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Introduction
Simplest definition for optimization is “doing the most with the 

least”. Lockhart and Johnson define optimization as “the process of 
finding the most effective or condition or favourable value”. The aim of 
optimization is to achieve the “best” design relative to a set of prioritized 
criteria or constraints [1].

Different steps needs to be used to solve the optimization problem. 
The parameters and constraints of the problem should be identified. 
Based on parameters the problem may be differentiated as discrete 
or continuous and based on constraints the problem can be divided 
into constrained problem and unconstrained problem. Finally the 
optimization problem can be classified into single objective and multi 
objective problems depending on the nature of the objective function 
of the problem [2,3].

In mechanical design, Optimization process is a part of design in 
which some objectives such as weight, strength, deflection, wear etc. 
should be consider as per requirements. It is complicated to optimize 
the complete mechanical assembly as number of design variables is 
increased leads to complicated objective function. So optimization of 
individual parts or intermediate assemblies is much better and easy than 
the optimization of complete assembly. The aim in the optimization of a 
design is to minimize or maximize a design objective which satisfies the 
set of a given constraint for the design problem. In engineering design 
problem the design variables are usually of discrete or continuous type 
[4,5].

Stochastic optimization is a type of optimization. Stochastic 
methods use random operators and rely on them to avoid the local 
optima. In this method, one or a set of random solutions are generated 
at the beginning of optimization process for a given problem. In 
mathematical optimization it is necessary to calculate the gradient of 
the solution while in stochastic optimization only objective function(s) 
is required to find the solutions without need of gradient of solution. 
The problem is called as a black box as the decisions to improvise the 
solution is dependent on the objective function which is calculated. 

This is helpful in solving real life problems in which the search space is 
unknown. These advantages make the stochastic optimization popular 
over two decades [6].

Nature inspired swarm based algorithms are most popular among 
stochastic optimization approaches. Creatures in nature uses different 
techniques, which are used in such optimization techniques. The main 
aim of all creatures in nature is to survive and to achieve this goal 
they intend to evolve and modify as well as adapt different ways. So 
nature is the best inspiration as it is the best optimizer on the planet. 
These algorithms are of two types: (a) Single solution based, (b) Multi 
solution based. In single solution based type a single random solution 
is generated and improvised further while in multi solution based type 
multiple solutions are generated and modified. Usually multi solution 
based algorithms are chosen over single solution based algorithm [7,8].

The popular single-solution-based algorithms are hill climbing and 
simulated annealing. Other recent single-solution-based algorithms are 
Iterated Local Search (ILS) and Tabu Search (TS). Genetic Algorithms 
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization 
(PSO) and Differential Evolution (DE) are different popular multi-
solutions-based algorithms. The GA algorithm was inspired by the 
theory of “Survival of the fittest” proposed by Darwin in evolution. 
In this algorithm, parameters of the solutions are considered as the 
genes where the solution represents the individual. Poor solutions are 
continuously improved on the theory of Survival of fittest. The PSO 
algorithm is inspired from the foraging of schools of fishes or herds 
of birds. In this algorithm the best solution is the solution obtained by 
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results. Constraints handling technique is used to convert the constrained optimization problem into unconstrained 
optimization problem, so that the problem can be handled by the Grasshopper Optimization Algorithm (GOA). Static 
penalty method is used as a constraints handling technique in this paper. The algorithm can also apply for different 
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the particle and which is best among the swarm of particles. The Ant 
colony optimization (ACO) algorithm finds the best solution by using 
the collective behaviour of ants in finding the shortest path from the 
nest to the source of foods [9-17].

The similarity in both the types of nature inspired algorithm 
is that, the solution is improved until the end criterion is satisfied. 
The optimization process is divided in two phases for both types 
are exploration versus exploitation. In exploration as the algorithm 
possesses a tendency to have highly randomized behaviour and the 
solutions are changed significantly. Large changes in the solutions helps 
in searching of its promising regions because of greater exploration. In 
exploitation the solution face changes on smaller scale. After exploration 
the algorithm tends towards exploitation in which the algorithm is tend 
to search locally and on smaller scale. In a given optimization problem 
a proper balance between exploration and exploitation can result in 
finding the global optimum solution [18].

The literature shows various optimization algorithms formulated on 
the base of nature phenomenon. Due to their gradient-free mechanism, 
simplicity, high local optima avoidance, and considering problems as 
black boxes, in science and industry, nature inspired algorithms have 
been applied widely. Grasshopper optimization algorithm is based on 
the behaviour of the grasshopper when it searches its food and the same 
phenomenon is used in the algorithm to find the optimum solution for 
any optimization problem. The rest of the paper is organized as follows: 

The grasshopper optimization algorithm is presented first, 
which contains the constraints handling technique for constrained 
optimization problem. Then the results are discussed on the 
optimization test functions and inspect the behaviour of the presented 
algorithm. Finally, conclusion of the work and suggestions in several 
directions for future studies are mentioned [19-21].

Grasshopper Optimization Algorithm (GOA)
Grasshoppers are insects and consider as a pest. They usually 

damage the crop production as well as agriculture which lead to consider 
them as pest. Usually we see the grasshopper individually in nature but 
most of the time they join large swarm among all creatures in nature. 
The swarm of grasshopper maybe a nightmare for farmers as the size 
of the swarm can be much large. The grasshopper swarm possesses one 
unique characteristic which is that we found the swarming behaviour 
in both the nymph as well as adulthood in grasshopper. The nymph 
grasshopper move like rolling cylinders in millions of numbers. They 
almost eat all the vegetation which comes in their path during their 
movement. When they become adult from nymph, they form a swarm 
in air and then they migrate over a very large distance [22,23].

The swarm usually has very slow movement when they are in larval 
phase. The small step of the grasshopper is main characteristic of the 
swarm in larval phase. Opposite of that the main feature of swarm in 
adulthood is long range and abrupt movement of swarm. Swarming 
of grasshopper is mainly formed for searching of food source. This 
food seeking of grasshopper is another characteristic of swarming of 
grasshopper. As discussed in introduction exploration and exploitation 
are two tendencies of nature inspired algorithm. Along with target 
seeking these both tendencies are performed by grasshoppers naturally 
in which they move abruptly as well as locally in small areas. A 
mathematical model is formed of this behaviour of grasshopper to 
design a nature inspired optimization algorithm.

The mathematical model employed to simulate the swarming 
behaviour of grasshoppers is presented as follows [24]:

i i i iX S G A= + + 				                                     (2.1)

Where Xi defines the position of the ith grasshopper, Si is the social 
interaction, Gi is the gravity force on the ith grasshopper and Ai shows 
the wind advection. Note that to provide random behaviour, the 
equation can be written as 

1 2 3i i i iX r S r G r A= + +

where r1, r2 and r3 are random numbers in [0,1].
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Where dij is the distance between the ith and the jth grasshopper, 
calculated as,

ij j id x x= − ,

s is a function to define the strength of social forces, as shown in 
Equation (2.3) and dij is a unit vector from the ith grasshopper to the jth 
grasshopper which can be defined as,
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The s function, which defines the social forces, is calculated as 
follows:

( )
r

rls r fe e
−

−= − 				             (2.3)

Where f indicates the intensity of attraction and l is the attractive 
length scale.

The function s shows the impacts on the social interaction 
(attraction and repulsion) of grasshopper.

The distances are considered from as 0 to 15. The interval of 
repulsion is (0, 2.079). The comfortable distance of a grasshopper is 
2.079 units from other grasshopper, as there is neither attraction nor 
repulsion for a grasshopper when it is away from other grasshopper by 
2.079 units. This is also called as comfortable zone.

For artificial grasshoppers there is difference in social behaviours 
as the parameters l and f in equation (2.3) changes. After varying l and 
f independently, the effects of these parameters on function s can be 
observed. The parameters l and f change comfort zone, attraction region 
and repulsion region effectively. It should be noted that the attraction 
or repulsion regions are very small for some values (l=1.0 or f=1.0 for 
instance). From all these values we have chosen l=1.5 and f=0.5 [25].

It may be pointed that, in simplified form, this social interaction 
was the motivating force in some earlier locust swarming models [26]. 
The space between two grasshoppers is divided into comfort zone, 
attraction region and repulsion region with the help of function s. 
With the distances greater than 10 the value of function returns the 
value close to zero. With large distances between grasshoppers, the 
strong forces cannot be applied by using this function. To overcome 
this problem the distance of grasshoppers is kept and mapped in the 
interval (1 4).

The G component in equation (2.1) is calculated as follows:

i gG ge= −


					                  (2.4)

Where g is the gravitational constant and eg shows a unity vector 
towards the centre of earth.
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The A component in equation (2.1) is calculated as follows:

i wA ue=


					                 (2.5)

Where u is a constant drift and ew is a unity vector in the direction 
of wind. The movement of the nymph is highly correlated with the 
direction of wind as the nymph grasshoppers don’t have wings. 
Substituting S, G and A in equation (2.1), this equation can be expanded 
as follows:

1
( )
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j
j i
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= − +∑
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 			             (2.6)

Where ( )
−

−= −
r

rls r fe e  and N is the number of grasshoppers.

The position of nymph grasshoppers should be prevented from 
going below threshold when they land on ground. However this 
equation cannot be utilized in the swarm simulation and optimization 
algorithm as it prevents the algorithm from exploring and exploitation 
the search space around the solution. This model can be used in the free 
space for swarms only. The interaction between grasshoppers in swarm 
can be simulated by using equation 2.6.

The grasshopper reach the comfort zone very fast and swarm does 
not converge to a specified point and because of that the in optimization 
problem, the mathematical model cannot be used directly. To solve 
optimization problems, by doing some modifications a modified 
version of this equation is proposed as follows:
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Where ubd is the upper bound in the Dth dimension, lbd is the lower 
bound in the Dth dimension ( )

−
−= −

r
rls r fe e , ( )dT  is the value of the 

Dth dimension in the target (best solution found so far) and C is a 
decreasing coefficient to shrink the comfort zone, repulsion zone, and 
attraction zone. Note that S is almost similar to the S component in 
equation (2.1). 

However, we do not consider gravity (no G component) and assume 
that the wind direction (A component) is always towards a target ( )dT .

The next position of grasshopper is shown by equation (2.7) is 
based on its current position, the position of target and the all other 
grasshoppers position. In this the first component which is considered 
as the location of current grasshopper and that is with respect to other 
grasshoppers. In fact, to define the location of search agents around 
the target, the status of all grasshoppers is considered. This is the main 
difference between GOA and PSO, which is considered as the most 
regarded swarm intelligent technique. In GOA only one position vector 
need to take into consideration while in PSO there are two vectors for 
each particle i.e. position and velocity vector. In PSO no other particle 
contributes in updating the position of a particle, whereas in GOA, all 
the search agents are required to define the next position of the each 
search agent.

It is also worth mentioning here that the adaptive parameter has 
been used twice in equation (2.7) for the following reasons:

•	 The first C from the left is same as inertial weight (w) used 
in PSO. The grasshopper movement is reduced around the target by it. 
This parameter is used to balance the exploration and exploitation of 
swarm around the target. 

The second C helps to decrease the attraction zone, comfort 

zone, and repulsion zone between grasshoppers. The component 

( )2
d dd d
j i

ub lbc s x x−
−  in the equation (2.7), 

2
−d dub lb

c  linearly 

decreases the exploration and exploitation space by the grasshoppers. 
The grasshopper is either repelled from (explore) or attracted to 
(exploitation) and this is indicated by the component ( )−d d

j is x x .

The inner c is responsible for reduction of repulsion/attraction forces 
between grasshoppers, which is proportional to the number of iterations, 
while the outer c is helpful in reducing the search coverage around the 
target as the iteration goes on increasing. In summary, in equation (2.7) the 
first term which is the sum is considers the position of other grasshoppers 
and accordingly implements the grasshopper interaction in nature.

The second term 
dT , simulates the tendency of grasshoppers to 

move towards the food source. The deceleration of grasshopper which 
is approaching towards the food source and eventually consumption 
of it is simulated by the parameter c. Both the terms in the equation is 
multiplied by the random values which provide more random behaviour 
to grasshoppers. An individual term in the equation is also multiplied 
by random numbers to provide random behaviour in both interactions 
of grasshoppers as well as their tendency towards the source of food.

The proposed mathematical formulations are able to explore and 
exploit the search space. To tune the level of exploration to exploitation 
for search agents, a mechanism is required. In nature the initial 
movement of grasshopper is locally for search of food as they are in 
larvae phase in which they have no wing. For larger region search they 
move freely in air to explore in their adulthood. However the exploration 
comes first in stochastic optimization algorithm as there is need for 
finding the promising region in the search space. After obtaining the 
promising region by exploration, local search is carried by exploitation 
to find the accurate approximation of the global optimum.

For balancing exploration and exploitation, there is relation between 
and number of iteration and accordingly the c is to be decreased. 
Exploitation is promoted as the number of iteration increases. The 
comfort zone is reduced by c proportional to iteration count and is 
calculated as follows:

max min
max

c cc c l
L
−

= −                                                                           (2.8)

Where cmax is the maximum value, cmin is the minimum value, 
l indicates the current iteration and L is the maximum number of 
iterations. In this work, we use l and 0.0001 for cmax and cmin, respectively.

From above it is seen that the mathematical model should help 
grasshopper to move towards a target gradually. In actual practice, 
the actual optimum solution is unknown to us which is exact global 
optimum. Therefore, it is required to find out the target for each 
grasshopper in every stage of optimization. In GOA, it is assumed that 
the grasshopper with best objective value is fittest grasshopper during 
optimization. This will help to save the best solution in each iteration in 
algorithm. This is done hope that the most accurate target is reached the 
approximation of real problem.

Constraint handling technique

To use the recent developed nature inspired, evolutionary 
algorithms, it is necessary to convert the constrained optimization 
problem into unconstrained optimization problem. Without loss of 
generality we may transform any optimization problem using constraint 
handling techniques. A variety of constraint-handling methods have 
been developed in the last decades. Penalty method is one of the 
constraints handling technique. 
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Penalty function: Penalty functions have been a part of the 
literature on constrained optimization for decades. This concept is a 
part of constraint handling technique. Constraint handling techniques 
are used to convert the constrained optimization problem into 
unconstrained optimization problem. The Grasshopper Optimization 
Algorithm is able to handle the unconstrained optimization problems 
only, so using the penalty function the constrained optimization 
problems can be solved using GOA.

Static penalty is used in most of the cases. In this approach a constant 
penalty is applied to those solutions which violate the feasibility of the 
solution. The general formulation of the penalty function is:

( ) ( )
1 1

pn

p i i j j
i j

f x f x rG c L
= =

= ± +∑ ∑                                                (2.9)

Where, Gi and Lj are functions of constraints gi(x) and hj(x) 
respectively [27].

gi(x) are inequality constraints, hj(x) are equality constraints, ri and 
cj are positive constants normally called “penalty factors”.

( )max 0,gi iG x
β

=   

( ) γ=j jL h x

where β and γ are normally 1 or 2.

The pseudo code of GOA algorithm for unconstrained and 
constrained benchmark test problems is shown in Figures 1a and 
1b. The random solutions are generated at very beginning of the 
algorithm. Based on equation (2.7) the positions of search agent are 
updated. In each iteration the best solution obtained is updated. The 
distances between grasshoppers are normalized in each iteration. Until 
the satisfaction end result is not obtained, the updating of position 
is continuously carried on. The position and fitness of the best target 
is finally returned as the best approximation for the global optimum 
(Figures 1a and 1b). 

Results
This section presents the test problem with known optima and 

performance of GOA algorithm. The results are then provided and 
analyzed in details.

Experimental setup

It is very common to employ mathematical test functions in 
stochastic optimization. The optima of the mathematical test functions 
are known, so the performance of the algorithm can be measured 
quantitatively [28].

It is required that the characteristics of the test function should be 
that diverse, so that they are able to reach to some proper conclusion. In 
this work, two sets of test functions are used to check the performance 
of the GOA algorithm. The test functions are constrained and 
unconstrained optimization functions. The mathematical test functions 
are available in appendix.

For solving the test functions, 500 iterations along with 30 search 
agents are employed. The algorithm was coded in Matlab (R2016a) on 
windows 7 platform with I5-3470 Processor 3.2 GHZ processor speed 
and 4 GB RAM. Each test was solved 30 times to generate the statistical 
results. The best solution among all results is chosen as final optimum 
solution. The qualitative results, along with trajectory of grasshopper, 
search history, convergence curves, and average fitness of population 
have been discussed and analyzed in following subsection.

Qualitative results and discussion

The experiment is conducted on both sets of test functions i.e. 
unconstrained and constrained test problems. The main objective 
behind conducting this experiment was to observe the GOA algorithm 
behaviour qualitatively. Four diagrams have been drawn for each of the 
test function shown in these diagrams (Figure 2):

yy Average fitness: This diagram indicates the average objective 
value of all grasshoppers in each iteration. 

yy Convergence curve: This diagram shows the objective value of 
the best solutions obtained so far (target) in each iteration. 

As shown in Figure 2, grasshoppers tend to explore the different 
regions of the search space around the global optima eventually. These 
results show that the GOA algorithm beneficially balances exploration 
and exploitation to drive the grasshoppers towards the global optimum.

The trajectory curves in Figure 2, show that the grasshoppers made 
abrupt changes in initial steps of optimization largely. Exploration Figure 1a: Pseudo code for unconstrained problem.

Figure 1b: Pseudo code for constrained problem.
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of search space is takes place due to high repulsive rate of GOA. It is 
also seen that, as the optimization approaches further the fluctuation 
decreased gradually. This is done due to the attraction forces as well as 
comfort zone between grasshoppers. This guarantees that the algorithm 

will converge to a point eventually because of exploration and 
exploitation. The curve shows the descending behaviour and it proves 
that the GOA enhances the initial random population and improves the 
accuracy of the approximated optimum over the course of iterations.

Quantitative results and discussion

In above section, the qualitative results are discussed and 
demonstrated that GOA is able to solve the optimization problems. 
The test functions are of 2 variables with both constrained and 
unconstrained type problems. The experimental results are shown in 
Tables 1 and 2 for unconstrained and constrained test functions as well 
as the actual values of test functions are compared with GOA results.

In Table 1, the results of unconstrained test functions are compared. 
The test functions are solved by GOA and the solution obtained from 
this algorithm is compared with the actual results of the test functions 
and from there it is seen that the solution obtained by GOA is 
approximately same. From this we can say that the GOA is giving the 
accurate solution of optimization problems.

In Table 2, the results of constrained test functions are compared. 
To solve the constrained optimization problem in GOA, constraints 
handling technique is required. In here the penalty approach is used 
as a constraint handling technique. With the help of this technique 
the problem is converted into unconstrained problem and then solved 
it. The results obtained of this constrained test functions by GOA are 
compared with actual results of test functions. From comparison we 
can definitely say that the results given by GOA are very much near to 
actual solution and consider as the accurate solution of the problem.

Figure 2a: Average fitness of all grasshoppers and convergence curve.

Figure 2b: Quantitative results of all grasshoppers and convergence curve.

Figure 2c: Unconstrained test functions Curves.

Figure 2d: Constrained test functions curves.

Figure 2e: Grasshoppers and convergence curves.

Function
Actual (Adorio EP) [28] GOA

x1 x2 f x1 x2 f
Beale's function 3 0.5 0 3 0.5 2.23E-12
Beale's function 1 3 0 1 3 3.72E-13
Matyas function 0 0 0 (-1.4191e-07) 2.47E-07 3.78E-14

Table 1: Results of GOA and comparison with actual values (unconstrained test 
functions).

Function

Actual 
(Adorio EP) 

[28] GOA
x1 x2 f x1 x2 f

Rosenbrock function constrained 
with a cubic and a line 1 1 0 0.99964 0.99927 1.32E-07
Rosenbrock function 
constrained to a disk 1 1 0 0.99996 0.99992 1.52E-09

Table 2: Results of GOA and comparison with actual values (constrained test 
functions).
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From the above discussion it is clear that the results obtained by 
using GOA are very close to actual and accurate solutions. So GOA can 
be used efficiently in constrained as well as unconstrained optimization 
problems and we can rely on the solution or results obtained from 
GOA. The discussions and findings of the above section clearly state 
the quality of exploration, exploitation, local optima avoidance, of the 
algorithm. The repulsive for, attractive force between grasshoppers 
changes along with the increase in the iterations. All these parameters 
of the grasshoppers are useful in the algorithm to avoid the local optima 
of the optimization problem and to converge to the global optimum 
solution accurately and quickly (Tables 3 and 4).

Conclusion
This work presented the optimization algorithm called grasshopper 

optimization Algorithm used to validate the results of GOA by using 
optimization test functions. Both constrained and unconstrained 
optimization test functions are used to validate the results obtained 
from GOA. A mathematical model is studied which is based on the 
swarming behaviour of grasshopper in nature. A mathematical model 
simulates the repulsive and attractive forces between the grasshoppers. 
GOA contains a coefficient that adaptively decreases the comfort zone 
which is used in balancing of exploration and exploitation. Finally the 
best solution given by swarm is considered the optimum solution of the 
optimization problem.

In order to validate the performance of the GOA, the test functions 
are used in paper. The test functions are solved by the using Grasshopper 
optimization algorithm. The results obtained by GOA are observed to 
check the performance of the algorithm qualitatively and quantitatively. 
The experiment and discussion support the following conclusions:

yy Grasshopper optimization algorithm avoids local optima and 
able to find the global optima in the given space.

yy GOA balances exploration and exploitation to find the global 
optimum solution of optimization problem. 

yy Grasshoppers are able to find the most promising region from 
the given search space. 

yy For unconstrained optimization problem the GOA gives 
accurate solutions. The optimum point obtained from GOA is 
accurate and promising. 

yy The GOA also gives correct and promising results for 
constrained optimization problem. 

GOA can be used only for single objective problems. For future 
work, the algorithm can be developed for multi objective problems. 

GOA can contribute into different real world optimization problems. 
Tuning the main controlling parameters of GOA may also be beneficial.
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Function Objective function Range fmin

Beale's function (1.5-x+xy)2+(2.25-x+xy2)2+(2.625-x+xy3)2 [-4.5 to 4.5] 0
Beale's function (x+2y-7)2+(2x+y-5)2 [-10 to 10] 0
Matyas function 0.26(x2+y2)-0.48xy [-10 to 10] 0

Table 3: Unconstraint test functions.

Function Objective function Constraints Range fmin
Rosenbrock function 
constrained with a 
cubic and a line (1-x)2+100(y-x2)2

(x-1)3-y-1<0
x+y-2<0

[-1.5 to 1.5]
[-0.5 to 2.5] 0

Rosenbrock 
function 
constrained 
to a disk (1-x)2+100(y-x2)2 x2+y2<2

[-1.5 to 1.5]
[-1.5 to 1.5] 0

Table 4: Unconstraint test functions.
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