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�e continuous planar facility location problem with the connected region of feasible solutions bounded by arcs is a particular
case of the constrained Weber problem. �is problem is a continuous optimization problem which has a nonconvex feasible set
of constraints. �is paper suggests appropriate modi	cations of four metaheuristic algorithms which are de	ned with the aim of
solving this type of nonconvex optimization problems.Also, a comparison of these algorithms to each other aswell as to the heuristic
algorithm is presented. �e arti	cial bee colony algorithm, 	re
y algorithm, and their recently proposed improved versions for
constrained optimization are appropriately modi	ed and applied to the case study. �e heuristic algorithm based on modi	ed
Weiszfeld procedure is also implemented for the purpose of comparison with the metaheuristic approaches. Obtained numerical
results show thatmetaheuristic algorithms can be successfully applied to solve the instances of this problem of up to 500 constraints.
Among these four algorithms, the improved version of arti	cial bee algorithm is the most e�cient with respect to the quality of the
solution, robustness, and the computational e�ciency.

1. Introduction

�e Weber problem is one of the most studied problems in
location theory [1–3]. �is optimization problem searches

for an optimal facility location �∗ ∈ R
2 on a plane, which

satis	es

�∗ = arg min
�∈R2

� (�) = arg min
�∈R2

�
∑
�=1
�� ����� � − ����� . (1)

In (1), it is assumed that � � ∈ R
2, 	 ∈ {1, . . . , 
} are known

demand points, �� ∈ R and �� ≥ 0 are weight coe�cients,
and ‖ ⋅ ‖ is a matrix norm, used as the distance function.
�e basic Weber problem is stated with the Euclidean

normunderlying the de	nition of the distance function. Also,

many other types of distances have been used in the facility
location problems [3–5]. In general, a lot of extensions and
modi	cations of the Weber location problem are known.
Detailed reviews of these problems can be found in [3, 6].

�emost popular method for solving theWeber problem
with Euclidean distances is given by a one-point iterative pro-
cedure which was 	rst proposed byWeiszfeld [7]. Later, Vardi
and Zhang developed a dierent extension of Weiszfeld’s
algorithm [8], while Szegedy partially extended Weiszfeld’s
algorithm to a more general problem [9]. In particular, some
variants of the continuous Weber problem represent non-
convex optimization problems which are hard to be solved
exactly [10]. A nonconvex optimization problem may have
multiple feasible regions and multiple locally optimal points
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within each region [11]. Consequently, 	nding the global solu-
tion of a nonconvex optimization problem is very di�cult.

Heuristics and metaheuristics represent the main types
of stochastic methods [12]. Both types of algorithms can
be used to speed up the process of 	nding a high-quality

solution in the cases where 	nding an optimal solution is very
hard. �e distinctions between heuristic and metaheuristic
methods are inappreciable [12]. Heuristics are algorithms
developed to solve a speci	c problem without the possibility
of generalization or application to other similar problems
[13]. On the other hand, a metaheuristic method represents a
higher-level heuristic in the sense that they guide their design.
In such a way we can use any of these methods to design a
speci	c method for computing an approximate solution for
an optimization problem.

In the last several decades, there is a trend in the scienti	c
community to solve complex optimization problems by using
metaheuristic optimization algorithms. Some applications of
metaheuristic algorithms include neural networks, data min-
ing, industrial, mechanical, electrical, and so�ware engineer-
ing, as well as certain problems from location theory [14–21].
�e most interesting and most widely used metaheuris-
tic algorithms are swarm-intelligence algorithms which are
based on a collective intelligence of colonies of ants, termites,
bees, 
ock of birds, and so forth [22].�e reason of their suc-
cess lies in the fact that they use commonly shared informa-
tion among multiple agents, so that self-organization, coevo-
lution, and learning during cycles may help in creating the

highest quality results. Although not all of the swarm-
intelligence algorithms are successful, a few techniques have
proved to be very e�cient and thus have become prominent
tools for solving real-world problems [23]. Some of the most
e�cient and the most widely studied examples are ant colony
optimization (ACO) [24–26], particle swarm optimization
(PSO) [15, 27–29], arti	cial bee colony (ABC) [19, 30–35],
and recently proposed 	re
y algorithm (FA) [18, 36–38] and
cuckoo search (CS) [17, 39–41].

Dierent heuristic methods are proposed in order to pro-
vide encouraging results for challenging continuous Weber
problem with regard to solution quality and computational
eort [42–46]. Also, some variants of the Weber problem
have been successfully solved by dierent metaheuristic
approaches [47–52]. In [52], the authors studied a capacitated
multisource Weber problem as an extended facility location
problem that involves both facility locations and service
allocations simultaneously. �e method proposed in [52]
is based on the integration of two genetic algorithms. �e
problemof locating one new facilitywith respect to a given set
of existing facilities in the plane and in the presence of convex
polyhedral barriers was considered in [47]. �e general
strategy in [47] arises from the iterative application of a
genetic algorithm for the subproblems selection. A hybrid
particle swarm optimization approach was applied in solving
the incapacitated continuous location-allocation problem in
[48]. In [49], the authors compared performances of four
metaheuristic algorithms,modi	ed to solve the single-facility
location problemwith barriers.�emethod for solving a kind

of Weber problem from [50] was developed using an evo-
lutionary algorithm enhanced with variable neighborhood
search.
�e aim of this paper is to investigate the perfor-

mances of some prominent swarm-intelligencemetaheuristic
approaches to solve the constrainedWeber problemwith fea-
sible region bounded by arcs. �is variant of Weber problem
has a nonconvex feasible set given by the constraints that
make it much harder to 	nd the global optimum using any
deterministic algorithms. Hence, metaheuristic optimization
algorithms can be employed in order to provide promising
results.
In this paper, four swarm-intelligence techniques are

applied to solve this version of the constrained Weber prob-
lem: the arti	cial bee colony for constrained optimization
[53], the crossover-based arti	cial bee colony (CB-ABC)
algorithm [54], the 	re
y algorithm for constrained opti-
mization [37], and the enhanced 	re
y algorithm (E-FA) [55].
�e CB-ABC and the E-FA are two of the most recently
proposed improved variants of the ABC and FA for solving
constrained problems, respectively. Also, a heuristic algo-
rithm is proposed in [44] with the aim of solving this version
of the constrained Weber problem. Hence, it is also imple-
mented for the purpose of comparisonwith themetaheuristic
approaches. �ese 	ve techniques are tested to solve ran-
domly generated test instances of constrainedWeber problem
with feasible region bounded by arcs of up to 500 constraints.
�e rest of the paper is organized as follows. A formula-

tion of the constrained Weber problem with feasible region
bounded by arcs and the heuristic approach developed to
solve this variant of the constrained Weber problem are pre-
sented in Section 2. Section 3 presents the four metaheuristic
optimization techniques used to solve this variant of the
Weber problem. Description of the generated benchmark
functions and comparative results of the four implemented
metaheuristic techniques are given in Section 4. Concluding
remarks are provided in Section 5.

2. The Heuristic Method for Solving a
Constrained Weber Problem

�e constrained Weber problem with feasible region
bounded by arcs in the continuous space was introduced in
[44]. In order to complete our presentation, we brie
y restate
themethod. It can be formulated by the goal function de	ned
in (1) and by the feasible region which is de	ned on the basis
of constraints of two opposite types:

S< = {	 ∈ {1, . . . , 
} | ����� − � ����� ≤ 1} ,
S> = {	 ∈ {1, . . . , 
} | ����� − � ����� ≥ 1} ,

(2)

where 
 is the total number of demand points and
{1, . . . , 
}S< and S> are subsets of the set of demand point
indices satisfying {1, . . . , 
}S<, S> ⊆ {1, . . . , 
}, and S< ∩
S> = 0. For the sake of simplicity, the optimization problem
given by (1) with constraints (2) is denoted as the CWP
problem.
Such a problem may occur if some demand points

coincide with locations of some important facilities and the
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searched optimal location �∗ must be close to them. Other
demandpointsmay coincidewith dangerous facilities and the
facility�∗ must be located far from them.
�e metric used in practically important location prob-

lems depends on various factors, including properties of the
transportation means [44]. In the case of public transporta-
tion systems, the price usually depends on a distance. How-
ever, some minimum price is usually de	ned. For example,
the initial fare of the taxi cab may include some distance,
usually 1–5 km. Having rescaled the distances so that this
distance included in the initial price is equal to 1, we can
de	ne the price function �� as

�� (�, �) = max {‖� − �‖ , 1} ∀�, � ∈ R
2, (3)

where ‖ ⋅ ‖ is a matrix norm.
In the case of distance function de	ned by (3), the prob-

lem can be decomposed into series of constrained location
problems with the Euclidean metric where the area of the
feasible solutions is bounded by arcs. Each of the problems
has the feasible region equal to the same intersection of the
discs with centers in the demand points. For more details, see
[44, 56].

�e Weiszfeld procedure for solving the Weber problem
with a given tolerance �, based on the results from [57], is
presented as Algorithm 2.1 in [44].

An algorithm based on the Weiszfeld procedure for
solving the CWP de	ned by objective (1) and constraints (2)
was proposed [44]. �e feasible set of our constrained opti-
mization problems is generally nonconvex, while the objec-
tive function �(�) given by (1) is convex [58]. A solution
of constrained optimization problems with convex objective
functions coincides with the solution of the unconstrained
problem or lies on the border of the forbidden region [59].
�us, if �∗ is a solution of the constrained problem given by
(1) with constraints (2) then it is the solution of the uncon-
strained problem (1) or ∃	 ∈ {1,
 : ‖� � − �∗‖2 = 1}.
Step 2.2 ofAlgorithm 2.1 from [44] can lead to generating

a new point �∗∗ outside the feasible region determined by
constraints (2). Let us denote this region R�. It is assumed
thatR� ̸= 0.
For an arbitrary point � ∈ R

2, let us denote the closest
point inR� byC(�). It can be computed using

C (�) = arg min
��∈R�

������ − �	�����

=
{{
{{
{

�, � ∈ R�,
arg min
��∈R�

������ − �	����� , � ∉ R�.
(4)

Algorithm 1 was proposed as Algorithm 2.2 in [44], and
it is based on the substitution of the point �∗∗ generated
in Step 2.2 of Algorithm 2.1 from [44] with its closest point
C(�∗∗) in the feasible region.

3. Review of the Metaheuristic
Optimization Techniques

�e four metaheuristics used to solve constrained Weber
problem with feasible region bounded by arcs are described
in the following subsections.

3.1. Arti
cial Bee Colony Algorithm for Solving the CWP. A
numerical variant of the ABC algorithm for constrained
optimization problems (COPs) proposed in [60] is applied
to solve the CWP. In the ABC the population is iteratively
re	ned through employed, onlooker, and scout bee phases.
�e update process used in the employed and onlooker

bee phase is the same and it is determined by

V�
 =
{
{
{
��
 +  
 ⋅ (��
 − ��
) , if #
 < MR
��
, otherwise, (5)

where  
 is a uniform random number in the range [−1, 1],�� represents another solution selected randomly from the
population, MR is the modi	cation rate control parameter,
#
 is a randomly chosen real number in the range [0, 1), and$ = 1, 2. �e update process is completed when the selection
between �� and V� is carried out.
�e ABC uses Deb’s rules in order to decide which solu-

tion will be kept for the next iteration. �is constraint han-
dling method consists of a set of three feasibility rules intro-
duced by Deb [61]. �ey are the following: (1) any feasible
solution is preferred to any infeasible solution, (2) between
two feasible solutions, the one having a better 	tness value is
preferred, and (3) if both solutions are infeasible, the one with
the lowest sum of constraint violations is preferred.
In the employed bee phase, every solution involves the

update process. On the other hand, in the onlooker bee phase
only the solutions selected probabilistically proportional to
their 	tness values have the chance to be upgraded [60].
In the scout phase solutions that do not improve over a

certain number of cases are replaced by new randomly
generated solutions. �e control parameters %	&	' and the
scout production period SPP are used in this phase. �e
parameter %	&	' is used to signify exhausted food source,
while SPP parameter is employed in order to denote a
predetermined period of cycles for producing scout bees.
�e pseudocode of the ABC is given as Algorithm 2.

3.2. Crossover-Based Arti
cial Bee Colony Algorithm for
Solving the CWP. Recent improved variant of the ABC for
COPs, called crossover-based arti	cial bee colony, is also used
to solve the constrained Weber problem [54]. �e main
modi	cations introduced in the CB-ABC are related to the
search operators used in each bee phase in order to improve
the distribution of good information between solutions [54].
�e dierences between the CB-ABC and the ABC for COPs
are given as follows.
In the employed bee phase, the CB-ABC algorithm uses

modi	ed search equation (5), in which  is the same random
number of each parameter $ which will be changed. Also, the
CB-ABC does not use the 	xed value of MR control parame-
ter. Value of MR linearly increases from 0.1 to the prede	ned
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Require: Coordinates and weights of the demand points � � = (*�1, *�2), ��, 	 = 1,
, pre-speci	ed tolerance �,
constraints (2) speci	ed by sets S< and S>.
Step 1. Calculate the initial point�∗ ∈ R� (here,R� is the feasible set bounded by constraints);

�∗ = C(�∗); Δ = +∞.
Step 2. While Δ > � do:
Step 2.1. 3iter = 3iter + 1;

�denom =
�
∑
�=1

��
‖� � − �∗‖2 .

Step 2.2. �∗∗� = ∑��=1(�∗���/(‖�∗ − � �‖2 ⋅ �denom)) ∀6 ∈ {1, 2}.
Step 2.3. If�∗∗ ∉ R� then�∗∗ = C(�∗∗).
Step 2.4. Δ = ‖�∗ − �∗∗‖;�∗ = �∗∗.
Step 2.5. Continue Step 2.

Step 3. STOP, return�∗∗.

Algorithm 1: Solving the CWP problem.

Initial parameters of the ABC including maximum cycle number (MCN), SN,MR, %	&	', SPP;
Generate initial population �� (	 = 1, 2, . . . , SN) randomly in the search space and evaluate each ��;' = 0;
while (' < MCN) do
for 	 = 1 to SN do

Generate a solution V� with �� by Eq. (5), evaluate it and apply selection process based on Deb’s method between V� with ��;
end for
for 	 = 1 to SN do

Select food source � based on 	tness proportionate selection;
Generate a solution V with � by Eq. (5), evaluate it and perform selection process based on Deb’s method
between V with �;

end for
if ('mod SPP = 0) then
Every solution which did not enhance at least %	&	' number of times is replaced, each with a randomly produced solution.

end if
Memorize the best solution reached so far.
' = ' + 1

end while

Algorithm 2: Pseudocode of the ABC.

Table 1:�e values of speci	c control parameters of the algorithms.

FA E-FA ABC CB-ABC
7 0.25 7 0.25 MR 0.8 MRmax 0.9
? 1 ? 1.5 %	&	' SN %	&	' 1
@ 1 @ 1 SPP SN SPP 50

A 0.3

value MRmax in the 	rst A ∗MCN iterations, while the value
MR = MRmax is used in the remaining iterations. �e value
of A is de	ned in Table 1.
In the onlooker bee phase, the CB-ABC proposes a new

search equationwith the aim of enabling better exploration of
the neighborhood of the high-quality solution.�is equation
is given by

V�
 = ��
 +  ⋅ (�
 − ��
) , (6)

where  is a uniform random number in range [−1, 1], � and�� represent the other two solutions selected randomly from
the population, #
 is a randomly chosen real number in the
range [0, 1), and $ = 1, 2.
In the scout bee phase, the CB-ABC uses uniform

crossover operator to generate new solutions in a promising
region of the search space. �erefore, a�er each SPPth iter-
ation, each solution �� which did not improve %	&	' number
of times is replaced with a new solution which is created by

V�
 =
{
{
{
D
, if #
 < 0.5
��
, otherwise, (7)

where D
 is the $th element of the global best solution found
so far, #
 is a randomly chosen real number in range [0, 1),
and $ = 1, 2.
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Initial parameters of the FA including SN,MCN, 70, ?0, @.
Generate initial population of 	re
ies �� (	 = 1, 2, . . . , SN) randomly distributed in the solution space.
Assume that  (��) is the expanded objective function of �� (	 = 1, 2, . . . , SN) calculated by (10).' = 0.
while ' < MCN do

for 	 = 1 to SN do
for $ = 1 to SN do
if ( (�
) <  (��)) then
Generate a new �� according to Eq. (8) and evaluate it.

end if
end for

end for
' = ' + 1.
7(') = 7(' − 1) ⋅ (10.0−4.0/0.91/MCN).
Rank the 	re
ies and memorize the best solution achieved so far.

end while

Algorithm 3: Pseudocode of the FA.

3.3. Firey Algorithm for Solving the CWP. In order to solve
theCWPwehave employed a numerical optimization version
of the FA for COPs, introduced in [37]. In the FA, a colony
of arti	cial 	re
ies searches for good solutions in every
iteration.
�e search operator represents the movement of a 	re
y

	 to another more attractive or brighter 	re
y $ and it is given
by

��� = ��� + ? ⋅ (�
� − ���) + 7 ⋅ F� ⋅ (rand� − 1
2) , (8)

where the second term is due to the attraction and the third
term is a randomization term.
In the second term of (8), the parameter ? is the

attractiveness of 	re
ies which is calculated according to the
following monotonically decreasing function [62]:

? = ?0 ⋅ I−�⋅�
2
�� , (9)

where 6�
 denotes the distance between 	re
y �� and 	re
y�
, while ?0 and @ are predetermined algorithm parameters:
maximum attractiveness value and absorption coe�cient,
respectively. Distance between 	re
ies is calculated by the
Euclidean distance.
In the third term of (8), 7 ∈ [0, 1] is a randomization

parameter, F� are the scaling parameters, and rand� is a
random number uniformly distributed between 0 and 1. �e
scaling parameters F� (J = 1, 2) are calculated by F� =
|K� − %�|, where %� and K� are the lower and upper bound of
the parameter ���. Diversity of solutions is controlled by
the randomization parameter 7 which needs to be reduced
gradually during iterations so that it can vary with the iter-
ation counter ' [63].
In the FA for solving CWP, penalty functions approach is

used in order to handle the constraints. In this way, a
constrained problem is solved as an unconstrained one. A

general formula of calculation penalty functions is given in
[64] by

 (�) = � (�) +
�
∑

=1
6
 ⋅max (0, L
 (�))2 +

�
∑

=�+1

M


⋅ NNNNNℎ
 (�)
NNNNN ,

(10)

where  (�) is the new (expanded) objective function to be
optimized, 6
 and M
 are positive constants normally called
“penalty factors,” P is the number of inequality constraints,
and & − P is the number of equality constraints for a given
problem. We found it suitable to set each 6� to the value6� = 108. �e penalty factors for equality constraints were not
used, since these problems have only inequality constraints.
�e pseudocode of the FA is given as Algorithm 3.

3.4. An Enhanced Firey Algorithm for Solving the CWP. An
enhanced 	re
y algorithm for COPs is presented in [55] and
it is also applied to solve the CWP. Two modi	cations are
incorporated in the E-FA in order to improve the perfor-
mance of the 	re
y algorithm for COPs.
�e 	rst modi	cation is related to using Deb’s rules

instead of the penalty approach. �ree feasibility rules are
employed instead of the greedy selection in order to decide
which 	re
y is brighter. �ese rules are also used each time
a�er (8) is applied in order to decide whether the solution
will be updated. Evaluation of solution population is given as
Algorithm 4.
�e second modi	cation is employing the geometric

progression reduction scheme to reduce the scaling factors
F� at the end of each cycle, by the rule

F� (') = F� (' − 1) ⋅ Q1/MCN, (11)

where MCN is the maximum cycle number, ' is the current
iteration number, and Q = 10.0−4.0/0.9.
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for 	 = 1 to SN do
for $ = 1 to SN do
if (�
 is better than �� based on Deb’s rules) then
for J = 1 toR (dimension of the problem) do
L� = ��� + ? ⋅ (�
� − ���) + 7 ⋅ F� ⋅ (rand� − 1/2)

end for

if (L is better than �� based on Deb’s rules) then�� = L {the solution is updated}
end if

end if
end for

end for

Algorithm 4: Evaluation of a new population in the E-FA.

4. Experimental Study

�eABC,CB-ABC, FA, andE-FAare implemented in the Java
programming language on a PC Intel Core i5-3300@3GHz
with 4GB of RAM. �e heuristic algorithm based on the
modi	ed Weiszfeld procedure is also implemented for the
purpose of comparison with the metaheuristic approaches.

4.1. Benchmark Functions. �eperformance of the fourmeta-
heuristics techniques and behavior of the heuristic algorithm
are evaluated through eighteen test instances of the single-
facility constrained Weber problems with the connected
feasible region bounded by arcs with equal radius.
�e benchmark problems with the increasing number of

input points are randomly generated according to the algo-
rithm given in [44]. �ese problems have 5, 10, 50, 100, 250,
and 500 input points. �ree dierent random test problems
are generated for each number of input points. Hence, these
test instances have a nonconvex feasible set given from 5 up
to 500 constraints.
Four example problems, named P1, P4, P7, and P10 with 5,

10, 50, and 100 input points, respectively, are shown in
Figure 1. In each test image, the feasible region is represented
by a gray surface area and the 	nal solution obtained by the
heuristic algorithm [44] is represented by a red cross.

4.2. Parameter Settings. �esolution number (SN) in the four
metaheuristic algorithms was set to 20. �e maximum
number of 	tness function evaluations (FEs) was used as the
stopping criterion.�e allowed FEs were set to 8000. In addi-
tion, themetaheuristic algorithmspresented in Section 2have
several other control parameters that considerably in
uence
their performance.�e values of these control parameters are
presented in Table 1.
In order to calculate FEs researchers usually use the rule

SN∗MCN,whereMCN is themaximumnumber of iterations
[65, 66]. Hence, the FA and E-FA were terminated a�er 400
iterations. �e number of consumed 	tness evaluations in
each iteration of the ABC and CB-ABC algorithms is 2 ∗
SN, since it calculates the solutions both in the employed
bee and in onlooker bee phase [65]. �erefore, to ensure

a fair comparison, the ABC and CB-ABC algorithms were
terminated a�er 200 iterations.
For the FA, it is widely reported in the literature that the

light absorption coe�cient @ = T(1), the initial attractiveness
?0 = 1, and the initial randomness factor 70 ∈ [0, 1] can be
used formost applications [36, 62]. It can be seen fromTable 1
that the value of the parameter @ was set to 1 and the initial
value of7was set to 0.25 for both FAandE-FA.A typical value
of ?0 = 1 is used in the FA. It was empirically determined that
slightly higher value of the parameter ?0 is more suitable for
the E-FA. Hence ?0 = 1.5 was adapted. For the ABC and CB-
ABC algorithms, the values of the speci	c control parameters
were taken from [53, 54], where these algorithms were
proposed to solve COPs. Especially for the CB-ABC, it was
empirically determined that a lower value of the scout pro-
duction period SPP is more appropriate for solving the CWP.
�erefore, it was set to 50. Each of the experiments was
repeated for 30 runs.
4.3. Analysis of Solution Quality and Robustness. �e coordi-
nates of the solution, corresponding objective function value,
and theCPU time (in seconds) obtained by the heuristic algo-
rithm are arranged in Table 2. To analyze the solution quality
of the tested four metaheuristic algorithms, the best values,
mean values, and standard deviations have been obtained by
the ABC, CB-ABC, FA, and E-FA algorithms over 30 runs.
Signi	cance tests are used to achieve reliable comparisons.
According to [67], two-sample 95%-con	dence t-test was
conducted between each pair of compared metaheuristics on
every benchmark function. �e calculated best results are
presented in Table 3, while the mean values and standard
deviations are arranged in Table 4. Results of two-sample t-
tests are reported in Table 5. �e sign “+” indicates that the
associated comparative algorithm is signi	cantly better than
the other one, while the sign “−” indicates it is signi	cantly
worse than the opposite one. If both algorithms show similar
performance, they are both marked by “+.”
Kazakovtsev in [44] experimentally proved the conver-

gence of the heuristic algorithm on randomly generated test
problems. Hence, the calculated best values of the meta-
heuristics can be compared to the results found by the heuris-
tic approach in order to show the ability of the metaheuristic
algorithm to reach the near-optimal result. �e obtained
mean and standard deviation values indicate the robustness
of the metaheuristic approaches.
It can be seen from Table 3 that each of the metaheuristic

algorithms found the best results which are very close to the
results obtained by the heuristic algorithm. More precisely,
the FA obtained 10 better best results (P2, P4, P5, P6, P8, P9,
P11, P16, P17, and P18) and 8 worse best results with respect to
the heuristic approach. �e E-FA obtained 11 better best
results (P1, P2, P4, P5, P6, P8, P9, P11, P16, P17, and P18),
one equal best result (P3) and 6 slightly worse best results in
comparison with the heuristic approach.�e ABC algorithm
achieved 12 better best results (P2, P4, P5, P6, P8, P9, P10, P11,
P12, P16, P17, and P18), one equal best result (P3), and 5
worse best results with respect to the heuristic approach.
�e algorithm CB-ABC was able to 	nd better or the same
best solution for all problems with respect to the heuristic
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Figure 1: Example problems with (a) 5 points (P1), (b) 10 points (P4), (c) 50 points (P7), and (d) 100 points (P10).

algorithm, with the exception of the problem P7, where the
CB-ABC obtained slightly worse best result.
In terms of best results fromTable 3, it can be noticed that

the CB-ABC achieved better and in several cases the same
values in comparison with each considered metaheuristic
approach. Further, each of the improved metaheuristics, the
E-FA and CB-ABC, obtained better best results with respect
to both original metaheuristic algorithms for the majority of
test problems. If we compare the performance of the original
ABC to that of the original FA, it can be seen that both
algorithms show similar ability to reach the near-optimal
result; that is, the ABC has found 9 slightly better best results
and 9 slightly worse ones compared to the FA.

From Table 4, it can be seen that mean and standard
deviation results obtained by the CB-ABC are much better
than the results obtained by the other metaheuristic algo-
rithms. �e CB-ABC converged consistently to the same
solution with the same objective function value and very
lower standard deviation. If we compare the robustness of
the remaining three metaheuristics, it can be noticed that the
E-FA outperformed the FA and ABC. Compared with the
ABC, the FA obtained 9 better mean results and standard
deviation values (P1, P2, P4, P6, P11, P13, P14, P17, and P18).
�e remainingmean and standard deviation results are better
in the case of theABC algorithm,with the exception of P5 and
P15 where the FA and ABC show similar performances.
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Table 2: �e solution point, corresponding objective function, and time in seconds provided by the heuristic algorithm.

Prob R Solution point Objective function value Time (sec)

P1 5 {1.97900484015, 2.37038768628} 38.6308975914 4.61W − 05
P2 5 {2.511104376, 2.36822367838} 35.6524439425 3.34W − 05
P3 5 {3.29440267812, 1.91712629136} 32.8210021279 3.45W − 05
P4 10 {0.768148485664, 2.11871223533} 18.9069002076 0.0001

P5 10 {1.35331974755, 1.96480428579} 18.4514161651 0.0001

P6 10 {2.40607643306, 1.99679256415} 106.1627295736 0.0001

P7 50 {3.60036240333, 0.00927504530255} 723.0047301353 0.0002

P8 50 {2.14432492473, 0.0678576078541} 114.6249767471 0.0007

P9 50 {1.61875017517, 0.463308206334} 455.1344852622 0.0002

P10 100 {4.10439880225, 1.51968295711} 231.0855570171 0.0003

P11 100 {2.85555816286, 4.68224060226} 297.6045429275 0.0009

P12 100 {2.81772843636, 4.5680021125} 286.7386225628 0.0005

P13 250 {0.861049499813, 0.377164213194} 549.9465893405 0.0008

P14 250 {0.794900743781, 0.459653174322} 543.7610648263 0.0007

P15 250 {0.844305238343, 0.460727996564} 536.8203916176 0.0015

P16 500 {0.816903951623, 0.164582180338} 6194.3817254403 0.0032

P17 500 {0.478124601239, 0.957209048476} 1019.3526027819 0.0041

P18 500 {0.95138220166, 0.698523640367} 4667.4820432420 0.0036

Table 3: Comparison of the best solutions obtained from the FA, E-FA, ABC, and CB-ABC algorithms for 18 test instances over 30 runs.

Prob R FA E-FA ABC CB-ABC

P1 5 38.6308975997 38.6308975913 38.6309142364 38.6308975913

P2 5 32.6409719983 32.6409719926 32.6409728972 32.6409719926

P3 5 32.8210027975 32.8210021279 32.8210021279 32.8210021279

P4 10 18.7528484406 18.7528484372 18.7528484934 18.7528484372

P5 10 18.3972444320 18.3972444317 18.3972444324 18.3972444317

P6 10 105.9917830548 105.9917830153 105.9917835005 105.9917830153

P7 50 723.0047799356 723.0047449044 723.0047448967 723.0047448967

P8 50 108.9894160829 108.9894138822 108.9894138815 108.9894138815

P9 50 455.1344837962 455.1344639665 455.1344639631 455.1344639631

P10 100 231.0855604428 231.0855570172 231.0855570166 231.0855570165

P11 100 297.2586347001 297.2586211173 297.2586217396 297.2586211143

P12 100 286.7386294462 286.7386225632 286.7386225626 286.7386225626

P13 250 549.9466005355 549.9465893424 549.9476076576 549.9465893411

P14 250 543.7610916668 543.7610648272 543.7611199289 543.7610648263

P15 250 536.8204201801 536.8203916186 536.8203922596 536.8203916167

P16 500 6193.7933019446 6193.7927947779 6193.7927947450 6193.7927947450

P17 500 1017.8088547714 1017.8088230476 1017.8091304405 1017.8088230326

P18 500 4667.0497043757 4667.0492697127 4667.0515567517 4667.0492696773

Results of two-sample t-tests are given inTable 5, and they
show that the CB-ABC is signi	cantly better than the FA, E-
FA, and ABC on 18, 14, and 12 test problems, respectively. It
is similar to the FA, E-FA, and ABC on 0, 4, and 6 problems,
respectively. It is worth noting that the FA, E-FA, and ABC
can not outperform the CB-ABC on any problem. Further, it
can be observed that the E-FA is signi	cantly better than the
FA on each test problem. In comparison with the ABC, the
E-FA is superior on 11 test problems, inferior on 4 problems,

and similar on 3 benchmarks. When comparing the perfor-
mances of the FA and ABC it can be noticed that the FA is
signi	cantly better than the ABC on 7 problems, while it is
inferior to it on 7 problems. �e FA and ABC show similar
performances on 4 benchmarks.
According to the results reported in Tables 3, 4, and

5, we can conclude that the CB-ABC and E-FA exhibit
superior performances compared to both original versions,
ABC and FA, in solving constrained Weber problems with
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Table 4: Comparison of the mean values and standard deviations obtained from the FA, E-FA, ABC, and CB-ABC algorithms for 18 test
instances over 30 runs.

Prob R Stats FA E-FA ABC CB-ABC

P1 5
Mean 38.6308978682 38.6308975914 38.6310183806 38.6308975913

Std 2.40W − 7 4.15W − 11 1.56W − 4 2.08E − 14

P2 5
Mean 32.6409720879 32.6409719926 32.6409910473 32.6409719926

Std 8.97W − 8 1.57W − 11 2.80W − 5 1.21E − 14

P3 5
Mean 32.8210056512 32.8210021284 32.8210021279 32.8210021279

Std 1.90W − 6 3.29W − 10 4.49W − 11 1.20E − 12

P4 10
Mean 18.7528484769 18.7528484372 18.7528528692 18.7528484372

Std 1.14W − 8 6.66W − 12 5.62W − 6 1.02E − 14

P5 10
Mean 18.3972444465 18.3972444317 18.3972444546 18.3972444317

Std 3.40W − 8 3.77W − 12 1.91W − 8 3.04E − 15

P6 10
Mean 105.9917835910 105.9917830154 105.9917985650 105.9917830153

Std 4.27W − 7 9.71W − 11 1.47W − 5 1.66E − 14

P7 50
Mean 723.0049108305 723.0047449232 723.0047449186 723.0047448968

Std 8.68W − 5 1.33W − 8 6.16W − 8 3.38E − 10

P8 50
Mean 108.9894309395 108.9894138838 108.9894138815 108.9894138815

Std 8.15W − 6 1.04W − 9 3.06W − 12 2.32E − 12

P9 50
Mean 455.1346382073 455.1344639826 455.1344639631 455.1344639631

Std 8.83W − 5 5.60W − 8 1.49E − 13 8.79W − 13
P10 100

Mean 231.0855873314 231.0855570223 231.0855570526 231.0855570166

Std 1.36W − 5 2.94W − 9 1.07W − 8 1.30E − 11

P11 100
Mean 297.2586695071 297.2586211205 297.2587315275 297.2586211143

Std 2.23W − 5 2.39W − 9 3.19W − 4 1.03E − 11

P12 100
Mean 286.7386559609 286.73862256805 286.7386225626 286.7386225626

Std 2.03W − 5 3.15W − 9 1.02W − 11 1.10E − 12

P13 250
Mean 549.9466493305 549.9465893483 549.9913513828 549.94658934110

Std 2.40W − 5 3.27W − 9 0.0527 3.91E − 11

P14 250
Mean 543.7611473895 543.7610648386 543.7655305827 543.7610648263

Std 3.45W − 5 5.68W − 9 0.00540 2.51E − 12

P15 250
Mean 536.8205045637 536.8203916312 536.8204579818 536.8203916167

Std 7.09W − 5 8.00W − 9 1.08W − 4 2.83E − 12

P16 500
Mean 6193.7944120365 6193.7927949375 6193.7927947582 6193.7927947450

Std 7.68W − 4 1.13W − 7 2.26W − 8 1.42E − 11

P17 500
Mean 1017.8090988841 1017.8088230685 1017.8110427370 1017.8088230326

Std 1.63W − 4 1.55W − 8 0.0043 2.35E − 11

P18 500
Mean 4667.0511842616 4667.0492697730 4667.0890166945 4667.0492696773

Std 9.17W − 4 4.63W − 8 0.0588 1.33E − 11

the connected feasible region bounded by arcs. Further, from
these results and according to the results from Table 2, it is
clear that the CB-ABC outperformed all other three meta-
heuristic algorithms as well as the heuristic algorithm with
respect to the quality of the obtained results. Although the
CB-ABC has more accurate and more stable results than
the remaining three metaheuristics, all four metaheuristic
approaches perform better than or equal to the heuristic
approach with respect to the quality of the obtained results
for most of the tested problems.

4.4. Computational Time Analysis. In order to compare the
computational cost of the four metaheuristic algorithms, we
computed the mean of the CPU times over 30 runs taken by

each metaheuristic algorithm. �ese results are reported in
Table 6.�e results fromTable 6 show that the execution time
for each of the metaheuristics approaches linearly increases
when the number of the constraints or input points increases.
By comparing computational times for the ABC and

CB-ABC algorithms with respect to the FA and E-FA, it is
observable that ABC and CB-ABC algorithms are about 4
times faster than the FA and about 20 times faster than the E-
FA for themajority of test problems.�e computational times
of the ABC and CB-ABC algorithms are not signi	cantly
dierent. In addition, when the number of constraints is
500 that time is less than 0.1 seconds. �e computational
time requirements for the E-FA algorithm are about 	ve
times greater compared to the FA and when the number
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Table 5: �e results of 95%-con	dence two-sample '-test over each test problem.

Prb
FA versus E-FA FA versus ABC FA versus CB-ABC E-FA versus ABC E-FA versus CB-ABC ABC versus CB-ABC

FA E-FA FA ABC FA CB-ABC E-FA ABC E-FA CB-ABC ABC CB-ABC

P1 − + + − − + + − − + − +

P2 − + + − − + + − + + − +

P3 − + − + − + − + − + + +

P4 − + + − − + + − + + − +

P5 − + + + − + + − + + − +

P6 − + + − − + + − − + − +

P7 − + − + − + + + − + + +

P8 − + − + − + − + − + + +

P9 − + − + − + + + + + + +

P10 − + − + − + + − − + − +

P11 − + + + − + + + − + + +

P12 − + + + − + − + − + + +

P13 − + − + − + + − − + − +

P14 − + + − − + + − − + − +

P15 − + + + − + + − − + − +

P16 − + − + − + − + − + − +

P17 − + + − − + + − − + − +

P18 − + + − − + + − − + − +

Total 0 18 11 11 0 18 14 7 4 18 6 18

Table 6: Mean of the CPU times (in seconds) obtained from the FA, E-FA, ABC, and CB-ABC algorithms for 18 test instances over 30 runs.

Prob R FA E-FA ABC CB-ABC

P1 5 0.022 0.036 0.004 0.004

P2 5 0.020 0.044 0.005 0.004

P3 5 0.022 0.040 0.004 0.004

P4 10 0.025 0.060 0.005 0.006

P5 10 0.022 0.060 0.006 0.006

P6 10 0.025 0.062 0.004 0.005

P7 50 0.056 0.226 0.013 0.016

P8 50 0.052 0.224 0.014 0.014

P9 50 0.057 0.252 0.014 0.010

P10 100 0.090 0.690 0.035 0.043

P11 100 0.090 0.738 0.034 0.043

P12 100 0.086 0.544 0.022 0.025

P13 250 0.200 0.990 0.044 0.044

P14 250 0.216 1.316 0.048 0.051

P15 250 0.194 1.046 0.045 0.042

P16 500 0.376 2.182 0.082 0.093

P17 500 0.360 1.990 0.080 0.091

P18 500 0.374 2.128 0.081 0.094

of constraints or input points is 500 that time is about two
seconds.

Compared with the computational time results of the
heuristic approach, which are presented in Table 2, it can be
seen that the heuristic algorithm requires less computational
time than the four metaheuristic algorithms. However, the
computational time of the four metaheuristics is reasonable

and it can be considered as negligible, since it is less than one
second in most cases.

5. Conclusion

�e constrained Weber problem with feasible region bound-
ed by arcs represents a problem of a nonconvex optimization.
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Finding a global optimum of such a problem is di�cult
considering the fact that it has multiple locally optimal points
within the feasible region. Metaheuristic approaches for
solving this problem are suitable choice, since these tech-
niques can obtain quality results in a reasonable amount of
time.
�e performances of two prominent swarm-intelligence

algorithms (the arti	cial bee colony and	re
y algorithm) and
their recently proposed improved versions for constrained
optimization (the crossover-based arti	cial bee colony and
enhanced 	re
y algorithm) are compared. �e heuristic
algorithm based on modi	ed Weiszfeld procedure is also
implemented for the purpose of the comparison with the
metaheuristic approaches.
�e fourmetaheuristic algorithms are compared on eigh-

teen randomly generated test instances in which the number
of input points or constraints increases up to 500. Numerical
results indicate that all four metaheuristic algorithms are
superior compared to the heuristic approach with respect to
the precision of the results, with the notable ascendancy of the
CB-ABC algorithm. In terms of the execution time, the ABC
and CB-ABC are more e�cient than the FA and E-FA.
Although these four algorithms require somewhat higher
computational cost than the heuristic approach, the CPU
times for all these algorithms are reasonable and grow at a
linear rate as the number of input points or constraints
increases. Finally, it turns out that the CB-ABC algorithm is
superior compared to other metaheuristics with respect to
the quality of the results, robustness, and computational
e�ciency.
From this research it can be concluded that metaheuristic

approaches can be successfully used for problems with max-
imum and minimum distance limits. Further, this research
encourages the application of the metaheuristic algorithms
for solving some other complex constrained optimization
problems of practical importance.
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