavior. However,
the brain networks of ADHD children exhibited more-regular
configurations with higher local efficiency and a trend toward
decreased global efficiency relative to healthy subjects, indicating
a developmental delay of whole-brain functional networks in
this pathology (Wang et al., 2009; Cao et al., 2013, 2014a, 2016;
van den Heuvel et al., 2017). In addition, by testing nodal
properties, Wang et al. (2009) claimed that areas such as medial
prefrontal, temporal, and occipital cortices experienced regional
loss of efficiency, while increased nodal efficiency was found in
the inferior frontal gyrus.

Delayed maturation has further been reported in structural
MRI studies (Hoogman et al., 2017), as well as in default network
connectivity in youth with ADHD (Fair et al., 2010). Maturation
rate differences between brain hemispheres may also characterize
the ADHD brain, given significantly different interhemispheric
asymmetry patterns recently observed in ADHDyouths (Douglas
et al., 2018). Analyzing rs-fMRI, Fair et al. (2010) scrutinized
interregional connectivity patterns within DMN and noticed
decreased anterior-posterior connectivity in children with
ADHD compared to healthy controls. In another study, Fair et al.
(2013) conducted a regional connectivity analysis using degree
index on the functional networks in children with two different
ADHD presentations, i.e., inattentive and combined. While
both subtypes exhibited some overlapping (particularly in the
sensorimotor network), the combined ADHD exhibited atypical
patterns in midline DMN components and the inattentive
ADHD showed atypical connectivity within the dorsolateral
prefrontal cortex and cerebellum. Contrary to the findings
of children with ADHD, Cocchi et al. (2012) did not find
any significant changes in global characteristics of the whole-
brain functional networks in adults with ADHD compared to
healthy controls.

Apart from the region-wise studies, Tomasi and Volkow
(2012) computed the voxel-wise Pearson’s correlations across all
pairs of brain voxels in ADHD children and healthy controls
from the ADHD-200 database (Milham et al., 2012). Then, they
classified the coefficients into long-range and short-range based
on the anatomical distance, which was followed by constructing
the corresponding functional connectivity density. As a result,
they revealed that ADHD children had weaker interconnectivity
(both long- and short-range) in the DMN, dorsal attention
network, and cerebellum, and stronger short-range connectivity
within reward network (ventral striatum and orbitofrontal
cortex). Alterations in DMN have also been reported in studies
applying non-negative matrix factorization (Anderson et al.,
2014). In another study, Di Martino et al. (2013) observed similar
centrality abnormalities within the precuneus in both ADHD
and ASD groups, whereas ADHD patients exhibited particularly
higher-degree centrality in the right striatum/pallidum. Finally,
Colby et al. (2012) presented a machine learning approach
using the combination of functional and structural graph-based
features, as well as demographic information, to predict status
of patients with ADHD from healthy children in the ADHD-200
database (Milham et al., 2012).

By interpreting the above findings, it can be concluded
that the functional connectomes of ADHD children had a

tendency toward regular configurations (Wang et al., 2009), while
ADHD adults had no significant difference in terms of global
architecture with healthy individuals (Cocchi et al., 2012). Also,
disturbed nodal properties were identified in both children and
adults, particularly in the attention, default-mode, sensorimotor,
striatum, and cerebellum networks (Wang et al., 2009; Fair et al.,
2010, 2013; Cocchi et al., 2012; Tomasi and Volkow, 2012;
Di Martino et al., 2013).

CHALLENGES AND FUTURE DIRECTIONS

In general, the consistency of results across similar experiments
that employed a graph theoretical approach indicates that
this perspective is promising for establishing a comprehensive
and sustainable model in future fMRI studies. However, it is
sometimes difficult to integrate all of the reported findings an of
pathological brain networks because the results do not coincide
with each other when the factors affecting the experiments are
different. For instance, patient demographic factors (such as age,
gender, educational level, etc.), disease-specific characteristics
(such as duration, course, severity, disability level, etc.), sample
size, and network construction greatly vary across the studies.
As an example of network construction, ignoring the negative
entries in the connectivity matrix is very likely to result in the
loss of valuable information (Shu et al., 2016). To overcome
these heterogeneities and increase the reliability of the findings,
more consistent comparisons can be made across the studies. In
addition, there are several image repositories for pairwise studies
in the area of brain network connectivity that can be explored by
various packages based on graph theory (Rubinov and Sporns,
2010; Hosseini et al., 2012; Kruschwitz et al., 2015; Wang et al.,
2015a; Mijalkov et al., 2017; Waller et al., 2018).

Although the importance of computational approaches in
fMRI analysis has been evident over the last decade, it
has not always matched the richness of fMRI data (Cohen
et al., 2017). Early methods mostly neglected the ability of
predictive models to better understand the distributed and
dynamic nature of neural representations. Recently, several
theory-driven techniques have commenced to highlight the
salient role of machine learning, algorithmic optimization, and
parallel computing in fMRI analysis (Cohen et al., 2017).
Hence, adoption of modern techniques, such as multivoxel
pattern analysis (MVPA), convolutional neural network (CNN),
generative models, and real-time analysis, then aligning them
with graph theoretical concepts might open a new generation of
experiments that could transform our understanding of complex
properties in the human brain networks.

Another challenge in graph theory research is developing
a consensus about which of the brain parcellation schemes is
optimal for defining network nodes and constructing the brain
network (Hayasaka and Laurienti, 2010). Different parcellation
methods may lead to different topological properties in the
human brain networks, and the results depend on the network
resolution. However, for better insight, one can appraise the
reproducibility of the primary findings by applying multiple
parcellation schemes at different spatial scales, particularly
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those with high resolution (Liu et al., 2017). Moreover, node
specification in developmental research is extremely important
as it is possible for nodes to be dissimilar across a sample,
which may distort the brain network. Therefore, a fundamental
condition for ensuring the reliability of graph analysis in brain
connectivity studies is the precise definition of network nodes
(Stanley et al., 2013), which itself requires the adoption of an
appropriate parcellation strategy (Power et al., 2010, 2011).

Although structural pathways are thought to underlie
functional connectivity patterns (Honey et al., 2009), one
cannot claim that there is a one-to-one correspondence between
topological properties in functional and structural organizations
(Park and Friston, 2013; Wang et al., 2015b; Mash et al., 2018).
In some neurological diseases such as schizophrenia, small-world
network abnormalities may even display opposite directions
over functional and structural organizations. Concerning this
matter, van den Heuvel et al. recognized evidence of reduced
local efficiency and segregation (i.e., clustering and modularity)
together with increased global efficiency in several functional
studies of schizophrenia. However, their review of structural
studies resulted in contradictory findings, such as increased
segregation along with reduced integration and global efficiency
(Van Den Heuvel and Fornito, 2014). Moreover, Shu et al.
(2016) examined the structural and functional disruptions in
the earliest stage of MS and MS patients by combined use of
DTI and rs-fMRI. Their study exhibited structural changes in
the earliest stage of MS, while functional patterns remained
stable at that stage. Hence, structure-function relationship
studies are needed to help elucidate such existing deviations for
future work.

The primary features of the small-world organization, i.e.,
high local clustering yet short characteristic path length,
contribute to the efficient flow of information within
interconnected complex systems, a pivotal role that can
reveal discrepancies between groups or across conditions.
However, most techniques that evaluate small-world properties
in real-world systems face significant constraints, such as
misdiagnosis of some regular lattices as a small-world structure,
lack of attention to weighted graphs, as well as neglecting
the variations in network density and connection strengths.
Fortunately, researchers have made notable efforts in the past
decade to resolve these limitations in complex networks by
proposing novel small-world metrics (Rubinov and Sporns,
2010; Telesford et al., 2011; Bolaños et al., 2013; Muldoon
et al., 2016). Applying these newly introduced measures
into future brain connectivity investigations can bring about
widespread improvement in knowledge regarding small-world
brain architecture.

The dynamics of brain function seem to result in numerous
cognitive, emotional, and behavioral changes that occur during
brain development. However, the majority of studies cannot
interpret brain network dynamics because their design is typically
cross-sectional and the calculated measures of the brain graph
are only capable of displaying a snapshot of the disease over
time (Fleischer et al., 2017; Avena-Koenigsberger et al., 2018).

Therefore, the progression of neurodegenerative disorders may
not be well-understood, and subsequently, treatment strategies
exhibit poor performance. Madhyastha et al. (2017) reported that
longitudinal fMRI studies with graph theory provide a suitable
means for understanding the development of pathological
conditions, as well as tracking temporal correlations between
topological alterations in the brain network. They also noted
that some development-related issues are still not answered by
existing software, which should be further explored (Madhyastha
et al., 2017). Additionally, longitudinal studies could be employed
in the future for monitoring brain network topological changes
using different therapeutic strategies across longer time durations
(Mears and Pollard, 2016).

CONCLUSION

In this paper, we first reported an in-depth overview of
the computational methods that were proposed to discover
functional and effective connectivity in the human brain network
using fMRI. In discussing each method, we highlighted their
strengths and potential drawbacks. Then, as the main focus
of the current paper, comprehensive information on graph
theoretical analysis of connectivity patterns in the complex
brain network along with its applications in neuroscience
was presented. The brain network topology is expected to
be responsive to cognitive performance, behavioral variability,
experimental task, and neurological disorders such as epilepsy,
Alzheimer’s disease, multiple sclerosis, autism, and attention-
deficit/hyperactivity disorder. Graph theoretical metrics such
as node degree, clustering coefficient, average path length,
hubs, centrality, modularity, robustness, and assortativity can
be utilized to detect the topological patterns of brain networks
and reflect cognitive and behavioral performances (Sporns
et al., 2004; van den Heuvel et al., 2008b). However, graph
analysis in human neuroscience faces a number of issues
that remain unaddressed, restricting its interpretation and
application (De Vico Fallani et al., 2014). Some examples
are heterogeneity of the results, sensitivity to parcellation
strategy and node specification, statistical variability of brain
graphs due to noise, lack of attention to the structure-function
relationship, neglecting the variations in network density and
connection strength, and dynamics of the brain network.
Addressing any of these limitations in future studies will help
advance our understanding of functional neural networks in the
human brain.
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