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Application of H∞ Theory to a 6 DOF
Flight Simulator Motion Base
The purpose of this study is to apply inverse dynamics control for a six degree of
freedom flight simulator motion system. Imperfect compensation of the inverse
dynamic control is intentionally introduced in order to simplify the implementation
of this approach. The control strategy is applied in the outer loop of the inverse
dynamic control to counteract the effects of imperfect compensation. The control
strategy is designed using H∞ theory. Forward and inverse kinematics and full
dynamic model of a six degrees of freedom motion base driven by electromechanical
actuators are briefly presented. Describing function, acceleration step response
and some maneuvers computed from the washout filter were used to evaluate the
performance of the controllers.
Keywords: inverse dynamics control, H∞ theory, flight simulator motion base,
Stewart platform

Introduction

Most flight simulator adopt the Stewart platform as the
motion base, which is composed of a moving platform linked
to a fixed base through six extensible legs. Each leg is
composed of a prismatic joint (i.e an electromechanical or
electrohydraulic actuator), one passive universal joint and one
passive spherical joint making connection with the base and
the moving platform, respectively, as shown in Fig. 1.

Spherical Joint =
Universal joint +
Revolute joint

Universal Joint

Prismatic Joint

Base

Platform

Figure 1. The Stewart platform.

Most motion control schemes concerning flight simulator
motion bases are focused on the washout-filter (Nahon
and Reid, 1990), forward and inverse kinematics; and an
independent joint linear controller is implemented for each
actuator (Salcudean et al., 1994; Graf et al., 1998). On
the other hand, the effects of the motion-base dynamics are
ignored or a linearized model of motion-base dynamics is used
(Idan and Sahar, 1996).

Inverse dynamics control (Sciavicco and Siciliano, 2005;
Spong and Vidyasagar, 2006) is an approach to nonlinear
control design whose central idea is to construct an inner
loop control based on the motion base dynamic model
which, in the ideal case, exactly linearizes the nonlinear
system and an outer loop control to drive tracking errors
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to zero. This technique is based on the assumption of
exact cancellation of nonlinear terms. Therefore, parametric
uncertainty, unmodeled dynamics and external disturbances
may deteriorate the controller performance. In addition, a
high computational burden is paid by computing on-line the
complete dynamic model of the motion-base (Koekebakker,
2001). Robustness can be regained by applying robust control
tecniques in the outer loop control structure as is shown in
Becerra-Vargas et al. (2009).

In this context, this work presents the application
of a control strategy applied in the outer loop of the
feedback linearized system for robust acceleration tracking
in the presence of parametric uncertainty and unmodeled
dynamics, which is intentionally introduced in the process of
approximating the dynamic model in order to simplify the
implementation of this approach.

The forward and inverse kinematics and the dynamic
model of six degrees of freedom motion base are briefly
presented. Then, electromechanical actuator dynamics are
included in order to obtain a full dynamic model.

The control strategy consists in introducing an additional
term to the inverse dynamics controller which provides
robustness to the control system. The robust control term
is designed for a disturbance rejection problem via H∞
control, where the controller considers the uncertainties as
disturbances affecting the linearized system.

Finally, standard methods to characterize the perfomance
of a flight simulator motion base are presented and used to
evaluate the performance of the controller.

This paper is structured as follows: in Section II, the
forward and inverse kinematics and dynamic model of six
degrees of freedom motion base are briefly presented. Then,
electromechanical actuator dynamics are included in order
to obtain a full dynamic model; in Section III, the control
structure in cartesian coordinates is presented and the control
strategy is applied. Then, dynamic model matrices that will
be used in the controller are defined; in Section IV, three
methods to evaluate the controllers’s performance are defined;
in Section V the results obtained from simulation are shown
and discussed; and finally, in Section VI, conclusions of the
present work are discussed.
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Nomenclature

a = acceleration vector of the moving platform centre of
gravity

bi = position vector of the i-th base point
e = Cartesian coordinates tracking error vector
Fi = driving force generated by the i-th electromechanical

actuator
g = acceleration vector due to gravity
Ip = moment of inertia matrix of the moving platform

Jl,ω = Jacobian matrix relating to ω and L̇i
Jl,q = Jacobian matrix relating to L̇i and q̇
Li = length of the i-th leg
M = mass of the moving platform (including payload)

M̂ = simplified representation of the matrix M
N̂ = simplified representation of the matrix N
pi = position vector of the i-th platform point (in moving

platform frame)
q = Cartesian space coordinates vector
qn = platform neutral position
(qp)i = <pi
(q̃p)i = skew-symmetric matrix associated to (qp)i
Qi = matrix depending on the ith leg inertial properties
R = position vector of the centre of gravity
R̃ = skew-symmetric matrix associated with R
< = rotation matrix of moving platform frame relative to

base platform frame
si = unit vector along the direction of the i-th leg
t = translation vector of the upper platform centroid,

(x, y, z)
u = robust control vector
Vi = vector depending on the i-th leg dynamic properties
w = uncertainty vector

Greek Symbols

Θ = Euler angles vector, (φ, θ, ψ)
ω = angular velocity vector of the moving platform
ωb = bandwidth of the flight simulator motion base
α = angular acceleration vector of the moving platform
τi = driving torque generated by the ith electromechanical

actuator

Subscripts

i = Relative to actuator i

Superscripts

T = Represents transposition

Motion Base Kinematics and Dynamics

The Newton-Euler approach (Dasgupta and
Mruthyunjaya, 1998) was adopted to calculate the Stewart
platform nonlinear dynamic model in cartesian coordinates.
The cartesian space coordinates q are defined as

q =
[
tT ΘT

]T
, (1)

where t = [x y z]T is the translation vector of the moving
platform centroid and Θ = [φ θ ψ]T is the Euler angles vector
defining its orientation.

The leg vector with respect to the inertial base frame {B},
as shown in Fig. 2, can be denoted as

Si = <pi + t− bi (2)

Equation (2) represents the inverse kinematics problem in the
sense one can compute the legs’ lengths, i.e., norms of Si, from
the given position (t) and orientation (< being function of Θ)
of the platform.
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Figure 2. UPS Stewart platform.

The forward kinematics problem comprises the
determination of the position and orientation of the
platform from the given actuator lengths. It is observed from
Eq. (2) that the forward kinematics problem involves solving
six simultaneous nonlinear equations for the values of the six
unknown variables representing the position and orientation
of the platform. Consequently, iterative numerical methods
are employed to solve the set of nonlinear equations (Nguyen
et al., 1993).

Kinematic analysis of the legs can be derived from Eq. (2).
Dynamic analysis of the legs can be derived taking force and
moment balance of each leg (left side of Figure 3) and then
combining both equations. Thus, one gets

(Fs)i = Qiẗ−Qi(q̃p)iα+ Vi − Fisi (3)

where (Fs)i is the force applied to the leg i by the upper
platform, Qi depends on the ith leg inertial properties and
Vi depends on the ith leg dynamic properties.

Similarly, force and moment balance on the moving
platform (right side of Figure 3) can be written as (with no
external forces):

Ma = Mg −
6∑
i=1

(Fs)i (4)

and

MR× g −
6∑
i=1

[(qp)i × (Fs)i] +

6∑
i=1

fi =

Ipα+ω × Ipω +MR× a;

(5)

where fi is the moment of viscous friction at the i-th spherical
joint.
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Figure 3. Vector analysis - Motion base.

Substituting the expression for (Fs)i from Eq. (3) into
Eqs. (4) and (5) and then combining them, one gets

Mt(q)q̈ + Ct(q, q̇) + Bt(q̇) + Gt(q) = Jl,ωF (6)

where:

Mt = Mp + Ma; Ct = Cp + Ca; Gt = Gp + Ga;

and

F =
[
F1 F2 F3 F4 F5 F6

]T .
The detailed elements of the above matrices are given in

the Appendix. Information about derivation of the Stewart
platform’s dynamic model is not detailed here since it is not
the scope of this paper.

0.1 Inclusion of actuator dynamics

With the improvement in electrical servo actuation
technology, there is a trend to use electrically driven motion
systems instead of those hydraulically driven.

An electromechanical servo-actuator, shown in Figure 4,
consists of a servo-motor and an actuator driven by a servo-
drive. As the closed loop bandwidth between the servo-
drive and the servo-motor is much higher than that of the
motion system, electrical dynamics can be ommitted and the
mechanical dynamics is the only one considered. Thus, the
motor torque can be considered proportional to the motor
current.

Figure 4. Representation of the electromechanical servo-
actuator.

The equation of motion of the electromechanical actuator
(Figure 5) can be written in matrix form:

F = KaTm −DaL̈−BaL̇; (7)

where

Tm =
[
τ1 τ2 τ3 τ4 τ5 τ6

]T .
L =

[
L1 L2 L3 L4 L5 L6

]T ;

and where Da are the actuator inertia matrix, Ba is the
actuator viscous damping coefficient matrix, and Ka is the
actuator gain matrix, which are detailed in the Appendix.

Figure 5. Electromechanical actuator.

The relationship between the cartesian coordinates and
joint coordinates can be written as

L̇ = Jl,qq̇

L̈ = Jl,qq̈ + J̇l,qq̇
(8)

Substituting Eq. (8) into Eq. (7), one gets

F = KaTm −DaJl,qq̈−DaJ̇l,q −BaJl,qq̇ (9)

And substituting Eq. (9) into Eq. (6), the full dynamic model
in cartesian coordinates results as

M(q)q̈ + N(q, q̇) = uT (10)

where

N = C + E + G

M = K−1a
[
J−T
l,ω

Mt + DaJl,q

]
C = K−1a

[
J−T
l,ω

Ct + DaJ̇l,q + BaJl,qq̇
]

E = K−1a J−T
l,ω

Bt

G = K−1a J−T
l,ω

Gt

and uT = Tm, which is proportional to the motor current
(not considering the actuator electrical dynamics) driving the
servo-drive of the electromechanical actuator.
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Figure 6. Cartesian space control framework.

1. Motion Base Controller Design

A flight simulator control system stems from two
frameworks. The first one is based on the legs lengths tracking
control and is called joint space control (Salcudean et al.,
1994; Graf et al., 1998). On the contrary, the second one
is based on the position and orientation tracking control and
is called cartesian space control (Becerra-Vargas et al., 2009;
Koekebakker, 2001).

Joint space control does not seem suitable in inverse
dynamic control due to the fact that joint space dynamic
equations are more complicated compared with the cartesian
ones in Eq. (10), moreover, the terms of the joint
space dynamic matrices will still depend on the cartesian
coordinates.

Cartesian space control was adopted in this study as shown
in Fig. 6. The pilot responds to the simulator cues and
tracking or disturbance tasks by driving the aircraft control
surfaces, then aircraft’s response is calculated through an
aircraft dynamic model.

Because of the limited motion envelope of the motion
base, filtering (by washout filter (Nahon and Reid, 1990)) is
required between the calculated aircraft trajectories and the
commanded motion base trajectories. Then, the controller
attempts to null the cartesian coordinate error by commanding
a torque signal (voltage or current) to the servo-drive of the
electromechanical actuator.

Thus, the force driving the motion base is governed by the
equation of motion of the electromechanical actuator in Eq.
(9).

Cartesian space control needs information of a 6 degrees of
freedom sensor to measure the position and orientation of the
platform. However, when only legs lenghts measurements are
available, the forward kinematic problem must be resolved.

1.1 Imperfect compensation of the inverse dynamics
control

As it is well known, inverse dynamics control (Sciavicco and
Siciliano, 2005; Spong and Vidyasagar, 2006) is an approach to
nonlinear control design whose central idea is to construct an
inner loop control which, in the ideal case, exactly linearizes
the nonlinear system and an outer loop control to drive
tracking errors to zero. The global linearization of the motion
base dynamics can be obtained by the inverse dynamics control

law:

uT = M(q)v + N(q, q̇) (11)

where M(q) and N(q, q̇) represent the matrices in Eq. (10)
and:

v = q̈d + Kdė + Kpe, (12)

and where Kd and Kp represent the gain matrices and the
tracking error is defined as

e = qd − q, (13)

where qd is the desired cartesian space coordinates. Now,
substituting Eq. (11) into Eq. (10), and simplifying it, leads
to the system of second-order equation:

ë + Kdė + Kpe = 0, (14)

where asymptotic stability is reached by choosing the matrices
Kd and Kp as:

Kp = diag
{
ω2n1, ..., ω

2
n6

}
;

Kd = diag {2ς1ωn1, ..., 2ς6ωn6}
(15)

where ωni and ςi charaterize the response of the tracking error
in Eq. (14)

Practical implementation of the inverse dynamics control
law in Eq. (11) requires the parameters of the matrices
M(q) and N(q, q̇) to be accurately known, the matrices
to be modeled accurately and to be computed in real-time.
These requirements are difficult to satisfacy in practice.
Model imprecision may come from parametric incertanties
and purposeful choice of a simplified representation of
the matrices M(q) and N(q, q̇) (unmodeled dynamics
intentionally introduced). In other words, there will be
always inexact cancellation (imperfect compensation) of the
nonlinearities in the system due to these uncertainties also the
burden of computing these matrices at each sample instant.
Therefore, the control law in Eq. (11) can be rewritten as
(Figure 7)

uT = M̂(q)v + N̂(q, q̇); (16)

where the term v is modified as:

v = q̈d + Kdė + Kpe + u, (17)
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Figure 7. Inverse dynamic control, imperfect compensantion.

and M̂, N̂ represent simplified versions of M, N and are
defined in Section III-C. The term u in Eq. (17) is included
to overcome imperfect compensation effects, in this case,
the simplification of the matrices M, N. The block that
represents the full dynamic equation of the motion base in
Fig. 7 corresponds to Eq. (10). Now, substituting Eq. (16)
into Eq. (10) and simplifying it, one gets

ë + Kdė + Kpe = w − u; (18)

where

w = (I−M−1M̂)v −M−1∆N

∆N = N− N̂
(19)

The state space representation of the tracking error
dynamics described by Eq. (18) is given as

ẋ = Ax + B(w − u), (20)

where the state vector x consisting of the error and its
derivative is written as:

x = [ e ė ]T, (21)

and where

A = (H−BK) , K =
[
Kp Kd

]
(22)

and

H =

[
0 I
0 0

]
B =

[
0
I

]
(23)

In this context, the term u must be designed to stabilize
the tracking error dynamics defined by Eq. (20) in the
presence of the incertainty w, which represents the imperfect
compensation effects. In the next section, the strategy will be
designed in order to find this term.

1.2 Robust outer loop design by H∞ control

In order to use H∞ control one needs to put the system in
Eq. (20) into linear fractional transformation frame as shown
in figure 8.

Figure 8. H∞ control problem.

G(s) is the transfer function of the state space system
defined by Eq. (20), and We(s), Wd(s) and Wu(s) represent
the weighting functions diagonal matrices associated with the
tracking error, disturbance and control signal, respectively
(uncertainty w in Eq. (19) is considered as disturbance).

Then the H∞ suboptimal control problem is to find a
stabilizing controller K(s) which, based on the information in
y, generates a control signal u that counteracts the influence
of w̃ on z̃, thereby minimizing the closed-loop norm from w̃
to z̃ to less than gamma via the selected weighting function
matrices, that is∥∥∥∥∥

[
Wu(I + KG)−1KGWd
We(I + GK)−1GWd

]∥∥∥∥∥
∞
< γ (24)

1.2.1 Weights selection

Because the tracking error should be zero at steady state,
the weighting function We should include a pure integrator;
however, to get a stable weight and to prevent numerical
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problems in the algorithm used to synthetize the controller,
it is necessary to place a pole very close to the origin in the
left half plane, thus We is given as

We(s) =
s/Ms + ωb
s+ ωbAs

(25)

where As is chosen small to force tracking at low frequencies,
Ms is the bound in high frequencies and ωb is the bandwidth
of the flight simulator motion base.

Wd is chosen to model the characteristic frequency of the
disturbance and it is given as

Wd =
Mds+ ωb
s+ ωb/Ad

(26)

where Ad lower bounds the transfer functions in Eq. (24),
penalizing the tracking error and the controller energy,
respectively, whereas Md upper bounds the tranfer functions.
As the disturbance (modeling error of inexact cancellation of
the inverse dynamic control strategy, Eq. (19)) is generated
through inverse dynamic computation, the bandwidth
frequency is the same as the one of the motion system.

Wu has to have the character of a high pass filter in order to
reduce the effect of noise on plants outputs in high frequencies,
thus

Wu(s) =
s/Mu + ωb
s+ ωbAu

(27)

where Au normalizes the control signal (thus bounding the
actuator signal) at low frequencies and Mu upper bounds the
control sensitivity function. Thus, the weighting functions
matrices are given as:

We =

We(s) ··· 0
...

. . .
...

0 ··· We(s)

 ;Wd =

Wd(s) ··· 0
...

. . .
...

0 ··· Wd(s)



Wu =

Wu(s) ··· 0
...

. . .
...

0 ··· Wu(s)

 (28)

It is observed from Eq. (24) that the transfer functions,

(I + GK)−1G and I + KG)−1KG are two-sided weighted
functions, therefore the terms As, Ad, Au and Ms, Md, Mu
lower and upper bounds the spectrum of them.

1.3 Characteristics of the dynamic equations

Parallel manipulators motion bases have some drawback of
relatively small workspace comparing to serial manipulators.
In flight simulators motion bases, this is due mainly to
the physical restriction in terms of position, velocity and
acceleration of the actuators, e.g, for low frequencies motion,
the velocity and position constraints limit the maximal
attainable acceleration. Moreover, the high pass wash-out
filter characteristics keep the motion system not very far
away from the neutral position, to prevent the actuators
from running out of stroke. Thus, the matrices M̂(q) and

N̂(q) of the control law in Eq. (16) can be approximated
to constant ones without introducing large modelling errors.

Based on these constant matrices, calculation of the inverse
dynamics becomes much simpler, reducing computation time
significantly.

In this context, matrices M̂(q) and N̂(q), considered in
the control law in Eq. (16), are defined at the neutral position
as:

M̂(qn) = K−1a J−T
l,ω

(qn)Mp(qn)

N̂(qn) = Ĝ(qn) = K−1a J−T
l,ω

(qn)Gp(qn)
(29)

where qn represents a neutral position and was chosen to be at
half stroke of all the actuators, Mp(qn) is the inertia matrix
(Eq. (31)) calculated at the neutral position, Gp(qn) is the
gravity vector (Eq. (34)) calculated at the neutral positon and

J−T
l,ω

(qn) is the jacobian (Eq. (38)) calculated at the neutral

position. Coriolis and centrifugal forces, and leg effects, are
not considered.

2. Controller’s Performance Evaluation

At present, only one standard method to characterize
the performance of a motion system is known (Koekebakker,
2001). This is described in the AGARD advisory Report
(Lean, 1979).
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Figure 9. Rejected take-off maneuver.

As an initial control design, two methods defined in
the report should be considered: describing function as
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a frequency domain evaluation and the step acceleration
response in time domain. For each degree of freedom, six
describing functions can be calculated.

The primary describing function is the comparison of the
response of the motion-base in the driven degree of freedom
to the excitation signal (sine acceleration input) and the
other five describing functions (crosstalk describing functions)
the comparison of pure parasitic motion (motion in other
than the degree of freedom excited) to the excitation signal
(Grant, 1986). Furthermore, to evaluate the system in its
normal operating mode, some standard maneuvers should be
evaluated as well.

In order to evaluate the control strategy, the amplitude
of the excitation signals (sine acceleration inputs, step
acceleration inputs and the desired trajectories from
the manouvers) was choosen to keep the motion base
approximately 70% of the system limits in position, velocity
and acceleration.

Desired aircraft trajectories were generated from a flight-
simulation model of a Boeing 747-400 in the UTIAS
(University of Toronto Institute for Aerospace Studies)
research flight simulator, and then passed through the well-
kwnon classical washout filter (Nahon and Reid, 1990) in order
to obtain the desired motion base trajectories.

The aircraft rejected take-off maneuver acceleration and
angular velocity as shown in Figure 9. From t = 10 seconds,
the aircraft accelerates to takeoff (x forward direction , ax =

4m/s2). After 20 seconds (t = 30 sec), the pilot decides to
abort the take-off by applying brakes and retracting flaps as

necessary (ax = -8 m/s2). At t = 50 seconds the take-off has
been aborted. The angular velocity of the aircraft is shown in
Figure 9-b.

The filtered aircraft trajectory is shown in Figure 10 and
represents the flight simulator motion base desired trajectory.
It can be observed from Figure 10 that sustained forward
acceleration (x acceleration component) is represented through
a tilt coordination ( angle θ in Figure 10-d) and tilt angular
velocity is limited to prevent the sensation of the angular
rotation rate associated with the tilting (approx. 3 deg/s as
shown in Figure 10-b).

3. Numerical Results and Discussions

The performance of the proposed controllers is verified by
numerical simulations, and results are presented only for surge
(x), heave (z) and pitch (θ) degrees of freedom. The Runge-
Kutta fourth-order numerical integration method is used to
solve the ordinary differential equation of the dynamic model.
Computer codes are written in MATLAB. Geometric and
inertial parameters of the motion base system are shown in
Appendix B.

In order to yield a low-order controller it was considered
that: the penalized output signals (y vector in Fig. 8) only
correspond to the position error, and, the weighting functions
are constants, i.e, y is a 6x1 vector and We is a 6x6 matrix.
Therefore, the weighting functions are given as:
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Figure 10. Desired motion simulator
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We =

 1/Ae ··· 0
...

. . .
...

0 ··· 1/Ae

 ;Wd =

Ad ··· 0
...

. . .
...

0 ··· Ad



Wu =

 1/Au ··· 0
...

. . .
...

0 ··· 1/Au


(30)

where Ae, Ad and Au were choosen as 0.008, 2 and 2.4,
respectively.

With relation to the controller gains in Eq. (15),
Koekebakker (2001) states the frequency ωi should not exceed
human sensory thresholds and that it should ideally be
sufficiently smooth and only require limited bandwidth (well
below 1 Hz). In this paper, a bandwidth, ωi, of 2 Hz and
a damping coefficient, ζi, of 1, were choosen necessarily to
get the desired performance. Running through the γ iteration
technique (Skogestad and Postlethwaite, 2005) resulted in a
suboptimal solution when γ = 0.7415.

The ouput (So) and input ( Si) sensitivity functions, and,
the output ( To) and input ( Ti) complementary sensitivity
functions, defined from Figure 8, are shown in Figure 11.
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Figure 11. Sensitivity functions.

Figure 11 proves the low-pass filter behaviour of Si (input
disturbance rejection) and So (output disturbance rejection),
and the high-pass filter behaviour of To (noise attenuation
control in measuring output) and Ti (noise attenuation control

in measuring input). So is less important in flight simulator
motion bases considering no external forces acting on the
motion base.

Acceleration step responses are shown in Figure 12. One
can observe a damped response with a small time constant.

The heave, surge and pitch describing functions in Fig. 13
are very similar and present a flat response and bandwidth
frequencies of approximately 20 Hz (tipically bandwidth
frequency in high performance flight simulators).
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Figure 12. Acceleration step responses.

Crosstalks describing functions with the base driven in the
surge direction (x) are shown in Figures 14. A rise occurs
on parasitic pitch direction (θ) as the frequency increases,
due possibly to the nonlinear coupling among the legs at
high frequencies. Similar results were presented in the other
directions, i.e, with the base driven in the pitch direction, a rise
occurs on parasitic surge direction as the frequency increases.

The acceleration response to the rejected take-off maneuver
is shown in Figure 15. The driving torques supplied by
the servo-motors of the servo-electromechanical actuators are
presented in Figure 16. The motor angular velocities are shown
in Figure 17. Similarly, the driving forces supplied by the
actuators are shown in Figure 18.

One can observe from Figures 15, 16 and 18 short time
peak accelerations, torques and forces (in 30 and 42 seconds
approx), respectively. These peaks are produced due to
the angular rate limiting that is applied in the washout
filter (angular rate limiting can be observed in Figure 10-b).
Angular rate limit leads to a very large angular jerk (derivate
of acceleration), therefore large translation jerk is produced.
This is important due to two reasons. One is a large jerk can
lead to false cues, and the other is that if the magnitude of the
jerk required is not considered, the motor may be undersized
and the system won’t perform as required. A predictive motion
cueing algorithm could avoid these false cues.

In order to compare the robust inverse dynamics controller
with the inverse dynamics controller, the control robust term
u in Eq. (17) is eliminated and the step response in the surge
direction (x) of both controllers are shown in Figure 19. Noise
was added to the controller inputs to test the robustness of
them. One can observe that robust controller achieved a better
noise reduction than the inverse dynamics controler alone, and
higher controller gains are required (without robust term) to
get a good response. In fact, and as pointed before, high
controller gain can produce a rough correction in the position
error and therefore can produce false cues.
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Figure 13. Describing function.
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Figure 14. Crosstalks describing function - Motion base driven
in the surge direction (x).
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Figure 15. Rejected take-off maneuver - Acceleration errors.
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Figure 16. Driving torques supplied by the servo-motors.
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Figure 17. Motor angular velocities.
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Figure 18. Driving forces supplied by the actuators.
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Figure 19. Step response in the surge (x) direction - Measured
sensor noise.

4. Conclusions

In this paper, a control approach for the motion control of
a flight simulator motion base was presented. The controller
was implemented in the outerloop of the inverse dynamic
control scheme in order to counteract imperfect compensation.
Imperfect compensation was included intentionally by defining
the motion base nominal dynamic matrices as constants.
The approach was designed via H∞ theory. Controller
performance evaluation was carried out through describing
functions, step acceleration inputs and some standard
manouvers. The controller presented robustness to bounded
modelling error and measured sensor noise.
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Appendix A

The matrices of the motion base dynamic model are given
by:

Mp =

[
MI −MR̃<ω

MR̃
(
Ip−MR̃R̃

)
<ω

]
;

Ma =


6∑
i=1

Qi −

 6∑
i=1

Qi(q̃p)i

<ω

6∑
i=1

(q̃p)iQi −

 6∑
i=1

(q̃p)iQi(q̃p)i

<ω


(31)

Cp =

[
Mω×(ω×R)

ω×Ipω+MR×(ω·R)ω

]
−
[

MR̃
MR̃R̃−Ip

]
<̇ωΘ̇ (32)

Ca =


6∑
i=1

(Vc)i

6∑
i=1

((qp)i × (Vc)i)

−


6∑
i=1

Qi(q̃p)i

6∑
i=1

(q̃p)iQi(q̃p)i

 <̇ωΘ̇
(33)

Gp = −
[

Mg
MR×g

]
; Ga =


6∑
i=1

(Vg)i

6∑
i=1

((qp)i × (Vg)i)

 (34)

Bt =


6∑
i=1

(Vf )i

6∑
i=1

((qp)i × (Vg)i)− fi

 . (35)

where Qi depends on the ith leg inertial properties and

(V)i = (Vc)i + (Vg)i + (Vf )i, (36)

where (Vc)i and (Vg)i depend on the ith leg dynamic
properties, and (Vf )i is the viscous friction force vector at
the ith leg joints, and where

<ω =

 CψCθ −Sψ 0
CθSψ Cψ 0
−Sψ 0 1

 (37)

The motion base Jacobian is given as

Jl,ω =
[

s1 s2 s3 s4 s5 s6
q1×s1 q2×s2 q3×s3 q4×s4 q5×s5 q6×s6

]T
, (38)

and the Jacobian that maps the cartesian coordinates into
joint coordinates is given as

Jl,q = Jl,ωJω,q (39)

where

Jω,q =

[
I 0
0 <ω

]
The matrices of the equation of motion of the

electromechanical actuator are given as

Ka =

Ka ··· 0
...

. . .
...

0 ··· Ka

 ;Da =

Da ··· 0
...

. . .
...

0 ··· Da

 ;

Ba =

Ba ··· 0
...

. . .
...

0 ··· Ba


(40)

where

Ka = 2πη
p ; Ma = Jt4π2η

p2
; Ba = Bt4π2η

p2

and where p and η are the lead and efficiency of the ballscrew,
and Jt and Bt are the moment of inertia and viscous damping
of the rotor and ballscrew, respectively.
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Appendix B

A symmetrical distribuition of joints on the payload are
arranged as shown in Figure 20, where the angles θB and θP
and the upper and base platform radius values, rP and rB ,
respectively, are given in Table 1. The neutral position is
choosen at half stroke of all the actuators, i.e.

qn =
[

0 0 −2.154m 0 0 0
]T (41)

Figure 20. Platform and base leg points distribuition.

Table 1. Geometric and inertial parameters.

Parameter Value Parameter Value

θP 100◦ θB 20◦

rP 1.60 m rB 1.65 m
M 2500 Kg Mact 100 Kg
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