
Research Article

Neve et al., Int J Swarm Intel Evol Comput 2017, 6:3
DOI: 10.4172/2090-4908.1000165

Research Article Open Access

International Journal of Swarm
Intelligence and Evolutionary
ComputationInternatio

na
l J

ou
rn

al
 o

f S
warm

 Intelligence and Evolutionary Computation

ISSN: 2090-4908

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

Keywords: Optimization; Grasshopper optimization algorithm;
Constrained optimization; Swarm intelligence; Heuristic algorithm;
Constrained and unconstrained test functions

Introduction
Simplest definition for optimization is “doing the most with the

least”. Lockhart and Johnson define optimization as “the process of
finding the most effective or condition or favourable value”. The aim of
optimization is to achieve the “best” design relative to a set of prioritized
criteria or constraints [1].

Different steps needs to be used to solve the optimization problem.
The parameters and constraints of the problem should be identified.
Based on parameters the problem may be differentiated as discrete
or continuous and based on constraints the problem can be divided
into constrained problem and unconstrained problem. Finally the
optimization problem can be classified into single objective and multi
objective problems depending on the nature of the objective function
of the problem [2,3].

In mechanical design, Optimization process is a part of design in
which some objectives such as weight, strength, deflection, wear etc.
should be consider as per requirements. It is complicated to optimize
the complete mechanical assembly as number of design variables is
increased leads to complicated objective function. So optimization of
individual parts or intermediate assemblies is much better and easy than
the optimization of complete assembly. The aim in the optimization of a
design is to minimize or maximize a design objective which satisfies the
set of a given constraint for the design problem. In engineering design
problem the design variables are usually of discrete or continuous type
[4,5].

Stochastic optimization is a type of optimization. Stochastic
methods use random operators and rely on them to avoid the local
optima. In this method, one or a set of random solutions are generated
at the beginning of optimization process for a given problem. In
mathematical optimization it is necessary to calculate the gradient of
the solution while in stochastic optimization only objective function(s)
is required to find the solutions without need of gradient of solution.
The problem is called as a black box as the decisions to improvise the
solution is dependent on the objective function which is calculated.

This is helpful in solving real life problems in which the search space is
unknown. These advantages make the stochastic optimization popular
over two decades [6].

Nature inspired swarm based algorithms are most popular among
stochastic optimization approaches. Creatures in nature uses different
techniques, which are used in such optimization techniques. The main
aim of all creatures in nature is to survive and to achieve this goal
they intend to evolve and modify as well as adapt different ways. So
nature is the best inspiration as it is the best optimizer on the planet.
These algorithms are of two types: (a) Single solution based, (b) Multi
solution based. In single solution based type a single random solution
is generated and improvised further while in multi solution based type
multiple solutions are generated and modified. Usually multi solution
based algorithms are chosen over single solution based algorithm [7,8].

The popular single-solution-based algorithms are hill climbing and
simulated annealing. Other recent single-solution-based algorithms are
Iterated Local Search (ILS) and Tabu Search (TS). Genetic Algorithms
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization
(PSO) and Differential Evolution (DE) are different popular multi-
solutions-based algorithms. The GA algorithm was inspired by the
theory of “Survival of the fittest” proposed by Darwin in evolution.
In this algorithm, parameters of the solutions are considered as the
genes where the solution represents the individual. Poor solutions are
continuously improved on the theory of Survival of fittest. The PSO
algorithm is inspired from the foraging of schools of fishes or herds
of birds. In this algorithm the best solution is the solution obtained by

*Corresponding author: Abhishek G Neve, Research Scholar, Department
of Mechanical Engineering, MIT, Pune, India, Tel: 02030273400; E-mail:
neveabhi@gmail.com

Received August 07, 2016; Accepted August 31, 2017; Published September
06, 2017

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper
Optimization Algorithm for Constrained and Unconstrained Test Functions. Int J
Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Copyright: © 2017 Neve AG, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
Grasshopper Optimization algorithm is one of the recent algorithm for optimization. This algorithm is swarm

based nature inspired algorithm which mimics and mathematically models the behaviour of grasshopper swarm in
nature. The proposed algorithm can be used for solving the engineering optimization problems. The GOA is tested
for different benchmark test functions to validate and verify the performance of the algorithm. Results obtained from
GOA are compared with actual values (results) of the test functions. The results obtained from algorithm show that
the algorithm is able to give the accurate results. The unconstrained and constrained test functions solved by using
the Grasshopper optimization Algorithm (GOA) and the results can validate that the algorithm gives the trustable
results. Constraints handling technique is used to convert the constrained optimization problem into unconstrained
optimization problem, so that the problem can be handled by the Grasshopper Optimization Algorithm (GOA). Static
penalty method is used as a constraints handling technique in this paper. The algorithm can also apply for different
engineering problems in real life.

Application of Grasshopper Optimization Algorithm for Constrained and
Unconstrained Test Functions
Abhishek G Neve*, Ganesh M Kakandikar and Omkar Kulkarni
Department of Mechanical Engineering, MIT, India

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper Optimization Algorithm for Constrained and Unconstrained Test
Functions. Int J Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Page 2 of 7

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

the particle and which is best among the swarm of particles. The Ant
colony optimization (ACO) algorithm finds the best solution by using
the collective behaviour of ants in finding the shortest path from the
nest to the source of foods [9-17].

The similarity in both the types of nature inspired algorithm
is that, the solution is improved until the end criterion is satisfied.
The optimization process is divided in two phases for both types
are exploration versus exploitation. In exploration as the algorithm
possesses a tendency to have highly randomized behaviour and the
solutions are changed significantly. Large changes in the solutions helps
in searching of its promising regions because of greater exploration. In
exploitation the solution face changes on smaller scale. After exploration
the algorithm tends towards exploitation in which the algorithm is tend
to search locally and on smaller scale. In a given optimization problem
a proper balance between exploration and exploitation can result in
finding the global optimum solution [18].

The literature shows various optimization algorithms formulated on
the base of nature phenomenon. Due to their gradient-free mechanism,
simplicity, high local optima avoidance, and considering problems as
black boxes, in science and industry, nature inspired algorithms have
been applied widely. Grasshopper optimization algorithm is based on
the behaviour of the grasshopper when it searches its food and the same
phenomenon is used in the algorithm to find the optimum solution for
any optimization problem. The rest of the paper is organized as follows:

The grasshopper optimization algorithm is presented first,
which contains the constraints handling technique for constrained
optimization problem. Then the results are discussed on the
optimization test functions and inspect the behaviour of the presented
algorithm. Finally, conclusion of the work and suggestions in several
directions for future studies are mentioned [19-21].

Grasshopper Optimization Algorithm (GOA)
Grasshoppers are insects and consider as a pest. They usually

damage the crop production as well as agriculture which lead to consider
them as pest. Usually we see the grasshopper individually in nature but
most of the time they join large swarm among all creatures in nature.
The swarm of grasshopper maybe a nightmare for farmers as the size
of the swarm can be much large. The grasshopper swarm possesses one
unique characteristic which is that we found the swarming behaviour
in both the nymph as well as adulthood in grasshopper. The nymph
grasshopper move like rolling cylinders in millions of numbers. They
almost eat all the vegetation which comes in their path during their
movement. When they become adult from nymph, they form a swarm
in air and then they migrate over a very large distance [22,23].

The swarm usually has very slow movement when they are in larval
phase. The small step of the grasshopper is main characteristic of the
swarm in larval phase. Opposite of that the main feature of swarm in
adulthood is long range and abrupt movement of swarm. Swarming
of grasshopper is mainly formed for searching of food source. This
food seeking of grasshopper is another characteristic of swarming of
grasshopper. As discussed in introduction exploration and exploitation
are two tendencies of nature inspired algorithm. Along with target
seeking these both tendencies are performed by grasshoppers naturally
in which they move abruptly as well as locally in small areas. A
mathematical model is formed of this behaviour of grasshopper to
design a nature inspired optimization algorithm.

The mathematical model employed to simulate the swarming
behaviour of grasshoppers is presented as follows [24]:

i i i iX S G A= + + 				 (2.1)

Where Xi defines the position of the ith grasshopper, Si is the social
interaction, Gi is the gravity force on the ith grasshopper and Ai shows
the wind advection. Note that to provide random behaviour, the
equation can be written as

1 2 3i i i iX r S r G r A= + +

where r1, r2 and r3 are random numbers in [0,1].

1
s()

N

i ij ij
j
j i

S d d
=
≠

=∑


 				 (2.2)

Where dij is the distance between the ith and the jth grasshopper,
calculated as,

ij j id x x= − ,

s is a function to define the strength of social forces, as shown in
Equation (2.3) and dij is a unit vector from the ith grasshopper to the jth
grasshopper which can be defined as,

−
=

 j i
ij

ij

x x
d

d

The s function, which defines the social forces, is calculated as
follows:

()
r

rls r fe e
−

−= − 				 (2.3)

Where f indicates the intensity of attraction and l is the attractive
length scale.

The function s shows the impacts on the social interaction
(attraction and repulsion) of grasshopper.

The distances are considered from as 0 to 15. The interval of
repulsion is (0, 2.079). The comfortable distance of a grasshopper is
2.079 units from other grasshopper, as there is neither attraction nor
repulsion for a grasshopper when it is away from other grasshopper by
2.079 units. This is also called as comfortable zone.

For artificial grasshoppers there is difference in social behaviours
as the parameters l and f in equation (2.3) changes. After varying l and
f independently, the effects of these parameters on function s can be
observed. The parameters l and f change comfort zone, attraction region
and repulsion region effectively. It should be noted that the attraction
or repulsion regions are very small for some values (l=1.0 or f=1.0 for
instance). From all these values we have chosen l=1.5 and f=0.5 [25].

It may be pointed that, in simplified form, this social interaction
was the motivating force in some earlier locust swarming models [26].
The space between two grasshoppers is divided into comfort zone,
attraction region and repulsion region with the help of function s.
With the distances greater than 10 the value of function returns the
value close to zero. With large distances between grasshoppers, the
strong forces cannot be applied by using this function. To overcome
this problem the distance of grasshoppers is kept and mapped in the
interval (1 4).

The G component in equation (2.1) is calculated as follows:

i gG ge= −


					 (2.4)

Where g is the gravitational constant and eg shows a unity vector
towards the centre of earth.

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper Optimization Algorithm for Constrained and Unconstrained Test
Functions. Int J Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Page 3 of 7

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

The A component in equation (2.1) is calculated as follows:

i wA ue=


					 (2.5)

Where u is a constant drift and ew is a unity vector in the direction
of wind. The movement of the nymph is highly correlated with the
direction of wind as the nymph grasshoppers don’t have wings.
Substituting S, G and A in equation (2.1), this equation can be expanded
as follows:

1
()

N

i ij ij g w
j
j i

X s d d ge ue
=
≠

= − +∑


 

 			 (2.6)

Where ()
−

−= −
r

rls r fe e and N is the number of grasshoppers.

The position of nymph grasshoppers should be prevented from
going below threshold when they land on ground. However this
equation cannot be utilized in the swarm simulation and optimization
algorithm as it prevents the algorithm from exploring and exploitation
the search space around the solution. This model can be used in the free
space for swarms only. The interaction between grasshoppers in swarm
can be simulated by using equation 2.6.

The grasshopper reach the comfort zone very fast and swarm does
not converge to a specified point and because of that the in optimization
problem, the mathematical model cannot be used directly. To solve
optimization problems, by doing some modifications a modified
version of this equation is proposed as follows:

()
1 2=
≠

−−
= − +
 
 
 
 
∑

N
j id d dd d

i j i d
j ij
j i

x xub lb
X c s x x T

d
 (2.7)

Where ubd is the upper bound in the Dth dimension, lbd is the lower
bound in the Dth dimension ()

−
−= −

r
rls r fe e , ()dT is the value of the

Dth dimension in the target (best solution found so far) and C is a
decreasing coefficient to shrink the comfort zone, repulsion zone, and
attraction zone. Note that S is almost similar to the S component in
equation (2.1).

However, we do not consider gravity (no G component) and assume
that the wind direction (A component) is always towards a target ()dT .

The next position of grasshopper is shown by equation (2.7) is
based on its current position, the position of target and the all other
grasshoppers position. In this the first component which is considered
as the location of current grasshopper and that is with respect to other
grasshoppers. In fact, to define the location of search agents around
the target, the status of all grasshoppers is considered. This is the main
difference between GOA and PSO, which is considered as the most
regarded swarm intelligent technique. In GOA only one position vector
need to take into consideration while in PSO there are two vectors for
each particle i.e. position and velocity vector. In PSO no other particle
contributes in updating the position of a particle, whereas in GOA, all
the search agents are required to define the next position of the each
search agent.

It is also worth mentioning here that the adaptive parameter has
been used twice in equation (2.7) for the following reasons:

•	 The first C from the left is same as inertial weight (w) used
in PSO. The grasshopper movement is reduced around the target by it.
This parameter is used to balance the exploration and exploitation of
swarm around the target.

The second C helps to decrease the attraction zone, comfort

zone, and repulsion zone between grasshoppers. The component

()2
d dd d
j i

ub lbc s x x−
− in the equation (2.7),

2
−d dub lb

c linearly

decreases the exploration and exploitation space by the grasshoppers.
The grasshopper is either repelled from (explore) or attracted to
(exploitation) and this is indicated by the component ()−d d

j is x x .

The inner c is responsible for reduction of repulsion/attraction forces
between grasshoppers, which is proportional to the number of iterations,
while the outer c is helpful in reducing the search coverage around the
target as the iteration goes on increasing. In summary, in equation (2.7) the
first term which is the sum is considers the position of other grasshoppers
and accordingly implements the grasshopper interaction in nature.

The second term
dT , simulates the tendency of grasshoppers to

move towards the food source. The deceleration of grasshopper which
is approaching towards the food source and eventually consumption
of it is simulated by the parameter c. Both the terms in the equation is
multiplied by the random values which provide more random behaviour
to grasshoppers. An individual term in the equation is also multiplied
by random numbers to provide random behaviour in both interactions
of grasshoppers as well as their tendency towards the source of food.

The proposed mathematical formulations are able to explore and
exploit the search space. To tune the level of exploration to exploitation
for search agents, a mechanism is required. In nature the initial
movement of grasshopper is locally for search of food as they are in
larvae phase in which they have no wing. For larger region search they
move freely in air to explore in their adulthood. However the exploration
comes first in stochastic optimization algorithm as there is need for
finding the promising region in the search space. After obtaining the
promising region by exploration, local search is carried by exploitation
to find the accurate approximation of the global optimum.

For balancing exploration and exploitation, there is relation between
and number of iteration and accordingly the c is to be decreased.
Exploitation is promoted as the number of iteration increases. The
comfort zone is reduced by c proportional to iteration count and is
calculated as follows:

max min
max

c cc c l
L
−

= − (2.8)

Where cmax is the maximum value, cmin is the minimum value,
l indicates the current iteration and L is the maximum number of
iterations. In this work, we use l and 0.0001 for cmax and cmin, respectively.

From above it is seen that the mathematical model should help
grasshopper to move towards a target gradually. In actual practice,
the actual optimum solution is unknown to us which is exact global
optimum. Therefore, it is required to find out the target for each
grasshopper in every stage of optimization. In GOA, it is assumed that
the grasshopper with best objective value is fittest grasshopper during
optimization. This will help to save the best solution in each iteration in
algorithm. This is done hope that the most accurate target is reached the
approximation of real problem.

Constraint handling technique

To use the recent developed nature inspired, evolutionary
algorithms, it is necessary to convert the constrained optimization
problem into unconstrained optimization problem. Without loss of
generality we may transform any optimization problem using constraint
handling techniques. A variety of constraint-handling methods have
been developed in the last decades. Penalty method is one of the
constraints handling technique.

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper Optimization Algorithm for Constrained and Unconstrained Test
Functions. Int J Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Page 4 of 7

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

Penalty function: Penalty functions have been a part of the
literature on constrained optimization for decades. This concept is a
part of constraint handling technique. Constraint handling techniques
are used to convert the constrained optimization problem into
unconstrained optimization problem. The Grasshopper Optimization
Algorithm is able to handle the unconstrained optimization problems
only, so using the penalty function the constrained optimization
problems can be solved using GOA.

Static penalty is used in most of the cases. In this approach a constant
penalty is applied to those solutions which violate the feasibility of the
solution. The general formulation of the penalty function is:

() ()
1 1

pn

p i i j j
i j

f x f x rG c L
= =

= ± +∑ ∑ (2.9)

Where, Gi and Lj are functions of constraints gi(x) and hj(x)
respectively [27].

gi(x) are inequality constraints, hj(x) are equality constraints, ri and
cj are positive constants normally called “penalty factors”.

()max 0,gi iG x
β

=   

() γ=j jL h x

where β and γ are normally 1 or 2.

The pseudo code of GOA algorithm for unconstrained and
constrained benchmark test problems is shown in Figures 1a and
1b. The random solutions are generated at very beginning of the
algorithm. Based on equation (2.7) the positions of search agent are
updated. In each iteration the best solution obtained is updated. The
distances between grasshoppers are normalized in each iteration. Until
the satisfaction end result is not obtained, the updating of position
is continuously carried on. The position and fitness of the best target
is finally returned as the best approximation for the global optimum
(Figures 1a and 1b).

Results
This section presents the test problem with known optima and

performance of GOA algorithm. The results are then provided and
analyzed in details.

Experimental setup

It is very common to employ mathematical test functions in
stochastic optimization. The optima of the mathematical test functions
are known, so the performance of the algorithm can be measured
quantitatively [28].

It is required that the characteristics of the test function should be
that diverse, so that they are able to reach to some proper conclusion. In
this work, two sets of test functions are used to check the performance
of the GOA algorithm. The test functions are constrained and
unconstrained optimization functions. The mathematical test functions
are available in appendix.

For solving the test functions, 500 iterations along with 30 search
agents are employed. The algorithm was coded in Matlab (R2016a) on
windows 7 platform with I5-3470 Processor 3.2 GHZ processor speed
and 4 GB RAM. Each test was solved 30 times to generate the statistical
results. The best solution among all results is chosen as final optimum
solution. The qualitative results, along with trajectory of grasshopper,
search history, convergence curves, and average fitness of population
have been discussed and analyzed in following subsection.

Qualitative results and discussion

The experiment is conducted on both sets of test functions i.e.
unconstrained and constrained test problems. The main objective
behind conducting this experiment was to observe the GOA algorithm
behaviour qualitatively. Four diagrams have been drawn for each of the
test function shown in these diagrams (Figure 2):

yy Average fitness: This diagram indicates the average objective
value of all grasshoppers in each iteration.

yy Convergence curve: This diagram shows the objective value of
the best solutions obtained so far (target) in each iteration.

As shown in Figure 2, grasshoppers tend to explore the different
regions of the search space around the global optima eventually. These
results show that the GOA algorithm beneficially balances exploration
and exploitation to drive the grasshoppers towards the global optimum.

The trajectory curves in Figure 2, show that the grasshoppers made
abrupt changes in initial steps of optimization largely. Exploration Figure 1a: Pseudo code for unconstrained problem.

Figure 1b: Pseudo code for constrained problem.

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper Optimization Algorithm for Constrained and Unconstrained Test
Functions. Int J Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Page 5 of 7

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

of search space is takes place due to high repulsive rate of GOA. It is
also seen that, as the optimization approaches further the fluctuation
decreased gradually. This is done due to the attraction forces as well as
comfort zone between grasshoppers. This guarantees that the algorithm

will converge to a point eventually because of exploration and
exploitation. The curve shows the descending behaviour and it proves
that the GOA enhances the initial random population and improves the
accuracy of the approximated optimum over the course of iterations.

Quantitative results and discussion

In above section, the qualitative results are discussed and
demonstrated that GOA is able to solve the optimization problems.
The test functions are of 2 variables with both constrained and
unconstrained type problems. The experimental results are shown in
Tables 1 and 2 for unconstrained and constrained test functions as well
as the actual values of test functions are compared with GOA results.

In Table 1, the results of unconstrained test functions are compared.
The test functions are solved by GOA and the solution obtained from
this algorithm is compared with the actual results of the test functions
and from there it is seen that the solution obtained by GOA is
approximately same. From this we can say that the GOA is giving the
accurate solution of optimization problems.

In Table 2, the results of constrained test functions are compared.
To solve the constrained optimization problem in GOA, constraints
handling technique is required. In here the penalty approach is used
as a constraint handling technique. With the help of this technique
the problem is converted into unconstrained problem and then solved
it. The results obtained of this constrained test functions by GOA are
compared with actual results of test functions. From comparison we
can definitely say that the results given by GOA are very much near to
actual solution and consider as the accurate solution of the problem.

Figure 2a: Average fitness of all grasshoppers and convergence curve.

Figure 2b: Quantitative results of all grasshoppers and convergence curve.

Figure 2c: Unconstrained test functions Curves.

Figure 2d: Constrained test functions curves.

Figure 2e: Grasshoppers and convergence curves.

Function
Actual (Adorio EP) [28] GOA

x1 x2 f x1 x2 f
Beale's function 3 0.5 0 3 0.5 2.23E-12
Beale's function 1 3 0 1 3 3.72E-13
Matyas function 0 0 0 (-1.4191e-07) 2.47E-07 3.78E-14

Table 1: Results of GOA and comparison with actual values (unconstrained test
functions).

Function

Actual
(Adorio EP)

[28] GOA
x1 x2 f x1 x2 f

Rosenbrock function constrained
with a cubic and a line 1 1 0 0.99964 0.99927 1.32E-07
Rosenbrock function
constrained to a disk 1 1 0 0.99996 0.99992 1.52E-09

Table 2: Results of GOA and comparison with actual values (constrained test
functions).

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper Optimization Algorithm for Constrained and Unconstrained Test
Functions. Int J Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Page 6 of 7

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

From the above discussion it is clear that the results obtained by
using GOA are very close to actual and accurate solutions. So GOA can
be used efficiently in constrained as well as unconstrained optimization
problems and we can rely on the solution or results obtained from
GOA. The discussions and findings of the above section clearly state
the quality of exploration, exploitation, local optima avoidance, of the
algorithm. The repulsive for, attractive force between grasshoppers
changes along with the increase in the iterations. All these parameters
of the grasshoppers are useful in the algorithm to avoid the local optima
of the optimization problem and to converge to the global optimum
solution accurately and quickly (Tables 3 and 4).

Conclusion
This work presented the optimization algorithm called grasshopper

optimization Algorithm used to validate the results of GOA by using
optimization test functions. Both constrained and unconstrained
optimization test functions are used to validate the results obtained
from GOA. A mathematical model is studied which is based on the
swarming behaviour of grasshopper in nature. A mathematical model
simulates the repulsive and attractive forces between the grasshoppers.
GOA contains a coefficient that adaptively decreases the comfort zone
which is used in balancing of exploration and exploitation. Finally the
best solution given by swarm is considered the optimum solution of the
optimization problem.

In order to validate the performance of the GOA, the test functions
are used in paper. The test functions are solved by the using Grasshopper
optimization algorithm. The results obtained by GOA are observed to
check the performance of the algorithm qualitatively and quantitatively.
The experiment and discussion support the following conclusions:

yy Grasshopper optimization algorithm avoids local optima and
able to find the global optima in the given space.

yy GOA balances exploration and exploitation to find the global
optimum solution of optimization problem.

yy Grasshoppers are able to find the most promising region from
the given search space.

yy For unconstrained optimization problem the GOA gives
accurate solutions. The optimum point obtained from GOA is
accurate and promising.

yy The GOA also gives correct and promising results for
constrained optimization problem.

GOA can be used only for single objective problems. For future
work, the algorithm can be developed for multi objective problems.

GOA can contribute into different real world optimization problems.
Tuning the main controlling parameters of GOA may also be beneficial.

References
1.	 Kelley TR (2005) Optimization, an important stage of engineering design.

Technol Teacher 69: 18-23.

2.	 Coello CA (2002) Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: A survey of the state of the art. Comput Meth
Appl Mech Eng 191: 1245-1287.

3.	 Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for
engineering. Struct Multidiscipl Optim 26: 369-95.

4.	 Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced
optimization techniques, Springer Series in Advanced Manufacturing.

5.	 Deb K, Goyal M (2007) A flexible optimization procedure for mechanical
component design based on genetic adaptive search. Mechanical Engineering
department, Indian Institute of Technology, Kanpur.

6.	 Dasgupta D, Michalewicz Z (1997) Evolutionary algorithms in engineering
applications. Springer.

7.	 Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press.

8.	 Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for
binary particle swarm optimization. Swarm Evol Comput 9: 1-14.

9.	 Davis L (1991) Bit-climbing, representational bias and test suite design. ICGA,
pp: 18-23.

10.	Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220: 671-80.

11.	Lourenço HR, Martin OC, Stutzle T (2001) Iterated local search. arXiv preprint
math/0102188.

12.	Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated
evolution.

13.	Glover F (1989) Tabu search-part I. ORSA J Comput 1: 190-206.

14.	Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory.
In: Proceedings of the sixth International Symposium on Micro Machine and
Human Science, pp: 39-43.

15.	Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant
colonies. In: Proceedings of the First European Conference on Artificial Life,
pp: 134-142.

16.	Holland JH (1992) Genetic algorithms. Sci Am 267: 66-72.

17.	Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for
global optimization over continuous spaces. J Global Optim 11: 341-59.

18.	Eiben AE, Schippers C (1998) An evolutionary exploration and exploitation.
Fund Inform 35: 35- 50.

19.	Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics.
Inf Sci 237: 82-117.

20.	Gogna A, Tayal A (2013) Metaheuristics: review and application. J Exp Theor
Artif Intel 25: 503-526.

21.	Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, et al. (2011) Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm Evol Comput
1: 32-49.

22.	Simpson SJ, McCaffery A, Haegele BF (1999) A behavioural analysis of phase
change in the desert locust. Biol Rev 74: 461-80.

23.	Rogers SM, Matheson T, Despland E, Dodgson T, Burrows M, et al. (2003)
Mechanosensory-induced behavioural gregarization in the desert locust
Schistocerca gregaria. J Exp Biol 206: 3991-4002.

24.	Topaz CM, Bernoff AJ, Logan S, Toolson W (2008) A model for rolling swarms
of locusts. Eur Phys J Special Top 157: 93-109.

25.	Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm:
Theory and application. Adv Eng Soft 105: 30-47.

26.	Lewis A (2009) Low Cost: a spatial social network algorithm for multi-objective
optimisation. In: Evolutionary computation, CEC’09. IEEE congress, pp: 2866-
2870.

Function Objective function Range fmin

Beale's function (1.5-x+xy)2+(2.25-x+xy2)2+(2.625-x+xy3)2 [-4.5 to 4.5] 0
Beale's function (x+2y-7)2+(2x+y-5)2 [-10 to 10] 0
Matyas function 0.26(x2+y2)-0.48xy [-10 to 10] 0

Table 3: Unconstraint test functions.

Function Objective function Constraints Range fmin
Rosenbrock function
constrained with a
cubic and a line (1-x)2+100(y-x2)2

(x-1)3-y-1<0
x+y-2<0

[-1.5 to 1.5]
[-0.5 to 2.5] 0

Rosenbrock
function
constrained
to a disk (1-x)2+100(y-x2)2 x2+y2<2

[-1.5 to 1.5]
[-1.5 to 1.5] 0

Table 4: Unconstraint test functions.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1031&context=ncete_publications
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1031&context=ncete_publications
http://delta.cs.cinvestav.mx/~ccoello/compevol/constraint-cmame-final.pdf
http://delta.cs.cinvestav.mx/~ccoello/compevol/constraint-cmame-final.pdf
http://delta.cs.cinvestav.mx/~ccoello/compevol/constraint-cmame-final.pdf
https://link.springer.com/article/10.1007/s00158-003-0368-6
https://link.springer.com/article/10.1007/s00158-003-0368-6
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjg6tCvkIvWAhUEOI8KHct3DT4QFggtMAE&url=http%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocument%2Fcda_downloaddocument%2F9781447127475-c2.pdf%3FSGWID%3D0-0-45-1293543-p174282666&usg=AFQjCNEoAxW84BDk6GTXW-uyYOHCEAQtmQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjg6tCvkIvWAhUEOI8KHct3DT4QFggtMAE&url=http%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocument%2Fcda_downloaddocument%2F9781447127475-c2.pdf%3FSGWID%3D0-0-45-1293543-p174282666&usg=AFQjCNEoAxW84BDk6GTXW-uyYOHCEAQtmQ
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1445272
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1445272
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1445272
http://www.springer.com/in/book/9783540620211
http://www.springer.com/in/book/9783540620211
https://books.google.co.in/books/about/Nature_inspired_Metaheuristic_Algorithms.html?id=iVB_ETlh4ogC
https://www.researchgate.net/publication/259151123_S-shaped_versus_V-shaped_transfer_functions_for_binary_Particle_Swarm_Optimization
https://www.researchgate.net/publication/259151123_S-shaped_versus_V-shaped_transfer_functions_for_binary_Particle_Swarm_Optimization
http://dblp.org/db/conf/icga/icga1991
http://dblp.org/db/conf/icga/icga1991
https://www.ncbi.nlm.nih.gov/pubmed/17813860?report=docsum
https://www.ncbi.nlm.nih.gov/pubmed/17813860?report=docsum
https://arxiv.org/abs/math/0102188
https://arxiv.org/abs/math/0102188
http://file.scirp.org/Html/3-7900209_24859.htm
http://file.scirp.org/Html/3-7900209_24859.htm
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E74451E2AAB8E9E7C509D007F95EEF6E?doi=10.1.1.470.3577&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E74451E2AAB8E9E7C509D007F95EEF6E?doi=10.1.1.470.3577&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E74451E2AAB8E9E7C509D007F95EEF6E?doi=10.1.1.470.3577&rep=rep1&type=pdf
https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
https://www.nature.com/scientificamerican/journal/v267/n1/pdf/scientificamerican0792-66.pdf
http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Storn1997JGlobOpt11.pdf
http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Storn1997JGlobOpt11.pdf
http://content.iospress.com/articles/fundamenta-informaticae/fi35-1-4-03
http://content.iospress.com/articles/fundamenta-informaticae/fi35-1-4-03
http://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782347
http://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782347
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.9199&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.9199&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.9199&rep=rep1&type=pdf
https://www.researchgate.net/publication/227749263_A_behavioral_analysis_of_phase_change_in_the_desert_locust
https://www.researchgate.net/publication/227749263_A_behavioral_analysis_of_phase_change_in_the_desert_locust
https://www.ncbi.nlm.nih.gov/pubmed/14555739
https://www.ncbi.nlm.nih.gov/pubmed/14555739
https://www.ncbi.nlm.nih.gov/pubmed/14555739
https://link.springer.com/article/10.1140/epjst/e2008-00633-y
https://link.springer.com/article/10.1140/epjst/e2008-00633-y
http://www.sciencedirect.com/science/article/pii/S0965997816305646?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S0965997816305646?via%3Dihub
http://ieeexplore.ieee.org/document/4983302/
http://ieeexplore.ieee.org/document/4983302/
http://ieeexplore.ieee.org/document/4983302/

Citation: Neve AG, Kakandikar GM , Kulkarni O (2017) Application of Grasshopper Optimization Algorithm for Constrained and Unconstrained Test
Functions. Int J Swarm Intel Evol Comput 6: 165. doi: 10.4172/2090-4908.1000165

Page 7 of 7

Volume 6 • Issue 3 • 1000165
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

27.	Kulkarni O, Kulkarni N, Kulkarni AJ, Kakandikar G (2016) Constrained cohort
intelligence using static and dynamic penalty function approach for mechanical
components design. Int J Parallel Emergent Distrib Sys.

28.	Adorio EP (2015) MVF-multivariate test functions library in c for unconstrained
global optimization.

https://www.researchgate.net/publication/309288603_Constrained_Cohort_Intelligence_using_Static_and_Dynamic_Penalty_Function_Approach_for_Mechanical_Components_Design
https://www.researchgate.net/publication/309288603_Constrained_Cohort_Intelligence_using_Static_and_Dynamic_Penalty_Function_Approach_for_Mechanical_Components_Design
https://www.researchgate.net/publication/309288603_Constrained_Cohort_Intelligence_using_Static_and_Dynamic_Penalty_Function_Approach_for_Mechanical_Components_Design
http://www.geocities.ws/eadorio/mvf.pdf
http://www.geocities.ws/eadorio/mvf.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Grasshopper Optimization Algorithm (GOA)
	Constraint handling technique

	Results
	Experimental setup
	Qualitative results and discussion
	Quantitative results and discussion

	Conclusion
	Figure 1
	Figure 1b
	Figure 2a
	Figure 2b
	Figure 2c
	Figure 2d
	Figure 2e
	Table 1
	Table 2
	Table 3
	Table 4
	References

