D-A124 196 APPLICATION OF HIERARCHICAL DATA STRUCTURES T0
EOGRRPHICRL INFORHRTION SYSTENS (U) HRRVLRND UNIV
COLLEGE PARK COMPUTER VISION LAB H SAMET ET AL. JUL 82
UNCLASSIFIED TR-1197 ETL-8201 DRHK?B 81-C-005: E/6 9

9

AU IS v oy
e T

bl
-V

T, W .
e
R I P Y

ey
- a e
LR R T)

-
-

-~
EOU L N

st -

o ey

L)

N e
-t

.

- -
s

-

Y
-l P -

Nl

»

P
R N W,

bl

T W i
e

Cwalon e

ian

LY

A
oa

B R el

ddaa

B EEEFTTTN

=

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANCASDS-1963-A

el
iy T "

= e ey

LR

*' Aot x.

v At e

- Hanan Samet

...
............

ETL-0301
»A124196

Application of hierarchical data

structures to geographical
information systems

Azriel Rosenfeld

Computer Vision Laboratory
University of Maryland
College Park, MD 20742

DTIC

JULY 1982 ELECTE
> FEB7 1983
&S
O B
(W)
—
L APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
E
Prepared for

U.S. ARMY CORPS OF ENGINEERS

ENGINEER TOPOGRAPHIC LABORATORIES
FORT BELVOIR, VIRGINGS22ddd 81 15

s >l

OINNARE ~
PO Sy PR

S

Y Y Y
VLTSS «

cF WY Ay W We7 T WL)

ll
B

a
-~

lalataan

A

A

TS -
v

Y’y

Iy o .‘)-‘- ! g
YL RO,

A
-
e 3t

'i.

) vy

Ut
CRA L R L S

.

y f
JIPRL VR, LS

At e e
O .

1

¥

- ™ N S e R Ty Ty AT e e T Ty LY

’ LIS L T e 8, . NS - -
A IR AN, p, S K IR ST TS R ST T iC R IR RS AL A A L DN LI RS

Destroy this report when no longer needed.
Do not return it to the origimator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

The citation in this report of trade names of commercially available
products does not constitute official endorsement or approval of the
use of such products.

L]

.
L WULIW W, TR SR g g e e s e e . - Sl e S
e L T A P P PRI F . R . « . S ., R Y. R
S e T e T e L T T - s e N e e e s e T e e T T
S s LT R AT S D YL [P . . L T VR R S PSR I R v S W S R S,

......

~——UNCLASSIELED -
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

) READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
ETL-0301 BD-1r2¢/4C

4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
APPLICATION OF HIERARCHICAL DATA STRUCTURES TO Contract Report
GEOGRAPHICAL INFORMATION SYSTEMS 6. PERFORMING ORG. REPORT NUMBER

TR-1197
7. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s)

Hanan Samet

Azriel Rosenfeld DAAK70-81-C-0059
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Computer Vision Laboratory AREA & WORK UNIT NUMBERS

University of Maryland

College Park, MD 20742 , R3205HT09
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U.S. Army Engineer T hic Lab i July 1982
.S. gineer lopographic Laboratories
Fort Belvoir, VA 22060 e i‘z;““' PAGES
T4, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of thia report)
Unclassified

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

e e ————————————————————tt——— po—
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Geographical information systems
Data structures
Quadtrees

20. ABSTRACT (Cantiaue an reverse sii ¥ wry and idontify by block number)

This document is the final report for an investigation of the
application of hierarchical data structures to geographical information
systems. The purposes of this investigation were twofold: (1) to construct
a geographic information system based on the quadtree hierarchical data
structure, and (2) to gather statistics to allow the evaluation of the
usefulness of this approach to geographic information system organization.

DD .53 M73 cormow or 1 wov 68 13 ossoLETE UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (Wven Data Entered)

> LT e - - . -
..... DRI Tt R A I e .. - . R PR . - . . .o S et
PP WL VR, W AP R Wi Sl Te S WS) PN S W D AP W A YOV NS, W WP W U —— LS. FL P NPV S A U W AU AT I %

Final Report on
Contract DAAK70-81-C-0059/P00007

APPLICATION OF HIERARCHICAL DATA STRUCTURES
TO GEOGRAPHICAL INFORMATION SYSTEMS

Submitted to:

U.S. Army Engineer
Topographics Laboratories
Fort Belvoir, VA 22060
Attention: Mr. Joseph A. Rastatter

Submitted by:
Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

Principal investigators:
Hanan Samet
Azriel Rosenfeld

JulLy
aSene=50; 1982

..........
................

PREFACE

This report was produced under contract DAAK70-81-C-

0059/pP00007. The report was prepared for the U.S. Army
Engineer Topographic Laboratories (ETL), Ft. Belvoir, Vir-
. ginia 22060. The Contracting Officer“s Representative was

Joseph Rastatter.

This report was prepared by Azriel Rosenfeld, Hanan

p Samet, Cliff Shaffer, and Robert Webber.

Accession For

ris T GRAGT #J
d

DTIC TAB
Unannouncod)

|
. ! Justification —————
;W
Y

‘ Dist_ributiox:/a___‘________]
x& % " Availability Codes

' N ° {7 lavail snd/or
3 ipist | Speclal

L Danal Ml -
...............................

v .
R

This document is the final report for an investigation
of the application of hierarchical data structures to geo-
graphical information systems, under Department of the Army
Contract DAAK70-81-C-0059/P00007. The purposes of this
investigation were twofold: (1) to construct a geographic
information system based on the quadtree hierarchical data
structure, and (2) to gather statistics to allow the evalua-
tion of the usefulness of this approach to geographic infor-
mation system organization. To accomplish the above objec-
tives, a database was built that contained three maps sup-
plied under the terms of the contract. These maps described
the flood plain, elevation contours, and landuse classes of
a region in California.

This study report presents the results of the prelim-
inary investigation. It includes analysis of the merits and
deficiencies of the various approaches, and provides recom-
mendations for further research.

...............
....................

Dadt st el Sini et it Aadiaiurn S Slort - naCab ™ S C Sl At S it St Tt iRt S st St At Sagu ghpet jiut T T T AT T T TN TN, W, ST, 6 s e e T T e T T T e T
T T T T e e A S e S T T L T T T o L T T o L L L L L T s e T

| PP

iv

T
A i,

TABLE OF CONTENTS

a

page
1. IntrOduction ® ® ¢ 5 © 0 0 OO VOSSOSO OESLAEASsSEESIECOEEDESTSS 1 "1

-
an

2- Tutorial on quadtrees ® 8 ® 0 00" 0 00 e S e s 0 e00 l

) R

. 3. Database, digitization, and editingcccc0. 15

-

4. Quadtree encoding 74

LAC B AN BN B B B AN B BN I B R B B BN B N I I I L

g

; 5. Region analysis and manipulation 94

RN

6. Bibliography on quadtrees 153

® 00 00 e8P LOC L OO OCTEEDP

~F
did

7. COﬂClUSiOhS ana plans oo-o.oo-oo-oo.....o---.-olss

.t
2%

Appendix: Facilities used sccseececcccsnscsaosaseeats160

k¥

s P

Wl
ok 2

A
.
’
e,
R
-

B
'--
>
o
-
Vs
.ot
38
. 1

.

L1
MO
o LRy A

K ,j
et et

5
¥

h'.‘
N
\
-
.
.
b
’
—

e, _ - vt s .

-~ - - . A R P BT S @ et e et T T P R S

VN SN, P PN, . Al e B N e T L S T AUy IR T ") Ty S Ra e - V)

T it
.......

IROMIND 2 NG PO IOAE |

ORI
......

Figure 2.1.

WOSAUNBWN M nbdw N

WWWwWwwwwwww NN N
[] []] [] [] [] L] [] [] [] L]]]

-

o o o o .
.

w W

]
| ol
N -
o e

3.13.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.
3.31.
3.32.
3.33.
3.34.
3.35.
3.36.
3.37.
3.38.
3.39.

w
[
>
.

3.40.

.........

..................

........

FIGURES

A region, its maximal blocks, and the corresponding
quadtree. Blocks in the region are shaded, background
blocks are blank. Horizontal lines indicate ropes.
Adjacency tree for the western neighbor of node 16
i-n Figure 2.1 ® ® ¢ 6900 09 09 OO OSSO O OO NS SSOOEN e N OSSO OSSO S
Sample pair of blocks illustrating border following
Blocks M and N ending at a cOmmMON COLNEr ..ccevsveccncas
Possible configurations of blocks that meet at

and Sutroundacomon mint ® @ © 0 00 00 O OGS GO OO OO PO SO OSSN
Land use CIasses ® © O 9 0 00 09 0 PO OSSOSO O OO L OO PP OSSO SRS NS
Elevation CONtOUrS ..ccceccccccccsoscscsccossnsoncoscscsocs
Flood plain boundaries ..cccceceveccccccrcacsccsscsrssccnns
The 19 components of the land-use class ACC cc.ccecscccen
The 13 components of the land-use claSs ACP .eccocscececs
The S components of the land-use €lass AR .ccecccsccncoe
The 1 component of the land-use ClassS ARE .ccccececsncses
The 31 components of the land-use class AVF ..ccceccesece

The 41 components of the land-use class AVV cccccecccsece
The components of the land~use class BBR .ccccccsccace
The component of the land-use ¢lass BEQ ceccocecvcacses
The component of the land-use class BES cccovcescsccas

2

1

1l
The 4 components of the land-use class BT .cccccecccccecs
The 5 components of the land-use ClassS FO cccesccsccoses
The 4 components of the land-use ClassS LR ccccccccccccses
The S components of the land-use ClaSS R ccccsosecscscsce
The 2 components of the land~use €class UCB .cccccccccccs
The 6 components of the land-use class UCC .ccccecccnces
The 4 components of the land~use class UCR .cccecccsccns
The 2 components of the land-use class UCW ..cecccersces
The 2 components of the land-use class UES .ccccecccccns
The 2 components of the land-use class UIL .ccceccsccaces
The 8 components of the land~use class UIS .c.ccceccscsse
The 2 components of the land-use class UIW ..ccccecccccss
The 10 components of the land-use class UNK ..ccececccce
The 1 component of the land-use class UOC .ccceecscoccnse
The 1 component of the land-use Class UOG .ccccaccacccse
The 3 components Of the land-use class UOO .ccececonccse
The 2 components of the land-use class UOP .ccecccscccas
The 2 components of the land-use class UOV ..ceeeccccnce
The 2 components of the land-use ¢cl28S URH .cccecccccncs
The 24 components of the land-use ClassS URS .ccecccaccse
The 2 components of the land-use class UUS .cceeccoceces
The 3 Components Of the land-use Class UUT "9 s e NevEBOLETLTES
The 1 component of the land-use €lasS VV cccecceccasccns
The 2 components of the land-use class WO ..cceccoccccns
The 1 component of the land-use ClasS WS .cccnveccccccns
The 6 components of the land-use class WWP ...cccacssesse
The 1 component of the 1lst elevation level

(o-loo ft.) ® 0 00 00 00O O SO0 OO OO VT OO O OO0 OLLER OSSP OSS
The 21 components of the 2nd elevation level
(100 - 200 ft.)

‘ KO Yy T

page

e g e

vi

FIGURES
page

Figure 3.41. The 17 components of the 3rd elevation level
E (200 - 300 ft-) © © 000 000 CLELOOILEOREPLOSIOELELIOEOESEOIEOEOIEOIEOETDSE 57
3.42. The 13 components of the 4th elevation level

(300 -~ 400 £t.) cevecseccscnssacavcssscccassccncasssecss D58
. 3.43. The 7 components of the 5th elevation level

(400 - 500 £t.) ceveeecencssocevanssossossassesccnssnase 59
3.44. The 12 components of the 6th elevation level

. (500-600 fto) © © 6 00 005000 00000000 CSLNLERS OSSN OESLS 60
3.45. The 5 components of the 7th elevation level
r (600 - 700 fto) R R R I I B A SN B R S ST S R) 61

3.46. The 6 components of the 8th elevation level
(700 - 800 fto) ® 9 © 0 0 608 00060 S POO P GG OER BSOSO OEOSNGESESEPSTESESTS 62
3.47. The 6 components of the 9th elevation level
(800 = 900 ft.) cceceececcacscosncessenssoascssssacnsssssse 03
3.48. The 4 components of the 10th elevation level
(900 = 1000 Ft.) cecececccoccvssccsaceosssnssssssonasesss 04
3.49. The 2 components of the 1llth elevation level
(1000 = 1100 £t.) ceeceececovsacevssscsscscsssosssnsncass 05
3.50. The 3 components of the flood-plain Map ..cccoevessecees. 66
5.1. Result of executing UNION on the flood.center
region of the flood-plain map and the 7th
elevation level (600 - 700 ft. elevation) of
the topography MAP .ceccecevscsccacsccsscscsssscscssssccses 103
5.2. Result of executing INTERSECTION on the entire
land-use map and the complement of the 5th
elevation level (400 - 500 ft. elevation) of the
topOography MAP cceeeccsccccsccsssccsscsssscssssssssssasssess 104
5.3. Result of executing INTERSECTION on the 1lst
elevation level (0 - 100 ft. elevation) of the
topography map, the flood.center region of the
flood-plain map, and the entire land-use Map «...ccseoso. 105
5.4. Result of executing QDISPLAY on flood.center of
the flood-plain map using 10 levels .c..ccveescccesascess 108
5.5. Result of executing QDISPLAY on flood.center of
the flood-plain map using 9 levels ...ccccceccccscecsecss 109
5.6. Result of executing QDISPLAY on flood.center of
the flood-plain map using 8 levelscecesenscnescnsss 110
5.7. Result of executing QDISPLAY on flood.center of
the flood-plain map using 7 levelscevesccccscsccses 111
5.8. Result of executing QDISPLAY on flood.center of
i the flood-plain map using 6 levels ...ccceeseccccansecses 112

A
2

o |

TR P BN

d

,"‘-,‘] l"_

vii

TABLES

= Table 4.1. QUADTREE BUILDING STATISTICS FOR LANDUSE MAPecesss. g8
(| 4.2. QUADTREE BUILDING STATISTICS FOR TOPOGRAPHY MAP gg

X 4.3. QUADTREE BUILDING STATISTICS FOR FLOODPLAIN MAP 90
> 4.4. LANDUSE CONNECTED COMPONENT RESULTS ccccceccecscsvssccees 91

T, 4.5. TOPOGRAPHY CONNECTED COMPONENT RESULTS ccccccccecsccccces 92
N 4.6. FLOODPLAIN CONNECTED COMPONENT RESULTS .cccccecccccccoccee 93
e S.1l. AREA RESULTS FOR LANDUSE POLYGONS IN FIGURE 5.3 106
- 5.2. LANDUSE AREA RESULTS o © O & 0 00O OO O DO OSSO H OO OO0 SN OSSN S e s e e 125
5.3. TOPOGRAPHY AREA RESULTS cccccccccscsccsccsscccccnscccssss 130
4. FmoDPLAIN AREA RESULTS S & 00 000 58 PO OO OO S SO PO PSS E SO O PSEeDNIE 132
5. LANDUSE REGION PROPERTY RESULTS ..ccecccccccssccccccsseass 133
6. TOPOGRAPHY REGION PROPERTY RESULTS .ccccccccccsccccccsses 138
7. LANDUSE REGION PROPERTY RESULTS ¢cccccccoccccscsccsccescse 140
8. LANDUSE WINDOW RESULTS cccccecscccscncscscccesscasccssses 141
) 9. TOPOGRAPHY WINDOW RESULTS ccccvcscccoccccscccscscssscnscsce 146
‘v' 5.10. FLOODPLAIN WINDOW RESULTS ccvcececccscrassscssascscssanscans 148
o 5.11. INTERSECTION STATISTICS o v voeveesonnsescncocnasnnennsnss 149
= 5.12. QUADTREE TRUNCATION STATISTICS FOR EACH MAP ...cccccoveces 152

NERLAAN DAL
o) [yt e

s

N

X LA
R Y

ey

Algorithm

ALGORITHMS

® 0 0 000 0005 PSP E O PO S DL ONE eSO ELS eSS
® 9 0 0 0O S 00 008 OD PSSRSO IPESESCEETSOCSPCTSDL

RELABEL
PRIMITIVE
QCONCOM
Rzo oooo--;o--.o-o--oo-o--.--o-o-oo.-oooooo

NDCOUNT

AREA ® 6 0 00 0 0 SO0 BSOSO NP OO N PSSO S LRL OO eSO

® ® 00 660 00 PO OO0 0O PSR LSS SISO OETSECEEDTETOSOSCCDS
® ® 9 © 08 0000 D P O S F E PP LSO LSOO E OSSO DNE

® © 0 0 S0 0 0 0 O 0 OO O L OB OSSO0 eSS S
® 8 0 2 0 00 ¢ 6P PE SO O S SE S G eSS OSSO OPRSE

HANDW ® © 0 0 00 0 000 S 00 OD S CE S SO E OSSO E eSO

PERIMETER
PT2POLY

® 9 6 % 000 0 SO SR OOEO OO EC PN OSSOSO e

WINDOW ® 6 0 ¢ 0 8 P e 0 SO0 OGS 0PSO TSSO SD LN OEE O E SN
INTERSECTION ® ® ¢ 0 09 000 P PO EEO O OS LGS SsEe

UNION ® 8 9 00000 0P D OB S OT OO ONELOESENLCOE eSO

QMASK ® ® ® 5 P 60 PP S E OO OGN RS LS PSSO OB 0SSOSO

QODISPLAY

Uttt e AR WWwWwW
HWORNNOONEB WM WNE&WND -

page

69
70
71
73

81
83
96
97
98
99
113
114
117
118
119
120

T L r— e - .N_? . T, e T o ...~-_.71

lxﬁirntroduction

This project is concerned with the applicability of a
class -f hierarchical data structures, known as "quadtrees",
to the representation of cartographic data. Section 2
presents a tutorial on quadtree data structures. Section 3
describes the database used, and the process of digitizing
and editing it. Section 4 describes the process of quadtree
encoding of the data, including algorithms and
space/time/acreage tables. Section 5 discusses region
analysis and manipulations using quadtrees, including algor-
ithme and tables (time, etc.). The algorithms implemented '
include set theoretic operations on regions, point-in-region
determination, region property measurement, and construction
of submaps and merged maps. Section 6 presents a bibliogra-
- phy on quadtrees._The facilities used on the project are
F described in the Ap&ndix.

2. Tutorial on quadtrees

2.1. Introduction

In gur discHssion we assume that a region is a subset
of a 2 by 2" array which is viewed as being composed of
unit-square pixels. The most common region representations
used in image processing are the binary array and the run
length representation [1]. The binary array represents
region pixels by 1°s and non-region »nixels by 0°s. The run
length representation represents each row of the binary
array as a sequence of runs of 1°s alternating with runs of
0°s. '

Boundaries of regions are often specified as a sequence
of unit vectors in the principal directions. This represen-
tation is tesmed a chain code [2]. For example, letting i
represent 90 * i (i=0,1,2,3), we have the following sequence
as the chain code for the region in Figure 2.la:

3123303251%0101030101

0302332
Note that this is a clockwise code which starts at the left-
most of the uppermost border points. Chain codes yield a
compact representation; however, they are somewhat incon-
venient for performing operations such as set union and
intersection. PFor an alternative boundary representation
see the strip trees of Ballard [3].

Regions can also be represented by a collection of max-
imal blocks that are contained in the given region. One -
such trivial representation is the run length where the
blocks are 1 by m rectangles. A more general representation
treats the region as a union of maximal blocks (of 1°3) of a
given shape. The medial axis transform (MAT) (4,5] is the
set of points serving as centers of these blocks and their

P P YL SO VI R O ST S R . P S S S Y - G S PP W S . s e y PR Y Y .—A:—._‘—&.._‘,..A:—AAA.L“MJ

N

a. Qfegion

@ N L) O™ U
22 23 3 4 8

3 4
1 2 5
6|7
1 4 8
9 11‘0
12{u3fi]isy) //
" 18 »{5/25’1‘2'1'716 .
/ﬁ/// //
/2
sl
7 /// be |27 1281291
2 2j€§§§§ 31{32]33]38 3
) il
Willhere
40 41 42 4}
b. Block decomposition

e

of the region in (a).

OO g o
30 42 43

26 27 31 32 28 29 33 34 35 36 38 39

12131819 14152021 6 7 9 10

c. Quadtree representation of the plocks in

Figure 2.1. A region, its maximal blocks, and the corresponding
quadtree. Blocks in the region are shaded, background
Horizontal lines indicate ropes.

blocks are blank.

PR Il S G S D I S)

PIPNE P Vo a4

A i bt

P
1.4 O .
LA TN

L

w—r Agutid A s o (S Fma ara aon e
RORR P VRO A

-

.'] Wy r'r‘-"',_'I*'.'ﬂT. 'R (el

A 0 SRR

corresponding radii.

The quadtree is a maximal block representation in which
the blocks have standard sizes and positions (i.e., powers
of two). It is an approach to region representation which
is based on the successive subdivision of an image array
into quadrants. 1f the array does not consist entirely of
1°s or entirely of 0°s, then we subdivide it into quadrants,
subquadrants,... until we obtain blocks (possibly single
pixels) that consist of 1°s or of 0°s, i.e., they are
entirely contained in the region or entirely disjoint from
ic. This process is represented by a tree of out degree 4
(i.e., each non-leaf node has four sons) in which the root
node represents the entire array. The four sons of the root
node represent the quadrants (labeled in order NW, NE, SW,
SE), and the 1leaf nodes correspond to those blocks of the
array for which no further subdivision is necessary. Leaf
nodes are said to be "black" or "white" depending on whether
their corresponding blocks are entirely within or outside of
the region respectively. All non-leaf nodes _are said to be
*gray”". Since the array was assumed to be - 2R by 2", the
tree height is at most n. As an example, Figure 2.lb is a
block decomposition of the region in Figure 2.la while Fig-
ure 2.lc is the corresponding quadtree. Each quadtree node
is implemented, storage-wise, as a record with six fields.
Five fields contain pointers to the four sons and the father
of a node. The sixth field contains type information such
as color, etc. Note that the quadtree representation dis-
cussed here should not be confused with the quadtree
representation of two-dimensional point space data intro-
duced by FPinkel and Bentley [6] and also discussed in [7,8)
and improved upon in [9].

The quadtree method of region representation is based
on a regular decomposition. It has been employed in the
domains of computer graphics, scene analysis, architectural
design [10]; and pattern recognition. In particular,
Warnock”s [10-13] algorithm for hidden surface elimination
is based on such a principle--i.e., it successively subdi-
vides the picture into smaller and smaller squares in the
process of searching for areas to be displayed. Application
of the quadtree to image representation was proposed by
Klinger (14] and further elaborated upon in [15-20). 1It is
relatively compact [15] and is well suited to operations
such as union and intersection [21-23], and detecting vari-
ous region properties [15,21,22, 24). Hunter’s Ph.D. thesis
[21,22,24], in the domain of computer graphics, develops a
variety of algorithms (including linear transformations) for
the manipulation of a quadtree region representation. 1In
(25-27) variations of the quadtree are applied in three
dimensions to represent solid objects and in [28] to more
dimensions.

There has been much work recently on the

I D S G S S ST W S

b

......

...........................

interchangeability between the guadtree and other tradi-
tional methods of region representation. Algorithms have
been developed for converting a binary array to a quadtree
[29]), run lengths to a quadtree [30] and a quadtree to run
lengths [31), as well as boundary codes to a quadtree [32]
and a quadtree to boundary codes [33]. Work has also been
done in computing geometric properties such as connected
component labeling [34], perimeter (35], Euler number ([36],
areas and moments [23), as well as a distance transform
(37,38]). In addition, the quadtree has been used in image
processing applications such as shape approximation [39],
edge enhancement (40}, image segmentation [41], threshold
selection [42], and smoothing [43].

2.2. Preliminaries

In the quadtree representation, by virtue of its tree-
like nature, most operations are carried out by techniques
which traverse the tree. 1In fact, many of the operations
that we describe can be characterized as having two basic
steps. The first step either traverses the quadtres in a
specified order or constructs a quadtree. The second step
performs a computation at each node which often makes use of
its neighboring nodes, i.e., nodes representing image blocks
that are adjacent to the given ncde’s block. For examples,
see [30-38]}. Frequently, these two steps are performed in
parallel.

In general, it is preferable to avoid having to use
position (i.e., coordinates) and size information when mak-
ing relative transitions (i.e., locating neighboring nodes)
in the quadtree since they involve computation (rather than
simply chasing links) and are clumsy when adjacent blocks
are of different sizes (e.g., when a neighboring block is
larger). Similarly, we do not assume that there are 1links
from a node to its neighbors, because we do not want to use
links in excess of four links from a non-leaf node to its
sons and the link from a non-root node to its father. Such
techniques, described in [44], are used in [30-38] and
result in algorithms that only make use of the existing
structure of the tree. This is in contrast with the methods
of Klinger and Rhodes (19] which make use of size and posi-
tion information, and those of Hunter and Steiglitz [21,
22,24] which 1locate neighobrs through the use of explicit
links (termed nets and ropes).

Locating neighbors in a given direction is quite
straightforward. Given a node corresponding to a specific
block in the image, its neighbor in a particular direction
(horizontal or vertical) is determined by locating a common
ancestor. For example, if we want to find an eastern neigh-
bor, the common ancestor is the first ancestor node which is
reached via its NW or SW son. Next, we retrace the path
from the common ancestor, but making mirror image moves

N TP TR

VO SNPY

ve s

PRI P

vy

i Rt SECEECEIET B LR
a J.

TR

RN |
alala

D IRV

]
0 ed s 3
_atadia ety o

POVOIPTOTOTONN |

4

about the appropriate axis, e.g., to find an eastern or
western neighbor, the mirror images of NE and SE are NW and
SW, respectively. For example, the eastern neighbor of node
32 in Figure 2.1lc is node 33. It is located by ascending
the tree until the common ancestor, H, is found. This
requires going through a SE link to reach L and a NW link to
reach H. Node 33 is now reached by backtracking along the
previous path with the appropriate mirror image moves (i.e.,
going through a NE link to reach M and a SW 1link to reach
33).

In general, adjacent neighbors need not be of the same
size. If they are larger, then only a part of the path to
the common ancestor is retraced. 1I1f they are smaller, then
the retraced path ends at a "gray" node of equal size. Thus
a "neighbor” is correctly defined as the smallest adjacent
leaf whose corresponding block is of greater than or equal
size. If no such node exists, then a gray node of equal
size 1is returned. Note that similar techniques can be used
to locate diagonal neighbors (i.e., nodes corresponding to
blocks that touch the given node”’s block at a corner). For
example, node 20 in Figure 2.lc is the NW neighbor of node
22, For more details, see [44].

Al Mt Pty
PERTERN T e

' P
S AN

. PN
"0<A " e t

In contrast with our neighbor finding methods is the

- use of explicit links from a node to its adjacent neighbors
~ in the horizontal and vertical directions reported in
o (21,22,24]). This is achieved through the use of adjacency
h' trees, "ropes,” and "nets."™ An adjacency tree exists when-

ever a leaf node, say X, has a GRAY neighbor, say Y, of
. equal size. In such a case, the adjacency tree of X is a
s binary tree rooted at Y whose nodes consist of all sons of Y
= (BLACK, WHITE, and GRAY) that are adjacent to X. For exam-
s ple, for node 16 in Figure 2.1, the western neighbor is GRAY
‘I node F with an adjacency tree as shown in Figure 2.2. A rope

is a link between adjacent nodes of equal size at least one
2 of which is a leaf node. For example, in Figure 2.1, there
exists a rope between node 16 and nodes G, 17, H, and F.
Similiarly, there exists a rope between node 37 and nodes M
and N; however, there does not exist a rope between node L
and nodes M and N.

i SRR

Ty
i

The algorithm for finding a neighbor using a roped
quadtree is quite simple. We want a neighbor, say Y, on a
given side, say D, of a block, say X. If there is a rope
from X on side D, then it leads to the desired neighbor. 1If
no such rope exists, then the desired neighbor must be
larger. 1In such a case, we ascend the tree until encounter-
ing a node having a rope on side D, that 1leads to the
desired neighbor. In effect, we have ascended the adjacency
tree of Y. For example, to find the eastern neighbor of node
21 in Pigure 2.1, we ascend through node J to node F, which
has a rope along its eastern side leading to node 16.

Tl e

"",.‘T"'v."':‘I ﬂ:‘ll" ‘.-4 '. \ T .

&

rigure 2.2.

rigure 2.3.

15

21

aajacency tree for the western neighbor of noae lo
in kFigure 2.1.

Fo--——-

Sample pair of blocks illustrating boraer

or

rioure <.4. olochs I, ana i ending at a common corner.

following.

atyaretes

gt d

(AP
ket
PRSI RY BT R

§

v
s Sndnindnindih adns

IR

s
REN
S
s
- .
. “-1
ey
P
C 4
-~y
e
B
v
TR
-7
SO
7
.=t
ma
r

""-‘i

[~ «
.
4

At times it is not convenient to ascend nodes searching
for ropes. A data structure named a net is used (21, 22,
24]) to obviate this step by linking all leaf nodes to their
neighbors regardless of their size. Thus in the previous
example there would be a direct link between nodes 21 and 16
along the eastern side of node 21. The advantage of ropes
and nets is that the number of links that must be traversed
is reduced. However, the disadvantage is that the storage
tequirements are considerably increased since many addi-
tional 1links are necessary. In contrast, our methods are
implemented by algorithms that make use of the existing
structure of the tree -- i.e., four links from a nonleaf
node to its sons, and a link from a nonrocot node to its
father.

2.3. Conversion

2.3.1. Quadtrees and Arrays

The definition of a gquadtree leads naturally to a "top
down® quadtree construction process. This may 1lead to
excessive computation because the process of examining
whether a quadtrant contains all 1°s or all 0°s may cause
certain parts of the region to be examined repeatedly by
virtue of being composed of a mixture of 1°s and 0°s.
Alternatively, a "bottom-up"” method may be employed which
scans the picture in the sequence

1 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24
9 10 13 14 25 26 29 30
11 12 15 16 27 28 31 32
33 . o0

where the numbers indicate the sequence in which the pixels
are examined. As maximal blocks of 0°s or 1°s are
discovered, corresponding leaf nodes are added along with
the necessary ancestor nodes. This is done in such a way
that leaf nodes are never created until they are known to be
maximal. Thus there is never a need to merge four leaves of
the same color and change the color of their common parent
from gray to white or black as is appropriate. See [29] for
the details of such an algorithm whose execution time is
proportional to the number of pixels in the image.

If it is necessary to scan the picture row by row
(e.g., when the input is a run length coding) the quadtree
construction process is somewhat more complex. We scan the
picture a row at a time. For odd-numbered rows, nodes
corresponding to the pixel or run values are added for the
pixels and attempts are made to discover maximal blocks of
0°s or 1°s whose size depends on the row number (e.g.,. when
processing the fourth row, maximal blocks of maximum size
4-by-4 can be discovered). 1In such a case merging is said

to take place. See [30] for the details of an algorithm

" that constructs a quadtree from a row by row scan such that
at any instance of time a valid quadtree exists. This
algorithm has an execution time that is proportional to the
number of pixels in the image.

Similarly, for a given quadtree we can output the
corresponding binary picture by traversing the tree in such
a way that for each row the appropriate blocks are visited
and a row of 0°s or 1°s is output. In essence, we visit
each quadtree node once for each row that integsects_ it
(i.e., a_ node corresponding to a block of size 2™ by 2K s
visitea 2K times). For the details see [31l) where an algor-
ithm is described whose execution time depends only on the
number of blocks of each size that comprise the image - not
on their paticular configuration.

2.3.2. Quadtrees and borders

In order to determine, for a given leaf node M of a
quadtree, whether the corresponding block is on the border,
we must visit the leaf nodes that correspond to 4-adjacent
blocks and check whether they are black or white. For exam-
ple, to find M“s right hand neighbor in Figure 2.3, we use
the neighbor finding techniques outlined in Section 2.2. 1If
the neighbor is a leaf node, then its block is at 1least as
large as that of M and so it is M“s sole neighbor to the
right. Otherwise, the neighbor is the root of a subtree
whose leftmost leaf nodes correspond to M“s right-hand
neighbors. These nodes are found by traversing that sub-
tree.

Let M,N in Figure 2.3 be black and white leaf nodes
whose associated blocks are 4-adjacent. ThRs thE pair M,N
defines a common border segment of length 2 (2 is the
minimum of the side 1lengths of M and N) which ends at a
corner of the smaller of the two blocks (they may both end
at a common point as in Pigure 2.4). 1In order to produce a
boundary code representation for a region in the image we
must determine the next segment along the border whose pre-
vious segment lay between M and N. This is achieved by
locating the other leaf P whose block touches the end of the
segment between M and N. If the M,N segment ends at a
corner of both M and N, then we must find the other leaf R
or leaves P,Q whose blocks touch that corner (see Figure
2.4) Again, this can be accomplished by using neighbor find-
ing techniques as outlinedé in Section 2.2.

For the non-common corner case, the next border segment
is the common border defined by M and P if P is white, or
the common border defined by N and P if P is black. In the
common corner case, the pair of blocks defining the next
border segment is determined exactly as in the standard
*crack following®™ algorithm [45) for traversing region

PR e

ol

. T et AR
P Sy - 4 .L '3 U)

Al o

]

P

0 h

A M
e SO
DR " N
N N - !

y Y,

- [Yy St e
) L ‘ e e e
VST VI S ISR RN 4

P
A

j-
!

i .
PR
PR 14_.&4 A & b md A

[

0 P4 AN I -
P SRR S

-r—- v . -
PRV AR I
R IR Hatete N

ir 2200

borders. This process is repeated until we re-encounter the
block pair M,N. At this point the entire border has been
traversed. The successive border segments constitute a 4-
direction chain code, broken up into segments whose lengths
are sums of powers of two. The time required for this pro-
cess is on the order of the number of border nodes times the
tree height. For more details see [33].

Using the methods described in the last two paragraphs,
we can traverse the quadtree, find all borders, and generate
their codes. During this process, we mark each border as we
follow it, so that it will not be followed again from a dif-
ferent starting point. Note that the marking process is
complicated by the fact that a node”“s block may be on many
different borders.

In order to generate a quadtree from a set of 4-
direction chain codes we use a two-step process. First, we
trace the boundary in a clockwise direction and construct a
quadtree whose black leaf nodes are of a size equal to the
unit code length. All the black nodes correspond to blocks
on the interior side of the boundary. All remaining nodes
are left uncolored. Second, all uncolored nodes are set to
black or white as appropriate. This is achieved by travers-
ing the tree, and for each uncolored 1leaf node, examining
its neighbors. The node is colored black unless any of its
neighbors is white or is black with a border along the
shared boundary. At any stage, merging occurs if the four
rows of a non-leaf node are leaves having the same color.
The details of the algorithm are given in [32]. The time
required is proportional to the product of the perimeter
(i.e., the 4-direction chain code 1length) and the tree
height. : :

2.3.3. Quadtrees of derived sets

Let S be the set of 1°s in a given binary array, and
let S be the complement of S. The quadtree of the comple-
ment of S is the same as that of S, with black leaf nodes
changed to white and vice versa. To.get the quadtree of the
union of S and T from those of S and T, we traverse the two
trees simultaneously. Where they agree, the new tree is the
same and if the two nodes are gray, then their subtrees are
traversed. If S has a gray (=nonleaf) node where T has a
black node, the new tree gets a black node; if T has a white
node there, we copy the subtree of S at that gray node into -
the new tree. If S has a white node, we copy the subtree of
T at the corresponding node. The algorithm for the inter-
section of S and T is exactly analogous, with the roles of
black and white reversed. The time required for these
algorithms is proportional to the number of nodes in the
smaller of the two trees [23).

.............

10

2.3.4. Skeletons and medial axis transforms

The medial axis of a region is a subset of its points
each of which has a distance from the complement of the
region (using a suitably defined distance metric) which is a
local maximum. The medial axis transform (MAT) consists of
the set of medial axis or "skeleton" points and their asso-
ciated distance values. The quadtree representation may be
rendered even more compact by the use of a skeleton-like
representation. Recall that a quadtree is a set of disjoint
maximal square blocks having sides whose lengths are powers
of 2. We define a quadtree skeleton to be a set of maximal
square blocks having sides whose lengths are sums of powers
of two. The maximum value (i.e., "chessboard") distance
metric [45) is the most appropriate for an image represented
by a quadtree. See [37) for the details of its computation
for a gquadtree; see also [38] for a differenc quadtree dis-
tance transform. A quadtree medial axis transform (QMAT) is
a quadtree whose black nodes correspond to members of the
quadtree skeleton while all remaining leaf nodes are white.
The QMAT has several important properties. First, it
results in a partition of the image into a set of possibly
non-disjoint squares having sides whose lengths are sums of
powers of two rather than, as is the case with quadtrees, a
set of disjoint squares having sides of 1lengths which are
powers of two. Second, the QMAT is more compact than the
quadtree and has a decreased shift sensitivity. See [46]
for the details of a quadtree to QMAT conversion algorithm
whose execution time is on the order of the number of nodes
in the tree.

2.4. Property measurement

2.4.1. Connected component labeling

Traditionally, connected component labeling is achieved
by scanning a binary array row by row from left to right and
labeling adjacencies that are discovered to the right and
downward, During this process equivalences will be gen-
erated. A subsequent pass merges these equivalences and
updates the 1labels of the affected pixels. 1In the case of
the quadtree representation we also scan the image in a
sequential manner. However, the sequence’s order is dic-
tated by the tree structure - i.e., we traverse the tree in
postorder. Whenever a black leaf node is encountered all
black nodes that are adjacent to its south and east sides
are also visited and are 1labeled accordingly. Again,
equivalences generated during this traversal are subse-
quently merged and a tree traversal is used to update the
labels. The interesting result is that the algorithm“s exe-
cution time is proportional to the number of pixels. An
analgous result is described in the next section. See [34]
for the details of an algorithm that labels connected com-
ponents in time on the order of the number of nodes in the

3
e
e
-

s
b
.
[
v .o
4 T
L
.
v

T
PRNTT Y

| . \’ D S R
ey e e JELMNLT P
KT UL M B

N PR TRERER N

N AR M

Yy 1Y SR y

it 4

o

f‘l"
« e et
RS PP LR O

vv-‘,‘,‘,ir..
bt
Pl BV AN W)

]

tree plus the product of B'log B where B is the number of
black leaf nodes. '

2.4.2. Component counting and genus computation

Once the connected components have been labeled, it is
trivial to count them, since their number is the same as the
number of inequivalent labels. We will next describe a
method of determining the number of components minus the
number of holes by counting certain types of local patterns
in the array; this number, g, is known as the genus or Euler
number of the array. :

Let V be the number of 1°s, E the number of horizon-
tally adjacent pairs of 1°s (i.e., 1ll1) and vertically adja-
cent pairs of 1°s, and F the number of two by two arrays of
1’8 in the array; it is well known [45]) that g=V-E+F. This
result can be generalized to the case where the array is
represented by a quadtree [36]. In fact, let V be the
number of black leaf nodes; E the number of pairs of such
nodes whose blocks are horizontally or vertically adjacent;
and P the number of triples or quadruples of such nodes
whose blocks meet at and surround a common point (see Figure
2.5). Then g=V-E+F. These adjacencies can be found (see
section 2.3.2) by traversing the tree; the time required is
on the order of the number of nodes in the tree.

2.4.3. Area and moments

The area of a region represented by a quadtree can be
obtained bx summing the areas of the black leaf nodﬁs, i.e.ﬁ
counting 4 for each such node that represents a 2 by 2
block. Similarly, the first x and y moments of the region
relative to a given origin can be computed by summing the
first moments of these blocks; note that we know the posi-
tion (and size) of each block from the coordinates of its
leaf in the tree. Knowing the area and the first moments
gives us the coordinates of the centroid, and we can then
compute central moments relative to the centroid as the ori-
gin. The time required for any of these computations is
proportional to the number of nodes in the tree. Further
details on moment computation from quadtrees can be found in
[23].

2.4.4. Perimeter

An obvious way of obtaining the perimeter of a region
represented by a quadtree is to simply traverse its border
and sum the number of steps. However, there is no need to
traverse the border segments in order. 1Instead, we use a
method which traverses the tree in postorder and for each
black leaf node examines the colors of its neighbors on its
four sides. For each white neighbor the 1length of the
corresponding border segment is included in the perimeter.

or

L B J

and surround a common point.

rigure z2.L. Possible configurations of blocks that meet at

A

-J-P,
. .

. o
. . Ly

S See [35] for the details of such an algorithm which has exe-

- cution time proportional to the number of nodes in the tree.
An even better formulation is reported in [47) which gen-
eralizes the concept of perimeter to n dimensions.

2.5. Concluding remarks

We have briefly sketched algorithms for accomplishing
traditional region processing operations by use of the quad-
tree representation. Many of the methods used on the pixel
level carry over to the quadtree domain (e.g., connected
component labeling, genus, etc.). Because of its compact-
ness, the gquadtree permits faster execution of these opera-.
tions. Often the quadtree algorithms require time propor-
tional to the number of blocks in the image, independent of
their size.

: The quadtree data structure requires storage for the
various 1links. However, use of neighbor finding techniques
rather than ropes a la Hunter [21, 22, 24] is a compromise.
In fact, experimental results discussed in the data analysis
segment of this report show that the extra storage cost of
ropes is not justified by the resulting minor decrease in
execution time. This is because the average number of links
traversed by neighbor finding methods is 3.5 in contrast
with 1.5 for ropes. Nevertheless, there is a possibility
that the quadtree may not be efficient spacewise. For exam-
ple, a checkerboard-like region does not lead to economy of
space. The space efficiency of the quadtree is analyzed in
[48). Some savings can be obtained by normalizing the quad-
tree [49,50] as is also possible by constructing a forest of
quadtrees [51] to avoid large regions of WHITE. Storage can
also be saved by using a 1locational code for all BLACK
bleks [52). Gray level quadtrees using a sequence of array
codes to economize on storage are reported in [53].

- The quadtree is especially useful for point in polygon
operations as well as for query operations involving image
overlays and set operations. The hierarchical nature enables
one to use image approximations. In particular, a breadth-
first transmission of an image yields a successively finer
irage yet enabling the user to have a partial image. Thus
the quadtree could be used in browsing through a large image
database.

Quadtrees constitute an interesting alternative to the)
standard methods of digitally representing regions. Their .
chief disadvantage is that they are not shift-invariant; two
regions differing only by a translation may have quite dif-
ferent quadtrees (but see [46]). Thus shape matching from
quadtrees is not straightforward. Nevertheless, in other
respects, they have many potential advantages. They provide
a compact and easily constructed representation from which
standard region properties can be efficiently computed. In

............
.........

14 -

effect, they are "variable-resolution arrays"™ in which
detail is represented only when it 1is available, without
requiring excessive storage for parts of the image where
detail is missing. Their variable-resolution property is
superior to trees based on a hexagonal decomposition [54]
in that a square can be repeatedly decomposed into smaller
squares (as can be done for triangles as well [55]) whereas
once the smallest hexagon has been chosen it can not be
further decomposed into smaller hexagons. Note that the
variance of resolution only applies to the area. For an
application of the quadtree concept to borders, as well as
* area, see the line quadtree of ([56].

e e A A A T A S
MR AN M S R S e < T A ot

15

3. Database, digitization, and editing

3.1. Procedures and results

The data supplied by ETL consisted of three map over-
lays (FPigures 3.1-3) representing land use classes, terrain
elevation contours, and flood plain boundaries for a small
area of Northern California. These overlays are shown, at a
reduced scale, in the figures attached to this section. In
the case of the elevation contours, only those at multiples
of 100 feet were to be digitized, and for all three over-
lays, only the portions bounded by the fiducial marks.

Conversion of the data to machine-readable form was
carried out as follows: Each overlay was superimposed on a
grid (graph paper, 20 boxes to the inch). The boundaries to
be digitized were followed by hand and marked on a second
sheet of graph paper. Every box on the original graph was
copied onto a 2-by-2 block of boxes on the second sheet.
This yielded increased resolution and also separated boun-
dary 1lines which on the original graph would have been in
adjacent boxes. This graph was then hand chain-coded and
the chain-codes were typed into the computer (see the
description of the program "mkbin" for a definition of the
chain-code used).

A binary array was created for each of the three
overlays in which the pixels that were on a boundary in the
original overlay are represented by a value of 1, and all
other pixels are represented by a value of 0. A connected
component labeling program was then applied to this array
yielding an array in which the pixels in each connected
region have a unique 1label. (Pixels of value 1 were
regarded as connected even if they were only diagonally
adjacent, whereas pixels of value 0 were regarded as con-
nected only if they were horizontally or vertically adja-
cent.) A lookup table was then created to convert these
labels to a consistent label set in which all regions of a
given land-use class,or all regions between a given pair of
elevation contours, had the same label. At this time, all
polygons on the landuse map which either had no label or for
which the label was unclear were placed in a special landuse
class "unk”.

The final data preparation task was to remove the
boundary lines separating the regions (those pixels given a
value of 1 in the binary array). This was uniformly done by
assigning to each boundary pixel the label of its right-hand
neighbor, or if this was also a boundary pixel, the label of
its neighbor in the row above. The three digital maps (one
per overlay) resulting from this processing were 450 pixels
high by 400 wide, partitioned into labelled regions with no
"black®” boundary lines separating them.

A e e

16

4 h Y

fitliith
.W H
J;_

l,
i
Al
A&l
Il Kotk
!

classes.

3.1. Land use

rigure

—

| R

17

|-
PP Y SR

e e

Fwer

y—

Llevation contour

Z

3

lgure

'y

. -
et Sadatd 2 d

A Ao

%

a A _a

- A

P I Y S P L LR

L OURS :
: ..: .

NOTE: =eeomm REVIGIONS
+ -+ TRASS)r mr

- R e, AR AR
rigure 3.5. iloou plain bounuaries.
T R S T S T R PP U G

19

The resulting maps were then gquadtree encoded using
the quadtree building algorithm described in the Section 4.
For each map, a multi-color quadtree was built giving every
region in the map a unique label. A multi-color quadtree
refers to a quadtree in which the leaf nodes can have dif-
ferent colors. Thus a multi-color quadtree is an extension
of the black and white (or binary) quadtree that is dis-
cussed in Section 2. Certain operations, for example union
and intersection, are not defined in terms of multi-color
quadtrees, but rather are defined in terms of binary quad-
trees that are derived from the multi-color quadtrees by
congidering one of the colors as black (this is usually the
color of the object of interest) and the other colors to be
white. In addition to the above three multi-color quad-
trees, a quadtree was built for each land-use class or
elevation 1level (i.e. regions in the class or elevation are
labeled, all other regions are white). Programs were then
written to manipulate and display quadtrees, as well as cal-
culate region properties and compute set theoretic opera-
tions on the trees. These programs are described in later
sections,

The hand digitization process took approximately 100
X manhours, including both planning and implementaticn. This
S time could be greatly shortened by using coordinate digitiz-

S ing equipment. Editing of the hand-input data was carried
o out by visual inspection of the resulting regions to verify
= that there were no gaps or overlaps. This process, together
.. with a few hand corrections of touching lines, took at most

20 manhours.

Figures 3.4-3.38 show the components of each 1land use
class. Figures 3.39-3.49 show the components of each eleva-
tion level, and Figure 3.50 shows the three components of
the flood plain map.

...............

20

rigure s.4. WThe lvy components or tue land-use class aco.

........

CEDp~<z 4

o

13

L

12

rigure 3.5. Yne 13 components or tne lana-use class ALP.

- - -~ N ’ v 3 e me moamoa m a e im T om A A
- . A . T et R . PN PR -
S e P L AL T T S T Ty —,—— BRIy Yy

S e N

22

‘ne 5 components OI the land-use Class AK.

riaure 3.o.

P U W Sy W 1

23

. |
i - \J 2 oA
_ﬁ < VD P

-3 =L . L
_u Eﬁ xwx, N _\,nT ¢ IR o o A

rigure 3.7. Tne 1 component of the land-use class AKLb.

24

e rigure 3.0. lne 31 compon2nts Of tne lanu=-use class AVt .

ISR St S i Nt P

25

riqure J.v.

Tthe «l components of thie land=-use class AVv.

TS

- —

26

rigure 3.10. °

.........

Ine 2 components or tne lana=-use class wubr.

L ST I Uy S S Y

o J
q
n
n
]
L)
—~
U
2
0
3
]
ko]
o
[}
—
[}
[o
o
~
P “
| (o]
o o)
o 1
[)
c 1
(o]
Q, {
£)
0
14} 4
.‘ 1 ”
o
& = s
3 . l A
. — "
&8 .)
. ” ¥
g .
k'] A
3 _ - 5 |
L . .
| A i
X ! J —f
... H ———— ,n'rnﬁ.v_nlk..-..“.r) L)
%

- . . Lo WP et e . . [.- . e e - -
SRS, 4 DR, 2 IR SRR 2 I
P PR Dedhknd b X i) UL IS - PUPDLEN B a1 PP

o i B

T

Clan 2o et i
. .

2. he 1 component of the land-use class bbkd.

rigure 5.1

The 4 components ot the land-use class bi'.

rigure 3.13.

.......

rigure 3.l4. 'ine 5 components ot tne lanhd-us: class ru.

Bt O SRS i Shadh = Ahadi el St e A A R L AP

YT TR Y e T T

31

ulll —r b.l_i t..l-.'!l.l — .m..!.:f.,_.,‘.ﬂ!.....,% NN Y 3 \.ﬂ i - il S]

SRR |
X IR

fne 4 components ot the lana-use class Lx.

3.15.

rigure

| A '

e - .
| SSLNPIPIA

rf

T
e - . -
T T A B

32

The 5 components OI tue lana-use class n.

rigure 3.ivu.

S 2 S

—

e, e W W W LT e e T e T . -

E etk

33

rigure 3.17.

The 2 components or tne land-use class Ulb.

-

34

1The b6 components ©Of the land=-use class uCl.

rigure 3.lo.

IS AP o LA RAAIAN + & WIS

[T v e

O Py W]

T S G G

RAEN x-"':f"'l.‘f T e

G

RO P 200

L=
g

23

7
)
N 4~

>
L
E

I

S

X
VAL

rigure 3.1Y. Tne 4 components oOf the land-use class UCk.

n

36

..........
RO

rfigure 3.20. the 2 components oOf the land-use class uUlw.

Al R P PP UL S VUL, O AP

......................

'.ﬁ,af‘

f]

rigure 3.21 he 2 components or tne lana-use class Uud.

The 2 components ot the land-use class UIL.

rigure 3.22.

ﬁ'lnl&r. rﬂﬂf

7 I

\h.,dvmhf.

i“he & components of tne lana~use class UILS.

...,.

N {

,»-L

L3 ‘i\L
Dt)
o~

R 0

RL

2

4 .

u .=

o N

]]

9)

) --.

» l-

-. ¥

hl ¢

L

Lafas At Shest Shett Jiadt Anatiatec I
W L W R LR T TR - D -

...........

rigure 3.2«¢. {ne 2 components or tne land-use class Ul .

PRI O U I WP TPRE U SO

41

The lU components ot the land=use class Uik .

rigure 3.25.

42

class Uuoe.

Janii-use

Tne 1 component or tlie

rigure 3.20.

T

yooo .

.o Lo
o S
Ail s o tan it ot

el b momidsi -

ik

DT S SRR

L SENPUR RO PR U

PR

—— 2

The 1 component Or the land-use class UuUuG.

Figure 3.27.

..[‘

<y

e e e e T
PO N W R S T

v

-TTwT

DA A A

44

a—

The 3 components of the lana-use class UuU.

rigure 3.20.

Al e el S S

T TR T —w—Tw— v

R A S e i M
- T e toat

45

j_ &

‘'he 2 components of the land-use class UuP.

rigure 3.2Y.

A Nl o

46

‘fne 2 components of tne land-use class Uuv.

Figure 3.30.

....
........
PRI

rigure 3.31. The 2 components of tne land-use class Uri.

ret [
..........

Figure 3.32. The 24 components of the land-use class uxo.

Cit it}
A)
AR TR

A (i)
L.

Nt
0T §

vy Ty
e AL

QEESENOO I

49

0 L

A

oaa
&

&
Mo

Figure 3.33. The 2 components of the -land-use class UuUon.

PRSI SR NI A UL AUy P T WS R P SV W WA N -~

LR A ST
w
o

1 — f?-\ T‘BE@

rigure 3.34. The 3 components of tne land-use class uuu.

&1

Figure 3.35, Tne 1 component ot the lana-use class VV.

WAL S it ot e,
e st
S }. e
oo o WFREL o
L
"
H

5,) l‘v‘.-l7v'-'r:i_,'-'vv LA . o
A - . LN RIP T M T : MR
'
. .
.

rigure 3.30. fne 2 components or the lana-use class wu.

.
S
v S e e . .
AR -
. . Lttt e
et PRV f . 4
el Py RS
c . A PRI S SIS

T O AT R AT S SRR AMui S I
T e Pty JOEnC et S
ASASAES) MRS oal e T PO B e T T S S

53

54

........... § . PSR S R N N

...........

The © components of the land-use class wwP.

f'igure 3.30.

T T L

componant ot the lst elevation level.

(0 - 100 ft

'ne L

rigure 3.3Y.

.)

TP S

TN e

T Y
-d ..

Lils ks S0e s .v‘rv.v.-‘vyﬂ Chgrtar Rt A et
2 S d amalletets sl T oL . .
.

56

rigure 3.4U. Wne 2zl components of tue 2uu elevation level.

(100 - 200 ft.)

PSR U PP Y

e T W T T T T T
~ B st ar A e i A TS

3 57
1

2R 57

ey JE, A E I

rigure 3.41. ''ne 17 components ot the 3rd elevation level.

(200 - 300 ft.)

A Ang i ¢ Aran et

58

A A

s [Tl

rigure 3.42.

'ne 13 components of the 4t elevation level.

(300 - 400 f¢.)

...................
..
...

rigure 3.43. fhe 7 components of the 5tn elevation level.

(400 - 500 ft.)

............

B Snie e San S an daae s eaiie-e A

P dias 24

T
T

60

Ine 12 components or the oth elevation level.

rigure J.a4.

PUPLER, LR Ry

(500 - 600 ft.)

PR S S g —

B el B B K, N iR ‘v.l ey €]

5 61

T

—
ity 4 SNSRI
) R R .

PR 4 B+ s o 48 .

M

-—r Y
INCNDNERNCNDN LIRS ."n
PR] TR NV R

rigure 3.45. Ihe > components ot the 7th elevation level.

(600 - 700 ft.)

rigure J3.4v. ‘I'he © compounents Ot the tth elevation level.

(700 - 800 ft.)

PP Sy - PUpe Sy amtevintsdotramiien. o

rigure 3.47. ''ne o components of the Yth elevation lavel.

(800 - 900 ft.)

¥
K
. L
.u._
...;
..q M
IS Xy
‘v
--

64

rigure 3.4o. I'he ¢ components of the lUth elevation -level .

(900 - 1000 ft.)

>
| E
._
t B
’ 1
§
b B
b
3

Ty

65

''ne 2 components of the llth elevation level.
(1000 ~ 1100 ft.)

rigure 3.4Y.

t ;
o 3
T-_. 0. --
. <4
&K -
fwn.. --.4-
L, “..A
X v
- .
p ! .
¢ 3
| ¢

-

s

66
l':r/-"é//\'/-
< —
':l;;."]
L‘-\. ! —
~eo b
NI ?
,,_._-;"};" \""—-\ d
T £100d .right,
v:‘i-—"
)
)l
.'.:-w". flood .center .
.{\
\\}-

rigure 3.50. Tne 5 components of tne flood=-plain tap.

iy Paay e o

K
A 67

ﬁ; 3.2. Dpata editing functions

Below we describe the algorithms that were implemented
to edit the maps prior to storing them as quadtrees. These
Lo algorithms were implemented in the programming language C to
. run on the PDP-11/45, VAX 11/780, and GRINNELL configura-
' tion, which is described in the Appendix to this report.
. The maps provided were initially hand-digitized and stored
ii in a chain code representation, as described in Section 3.1.

Although quadtrees could have been built directly from the
chain code representation, it was considered useful instead
ol to use picture files as an intermediate representation
. between the initial chain codes and .the final quadtrees.
RN This allowed access to many standard routines that are part
of our software library. Below, we describe the nonstandard
routines that were used on this project.

The algorithm descriptions proceed in the following
manner. First we describe the program MKBIN, which converts
the chain codes to picture file format. Then three routines
for manipulating the picture files are described. These are
FIXPIX (changes the value of pixels referenced by their
coordinates), RELABEL (translates one list of pixel values
into another), and LINERM (erases lines from maps).

The function MKBIN (make binary array) takes as input a
file that describes a chain code segmentation of the origi-
nal maps and creates a picture file. For the following
descriptions, it is simplest to view a picture file as a
binary array that fias been laid out on a disk in a row by
row manner. The file that results from MKBIN will describe
the map as a white map broken up by a series of black lines.
Since the black 1lines are described by the chain codes,
MKBIN simply traces the chain code on a binary array, mark-
ing each pixel that lies on the chain code as black.

Having created the picture file, two minor utility rou-
tines were found useful. One of these is FIXPIX, which
2 changes the value of a pixel when given the coordinates of
ﬂq the pixel and the new value. This is the equivalent of
Fi assigning to an entry in a 2-d array. FIXPIX is used to fix
<l problems that result from errors in the entry of the chain
{ code digitization and also errors that result from labeling
3 the regions of the map. The other utility is RELABEL, which
HF produces a copy of the input picture file where all the
pixel values are changed according to a given translation

ff table. Both of these utilities are used for changing pixel]
= values, but FIXPIX does this based on specified coordinates,
}? whereas, RELABEUL changes all pixels that have a given value.

The land-use classes (as well as contours, etc.) are
» labeled by using a standard connected component ptogram and
o then using RELABEL to merge the labels of components of the
same class. There still remains the problem of which labels

........................

A s

- to assign the pixels that lie on the boundaries of the
% regions. It is this assignment plus the original hand encod-
ing of the map that accounts for any errors in the calcula-
tion of statistics by the quadtree algorithms. The assign-
N ment decision is rather arbitrary (but applied consistently
to each pixel alike) and implemented by the function LINERM.
The decision of which region to assign a given boundary
pixel 1is based on the direction of easiest movement through
a picture file (which is from right to left and from top to
bottom) . Thus a BLACK pixel (a pixel having the color of
7 - the boundary line) is given the value of its neighbor on the
right if that neighbor is not BLACK and the value of the
" neighbor above otherwise. Note that at any point during
LINERM, the algorithm stores two rows of the picture in
core. When working with the first row of the picture, the
second neighbor used is the neighbor below since there is no
neighbor from above. This processing is repeated over the
entire picture file as many times as the maximum of the
line“s thickness (measured in pixels). A line of thickness
greater than one can be created by MKBIN when many lines
touch,

.........

vr .
-

Ta T

Algorithm 5.1 . rIXPIX

/* Take a picture and a data file "input" which contains records
declared: "x-coord y-coord newval". The pixel at coord
<x-coord, y-coord> will be changed to newval. The records must
be in ascending order of y-coords as only one pass is made
through the picture (getting new rows as necessary) .

The procedure getrow reads the picture file filling the butffer
with the next row. */

fixpix(inpic, input, numcols, numrows)
INTEGER numcols, numrows:

{DATA FILE inpic, input;

INTEGER ARRAY rowbuff[numcols]:;
INTEGEK rownum = O;

INTEGER x, y, val;

getrow(inpic,rowbuff);
WTILE(NUT end of file "input")
getrecord(input ,x .,y ,val);
if(y > rownum)
FOk(rownum=rownum TO y)
getrow(inpic ,rowbuff);
rowbuff{x] = val;

L . 70
-‘i algorithnm 3.2. LInbRE

/* remove the black pixels from a multi-color picture. For every
pixel in the picture, do the following: If the pixel is black.
s then if the right neighbor is not black, give the pixel thne
‘! value of its right neighbor. 1I1f the right neighbor is also
g black, then give the pixel the value of the neighbor above it.
Some pixels may remain black (they have both neighbors black),
if so the algorithm should be repeated. */

linerm(inpic ,numcols ,numrows)
. INTEGER numcols ,numrows;
DATA FILE inpic;
{
INTEGER ARKAY inbuff(2]{ numcols+l]:
INTEGER ARRAY outbuff{numcols]:;
INTEGER POINTER currpnt, otherpnt;
. INTEGER 1,3

currpnt = 0

otherpnt = 1:;

getrow(inpic ,inbuf£[0]):
getrow(inpic ,inbuff[0]);

reset inpic file to beginning:

/* As a special case ., the top row actually us2s the neighbor below
it rather than the neighbor above it , and the right hana col
uses the neighbor to the left. This is done by putting an
imaginary row above the first, and an extra col to the right
of the last. */

inbuff{ 0]}l numcols) = inbuff[0)J{ numcols-2];

foT(i=l TV numrows)
currpnt = (currpnt == 0); .
otherpnt = (otherpnt == (Q); /* flip these two pointers */

/* Currpnt always points to the current row. Otherpnt points at
the row above. */

getrow(inpic.,inbuff{ currpnt]):
inbuffl{ currpnt J{numcols] = inbuff[currpnt]{ numcols-2];
FOK(3j=0 TO numcols-1)

IF(inbutt{ currpnt][j] == BLACK)

-8 Ir(inbutfl currpnt]{ j+1] <> BLACK)

F; outbutf{ j] = inbuff{currpnt]{ j+1];
- ELSE

- outbutft(j] = inbutfl{otherpntl(jl:
b ‘.7 ELSLE :

Ei outbuff{ j] = inbuft{currpntl(j];

- output (outbuff);

: } }

.

v

g y
iy A S
et

- o '..al
St
«

‘

.
e

]

'

"

Algoritnm 3.3. DMRBIN

/* Make a binary array from a set of chaincodcs.
“<coord-part><directional-part>#"

used is as follows:
<coord-part> is simply a six

........ =,

71

The chaincode

digit number with the 3 digit

x-coord and the 3-digit y-coord.

<directional-part> is one or

<direction-character> or
<number> is a 2-digit number
<direction-character> occurs
<direction-character> is one

more occurrences of:

" <number><direction~character>]".
which means thac the

nunber times.

of of:

iop
\i/

k-*-;
/N
./

If the character is "k” this would indicate cne step west,
“," would indicate one step southwest, etc. These symbols

were chosen because of their location on the keyboard. */

makebin(width ,neight)
INTEGER width, height;
/* '‘reate a binary array of size width X height. */
/* The function getchar returns the next character that is not a
{ line-feed from file "input". */

BINARY ARKAY aIILWidth]Eheight]:
INTEGER xcoord, ycoord, numb, i;
CHARACTER ch;

. AR
o ettt
R IATRERIRER)
. a LTINS

wHI1LE (getcoords (xcoord ,ycoord))

{ /* For each chaincode in the file... */
arr(xcoord][ycoord] = 1;
ch = getchar(input);
wWHILE(ch <> '#')
{
Ir(ch == ‘(')
run(numb ,ch);
ELSE
numb = 1;
o FUK(i=1l TV numb)
L C?Sb OF ch
jg '‘i': xcoord = xcoord - l; ycoord = ycoord
E& ‘o': ycoord = ycoord - 1;
,! ‘'p': xcoord = xcoord + 1l; ycoord = ycoord -
S 'K': xcoord = xcoord - 1;
K ';': xcoord = xcoord + 1;
:{ ',': xcoord = xcoord - l; ycoord = ycoord 1;
o '.':s ycoord = ycoord + 1l;
E‘ '/': xcoord = xcoord + l; ycoord = ycoord + 1;
P

arr(xcoord][ycoord] = 1;
ch = getchnar(input):

}

IRV ARG

N T T SR I S
R ey

28 I S

e 72

BOOLEAN Fuuc'rf/aiw getcoords(x .y)
INTEGER x, yf .
/* it the ipput file is empty return FALSE. Otherwise read the
cooras from the input file (into x,y) and return TRUE. */

PRUCEDURE myget(numb ,ch)
INTEGER numb;
CHARACTER ch:
/* Read tne 2-digit number and the following character from the
input file, then skip the character "]", returning the number
in numb and the character in ch. %/

AN L/ A AL,
Y

oS

73
Algorithm 3.4. RiLABLEL

/* Cnange the value of the pixels in a picture as determined by the
labels given in file "“labels". This file has as its first value
an integer which is the largest value occurring in the original
picture, followed by records of the form “old-val new=-val", */

relabel(inpic,labels ,numcols ,numrows)
INTEGER numrows , numcols;
INTEGER ARRAY inpic[numcols]{numrows];
DATA FILLE labels:;
{
INTEGER val ,new,0ld,;i.j;
INTEGEK POINTER table:;

val = getnum(labels);
table = create-storage((val+l) * sizeof val);

/* Create-storage is a system function which dynamically reserves
the number of words given by the parameter. The sizeof operator
returns the number of words used by the variable following. */

/* Initialize table so that the new label will be the same as the
old label, unless a change is indicated in the file "labels". */

FOrR(i = 0 TO val)
table(i] = i;

wH}Lb(not at end of "labels")
old = getnum(labels):;
new = getnun(lavels);
table{old] = .aew;

/* Cnange picture. */
FOR(i=0 TO numcols)
FOR(3j=0 TO numrows)
inpiclil{j]) = tablelinpic[il(31];

. e = ma o Agn s auad) R T Badiraauan o Maiere Sntt A Sest IRt e A AN AP A4 I A ey
...... e S, . . . - . L A

74

Quadtree encoding

4.
4.1. Introduction

This section describes the quadtree encoding algorithms
as well as various primitive functions used in conjunction
with quadtree data structures. Display of quadtree-encoded
data was particularly facilitated by the ability of the
GRINNELL to accept specifications of rectangles to be out-
put. It should be noted that all of the following algor-
ithms work on the digitized version of the maps described in
Section 3 and that no new errors are introduced by these
algorithms” manipulations of the quadtrees, since the
representation of the digital data remains exact. No devia-
tion from pure quadtree representation has been introduced.

The algorithm descriptions proceed in the following
manner. First we present a set of primitive functions that
form the building blocks for later algorithms. Then we dis-
cuss two algorithms that were instrumental in building the
quadtree database from the digitized maps. The first of
these two algorithms builds a quadtree from a map by scan-
ning the map in a row by row fashion (referred to as raster
scanning). The second algorithm labels the connected com-
ponents of a map.

DRIV

4.2. Primitive functions

The functions SON, FATHER, SONTYPE, NODETYPE, BLACK,
WHITE, and GRAY can be thought of as defining the quadtree
as an abstract data type. Although their implementation is
trivial, their usage gives the other quadtree algorithms a
certain independence from the chosen representation of the
quadtree data structure. Since it is our intent to experi-
ment with other quadtree representations, this will save
future programming effort. Currently each node of the quad-
tree is represented by a record consisting of five pointers
and an integer. The pointers are used to link to other
nodes; one pointer 1links to the node’s father and the
remaining four pointers link to the node”s four sons and are
indexed by the quadrant in which the son lies. A value of
NIL is stored to indicate the absenco of a son in a given
direction. An integer value is used to uniquely identify the
polygon, land-use class, or contour to which the region
represented by the node belongs. If this value is not unique
for the region, then the value is considered gray (this term
comes from the usage of gray nodes in black and white
binary-valued quadtrees).

Using such a quadtree representation, the above defin-
ing functions work as follows. The function SON takes a
node and a quadrant as parameters and returns the node that
is the son of the given node in the given quadrant by deref-
erencing the appropriate pointer. Similarly, the function

L' P o re PR B PP LI TS T Sy S W H PURIT A e oo k] - 2 Lo toa 2 oy [N VRS UPND PR S A

PR

FATHER takes a node as parameter and returns the father of
the given node by simply dereferencing the appropriate
pointer. The function SONTYPE takes a node as parameter and
returns the quadrant that expresses the direction from the
father of the given node to the given node by comparing the
address of the given node to the address of each of its
father’s sons. This function returns a special value NIL to
indicate that the given node is the root of a quadtree and
hence has no father. The function NODETYPE takes a node as
its parameter and returns the integer data item that is
stored at that node which generally indicates a region
color, class type, or elevation. The predicates BLACK,
WHITE, and GRAY each take a node as parameter and return
true if the value of NODETYPE is to be interpreted as having
the value indicated by the function’s name. This allows mul-
ticolor quadtrees to be easily interpreted as binary-colored
quadtrees when it is convenient to do so.

The functions OPSIDE, CCSIDE, ADJ, REFLECT, QUAD, and
OPQUAD provide a simple set of operations to manipulate
directions. There are two important classes of directions
used by quadtree algorithms. The first is the four basic
directions denoted N, E, S, and W that are used to indicate
the side of the square that lies in that direction from the
square”s center. The second is the four compound directions
denoted NW, NE, SE, and SW that are used to indicate the
quadrant of the square that lies in that direction from the
square”s center. The functions OPSIDE and CCSIDE each take
a side as parameter and return respectively the side in the
opposite direction and the side in the direction 90 degrees
counterclockwise from the square”“s center. The predicate
ADJ takes a side and a quadrant as parameters and returns
true iff the given quadrant is adjacent to the given side.
For example, the NE quadrant is adjacent to both the N and E
sides but not to the S or W sides. The function REFLECT
takes a side and a qu_irant as parameters and returns the
quadrant that is the reflection of the given quadrant with
respect to a line through the center of the square that is
parallel to the given side. For example, the SW quadrant is
the reflection of the NW quadrant with respect to a line
through the square”s center that is parallel to either the N
or S sides, The function QUAD takes as parameters two sides
and returns the quadrant that is adjacent to both sides if
this condition uniquely determines one quadrant. If it does
not (i.e., the two sides are either opposite or .the same),
then the value NEG is returned. The function OPQUAD takes a
quadrant as parameter and returns the quadrant that lies in
the opposite direction from the center of the square (i.e.,
180 degrees). In our particular implementation, each of the
two classes of directions is represented by the integers 0
thru 3 inclusive; so the above functions are implemented by
modular arithmetic where convenient and otherwise by
enumeration of the possible values (i.e., table lookup via a
case statement).

R

vy
LB

yr s r v - a ®

5 s Cte et

. PR e Ny
.t Y- A

Lt I N

76

Central to the approach to quadtrees that we have
adopted is the ability to find a node“s neighbor without
storing explicit links to each node’s neighbors as is done
in some other implementations. This ability is encoded in
the function FIND_NEIGHBOR, which takes as parameters a node
and a side and returns a node that abuts the indicated side
of the given node and is either a leaf or is of the same
depth as the given node. The manner in which this is done is
described in the tutorial section of this report. The func-
tion MAKE_NEIGHBOR behaves in the same manner as
FIND_NEIGHBOR except that if it fails to find a common
ancestor or runs into a leaf before it has finished the mir-
rored path, then it modifies the tree by inserting the
sought-after node and continues on.

The remaining functions GETNODE, CREATENODE, and
RETURNTOAVAIL are used for storage management. Unused nodes
are kept on an AVAIL list. The function GETNODE returns a
used node by first looking on the AVAIL list and if the
AVAIL list is empty then requesting more storage from the
operating system. An error message results if no storage is
available and the program terminates. The function
CREATENODE takes a node, a quadrant, and an integer nodetype
as parameters and uses GETNODE to create a new node of the
given nodetype which has the given node as father, lies in
the given gquadrant of the given node, and itself has no
sons. The function RETURNTOAVAIL takes a node as parameter
and inserts it into the AVAIL list.

4.3. Database building

Prior to constructing the quadtree database, the maps
were stored in picture files, which can be viewed as 2-4
arrays laid out on a disk in row-by-row order. Thus the
first task to be performed to convert each picture file into
a quadtree file, which is a preorder listing of the nodes in
a quadtree. This is accomplished by the R2Q (raster to quad-
tree) function. This function reads a picture file one row
at a time (raster scan order) and builds the corresponding
quadtree using the MAKE_NEIGHBOR primitive. As the quadtree
is being built, identical leaf brothers are merged as indi-
cated in the discussion of the WINDOW function. An addi-
tional efficiency results from realizing that it is only
necessary to check for these mergers on even- numbered rows;
any leaf on an odd-numbered row, still has two brothers that
have yet to be read in.

The original picture files had each pixel 1labeled
according to the land-use class (contour, etc.) to which it
belonged. Thus, these labels were the only distinctions
that could be carried over in the construction of the quad-
trees by R2Q. However, the database design called for unique
labels on each connected component of each class. Hence, it
was necessary to perform a connected component analysis in

y LT L
BN A . S L)
(9 . R . PN PR .

(s 4
4

- ALl oo
T

B2

. g
v

P R

2 i .) AemSnennd, 3, Sl A P

77

order to label the quadtrees in the desired format. This was
done by the function QCONCOM (quadtree connected component
finder). This analysis was performed on the quadtree data
structure directly (instead of being done on the picture
files prior to quadtree construction) because the number of
nodes to be processed in the quadtrees was substantially
smaller than the number of pixels to be processed in the
original picture thereby allowing the analysis to be per-
formed faster. The function QCONCOM works in the following
manner (processing only one class at a time). The first step
assigns an initial tentative labeling to the quadtree. This
labeling is based on a preorder traversal of the quadtree
that starts in the northwest corner of the image and moves
in the south and east directions. If a BLACK node is met
that is wunlabeled (with respect to the component within
which it is contained), then a new label is created for it.
When processing a BLACK node, FIND NEIGHBOR is used to exam-
ine its southern and eastern neighbors to determine if they
are also BLACK, but have no component label. In such a case,
they are assigned the component 1label of the BLACK node
being processed. If they already had a component label, then
both 1labels are placed (as an ordered pair) on an
equivalence 1list. Once all the nodes have been tentatively
labeled, one merges the equivalence classes and then updates
the component 1labels so that each connected component has
just one label.

.....

..........................

' 78
Algorithm 4.1 . PRIMITIVES

/* The following is a description of the primitive functions
used in the quadtree algorithms. */

node FUNCIIiON son(p.,i)
/* Given node p and quadrant i, return the node which is the
son representing quadrant i ot node p. */

node FUNCITION father(p)
/* Given node p, return the node which is the father of p. */

INTEGEK FUNCTION sontype (p)
/* Given node p, return q where son(father(p).q) = p. 1f p is

Zi:t i the root, then return NIL. */

INTEGER FUNCTION nodetype(p)

/* Return the value of node p. This can be considered as GRAY,
WHITE, or BLACK for a binary tree; and GRAY, WHITE or a class
type or elevation level value for a multi-colored tree. */

BOULEAN FUNCTION black(p)

/* i'KUb when nodetype(p) is BLACK if the tree is binary, or
when nodetype(p) is a value specified as BLACK by the user
if the tree is multi-colored. */

BOULEAN FUNCTION white(p)

/* YRUE when nodetype(p) is WHITE if the tree is binary, or
when nodetype(p) is a value specified as WHITE by the user
if the tree is multi-colored. */

BOOLEAN FUNCTIONW gray(p)
/* TRUE iff nodetype(p) is GRAY. */

INTEGER FUNCIIUN oOpside(b)
/* Given a side b, return the opposite side (e.g.,
opside(E) = w). */

INTEGRR FUNCTION ccside(b)
/* Returns tne side adjacent to side b in the clockwise
direction (e.g., ccside(E) = N). */

BOULEAN rUNCTION adj(b,i)
/* TnUE itf quadrant i is adjacent to bourdary b of the node's
block (e.g., adj(N ,Nw) = TRUE; adj(N,Sw) = FALSE). */

INTEGER FUNCTION reflect(b.,i)
/* Returns the guadrant which is adjacent to quadrant i along
boundary b (e.g., reflect(N ,Nw) = Sw). */

INTEGER FUNCTION quad(b,c)

/* keturns the quadrant bounded by b and ¢ it it exists and the
value NEG if it does not exist. */

INTEGER PMUNCTION opquad(q)
/* Returns the guadrant opposite (non-adjacent) to gq
(e.g., opquad(Nw) = Sw). */

PO S S YT YR

LA A P 4 T e
. . LR A R T

s . PRANEI N f
oL . . S R

YTy
R DR
.

79

node FUNCIION find neiguvor(q,s)

/* Return the node which is adjacent to side "s" of node "q*“
and is elther a lear or is at the same depth as node "q".
Tnis is done by foliowing the father links until the common
ancestor is reached and then following the retlected path
downward , stopping s.iort only it a leaf is met. */

node POINVEKR q:

INTEGER s8;

{

node PUINTER p;
INTEGER 1 ,stypeq:;

/* rirst finad a common ancestor. */
IF(NULL(sontype(qg))) /* Common ancestor does not exist. */
RETURN(INIL) ;
ELSE IF(adj(s,sontype(q))) /* Neighbor is not a sibling -
go up to next level. ¥/
P = find _neighbor(iather(q) ,s);
ELSL /* Neighbor is a sibling. rather is a common ancestor. */
p = father(q):

/* After finding the common ancestor , reflect about side "s"
back to the level ot tne original request. */
IF(NULL(p) OR NULL(son(p.reflect(s ,sontype(q)))))
/* Either there was no common ancestor or p is a leaf
and in either case p is what we want to know;
so, don't change it. */
RETURN(p) ;
ELSE /* keturn the calculated son. */
| RETURN(son(p ,reflect(s ,sontype(q)))):

}

node FUNCTION make neighbor(q,s)

/* Return the node which is adjacent to side "s" ot node "q"
and at the same depth as the node "q". Tnis is done by
following the path through the tree that would lead us
to said neighbor if it existed and creating, along the way,
any nodes that are necessary. whenever such nodes are created,
all created sons are set to WHITE. They are later reset to
GRAY or BLACK as appropriate, c.f., find-neighbor */

node POINTER q; -

{NTEGER s;

node POINTER p:
INTEGER i ,stypeq:

/* First find the nearest common ancestor. */
IF(NULL(sontype(q))) /* Common ancestor does not exist. */
t
/* Create a common zncestor and initialize its
pointers. */
p = createnode (MNULL ,WULL ,GRAY);
stypeq = quad(ccside(s) ,opside(s)):
p->sons(stypeq] = q:

N P

..............

- -y —— v ™7 T
LR R R R T A S AP A S st B o T = "

80

gq->fathr = p;

/* Create the other three sons of p. */
createnode (p ,opquad(stypeq) ,wHITE);
createnode(p ,opquad(reflect(s ,stypeq)) ,wiHITE);
createnode(p ., reflect(s .stypeq) ,wHITE);

ELSE IF(adj(s,sontype(q))) /* Neighbor is not a sibling -
: go up to the next level. */
P = make_neighbor(father(q) ,s):
ELS: /* Neighbor is a sibling. Father is common ancestor. */
p = father(q):

/* After finding the nearest common ancestor , reflect about
side "s" back to the level of the original request. */
lt(NULL(aon(p,retlect(s,sontype(Q)))))
/* If the node does not have children to descend a level ,
change the node to gray and give it children. */
P=>nodetype = GRAY;
rOR(1 = NwW ,NE ,SE ,SW)
createnode(p.i ,wHIlE);
return(son(p,reflect(s ,sontype(q)))):

}

node FUNCTION getnode ()

/* Reserves storage for a quadtree node and returns a pointer
to this unit of storage */

node FUWCTION createnode(root ;s ;t)
/* Create a node p with nodetype t which corresponds to son s
of node root and return p. */
nade POINTER root;:
?NTEGER s ,t;
node PUINTER p:
P = getnode();
if(root I= NIL)
root=->sons(s] = p;
p->fathr = root;
p=>ntype = t; ‘
for(i = NW ,NE ,SE ,SW)
p->sons(i] = NIL;
return(p):

PROCEDURE returntoavail(p)
/* Return node p to the available storage pool. */

-
N
;;; Algorithm «.2. QUUNCOUM 81
4

/* Run a connected components algorithm on a binary quadtree -

{ i.e.,assign every connected component a unique label. This is
oL achieved in three steps. Step 1l assigns labels to each BLACK

& node . This is done by traversing the tree and tor every BLACK
*(! node , examining its eastern and southern neighbors. If these are
g unlabeled, a new label is generated for the current node. If
either of tnem are labeled, and the current node is unlabeled,
then assign current node the label of its neighbor. It the
neighbor is labeled and the current node is labeled, then these
labels are equivalent and so the pair of labels is auded to a
list of equivalence classes. The second step is to put the list
of equivelance classes into a hierarchal order so that all of
the nodes in the class can be given one label. No algorithm is
given for this step - for an example of a typical algorithm ot
this kind see Knuth, vol 1. The third step simply traverses

the tree again, relabeling each node to the value of the
representative for its equivalence class. */

3 TR A b
s et ey
. Aot et
. P

i wr" R
R e

component (quadtree)

/* "Quadtree" is a pointer to the input tree. At the end of this
algorithm, "quadtree"” will point to the labeled tree. */

node POINTER quadtree;

t

pairlist POINTER merges; /* Pointer to the list of pairs of

equivelances. */

merges = NIL;

label(quadtree); /* step 1 */

Process the equivalences in the list merges; /* step 2 */

update (quadtree); /* step 3 */

s DAL P -y
R Sttt f .

PR NI R Lt .
S . el P Lt
L . L B LT

L label(p)
/* Pertorm step 1. Assigns labels to node p and its sons. */
- node POINTER p:

{

node POINTER q;

INTEGER 1i;

e 1f(gray(p))
- FOR(i = NW ,NE ,SE ,Sw)
‘ label(son(p.,i)):
EL?E IF(black(p)
q = find neighbor(p.E);
it (NOT(NULL(qg)))
o label adjacent(q ,NW,SwW,p):
o q = find neighbor(p;s);
o i£(NOT(NULL(Q)))
L label adjacent(q ,Nw ,NE,P):
- if(NOT(labeled(p)))
8 } p->nodetype = getnewregion():;

T o, Y YT, T Yy, oYLy e LY LT LOWRAY LYY R, Y O OWAYMT,T T R T R R L W, W, e o s oWl 0w e Y oYY T VT e T A T oy T e ™

gx A SNEAS RSN

A S dr SO Al Rk e

...
....................

82

label adjacent(r ;ql ,a2.p)
/* ?Lnd all descendants of node r adjacent to node p - i.e.,
in quadrants ql and q2. */
node POINTER r ,p;
{INI‘E.‘:LR ql ,q92:
IE%gray(r))

label-adjacent(son(r ,ql) ,ql ,92,p):
label-adjacent(son(r ;q2) ,ql ,q2.,p):

ELSE IF(black(r))
assignlabel(p.r);
}

assign’label(p.q)

/* Assign a label to nodes p and q if they do not already have one .
If both have different labels, then enter them in “merges”. */

node POINTER p.q:

IFflabeled(p) AND labeled(q))

IF(nodetype(p) <> nodetype(q))
| add <nodetype(p) ,nodetype(q)> to merges:

ELSE IF(labeled(p))
g->nodetype = nodetype(p):
ELSE If(labeled(q))
p->nodecype = nodetype(q):
ELSE
| pP->nuuetype = g->nodetype = getnewregion():

update(p):
/* Perform step 3. */
node POINTER p:
t
INTEGER i;

IF(gray(p))
FOR(i = NW ,NE ,SE ,SW)
update(son(p.i)):
ELSE 1F(black(p))
} p->nodetype = equivalence of value nodetype(p):

e

" ———
.'.a" R

\(]
-

Algorithm «4.3. RZQ 83

/* Convert an input picture in the form of a binary array (or
raster) into a binary quadtree. Basically, the algorithm works
by doing a raster scan of the input picture, and as each pixel
is read, the quadtree is modified so that it would be a valid
quadtree representing the input picture if all unprocessed pixels
were WHITE. This is in contrast to an algorithm which first
builds a complete quadtree with one node per pixel and then
attempts to merge nodes (replace GRAY nodes that have all sons
the same color with a node of that color). fThe input picture is
read one row at a time by a special function getrow which
returns the next row of the picture. The function color returns
the color of the pixel given as an argument. The boolean
function lastrow is true iff the current row is the last row of
tne picture. wnenever all the children of a node have bLeen
processed, an attempt 1s maae to merge them togetner. because
of this there is a distinction between odd rows and even rows
(no pixels in an odd row can ever complete the processing of all
the children of a gray node, hence there is never an attempt to
merge after processing any of these pixels). 'lhe picture is
assumed to be an 2**N by 2**N picture - if not, WHIVTE pixels are
assumed to fill it out. */

node POINTER quadtree(p.,width);

/* Given a picture p (viewed as a list of rows) and its width,

return a quadtree. */

LIST p;

INTEGER width; -

{

BOOLEAN AKRAY g{l:width]; /* Holds a row of the picture. */
node POINTER first;

INTEGER 1i;

q = getrow(p);
tirst = createnode (NIL ,NULL,g[1]); /* First pixel. */
oddrow(q ,first ,width):;
i= 2;
p = NEXT(p);
first = evenrow(getrow(p) ,make neighbor(first ,S) ,i ,widtn):
WHILE (NOT lastrow()) DO -

{ /* Process the rest of the rows. */

P = NEXT(p):

oddrow(getrow(p) ;first ,width):

p = NEXT(p);

i= i+2;

}first = evenrow(getrow(p) ,make neighbor(first ,S) ;i ,width);
while(NOT NULL(father(first)))

first = father(first); /* Set first to root of the tree. */
return(first);

oddrow(row ,nd ,width)

/* Add the odd-numbered row of width "width" represented by array
“row"” to a quadtree whose node "nd" corresponds to the first
pixel in the row. */

INTEGER width;

IiUTEGER ARRAY row(l:wiath];

node POINTER nd;

{

nd->nodetype = color(row(l]):

FOR(i=2 UNTIL width)
{
nd = make neighbor(nd ,k);
na->nodetype = color(rowli]):

}

node FUNCTION evenrow(row,first ,i ,width)

/* Add even numbered row "i" of width "widtn" represented by array
"row" to a quadtree whose node "first" corresponds to the first
pixel in the row. During this process, merges of nodes having
four sons of the same color are performed. */

INTEGER ARRAY row;

node POINTER first;

%NTEGER i ,width;

node POINTER p,r:
INVEGER 3j;

p = first;

IF(NOT lastrow())
/* Remember the first node of the next row. */
first = make neighbor(p.S):

FO?(jSL UNTIL width-l)

r = make-neighbor(p,t):

p->nodetype = color(row([jl):

IF(EVEN(3))

merge (i ,j .,father(p)):

p=r;

}
p->nodetype = color(row[width]); /* Don't invoke make neighbor for

the last pixel in a row. */

IF(EVEN(width))

merge(i ,width ,father(p)):
}RBTURN(first): /* Return the first node of the next row. */

node FUNCTION merge(i ;j.,p)
/* Attempt to merge a node having four sons of the same color
starting with node "p" at row "i" column "j". %/
node POINTER p:
{INTEGER i.3:
INTEGER Kk:

WHILE(EVEN(i) AND EVEN(j) and
(nodetype(son(p ,Nw)) = nodetype(son(p,NE)) =
nodetype(son(p,Sk)) = nodetype(son(p.,sw)))

85

i=1i/2;

3= 13/2:

p->nodetype = nodetype(son(p.,Nw)):

E‘Oi{((k = Nw ,NE ,SE ,SW)
returntoavail(son(p,k)):
p->sons(k] = WNI1L;

p = father(p):

return(p):;

e A oed

D-A124 196 APPLICATION OF HIERARCHICAL DATA STRUCTURES TO 2/2
GEOGRAPHICAL INFORMATION SYSTEMSCU) MARYLAND UNIV
COLLEGE PARK COMPUTER VISIO LAB H SAMET ET RL JUL 82
UNCLASSIFIED TR-1197 ETL-8301 DAAK78-81-C-8053 NL

Ak
N
NN
I S -
[[~ B
L[]k
NN

|
e
B
B
B
B

[

1wy mraty vyacp ey -
PAPUARIAI LY s
o, . .
4 (- -h v W
EEACA I LCa KR a kst a4 o
BT . I —W.A..-.ﬂi-.‘ e -
. ot sa'en’e an'y) . e e A PR . .
" A2l y .\P.On.\."-o\. «.—; !, ‘— e
~< B .
p. -«
‘..4 -
.
b,
.t
'
S
.
'- A
i
T bl
)
b, - !
v
[]
'
.
O]
4
v
v
: .
o ;
.
o ’
s s
w...x 2
.-o .
2 . L4 '
N I ;
v .
‘ __— N *
a ¥ m o R ¢
W L IR S ebsiiunir NS . 4 ;
T . : N
LA '
. :
ot
X X
z e 4
, M._
i

- i NR O
A3 2

0
% - k- E T R
2 m—mmmmunuu.m —
(Vo)
™~
=

L
-
- W N

1~
-

NATIONAL BUREAU OF STANDARDS-1963-A

2 =i

MICROCOPY RESOLUTION TEST CHART

XX

ey
. o
‘e te

)
LR

¥

¥
.
s

4.4. Tabulation of results

Below we describe the tables of data collected about
the quadtree-represented regions. The times are measured in
seconds by a special routine on the VAX 11/780, which allows
us to factor out the disk I/0 time. Thus the times reported
reflect the notion of CPU time 4s implemented on that
machine. These times were measured while the machine was
.not loaded with any other jobs, because the timing routine
“does vary 1in its results as the system load changes. For
many algorithms, a better idea of the cost in time can be
determined from such machine independent concepts as number
‘of nodes visited. These are also included in many of the
tables or are easily deducible from the descriptions of the
,algorithms in the algorithm overview.

The tables are discussed in the order that they appear
appended to this section. These tables treat the data base
as a collection of possibly unconnected regions on the maps
that are 1logically connected by the sharing of some pro-
perty, e.g., having the same land-use class.

The first group of tables (4.1-3) are the QUADTREE
BUILDING STATISTICS. These reflect a process by which the
R2Q algorithm was used to build a separate quadtree for each
logically connected class of polygons is a picture file. No
execution time is indicated because the times were dominated
by the cost of reading an entire picture file, one line at a
time. Each quadtree took approximately 3 minutes to build.
If the quadtree had been constructed by building a complete
4-ary tree and then merging where possible, it would be
necessary for the memory to be large enough to contain
262,144 (512x512) nodes. By merging during the building
process,as R2Q does, a much smaller maximum memory is
required in practice. The size required is recorded in the
column “nodes created”’. Note that never are more than
15,000 nodes needed. The following column indicates the per-
centage of this maximum that was actually used when the tree
was finished. The remaining columns give a breakdown of
the number of nodes of each type in the resulting binary
quadtree.

The CONNECTED COMPONENT RESULTS (Tables 4.4-6) record
* the data collected on three variations of the connected com-
ponent algorithm, QCONCOM. In each variation, the algorithm
uses two of the neighbors of a node, as described in the
ialgorithms overview, to assign a tentative label to a node.
The “number of neighbors sought’ is the number of times this
process of finding a neighbor must be performed, thus yield-
ing an indication of its importance to the algorithm’s
analysis. The three variations are three different methods
of finding the required neighbors. For purposes of com-
parison, the average cost for a single finding of a neighbor
is calculated to show clearly the variance within each

technique as well as the relative costs among techniques.
The average cost is measured in number of nodes accessed per
neighbor found. Since the ammount of work performed by the
algorithm is proportional to the number of nodes accessed,
this average cost measure gives an accurate view of the
relative tradeoffs among the various methods. The portion
of a second required to find a neighbor (an alternative
measure) could not be calculated due to the inaccuracy of
the system timing algorithm. Also, measurement in seconds
of algorithm efficency can be misleading because the algor-
ithms were coded in a highlevel language and some of the
timing differences could reflect the relative efficencies of
the compiler”s optimizer rather than that of the quadtree
algorithm.

The first method is FINDNBR, which is the FIND_NEIGHBOR
primitive mentioned in the algorithm overview and described
in the tutorial section. The time in the final column is
for this method. The second method, ROPES, is due to
Hunter’s quadtree work referred to in the tutorial. It con-
sists of placing a link directly between each neighbor of
the same size. This results in a reduction in execution
time at a major cost in storage (due to storing the extra
links). The third method was discovered during work on this
project and consists of causing the traversal algorithm to
pass as parameters the neighbors of each subtree’s root.
This requires more time than ropes, but does not require as
much memory. The added memory cost with respect to the
FIND_NEIGHBOR technique results from the additional stack
size needed due to the larger parameter list of the recur-
sive routines. The average value is based on equating the
cost of passing a parameter to a subroutine with the cost of
dereferencing a link. This equivalence is clearly
compiler-dependent as well as machine-dependent. The final
column of the table indicates overall execution time of the
connected component algorithm, QCONCOM, which uses the
FIND NEIGHBOR.

R4 AR A
L ACNEL
PO : RS

........

TABLE «.1. QUADTRLE BUILDIWG STALISTICS runr LANDUSL AP

i | wUDES | wWODES | % USED | GraY | wdlle | bLACK |
| CLASS | I ThEbE | CkeATeDL | Iis TxEE | wobes | wObes | OLLES |
| acc | 4337 | 5925 | 73.2 | 1004 | lo47 | 1400 |
- | acp | 7725 | sysl | bo.0 | 1931 | 3046 | 27«0 |
| ar | 1145 | 2697 | 2.5 | 256 | «9Y | 300 |
| are | 129 | 1725 | 7.5 | 32 | 71 | 20 |
| avz | 11937 | 13341 | bv.5 | 2984 | 4770 | 4177 |
| avv i 13193 | 14445 | 91.3 | 3290 | 5359 | 4530 |
| bbr | 537 | 2109 | 25.5% | 134 | 250 | 153 |
| beg | 353 | 1873 | le.8 | &5 | los | 97 |
| bes | 193 | 1825 | 10.6 | 40 | Y4 | 51 |
| bt i 2293 | 384l | 59.7 | %73 | 951 | 709 |
| fo | 5485 | 7109 | 77.2 | 1371 | 2121 | 1lu¥3 |
| 1r | 1481 | 3045 | 48 .6 ' 370 I 070 ’ w4l |
3 i 7001 | 5009 | s6l.3 1750 2792 2459 |
| ucb | 249 | 1881 | 13.2 | 02 | lle | 69 |
| ucc | 817 | 2433 | 33.6 | 204 | 361 | 232 |
| uer | 1009 | 270% | 3v.0 | 207 | 457 | 345 |
| ucw | 449 | 2081 | 21.6 | 112 | 197 | 140 |
| uves | 1113 | 2737 | 40.7 | 278 | 506 | 329 |
I uil | 345 | 1977 | 17.5 | b6 | 158 | io1r |
| uis | 1037 | 2649 | 39.1 | 259 | 453 | 325 |
i uiw | 23 | 1917 | 15.3 | 73 | 139 | sl |
| unk | 1121 | 26581 | 41.8 | 200 | 540 | 30l |
| uoec | 173 | 1805 | 9.0 | «3 | 79 | 51 |
I uog i 377 | 2009 | le.6 | ¢ | lay | 134 |
| uoo | 429 | 2061 | 20.5 | 107 | 201 | 121 |
i uop | 269 | ivol | l¢.2 | o7 | lso | oo |
| uov | 22y | leel | . 12.3 | 57 | vy | 73 |
| urn i 237 | lgel | 12.7 | 59 | 125 | 53 |
| urs i 9921 | 11313 | 7.7 | 2«80 | 3993 | 3445 |
| uus | 237 | 1921 | 15.5 | 74 | 142 | sl |
i uut | 3009 | 4021 | 66.4 | 707 | 137y | 923 |
| wv | 153 | 1785 | 6.6 | 38 | 76 | 39 |
| wo | 485 | 2029 | 23.9 | 121 | 225 | 139 |
| ws | 4677 | 6245 | 74.9 | 1le9 | 2025 | 1«3 |
| wwp | 457 | 2049 | 22.3 | 114 | 101 | 242 |

ol A i s T e T P . . B
[O R T T S e i} - I A o .

o Ty
AVESLBE ML & CHX

89

TASLLE 4.2. QUADYTREE BUILDING STATISTICS FUR TUPOGRAPHY AP

i | NODES | NODES | % USED | GKAY | wdITe | BLACK |
ELEVATION	In PheE	CReEATED	IN TKit	NOLES	wODbES	wubbks
0 - 100	680y	slol	83.4	1702	25377	2530
100 - 200	13853	14913	92.9	3403	5295	5095
200 - 300	11813	13381	88.3	2953	4713	4147
300 - 400	8845	10469	b«4.5	2211	3596	3038
400 - 500	7121	6745	Bl.4	1760	2917	2424
S00 - ©00	6005	702y	7.7	1501	2534	1970
00 - 700	5341	6973	76.06	1335	2140	1lveo
I 700 - 00	4725	6357 1} 74.3	llel	1955	1589	
800 - 900	3121	4753	65.7	760	1292	1049
i 900 - 1000 | 1277 | 2909 | 43.9 | 319 | 510 | @42 |
11000 - 1100 | 16l | 1793 | v.0 | 40 | o | 33 |

.

WY KT WL W e et gt % e e me e e e .l N N L L
. o We Vg ¥y Y . R . . - - . . ~ . -

LI A DR I IR, U P, N I P Sl AT T I

...

90

TABLE 4.3. QUADIREE BUILDING STATISTICS FOK FLOODPLAIN AP

- -

wHife | bLACK |

R |] NODES | wODES | & USED | GraY |
N | AREA | In TREE | CrbATED | L TRek | WODES | ~ODES | wOles |
& | lett bank | 4021 | 5473 | 73.5 | 1005 | 149l | 1525 |
. | floodplain | 6257 | 7645 I 6l.s | 1504 | 2485 | 2208 |
| right bank | 2885 | 400y | 72.0 | 721 | 1133)} 1031 |

91

TaBLE 4.4 . LANDUSE CONNWECITED COMPONENT RESULTS

	NUMBER OF	FINDWBRI KOPES	ARGS	TIMk	
CLASS	ukIGnsoxs	Ave	ave	AvVG	In
	soucH?	cosT	cosT	COST ISkRCs	
acc	2812	3.55 1 1.40	3.08	1.6l	
acp	5492	3.58	1.40	2.81	3.06
ar	720	3.406	1.33	3.15	0.4l
are	52] 5.63	1.98	4.96	0.0}	
avf	8354	3.53	1.40	2.80	5.4
avv	9072	3.55 1 1.39	2.91	5.7	
bbr	300	3.5	1.35	3.50	0.2i
beq	194	3.82	1.31	3.64	0.1}
bes	102) 3.30) 1.38	2.50	0.1}		
bt	1538	3.53	1.35] 2.98	1.0	
fo	3966	3.54	1.45	2.75	2.0l
1r	852	3.71 1 1.25	3.306	0.5]	
{ ¢	4918	3.63	l.40	2.85	3.2
ucb	138	3.31	1.20	3.61	0.1}
ucc	464	3.64	1.37	3.52	0.3
uer	690	3.60	1.42	3.10	0.4
uew	260	3.56	1.36	3.21	0.2}
uves	656	3.81	1.38	3.38	0.4
I uwii	202	3.75) 1.55	3.42	0.11	
uis	650	3.53	1.39	3.1y	0.4}
uiw	le2	3.4	1.35} 3.62	0.1}	
unk	602	3.45{	1.35 1	3.72	0.4l
uwoc	102	3.59	1.49	3.39	0.1}
uwog	268	3.66	1.40	2.81	0.2
uwoo	242	3.22	1.35 1°3.55 1	0.1]	
wop	132	3.64	1.42	«.08	0.1}
uwov	146	3.42) 1.29	3.14	0.1}	
I urn	106	3.69	1.2} 4.47	0.1}	
urs	6896	3.54	1.40	2.68	4.5
uus	162	3.55} 1.35	3.7	0.1}	
uut	1646	3.62	1.38	3.33	1.0]
I wv	78	3.33	1.28	3.92	0.11
I wo	276	3.97)} 1.38	3.4y	0.2]	
ws	2966	3.70	1.28	3.15	1.9]
I wwp | 202 | 3.62 | 1.38 | 4.52 | 0.21

PR Y SO WY |

et oeoinden ol adhe

s S B B, L_AL

..........

92 .

TABLE 4.5. TOPOGRAPHY CUWMECTED CUMPOWENT KESULLS

| | NUMBER OF | FInDobBr] KOPES | AxGs [TIME]
| LRLEVATION " jneIenBOKS| aAVve | Ave | Ave | Iw |
i | sousdtr , cosT | CostT | Cust IszcCsi
| 0 - ivo | 5060 | 3.40 | l.4) | 2.09 | 3.7}
- | 200 - 300 | 8294 | 3.53 | 1.41 | 2.5 | 5.8
| 300 = 400 | 6076 | 3.57 | 1.36 | 2.91 | 4.0|
| 400 - 500 | 4seb | 3.62 | 1.36 | 2.94 | 3.0
- | 500 - 600 | 3940 | 3.04 | 1.36 | 3.05 | 2.5]
| 600 - 700 | 3732 | 3.2 | 1.30 | 2.80 | 2.4l
I 700 - ©00 | 3178 | 3.6 | 1.38 | 2.97 | 2.1}
| 600 = 900 | 2098 | 3.57 | 1.37 | 2.958 | 1.3}
I 900 - 1000 | 684 | 3.54 | l.4L | 2.89 | 0.6}
{11000 - 1100 | 66 | 3.56 | 1.41 | 4.88 | 0.1}

..........................

..........................
..

93

TABLE 4.6. FLOODPLAIN CONNECIEL COMPOWENY RESULLS

i | NUMBER OF | FINDNBK| KOUPES | ARGS |TImk|
| REGION ihelcHBOKS| AVG ! Ave | AVG | In |
| | sousnT | Ccost | COST | cost IsEcs|
| left bank | 3050 | 3.25 i 1.35 | 2.04 | 1.9}
| f£looaplain | 44lo | 3.50 ; L1.40 | 2.83 | 1.5|
| rignt bank | 2062 | 3.62 i 1.66 | 2.80 | 3.11

Tet

T

(e o o

5. Region analysis and manipulation

S.1. Region analysis

The functions described in this section are used to
gather basic statistics about the regions encoded by the
quadtree data structure. The simplest of these is NDCOUNT,
which sets three global variables to indicate the number of
gray nodes, white nodes, and black nodes in the given gquad-
tree. This is achieved by performing a preorder traversal
of the quadtree -- i.e., first it calculates its statistic
for the current node (in this case incrementing a
global counter) and then it recursively processes the
node’s four subtrees (if they exist). It should be noted
that the functions described in this and in subsequent
sections are currently implemented as stand alone pro-
grams that are invoked by executing a file under the UNIX
operating system. This entails a fairly large amount of
housekeeping details, such as decoding the arguments with
which the file is invoked, opening various files, and
initializing various devices. None of this will be discussed
herein, nor will it appear in the algorithm descrip-
tions. Among the other details that are thus swept under
the rug, so to speak, would be the initializing of
the variables queried by the functions BLACK, WHITE, and
GRAY in order to determine (when processing a multicolored
quadtree) which nodes should be considered of the indi-
cated colors. Although we speak herein of functions
computing values, we actually have programs that generate
files and output 1listings containing function values.
Por instance, the implementation of NDCOUNT terminates
by outputting the counts for the three types of nodes.

Closely related to NDCOUNT is a function called AREA.
AREA takes as parameters a node and an indicated width for
that node. AREA calculates the area and centroid of the
region encoded by black nodes relative to this indicated
size for the entire quadtree. This is achieved by a preorder
traversal that works as follows. If the current node is a
leaf, then its size is added to the global count in accor-
dance to whether or not it is black. If the current node is
not a leaf, then AREA processes each of 1its four subtrees
using a width value adjusted to half of the value associated
with the current node.

Next in order of complexity is HANDW, which takes as
its parameters: a node, the x and y coordinates of its upper
left corner, and its width. Its value is the coordinates of
the upper left corner, the height, and the width of the
smallest rectilinear rectangle (i.e., the smallest rectangle
with sides parallel to the x and y axis) that encloses all
the regions that are considered black. This is done by com-
paring the coordinates of each black node to the most
extreme values found so far. Again we are dealing with a

preorder traversal of the quadtree with the x, y, and width
values being updated as one descends from a gray node to its
children. ’

The last of the statistics gathering functions is PER-
IMETER. It also updates a global variable and calculates
its desired value via a preorder traversal. Like AREA, it
takes a node and its width as parameters. Unlike AREA, it
uses the width value to calculate the 1length of a node’s
gside instead of the node’s area. The function PERIMETER
returns as its value the sum of the lengths of the perime-
ters of all the black regions. Like AREA, it does this from
the point of view, so to speak, of the black nodes. The
side of a black node is part of the perimeter (and hence its
length is to be counted) only if the neighbor on that side
of the black node is a white node. The neighbor is located
using FIND_NEIGHBOR.

Algorithm 5.1. WnNDCOUNT

96

/* A simple tree traversal to count the number of GRAY, wilTk ana
BLACK nodes. */

INVEGER numgray = O;
INTEGER numwhite = Q;
INTEGEK numblack = O3

PROCEDURE ndcount(rt)
node PUINITEK rt;
. {
INTEGER i:

1F(gray(rt=->ntype))
{

numgray = numgray + 1;
. FOR(i = Lw ,NE,SE ,SW)
ndcount(rt->sons{i]):
}

ELSE
IF(black(rt->ntype))
numblack = numblack + 1;
ELSE
numwhite = numwhite + 1;

...................................

L I - - a7
af T
S e e O e . DV

P

/* Given a quadtree , compute the area and centroid of the black
region of that tree. */

IMNTEGER area, xsum, ysum;

main(root , width)
/* To compute the area, simply sum up the number of pixels in each
black node.
To compute the centroid, for x-coord sum up all of the x-coord
of black pixels and divide by area; for y-coord sum y-coords
and divide by area. */
node POINTER root:;
INTEGER width;
{
area = xsum = ysum = 0O;
doarea(root ,width,0,0); /* compute area
(stored in global.variable area) */
xcent = xsum/area; /* xcoord of centroid */
ycent = ysum/area:; /* ycoord of centroid */

doarea(root , width, £x, fy)

/* This function does the work of computing the area and the
centroid. For each black node, add the number of pixels to the
global variable area; sum up the x-coordinates and add to the
global variable xsum, and sum up the y-coordinates and add this
to global variable ysum. */

ncde POINTER root:

INTEGER width, temp:

fNTEGER tx, fy; /* Coords of the upper left pixel of the node. */

if(gray(root))
{ /* for each child, compute area */
doarea(width/2 ,son(root ,NW) ,£x .fy):
doarea(width/2 ,son(root ,NE) ,fx+width/2 ,£fy);
doarea(width/2 ,son(root ,SE) ,fx+width/2 ,fy+width/2);
doarea(widtnh/2 ,son(root ,Sw) ,fx ,fy+width/2);

else
if:black(root))

/* Incorporate area of current node into
running totals. */

temp = width * width;

xsum = xsum + (fx + width/2 - .5) * temp:

ysun = ysum + (fy + width/2 - .5) * temp;

area = area + temp;

........

.........................

R

gorithm 5.3. HAWNDwW 98

' #ind the smallest enclosing rectangle for the black area of a
quadtree. Specify this rectangle by its upper left coordinates
and its height and width. */

ITLGER leastx .leasty highx ,highy; /* The highest and lowest
' values yet found. */

iin(root ,width)

' Given a quadtree, call handw to get the highest and lowest
values of x and y coords. The upper left corner is <least-x,
least-y> and the width and neight is the difference between the
x's and y's respectively. */

1ode POINTLR root;

INTEGER height ,width;

leastx = leasty = width + 1;
1ighx = highy = O;
\andw(root ,0,0 ,width);
ieight = highy - leasty:;
vidth = highx - leastx:

\ndw(root ,x ,y ,width) _

* X and y are the coordinates of the upper left corner of the
node width is the width of the node. If the node is black,
check if the extreme corners of the node are within the least
and high bounds - if not, then change the bounds. If the node
is gray, check the sons. */

[INTEGER x,y .width;

10de POINTER root;

.f(gray(root))

/* For each son, do handw. */
handw(son(root ,Nw) ,x ,y ,width/2):
handw(son(root ,NE) ,x+width/2 ,y ,width/2);
handw(son(root ,SE) ,x+width/2 ,y+width/2 ,width/2);
handw(son(root ,Sw) ,x ,y+width/2 ,width/2);

tlse
if(black(root))
if(x ¢ leastx) leastx = x;
if((x+width-l) > highx) highx = x + width = 1;
if(y < leasty) leasty = y;
if((y+width-l) > highy) highy = y + width - 1;

.....

Algorithm 5.4. PExRIMETEK 99

o /* Given a quadtree and its width, compute the length of the

b perimeter of the black areas. This is done by traversing the

g tree and calling addperim for each black node. Addperim looks

t! at each of the neighbors of the black node. If that neighbor is
white , then the length of the edge is added to the perimeter

total. 1If it is gray, then sons along the edge of the the black

node are run with addperim. */

INTEGER perimlength = 0;

perim(root ,width)
/* Traverse the tree calling addperim for black nodes. */
node POINTER root:

INTEGER width;

t
IF(gray(root))
FOR(1i = NW to SW)
perim(width/2 ,son(root ,i));
ELSL
IF{black(roqt))

addperim(£find_neighbor(root ;i) ,width ,SE ,Sw);
addperim(find_neighbor(root,E),width.uw;sw);
addperim(£find neighbor(root ,S) ,width ,NW ,NE);
addperim(find_neighbor(root ,Ww) ,width ,NE ,SE);

}

addperim(root ,width ,ql ,g2)

/* Root is a neighbor of a black node. If root is white, ada width
to the perimeter length, if it is gray, then perform adaperim on
the children which are adjacent to the original black node .
(quadrants gl and q2). */ '

node POINTER root;
INTEGER width ,ql ,g2;

{
IF(nil(root)) /* The black node was on the edge of the tree =- no
neighbor exists. ¥/
perimlength = perimlength + width:;
ELSE
IF(white(root))
D perimlength = perimlength + width;
F.o ELSE{IP(gray(root)) ‘

addperim(son(root ,ql) ,width ;ql ,q2):;
addperim(son(root ,q2) ,width ,ql ,q2);
}

[P P PO

5.2. Region manipulation

Of the basic operations described herein, the only one
that does not produce a new quadtree is the PT2POLY func-
tion, which given a quadtree, a coordinate structure (x and
y coordinates of the upper left corner and the width for the
entire tree), and a (u,v) coordinate pair, returns the value
(color) of the 1leaf node that represents the region that

. contains the coordinate pair. Unlike the statistics gather-
ing programs that had to traverse the entire tree, the
PT2POLY function only visits those nodes that 1lie on a
direct path between the quadtree”s root and the sought after
leaf. This is done by determining the quadrant of the
current node within which the coordinate pair lies and then
recursing down into that subtree while updating the coordi-
nate structure to reflect the new location.

One of the basic operations that take one quadtree as a
parameter and return a new quadtree as the result is the
WINDOW function. Besides its quadtree parameter, the WINDOW
function also takes a specification of where the window
should be placed-- i.e., the current width of the quadtree,
the coordinates of the upper left corner of the window, and
the width of the window. For the present, the window must be
a square whose width is a power of 2. The new quadtree is
constructed by recursively performing the following steps.
Pind the smallest subtree of the given guadtree that con-
tains the window. If this subtree coincides with the window
then return the subtree. If this subtree is a leaf then
return a leaf of the same color. Otherwise, split the
current window into quadrants and process each of these
subwindows with respect to the current subtree. Upon return-
ing from each recursive call, it is necessary to check if
four leafs are brothers of the same color, and when this
happens, replace the father by one of the four leafs. This
process results in a quadtree that represents the windowed
portion of the map encoded by the given quadtree.

The two basic operations that take two quadtrees as
parameters are the set-theoretic operations of INTERSECTION
and UNION. Both of these functions work on binary quadtrees,
taking two quadtrees as parameters and creating a resulting
quadtree. 1In both cases, we assume that the input quadtrees
are of the same width and have the same upper left coordi-
nates. If this were not the case, the user could perform
the WINDOW function to align the two quadtrees. Like the
statistics gathering functions, these two operations perform
preorder traversals of the quadtree parameters. However,
now the traversals are performed in parallel; so that at any
time during the processing, the algorithms keep track of the
two nodes (one in each quadtree) which correspond to the
same areas in the two encoded maps. The logic of these two
operations is summarized below.

............
...................
............

v

LB
1

LR I L rarin G0k (8 RO LIS HA A
..' L w1 o‘-l;|‘l B :‘-‘l.l"'l
MR LR A ety ST

N

—_—
t

v s .
AR

. CRTRERTAR

. Attt

(R A AT

LS T e

A . A

.1 y asTe a te N
«’a’a P T T

..............

e
| C e " AP RV Lt
UG TSNS

...............

101

if current function is function is

nodes are INTERSECTION UNION

both black return black return black

both white return white return white

both gray recurse recurse

one black return other return black
subtree

one white return white return other

subtree

In the above table, “recurse” indicates that one needs to
traverse each of the remaining subtrees, and “return other
subtree’ indicates that the value of the function is a copy
of the other subtree. Just as with windowing, when the
recursion unwinds, one has to check to see if four brothers
are identical 1leaves and merge them as indicated in the
discussion of the WINDOW function. Examples of performing
these basic set-theoretic operations are shown in Figures
5.1-5.3. Table 5.1 shows the area of the 1landuse polygons
in PFigure 5.3, using the naming conventions discussed in
Section 5.3.

The set-theoretic operation of complement can be per-
formed using the more general function QMASK. OQMASK takes a
quadtree and a range as parameters and returns a quadtree
that has all the nodes with values within the range set to
BLACK and all the nodes with values outside the range set to
WHITE. Thus the tree that results from QMASK is always a
binary-colored quadtree. The QMASK algorithm is implemented
as a preorder traversal of the input quadtree that simul-
taneously constructs the output quadtree. In constructing
the output quadtree, the QMASK algorithm merges nodes when
necessary as indicated in the discussion of the WINDOW func-
tion.

The final quadtree manipulation function is QDISPLAY,
which does double duty both as a quadtree manipulator (it
truncates quadtrees) and as an output routine. The parame-
ters of QDISPLAY are a quadtree, specifications of how the
quadtree should be displayed (location, width, coloring
algorithm, etc.), and the depth at which the quadtree
should be truncated. The coloring algorithm is determined
by two flags, COLOR and BLOCK. If COLOR is true, then the
quadtree is displayed as is, each node”’s value being inter-
preted as a color., If COLOR is true and BLOCK is false,
then the quadtree is output as a binary-colored quad-
tree, where the colors mapped to BLACK are defined by set-
ting the range used by the primitive function BLACK. If
BLOCK is true, then a special table of colors is used

P T T M P . . .
AL A P S ATt et ot N N . . P R N . .
b SN 5T, SN S D S LS W AP UL W . - NG, W WA W R TP PP U S S ——h e & P A P

102

and the color of a node is determined by its depth and its
binary~-colored value. If COLOR is false, then one has
the option of setting the maximum depth of a node that will
be displayed. When a gray (internal non-leaf) node is
to be displayed, the function examines the gray node’s des-
cendants and considers the node to be BLACK if the black
nodes (when weighted according to their depth in the tree)
exceed the white nodes (when similarly weighted). Thus a
.node is output as BLACK in the truncated tree, if it is
BLACK or it is a gray node at the maximum depth and the
average color of the region it subtends is more black than
i -white, The algorithm is implemented as a preorder
. "~ traversal of the input quadtree that outputs the nodes in
‘ the order they are visited. Figures 5.4-5.8 show the
_output of QDISPLAY when COLOR and BLOCKS are false and the
polygon flood.center is considered BLACK. These figures
give an idea of the initial gentle degradation of the image
as the gquadtree is truncated. Table 5.12, discussed in
Section 5.3, shows that Figure 5.5 uses only two-thirds
the number of nodes as Figure 5.4, with virtually no 1loss
in the basic image shape. This shows that quadtree trunca-
tion is a useful image approximation technique.

............................

104

Figure 5.2. Result of executing LwienseClluw on the entire
land-use map and tne coiplement Of tnhe stn
elevation level (4U0=500 rt. elevaction) of tne

topograpihy map.

u
{1

Figure 5.3. Result of executing INTERSECTION on the 1lst
elevation level (0-100 ft. elevation) of the
topography map, the flood.center region of the
floodplain map, and the entire land-use map.

4
4 algoritnm 5.9. WbASK

TABLE 5.1.
AREA RESULTS FOR LANDUSE
POLYGOWS IN FIGURE 5.3

(1 of 2)
s | POLY-| AREA | AREA |
xe |l eoN | IN | 1IN |
oo i |PIXELS| ACRES |
C . lacc.9 | 1l 0.14)
C lacc.10l 711 10.08l
: . lacc.121 948| 134.62|
. lacec.1l5] 452| 64.18|
lacp.l | 23| 3.98]
) lacp-4 | 124 17.e1p]
javeE .4 | 209 29.68|
lave.5 | 279| 39.e62|
lavt.6 | 423| 60.07|
lavf.s | 551 7.811
lave.9 | 811 11.50]

lavf.l10| oll| u86.76|
lavf.ll] 5381 76.40|
lavf.15] 1033| 146.69|
lave.l17| 15 2.13|
lavf.l8| 721 10.22|
lave.19] 713] 101.25|
lave.2l| 7501 106 .50]
laveE .24 214| 30.39]
lavf.251 659 93.58]|

lavv.3 | 214| 30.39|
lavv.e | 71 0.99]
lavv.7 | 23} 3.27|
lavv.16l 7936l1126.91}|
e lavv .17| 34| 4.83|
St lavv.18]) 255 36.21]

e lavv.19| 1880| 266.96/|
oy lavv.20| 5821 82.64] :
lavv.23| 1291 18.32| ‘

lavv.26| 58| 8.24|

lavv .20 217| 30.6l}

. ibbr.1 | 711 10.08|
. Ipbr.2 | 361 51.26|
: ibeq.l | 229| 32.52i
Ibes .1 | 114| 1l6.19|
Ibt.2 | sl 12.50]
lfto.l1 | 293 4l1.61]
lfo.3 | 291 4.12|
lfo.4 | &) 1.14|
lir.l | 91|l 12.92}
llr.2 | 63| 8.95]|
lir.3 | 620| 88.04|

lir .4 | 129 18.32}

....................
..................................
.............................

£ 107

AKEA RESULTS FOR LANDUSE
POLYGONS IN FIGURE 5.3

(2 of 2)
POLY-	AREA	AREA
GOoN	IN	1IN
	PIXELS	ACRES
ir.2 i 23| 3.271
lr .4 | 1] 0.14]|
lucc.6 | 3} 0.43]
fuves .l | 548 77.82|
lues.2 | 6581 93.44|
luis.5 | 1011 14.34|
juoo.3 | 751 10.65i
luop.2 | 148 21.02|
jurh.l | 20| 2.841
lurs.l | 2451 34.79|
lurs .4 | 722| 102.52]|
urs.5 | 731 10.37}
lurs .6 | 107} 15.19]
lurs .7 | 50| 7.10]1
lurs .8 | 123| 17.47|
furs .y | 92} 13.06/|
lurs .10/ 34| 4.83|
ljurs .11l 48| 6.82]
lurs .18| 324 4.54|
luus .l | 246| 34.93|
luus.2 | 3 0.43}
luut .1 | 281 3.98|
juut .3 | 1961 27.83}
fvw.l | 108 15.34|
lwo.l | 5351 75.971
k) lwo.2 | 126l 17.89|
e lws.l | 3394| 4bl.95]
q """""" SEesssssees =
:
*

108

Figure 5.4. result of executing QUISPLAY on flood.center ot
the flood-plain map using lu levels.

I T TR T T TN Y .JAJ

AP T ol

AN

KRR
~

el sd T

I s
e
s

o
2t

i)
005 4

xA.

a-2-a'a

H

ALY A

3 » B
XA i

"l by

rigure 5.5.

109

kesult of executing QDISPLAY on tlood.center of
the flood=-plain map using Y levels.

.......

Figure 5.6.

A s e Al el el

kesult of executing QDISPLAY on tlood.center ot
the flood-pilain map using b levels.

D ik S
At e e ie e

rigure 5.7.

- agtede masmmn ndetn. oS et “dhaut it i, ab e bAREc - WA S . .
LB e S SN i aiie MR T e TR e T e R L. TRl
A . - .

111

Result of executing QDISPLAY on flooa.center ot
tne flooa-plain map using 7 levels.

e T T

et

112

Figure 5.u3.

Result of executing QLISPLAY on rlood.center of
the flood-plain map using & levels.

I R ar T — e e e e e s e

Algocitnm 5.5. Pl2rulLY 113

/* Given a tree ana tne coordinates of a point, return the value of
the leaf node countaining that point. It is assumed that in a
database system th2 trea used for this operation would have a
different node value for each polygon. This would allow a
simple lookup to determine the corresponding polygon once the
node value in th2 tree has been found by this algorithm. */

INTEGER FUNCTION ptzpoly(tx. fy, width, xcoord, ycoord, rt)
node POINTER rt; /* The root of the tree. */

INTEGER £x, fy; /* This is the upper letft coord of the tree. */
INTEGER width; /* The width of the tree. */

INTEGER xcoord, ycoord; /* The given coord being searched for */

IF(! gray(nodetype(rt)))
RETURN(nodetype(rt)):
ELSE /* Gray tree - find which quadrant contains the coord. */
IF(ycoord < (fy + width/2)) /* nNorth half */
IF(xcoord < (fx + width/2)) /* nNWw %/
RETURN(pt2poly(£x ,fy ,width/2 ,xcoord ,ycoord ,son(rt ,nw));
ELSE /* NE */ -
RETURN(pt2poly(fx+width/2 ;fy ,width/2 ,xcoord ,ycoord,
son(rt ,NE)):
ELSE /* South half */
IF(xcoord »>= (fx + width/2)) /* sk */
RETURN(pt2poly(fx+width/2 ,fy+width/2 ,widtn/2 ,xcoord ,ycoord ,

son(rt ,SE)):
ELSE /* Sw */

RETURN(pt2poly(fx ,fy+width/2 ,width/2 ,xcoord ,ycoord ,
} son(rt ,sw));

'''''''''

PP N TP S

——

MM P :OMRIER

v

RN * +ORRRA

¥
.

) ‘le T,

.......

Algorathm 5.6. wWIabuw 114

/* Given a quadtree and its width, along with the specitications of
a window, create a tree whicin is the section of tne input tree
specified by the window. */

main(root ,widath ,wcol ,wrow ,wwidth)
node POINTER root; /* Root is the input tree. */
INTEGER width ,wcol ,wrow ,wwidth:
/* wWidth is the width of the input tree, <wcol ,wrow?> is the coord
of the upper left corner of the window, wwidth is the size of
the window (must be a power of 2). */

node rnode; /* Dummy node to start the answer tree. */
node PUINTLK rptr; /* Eventual root of the answer tree. */

rptr = rnode;

rnode .fathr = NIL;
dowindow(root ,width ,0,0 ,rptr ,NW ,wwidth ,wcol ,wrow);
rptr = son{rptr ,Nw):

/* Rptr is now the root of the answer tree. */

dowindow{inrt ,inwidth ,incol ,inrow ,outfthr ,whichson ,outwidth,
outcol ,outrow) .
/* From the input tree create a tree described by the given window
which has father outfthr and is son whichson. */
node PUINTER inrt ,outfthr; /* Inrt is the root of the current
input tree. Outfthr is the father of the output tree. */
INTEGER inwidth ,incol ,inrow ,whichson ,outwidth ,outcol ,outrow;

/* Inwidth, incol and inrow are tne window described by the input
tree; outwidth, outcol, and outrow are the window to be
described by the tree being built and whichson indicates the
sontype of the tree being built in relation to tne whole

(output tree. */

node POINTEK nd;
INTEGER i, goodquad;

/* First, cut the input tree down to the smallest subtree which
contains the window desired - i.e., if the window is completely
contained in one of the children of the input tree , make the
the input tree that child (and continue for its children...) */

goodquad = 1;
wh%le((goodquad <> NEG) AND (inrt == GRAY))

goodquad = NEG;
/®* For each quadrant, check if window in quadrant. */

if(inrect(incol ,inrow,inwidth/2 ,outcol ,outrow ,outwidth))
goodquad = NW;

if(inrect(incol+inwidth/2 ,inrow ,inwidth/2 ,outcol ,outrow,

outwidth))

goodquad = NE;

if(inrect(incol+inwidth/2 ,inrow+inwidth/2 ,inwidth/2 ,outcol ,

outrow ,outwiath))

goodquad = SE;

it(inrect(incol ,inrow+inwidth/2 ,inwidth/2 ,outcol ,outrow,

L T L L T I D TR . ~ . - N S s o
el LRI S B SRt T L. BIP UVE WHT GAr OO Uy Wy S Y it . it S, B s A A

................

115

outwidth))
goodquad = SW;
if(goodquad <> WEG)
{ /* Window in input quadrant -
make input tree that quadrant */
inrt = son(inrt ,goodquad) ;
inwidth = inwidth/2;
if (goodquad == NE OK SE)
k) incol = incol + width;
o if (goodquad == SE OR SW)
inrow = inrow + width;
}
}

if({incol == outcol) AND (inrow == outrow) AnbD
(inwiath == outwidth))
- /* If the windows are the same, then the output tree is the
same as the input tree, so copy the input tree. */
copysub(inrt ,outftnr ,whichson);
else
if(nodetype(inrt) <> GRAY)
/* 1f the input tree is a leaf node, then the window is
also a leaf of the same color. */
createnode (outfthr ,whichson ;nodetype(inrt));
else
{ /* No single chila of the input tree contains the window, and
the input tree is not a leaf node. Therefore, repeat
dowindow on each quadrant of the window desired. To do
this, first install a GRAY node in the output tree and
- then call dowindow for each gquadrant. */
= nd = createnode(outfthr ,whichson ,inrt->ntype);
ni dowindow({inrt ,inwidtn ,incol ,inrow,
nd ,NW ;outwidth/2 ,outcol ,outrow);
dowindow(inrt ,inwidth ,incol ,inrow,
nd ,NE ,outwidth/2 ,outcol+outwidth/2 ,outrow):
dowindow(inrt ,inwidth ,incol ;inrow,
nd ,SE ;outwidth/2 ,outcol+outwidth/2 ,outrow+outwidth/2):;
dowindow(inrt ,inwidth ,incol ,inrow,
nd ,Sw ,outwidth/2 ,outcol ,outrow+outwidth/2):;
if%All children of nd have the same nodetype)

LAy

7o nd->ntype = nodetype(son(nd ,Nw)):
- }Return all children of nd to avail list;

}

BOOLEAN FUNCTION inrect(bigcol ;bigrow ,bigwidth ;litcol ;litrow,
. litwidth);

. /* Return TKUE if and only if the second window is contained
N in the first window. */

“ ‘INTEGEu bigcol ,bigrow ,bigwidth ,litcol ;litrow ,litwidtn;

- if((bigcol <= litcol) AND (bigrow <= litrow) AND
ot (bigcol+bigwidth »>= litcol+litwidth) AND
(bigrow+bigwidth >= litrow+litwidth))
return(TrUL) ;

L

B TR

A . PR [.
N RPNE R N AP R AP T T L. I S P L P AL P S . A

116

else
recturn(rALSE);
}

copysub(root ,f£thr ,whichson)

/* Create a copy of the subtree with root "root". The created
tree will be son "whichson" of the node "fthr" (part of the
global answer tree). */

node POINTER root ,fthr;
{INTEGER whichson;

node POINTER root:;
INTEGER i

nd = createnode(fthr ,whichson .nodetype(root)):
for(i = Nw,NE ,SE ,SWw)
copysub(son{(root ;i) ,nd ;i);

a2 v = - > AT PRI L SR o S O N P U AL P S U N

...

Algorithm 5.7. LuUTRRSECTION 117

/* Given two (possibly multi-colored) quadtrees, return a binary
quadtree which is the intersection of the input trees. */

node rUNCTION inter(rtl, rt2, fthr, whichson)

/* Return the intersection of the trees whose roots are pointed to
rtl and rt2. This is done by simultaneously traversing the
input trees and performing inter on each quadrant. If either
tree is WHITE, the intersection is WHITE. If either tree is
BLACK , the intersection is the other tree.

Fthr is the father of the resulting tree. This allows the
current subtree to be inserted into tne complete output tree.
whichson tells which son of the output tree the current tree
is. The function is initially called with these values equal
to NIL. */

node POINTER rtl, rt2, fthr;

int whichson;

{

node POINTER nd;

INTEGER i:

1F (white(nodetype(rtl)) OR white(nodetype(rt2)))
RETURN(createnode (fthr ,whichson ,WwHITE) ;
IF (black(nodetype(rtl))
RETURN (copysub(rt2 ,fthr ,whichson));
IF (black(nodetype(rt2))
RETURN (copysub(rtl ,fthr ,whichson)):
/* Both trees are GRAY - call inter for each quadrant. */
nd = createnode(fthr ,whichson ,GRAY):
FOR(i = NW,NE ,SE ,SW)
inter(rtl->sons(i] ,rt2->sons(i] .nd .i);
IF(all children of nd are WHITE)
{ /* Condense tree. */
nd=>ntype = WHITE;
+Ok(i = Nw,NE ,SE ,SW)
| returntoavail(nda->sons(i]);

RETURN(NnAd) ;

R T A R SR O R T T TP T L

LOPRIPU PN LN UL WAL DR W e W T R W GNP . VIR SRS T G G T U SO EIr W- W NE

Algorl thnm 5.8. ULl 118

/* Given two (possibly multi-colored) quadtrees, return a binary
quadtree which is the union of the input trees. */

node FUNCITION union(rtl, rt2, fthr, whichson)

/* Return the union of the trees whose roots are pointed at by
rtl and rt2. This is done by simultaneously traversing tne
input trees and performing union on each quadrant. If either
tree is black, the union is BLACK. If either tree is WHITE,
the union is the other tree. Fthr is the father 0! the
resulting tree. This allows tne current subtree tc be inserted

. into the complete output tree. whichson indicates tae sontype
of the current tree relative to the output tree. Union is
, initialiy called with these values aqual to NIL. */
. node POINTER rtl, rt2, fthr;
int whichson;

- node POINTER nd:;
INTEGER 1i;

IF (black(nodetype(rtl)) OR black(nodetype(rt2)))
RETURi(createnode (fthr ,whichson ,BLACK) ;

IF (white(nodetype(rtl)) /* If treel is wdITL, */
RETURN(copysub(rt2 ;fthr ,whichson)); /* copy tree2. */
IF (white(nodetype(rt2)) /* 1f tree2 is wHITE, */

RETURN(copysub(rtl ;fthr ,whichson)): /* copy treel. */
/* Both trees are GRAY and union must be applied to
each quadrant. */ ‘
nd = createnode(fthr ,whichson ,GRAY);
fOR(1i = Liw NE ,SE ,Sw)
union(rtl->sons([i] ;rt2->sons(i] ;nd ;i);
IP(All children of nd are BLACK)
{ /* Condense tree. */
nd->ntype = BLACK;
FOR(A = NW ,NE ,SE ,SW)
| returntoavail(nd->sons{i]):

RETURN(nd) ;

i P T

* w« Te o e Te e e | . R . T e e T T LS
OO RGP P I S, R S S S Sy S P A I N NPT o

algoritnm 5.9. PASK
Win 119

/* ror a quaatree with root ‘'root' , for eacn leat node, it its
value is between tne parameters nhigh and low (inclusive) , tunen
set node value to BLACA . else set to wililt. wnen necessary,
marge cnilaren ot a gray node together . */

luisobr low, nign;

aqmasx(rt)

noae PulilLr res
{

InNToGhr 13

IrieraY(rt))
{
£OR(1L = nw AL ,SL ,Sw)
amask(rt=>sons{1]);
IE(all cnildren of rt are tne same leaf color)
{ /* conuense tree */
rt=->ntype = nouetype(rt->sons[uw]),
FOR(L = W ,NE 58 ,5W)
returntoavail(rt=->sons{i]);

}
elSE
Ir((rt->ntype »>= low) ANL (rt->ntype <= high))
rt->ntype = BLACK:;
ELSE
rt->ntyp2 = wHITE;

main(root ,low high)

node PUINI'EK root: /* input tree */

InibGhn low, nign; /* input parameters = values in this range
{ are BLACK. */ -

gmask(root);
KEjiUrn(root);
}

w‘
"

l
'
l
1-
O S I S S ST S PP
RN AP S AT NS SR N A Tl ol I S W R DR I

R e T

Algoritam 5.lu. QUISPL
g QLISPLAY 120

/* Lisplay a quaatree on the grinnell. ‘'nis is done by traversing
the tree. whnile tne traversal is being done, tne program keebs
track Oor tne size and position of tne current node, and aisplays
that node on tne grinnell. ‘i'nere are two boolean options -
color and olock. If color is I'kUi, then nodes will pe displayed
by tneir color, 1t rALSE tnen all non-wHI'''L nodes are displayea
as bLACK. 1lr block is true, then the displayed color depends
on tne depth Of the node in tne tree - not its value. At most
one ©of tnese options may be true. Additionally, if color is
ral>k , the user may wish to display nodes only down to a certain

* deptu by adjusting maxdepth. In tnis case, tne smallest node
slze aisplayed can be changed. ror example, with a 512 Xx 512
picture , there are 10 levels and tne smallest node is one pixel

- wiade. [t the user sets maxdepth as Y, then tne smallest node is

2 A 2 pixels. ror any gray nodes at level Y%, tue runction bk

auus up tne number of black pixels ot its cnildren and if more

tnan nalr are black, tne gray node 1is displayeu as black, otner
wise it 1s alsplayea as white.

‘next' 1s a tunction which returns the value of tie next nodge

of the preoraer traversal of the input tree stored 1in tree. */

DArA FILL tree; /¥ preorder traversal of the input tres. */

Livf'eGEX color , block;

InTbGER maxlevel;

INTEGEK larr[l10]: /* ''nis array nholds grinnell color values to be
used with option block. ¥*/

coloror(val ,currlevel)
/* Letermine tne actual color value to be displayea on the grinnell.

for the node witnh value val. ‘“his is determined by the options,
tne value of the node and possibly tne level of the noue in the
tree. */

INTEGEK val, currlevel /* currlevel is the level in the tree ot
‘ the current node. */

t

INTEGER v

I¥(block)

X { /* color determined by level */

~ v = larricurrlevel - 1];

: IF(black(val))

- VvV = v¥250;

ii /* wnite nodes will be displayed as some tint of rea, black nodes
- . Wwill be displayed as some tint of blue. Multiplying oy 250

- shifts a red value to a blue one when displayed. */

; return(v);

H

LLOE
Ir(black(val))
IF¥(color)
KeTURIN(val);
3 LLSE
KETURN(BLACA) ¢

121

LLSE
RETURN (wid L'1') 2

px(wiath) _
/* nmeturn the number or pixels of the current node and 1its
children wnich are olack. */
LuleGER wldtn;
{
InteGEK val;

val = next(); /* causing this function to have a side efrect */
Ir(black(val))
sblurii(wiati * widtin);
Ir{(white(val))
RETUKRI(O) ¢
/* gray noade - calculate black pixels in chilaren */
RELTUr (bk(width/2) + bk(widtin/2) + bk(width/2) + bk(widtn/2)):;

display(tcol ,frow ,width ,currlevel)

/* Display tne next node of the preorder traversal on the grinnell.
This node has its upper lett corner at fcol, trow and has width
widtn. It is at level currlevel in the tree. */

. INYEskErx rcol, frow, width, currlevel:

{

INTLGEK col, total, val;

val = next():

Ir(wot gray(val))

{
col = colorof(val ,currlevel);
<write to grinnell a square at fcol ,irow of size widtn witn
color col.> /* this is a command and not a comment */
} .

ELSE
IF(currlevel == maxlevel)
IEEblock) :

col = colorof(val ,currlevel):
<write to grinnell a square at fcol ,frow of size width and
color col.»>

ELTE
total = bk(width/2)+bk(wiath/2)+bk(wiath/2)+bk(width/2);
Ir((2 * total)) > (width * width))
val =]1;
ELSE
val = O;
col = colorof(val ,currlevel):
<write to grinnell a square at fcol .frow of size wiath and
color col.>

* - -
......

.........

MK

122

LLSL
{ /* bisplay cnildren of a gray node ¥*/
display(tcol ,(frow+wiath/2) ,(wiath/2) ,(currlevel+li)):
aisplay((tcol+wiath/2) ,(frow+widtn/2) ,(widtn/2) ,(currlevel+l)):
display((fcol+width/2) ,trow,(wiath/2) ,(currlevel+l)):
display({fcol ,frow,(widtn/2) ,(currlevel+l));
}

main{fcol ,trow ,color ,plock ,maxlevel ,width);

_ linteGkn fcol ,frow,wiath;

i

./* Angle bracsets enclose commands written in knglish and are not
just comments. */ .

" «r'ill larr witn grinnell-dependent values used with option block. >

-display(tcol ,ftrow ,widtn ,l);

}

5.3. Tabulation of results

In the tables presented in this section, the basic
unit of manipulation is the connected component. The names
of these basic units are created by suffixing a digit to the
land-use class (or contour) to which the unit belongs. These
digits can be dereferenced by referring to the figures in
Section 3. For example, in Table 5.2, the first polygon
name we encounter is acc.l. Looking at Figure 3.4, one sees
the 19 components of the class ACC. The component labeled 1
in that figure is the polygon refered to by the name acc.l.
The units of the flood-plain map are so few that they are
given names of their own, i.e., left and right bank instead
of bank.l and bank.2. Note that there are no tables showing
the executicn times for the PT2POLY function. This is
because all times were 1less than a tenth of a second and
hence were beyond the range of the system timing algorithm.

The first group of tables (Tables S5.2~4) are the AREA
RESULTS tables. They are organized according to which map
the polygons (i.e., simply-connected components) belong.
They summarize the results of two programs: NDCOUNT (which
counts the number of black nodes, i.e., those belonging to
the polygon) and AREA (which calculates the area in pixels
and centroid (first moment) of the polygon). The execution
times immediately follow the results of the same algorithm.
The times for NDCOUNT indicate the cost of visiting every
node in the tree exactly once. Hence the time is relatively
constant for each map because so little processing is done
at each node. This value also gives an indication of the
reliability of the system timing routine used. Substan-
tially more calculation is performed by AREA with more vari-
ation with respect to the amount of time spent at a black
node vs. a gray or white node. The conversion from area in
pixels to area in acres was calculated based on .142 acres
per pixel. The wvalue is given in hundredths of an acre,
although the pixel size is about one seventh of an acre.
The coordinates used for the centroid are based on the
upper left-hand corner being (0,0) and the number of pixels
in both directions range from 0 to 512. The same coor-
dinate system is used in the other tables.

The REGION PROPERTY RESULTS (Tables 5.5-7) show the
cost of two statistics gathering programs: PERIMETER and
HANDW. The perimeter is measured in pixel widths. The
enclosing rectangle calculated by HANDW is given by the
coordinates of its upper left-hand corner and its width and
height. HANDW is another algorithm that treats each node
equally and hence produces little variation in its timings
within a given map. This is quite different from PERIMETER,
which performs four FIND _NEIGHBOR operations for each black
node; hence the variations in the cost of PERIMETER.

The data for the WINDOW program is presented in the

etk
AR

p— . MM A o N A S aam et s Sl b Y

Sttt R A Gt S AR
- b -t ~ el o Tl e e e e e . . - -

124

WINDOW RESULTS (Tables 5.8-10). The window used is the
smallest square whose width is a power of two, that encloses
the smallest bounding rectangle of the polygon (calcu-
lated by HANDW), and sharing the same upper left-hand
corner with that rectangle. The relation between the
times and the input is complicated, as it is effected by
both the size of the window and the greatest common
denominator of the tree size and the two coordinates of the
upper left-hand corner. The smaller the greatest common
denominator of these three numbers, the greater the possible
fracturing of large nodes in the input tree.

The next table, INTERSECTION STATISTICS (Table 5.1l1),
is the only table showing a binary relation, that of INTER-
SECTION. Three large regions (the center of the flood
plain and the two lowest contours) are chosen to be
intersected with the land-use classes because they are most
likely to vield interesting results. Since the center
of the flood plain is not equivalent to a contour class,
it is also intersected with each of the contour classes.
Note that the cost of INTERSECTION can be less than the cost
of doing a NDCOUNT on both trees because a large white
node in one tree can make it unnecessary to process a large
subtree in the other tree. As well as the cost of per-
forming the INTERSECTION operation (measured in seconds),
the table also gives the area and number of nodes in the
result. Note that a UNION table is not shown because UNION
behaves in the same manner as INTERSECTION on the logical
complement of the inputs (i.e., switch the black and white
node colors). Note that the INTERSECTION algorithm is
greatly simplified by the digitization process’s alignment
of the maps so that the pixel at (0,0) corresponds to the
same ground truth in each map.

The final table, QUADTREE TRUNCATION STATISTICS (Table
5.12), shows the amount of compression one can obtain by
truncating the quadtree maps. The usability of the truncated
quadtrees is discussed at the end of Section 5.2 and shown
in Pigures 5.4-5.8. Under each map’s name there are two
columns. The first column shows the number of nodes in the
quadtree that is formed by truncating the full (depth 10)
quadtree to the depth indicated in the far left column. The
second column shows the percentage of nodes in the full
(depth 10) quadtree that would not be needed for the trun-
cated quadtree.

TABLE 5.2. LANDUSE AREA RESULTS

% (1 OF 5)
EI | POLY-|NUMSITIME| AREA | AREA | CENTROID |TIME|
3 | GON | OF | In | IN | IN | | IN |
| | NODE | SECS|PIXELS| ACRES | X Y |SsEcCS|
- lacc.l | 45| 1.3} 201 | 28.54] 4.6 143.7| 2.7}
58 lace.2 | 25| 1.3}| 154 21.87| 27.0 169.5| 2.3]
] lacc.3 | 61] 1.31 202] 28.68] 40.6 197.6] 2.2]
R lacc.4 | 107| 1.3] 593| 84.21] 76.6 218.5| 2.3|
i lace.5 | 131 1.3} 28| 3.981139.7 190.4| 2.5]|
B lacc.6 | 92} 1.3} 356| 50.55|157.0 218.4| 2.1}
& lacc.7 | 721 1.3} 345| 48 .99/180.6 206.1| 2.1
lace.s | 33| 1.3} 270| 38.341183.6 239.5| 2.1}
lace.9 | 12| 1.3| 18] 2.56| 38.2 299.1| 2.1|
lacc.10l 59| 1.3} 1461 20.73) 18.6 372.2) 2.1}
lacc.1l| 85| 1.3]| 256 36.351157.0 256.5] 2.11{
lace.12] 211 1.3} 1174 166.711131.7 317.7| 2.2]
lacc.l3i 7of 1.3| 52861 74 .901202.06 332.2| 2.1}
facc.ial 5| L1.3{ 292 al .46|250/5 362.7| 2.11
lacc.l5| 124 1.3} vo2l wu.041162.9 412.9) 2.11
lacc.l6| 58| 1.4| 214| 30.391244.3 393.9) 2.11
lacc.17] 70) 1.3] 229} 32.52|256.2 414.5] 2.1}
lacc.18| 120| 1.3| 465 | 66 .031329.0 390.6] 2.11
lacec.19] 56| 1.4} 168| 26.701349.3 432.2| 2.11
lacp.l | 73| 1.5{ 187| 26.55| 33.4 242.6| 2.11
lacp.2 | 5751 1.51{ €035| 857.971238.2 182.3| 2.2|
lacp.3 | 99| 1.5} 339] 48 .14 9.5 349.3| 2.1}
lacp.4 | 48| 1.5] 132} 18.74| 34.3 361.5| 2.1|
lacp.5 | 58} 1.6l 244| 34.65| 3.3 394.9| 2.1|
lacp.7 | 877| 1.5| 14806] 2102.45|288.9 321.0| 2.2|
lacp.8 | 42| 1.5} 93| 13.21]|157.4 348.0}) 2.1|
lacp.9 | 120| 1.5| 666 | 94 .57} 15.8 432.0] 2.11
lacp.10| 296] 1.6] 1412 200.50{219.0 434.6} 2.1|
lacp.11|l 66l 1.5] 285| 40.471295.3 434.7| 2.11
lacp.12| 179] 1.5| 977 138.731323.7 425.6| 2.1i
lacp.13| 231} 1.3| 13561 192.55|366.9 426.2| 2.1|
| ar.l1 | 691 1.4} 204 | 29.971209.7 117.6| 2.1}
| ar.2 | 0l 1.3| 198| 28.121359.7 213.0) 2.1}
| ar.3 | 571 1.4| 135] 19.171104.4 306.4| 2.3|
| ar.4 | 114} 1.3| 453 | 64.331172.9 333.9| 2.4
| ar.5 | 60| 1.3| 207} 29.39|176.1 439.4| 2.2|
lare.l | 26} 1.3| 152] 21 .581323.1 436.0| 2.11
lave.l | 28] 1.3} 121 17.18] 29.1 21.3| 2.1}
laveé.2 | 44} 1.3} 1341 19.03| 16.4 118.3| 2.1|
lave.3 | 771 1.4l 3261 46 .29/100.6 82.3| 2.1|
lavE.4 | 103} 1.4| 628| 89.18]1135.1 104.9| 2.1}
lave.5 | 90| 1.3 285| 40.471105.6 111.4| 2.1|
lavE.6 | 687| 1.4 4914| €97.79]157.5 166.1| 2.2|
lavE.7 | 28| 1.3] 46| ©.53(259.1 87.6] 2.1}
lavf.8 | 565| 1.3] 3823| 542.87| 39.5 185.5| 2.2|
lave.9 | 151 1.3] 901 127.94| 9.8 235.6| 2.1|

126
LANDUSE AKEA RESULYS
(2 OF 5)
| POLY=-|pUtB|TIME| AKEA | AKEA | CENIROIL |TIME]
i Gw | OF | In | I | IN | I 1w |
i |NODE | SECS | PIXELS| ACRES | X Y |skECS|

iavE.l0l 3651 1.31 17151 243.53| 71.1 250.0| 2.2}
lavf.ll| 154) 1.3] Yol| 136.461129.0 231.1} 2.11
lavE.l2l 79| 1.3 325] 46.151167.2 257.3]1 2.1}
lav£.13| llel 1.3| 704 | 9y .97}242.3 253.5| 2.1]
lavE.l4| 315) 1.3]1 15901 225.7¢)347.3 22.3| 2.11
lavE.lsi 176l 1.31 1619 229.90| 59.0 283.4] 2.1
lavt.lol o] 1.3} 235) 33.37| 11.1 293.5| 2.11
lave.l71 3s] 1.3} 152} 2l .56| 22.9 310.1} 2.1|
lavE.lsl 40| 1.3] 1006] 15.05| 41.9 305.6] 2.21
lavE.ly| le7] 1.3| 7131 101.25| 85.5 351 .9} 2.1]
lavf.20f 13| 1.3| 461 6.53] 2.7 333.9| 2.11
lavE.21| 182] 1.3] 851 120.84| 36.6 3u8.8] 2.1}
lavt.22| 201 1.3| 351 4.971172.6 262.9}| 2.1}
lavE.23] 40| 1.4| 76| 10.791157.2 355.2] 2.1}
lavE.24] 55| 1.3} 214} 30.39| 76.9 390.3| 2.11
lave.25]| 1361 1.3 1l156f 1le4.15] 74.8 442.0] 2.2}
lavf.20| 177| 1.3] 7711 109 .481213.6 3v7.0] 2.2|
lavi.27]| 26l 1.3} 40| 5.68{290.2 367.7} 2.1}
lavf.2e] 17| 1.3| 44| 6.25/305.3 357.2| 2.21
lavE.29| 45| 1.3} 138] 19.60]265.6 399.1}) 2.11
{avi.30| 144] 1.3| 984 139.731295.9 4l6.5| 2.2}
lavE.311 45| 1.3} 123§ 17.47}359.0 420.9| 2.11
lavv.l | 2v| 1.3| 110} 15.62] 5.3 78.9| 2.1
lavv.2 | 29] 1.3} o6& | y.06|] 91.3 73.4] 2.21
lavv.3 | 100} 1.3} 373| 53.971120.5 106.5] 2.2|
lavv.4 | 24] 1.3} 871 12.35] 27.3 159.4| 2.3|
lavv.5 | 54| 1.3] 105| 14.91] 9.8 177.9| 2.11
lavv.o | 109] 1.3} 703| 99.83| 19.9 201.5| 2.1|
lavv.7 | 100} 1.4} 328} 46 .58| 40.0 231.2] 2.1i
lavv.s | 29| 1.3| 50| 7.95] 83.1 244.9] 2.1}
lavv.9 | 1071 1.3} 449 63.701169.3 177.7) 2.1
lavv.10] 66l 1.4 243] 34.511155.4 170.5| 2.1}
lavv.l11| 96| 1.4} 339 48.14]1225.6 191.2) 2.2]
lavv.12| 47| 1.3} 200| 28.401179 .8 247 .4| 2.2]|
lavv.13| 35| 1.3| 140| 19 .88]259 .0 24d5.4] 2.2|
lavv.14| 55| 1.3| 163} 23.15|286.9 4.5] 2.2}
lavv.15] 19| 1.3} 40| 5.661275.9 1l.5] 2.3|
lavv.1611076| 1.4] 11390] 1617.38| 62.6 362.2| 2.3}
lavv.17| 20| 1.4] 38| 5.40] 78.7 261.4| 2.11
lavv.l18] 85| 1.4| 295| 41 .8v| 91.5 283.0] 2.11|
favv.19| 740) 1.3] 4580 650.36/157.6 363.5| 2.2}
lavv.20| 402) 1.3] 3294| 467.75(149.2 277.7] 2.5]|
lavv.2l| 229] 1.4] 2158| 306.44|215.0 272.0| 2.5|
lavv.22| 69| 1.5| 309| 43 .88)205.4 347.2| 2.21
lavv.23| 175| 1.5 10361 147.11| 17.6 405.0| 2.4|
lavv.24| 4] 1.4| 26| 3.98] 1.4 445.9| 2.1}
lavv.25) '25] 1.3} 127} 18.03| 24.8 442.0] 2.3}

............

P L - - .
PP T O P UL SRS - P N B’ PO S NPT - PR AP . FYE D U W VOISR Y G WP ¥

LI ST I ST

127
LANDUSE AREA RESULTS
(3 OF 5)
| POLY-|nUbB|TIME] AKEA | AREA | CEWIROID |TIkE]
] Gow |} OF | In | IN 1 | | Io |
| |wObb | SECS | PIXELS| ACRES | X Y |skcsl
lavv.20l 1ol 1.3 Su| 8.24}108.0 446.5] 2.3}
lavv.27] 52| 1.3} 151 21 44)192.6 419.7| 2.5
lavv.20l 122] 1.3| 5001 71 .00{166 .4 432.5] 2.3
lavv.29] 24] 1.3} 63| 8.95|1684.9 444.9] 2.1
lavv.30f 81j 1.3| 3181 45.16|224.9 404.0] 2.1
javv.3l|l osl 1.3l 3021 42.88(217.6 442.9| 2.1
lavv.32] 73] 1.4l 355| 50 .84127L.9 270.1} 2.1
lavv.33| 4yl 1.31 124| 17.61]343.4 359.0| 2.1
lavv.34] 331 1.31 721 10.221265.7 390.5| 2.1
lavv.30| 151 1.3l 36i 5.111321.3 446.3] 2.2
lavv.37| 30| 1.31 2071 29.39]33uv.6 410.2| 2.2
lavv.3sl 23| 1.3} 10l 14.34|324.3 420.0| 2.1
lavv.39| 11| 1.3| 231 3.271363.0 413.0f 2.2
lavv.40| 22| 1.3} 731 10.371362.0 427.2| 2.2
lavv.4l] 97| 1.4l 331 47 .00| 3504 .3 424.2| 2.2
ibbr.l | 32| 1.31 71 10.061102.4 306.5| 2.2
ibbr.2 | 121 1.31 361l 51.261145.0 422.9] 2.2
Ibeg.l | 97} 1.3] 229| 32.52)131.8 439.3| 2.1
Ilbes.l | 51| 1.3| 147} 20.871101 .4 169.4| 2.1
| bt.l | 301 1.3} 1321 18.74] 54.1 1.5} 2.1
| bt.2 | 100} 1.3] 268 38.06)148.4 106.8| 2.1
| bt.3 | 589l 1.3 28811 409.10{1360.2 351.0| 2.2
| bta | 501 1.3 122} 17.32|283.5 442.2) 2.1
| fo.l | 75} 1.3} 565 83.07)226.8 3.0} 2.1
| fo.2 | 292] 1.3 26051 309.91{215.8 44.9| 2.1
| fo.3 11145| 1.3| 10010l 1421 .42(304.5 123.0] 2.3
| fo.4 | 365| 1.4| 3729 529.52|336.3 50.7] 2.2
| £fo.5 | 1lol 1.4} 251 3.55/164.0 362.8] 2.1
| lr.l | 56| 1 .41 1071 15.191 9.3 120.4| 2.2
| 1r.2 | 33| 1.4| 63| 8.951103.9 190.6] 2.1
I"1r.3 | 289l 1.4| 649 | 92.16/112.7 281.3| 2.1
| lr.4 | 63| 1.4| 129 18.32|152.7 437.0] 2.1
i r.d | 181} 1.4| 869 126.24|198.7 138.6|1 2.2
| r.2 | 2271 1.4] 1178| 167.281233.0 108.11 2.2
I r.3 |1428] 1.4 17277| 2453.331330.2 232.2| 2.3
| r.4 | 232| 1.3/ 1003| 142.43|290.2 17.11 2.2
I r.5 | 391| 1.4 2800 397.60|338.6 79.2| 2.2
lucb.l | 39| 1.4} 153| 21.73} 77.9 7.91 2.1
lueb.2 | 301 1.3(96| 13.63] 4v.3 105.4| 2.1
luce.l | 521 1.41 430} 6l .06| 58.4 14.3| 2.1
lucec.2 | 4ul 1.3] 141| 20.02| 55.2 57.5] 2.1
luec.3 | 23| 1.3| 1011 14.34] 44.8 79.9] 2.2
lucc.4 | 13| 1.4} 64| 9.09] 77.5 73.5| 2.3
luec.5 | 35| 1.3 119} le.90| B6.4 83.7| 2.3
lucc.6 | 611 1.3| 163 23.15|183.3 379.1] 2.2

) e o e . — — — — ——— G— —— — — — —— — —— —— ——— — g — Y— —— — — —— —— G—— — T C— — S— —— S—— ———

...

LANDUSE AREA RESULTS

(¢ OF %)
| POLY=|nUess|TINE| AREA | AREA | CenNTrUID |2IME]
| uu) OF | Iiv | IN | InN | | 18 |
| InNODLE | SECS | PIXELS| ACRES | X Y |skCS|
luer.l | 1l«| 1.3| 35| 4.971 6.6 1l.o| 2.2|
luer.2 | 21| 1.3| 45| 6.391 6.9 25.5| 2.2
fuecr.3 | 2771 1.3 1342f 190.561 34.2 100.5| 2.2}
luer.4 | 33| 1.3} 96| 13.63| 66.4 157.4| 2.1
lucw.l | o©7] 1.3] 139] 19.74| 17.6 95.5| 2.11|
luew.2 | 73} 1.3! loel 23.571 27.5 127.9] 2.1i
lues.l | 117} 1 .4] Y60| 130.32|109.1 137.8| 2.1|
lues.2 | 212} l.3| 668 | 94 .86| 87.4 3lo.l| 2.1
fuil.l | 50| 1.3| 2391 33.94) 50.0 134.8] 2.1
luil.2 | 51| 1.3| 183 20.99]135.9 200.8] 2.2|
luis.l | 5/ 1.3} 201 2.841 1.4 1.9 2.2}
luis.2 | 5)-1.31 bi 1.14/ 0.3 40.3| 2.1}
juis.3 | 96| 1.3| 285| 40.47| 10.2 5&8.7) 2.11
luis.4 | 25} 1.4 1571 22.29| 47.3 los.9| 2.11
luis.5 | 47| 1.4] 146} 20.731109 .4 167.1{ 2.11|
lurs.6 | 34i 1.3| 8ol 12.501 72.0 160.0| 2.1}
luis.7 | 85| 1.3| 208 | 38.061166.2 317.1| 2.2l
luis.8 | 28l 1.4] 701 9.94|2458.9 426.1} 2.3|
luiw.l | 29| 1.3| 56] @ 7.95|219.2 181.2} 2.2|
junk.l | 128/ 1.3|' 1343} 190.711374.5 15.3} 2.3}
junk.2 | 50} 1.3] 1761 24.991387.8 255.9| 2.2|
lunk.3 | 2| 1.3] 8i 1.141392.5 187.5) 2.2}
lunk .4 | 5| 1.4| 5] 0.711392.1 193.3| 2.2}
lunk.5 | 21| 1.3| 334 4.69|388.7 203.0| 2.1|
junk.o | 47| 1.4l 113] 16.051390.5 230.6| 2.11|
junk.7 | 4| 1.3] 10| 1.421392.5 340.01 2.11
lunk.8 | 15{ 1.3l 21| 2.981390.3 403.8| 2.1}
lunk.9 | 19} 1.3| 28| 3.901390.9 425.3| 2.11
lunk.10i 10} 1.3] loj 2.271390.6 4«7.1| 2.1}
juoc.l | 51} 1.3] 2681 40.90| 97.2 64.0| 2.11
luog.l | 134} 1.3} 1115| 158.33|110.2 59.1| 2.1}
luoo.l | 39| 1.3} 273| 368.771 7.3 91.4] 2.21
luoo.2 | 47| 1.3 125] 17.75| 58.2 157.5| 2.3}
luoo.3 | 35| 1.3 92| 13.061121.7 204.3| 2.31
luop.l | 11| 1.3} 29| 4.12| 33.9 101.4] 2.2}
luop.2 | 55| 1.3] 184| 26.131100.0 150.0| 2.1]
luov.l | 35| 1.3} 119 16.901 95.6 5.2) 2.11
luov.2 | 3wl 1.4] 119} 16.901103.9 20.9} 2.1\
lurh.l | 33| 1.3} 126] 17 .89 62.4 100.9| 2.11
lurn.2 | 20| 1.4 41 | 5.621174.5 304.0| 2.21
lurs.l | 873 1.3] 901s| 1280.56| 57.8 62.6| 2.3|
lurs.2 | 75| 1.3} 246 34.93) 15.1 108.5]) 2.2|
jurs.3 | 37| 1.3] 148| 21 .02! 3.3 123.6| 2.1}
lurs .4 | 770 1.3| 10427| 1450.63|179.0 49.6]| 2.2|
jurs.5 | 130{ 1.31 2.2

730! 103.661139.0 139.5|

I I A P R I e e N Bl

E '].‘? “:t"',“'.‘ I "'.

B & St s it en S

AT MR

L

03

A R

129

LANDUSE AREA RESULTS

(5 OF 5)
| PULY-|wubpiTite| AnkA | AxcA | CeaTrOIV ITinmE|
i Gow | e | I | I | In | i 1o |
| | WODE | SLCS | PLALLS] ACKES | X Y |S&Cs|

50.371 82.8 175.11 2.2

lurs.o | 5| 1.3} 397}
jurs .7 | 321 1.4 02|

lurs.8 | 53] 1.31 194| 27 .55| 6v.l 248.2| 2.2]
lurs.y | 145) 1.3} 4031 57.23) 92.1 21v.6| 2.
lurs .10l 105] 1. 2791 39.621277.4 25.«4| 2.
lurs .11} 119 1. 485| ob.87127¢ .6 74.3| 2.

lurs .12} 19} 49| 6.96| 17.6 302.31

R S S e N N =kl ol i el ol ol ol ol ol ol ol ol =l el el el ok
L]
VOWWWLLLWLWWWWRWEWWWEALWLLWLWWWWEWWW W

jurs.13| 37| 1. 211 29 .90| 3.9 30l.8l 2.
furs.14f 37| 1. 112| 15.90|169.0 272.5| 2.
lurs.15| 3271 1. 16501 234.30|211.9 302.8| 2.
lurs.lo|l ©o6] 1. 20l | 37.061238.6 263.9| 2.
furs.17f 251 1. 43| 6.11] 7.6 386.0| 2.
jurs.lael o7 1. 199] 28.26] 40.3 413.3| 2.
lurs.19] 331 1. 63| 8.95119s.5 400.0| 2.
lurs.20{ 91} 1. 53s| 76 .40{212.9 420.2| 2.
lurs.21| 246 1. 1014 143.99|259.1 425.4| 2.

lurs .22 71
jurs .23| 9|

10l 1.42]1306.4 4%7.9]|
15} 2.131315.8 447 .8}

NOMVMOMNVNNNMIUNNONNMODNNNDMODONOMODNNNNNNUVNRUONNNONOND
[]
FERREEREENERRERERRPREREROMDOEE WERENWNEN

lurs .24 54| 193| 28.121341 .5 445.7}

luus.l | 69} 1. 246| 34.93| 70.6 305.9| 2.
luus.2 | 12} 1. 15] 2.131147.6 367.2} 2.
luut.l | 246l 1. 600| 85.20] 40.0 14v.0| 2.
Juut.2 | w1l 1. loo6| 23.57] o6l1l.4 132.4} 2.
fuut .3 | 500l 1. 1162 1l05.00{195.3 305.2|1 2.
b w.l | 39} 1. 105} 15.341108.5 1b5.9) 2.
I wo.l | 94l 1. 535| 75.971 89.6 32v.3| 2.
| ws.l |lae83| 1. 3409| 4384.08l131.8 213.2| 2.
|wwp.l | 8l 1. 8l 1.14/300.0 251.3| 2.
lwwp.2 | 8l 1. 11| 1.56| 10.8 43v9.3| 2.
lwwp.3 | 24| 1. 45| 6.391307.5 287.01 2.
lwwp.4 | 24} 1. 51 | 7.241300.6 377.2| 2.
lwwp.5 | 22| 1. 6l 8.661321.5 370.7| 2.
lwwp.6 | 15| 1. 301 4.26|35.3 359.7| 2.

..........
......

130

TABLE 5.3. TOPOGRAPHY AREA RESULTS

13111} 1861 .76}294.3 263.7|

(1 OF 2)

POLY-	NUMBITIME	AREA	AREA	CENTROID	TIME	
GohN	OF	IN	IN	IN		IN
	NODE	SECS	PIXELS	ACRES	X Y	SECS
1.1 12530} 1.1] 58318| 8281.16| 96.4 270.1| 2.2|
2.1 |1268] 1.1]1 16202] 2300.68| 86.9 61 .41 2.0|
2.2 | 18} 1.2} 51 | 7.24|196.6 1.5| 1.8}
2.3 |3146|) 1.2| 35351} 5019.84|242.0 312.6| 2.2|
2.4 | 8l 1.2l 8l 1.14| 85.0 150.0| 1.8}
2.5 | 51 1.21 5 0.711 93.3 144.9| 1.8l
2.6 | 351 1.21 68| 9.661101.1 149.9| 1.8|
2.7 2| 1.21 51| 0.71] 98.7 132.3| 1.8l
.8 41 1.2 71 0.99[104.4 131.1| 1.8|
.Y 4] 1.1 4| 0.571 95.5 141.0| 1.8l
.10 5/ 1.1 111 1.56{100.7 142.0| 1.8l
W11 71 1.1 71 0.99]/106.2 157.8| 1.8|
12 21| 1.1 33} 4.691103.8 169.4| 1.8}
.13 3l 1.1 6l 0.85|108.3 177.8] 1.8|
14| 179 1.1 17181 243.961355.7 18.4| 1.9]
.15 6l 1.1 12} 1.70f 3.8 285.3]1 1.9
.16 ol 1.1 12| 1.70f 0.6 296.8| 2.0|
17 71 1.1 10} 1.42] 0.5 304.2| 1.9|
A81 491 1.1 214| 30.391 3.1 36l1.7) 1.9]
.19 31 1.1 6l 0.85|188.8 320.3| 1.8l
.20 35f 1.1 89| 12.641192.4 384.0| 1.8]
21| 2841 1.2 2453| 348.33| 28.3 424.9| 1.8|
.1 | 9071 1.11 3400l 482.801166.7 42.5| 2.0|
o2 201 1.2 53| 7.531111.1 o64.7| 1.8|
.3 3l 1.1 31 0.431118.8 60.8| 1.9|

4 1 2

5 1

6 1

2

1

9| 1.28|112.8 11.2) 1.8l
2308 327.741175.4 36.9| 2.0l
74661 1060.17|300.1 189.3| 2.2}

12§ 1.701279.8 0.31 1
1341 19.031382.2 7.7} 1.9}

1

1

.
L

DL AL R R LWLWWUWLRWWWWWWWUWWWWNNNNONNOMNNNNNONNNONNDON
L]

. 68| 1.1 182 25.84|201.7 207 .4| 1.8l
.l 102} 14.48|228.7 257.41 1.9}
. 7 1 2411 1.1 84l| 119.421342.6 27.3|1 2.0|
] -8 ool 1.1 2431 34.511376.7 11.7| 1.8l
.9 111 1.1 14| 1.99(227.5 351.1| 1.8}
é 200 si 1. 6l 1.141246.3 350.3| 1.8|
1l 4i 1. 4| 0.57}211.0 359.0| 1.8l
: 12 5| 1. 5| 0.711217.3 354.3| 1.8l
1 .13 4] 1. 4| 0.571227.0 357.5| 1.8|
b d4) 144 1. 201 2.84|254.1 355.5| 1.8]
1 151 55| 1. 313| 44.45| 4.1 425.5| 1.8|
] .16 71 1. 71 0.99| 16.5 409.5| 1.8|
s 171 211 1. 51 | 7.24| 19.9 424.5| 1.8|
1 .l 51 8l 1.14/106.8 0.1} 1.9]

. 2

3

4

5

©

7

8l 1.141335.0 306.0|
15| 2.13(347.4 330.2|

'X)
o
<
)
P e bt et Pt Dt b s et Pt et o s B Bt et B et Bt e B Bt et et B e B et et et e e e B b b b e e R
L]

— - — - S G - — T T G e G T — —— G — ———— — — — —————— —— — — —— —— —— ——

RN P - b b b b b b b b

4.8

e e e

AL S A Sttt At Bslt Mt Tt Baead*)
..

131

TOPUGRAPHY AREA RESULTS

(2 o 2)
| POLY-|wUtb ITIFE] AkbA | AREA | ChwriwlD [TILEI
I G | OF | I | I | In | i Iiv |
| jwODL [SECS|PLXELS| ACKES | X Y |SECS|
. ol 1.2} 8l 1.14|376.5 335.0}) 1.8l
.10 51 1.4} 111 1.561378.3 349.1| 1.9]
.1l 3sl 1.21 863} 11.791372.8 364.9) 1 .6|
W12 4| 1. 4 0.571367.0 372.0| 1.9{
13 4| 1. 4| 0.571374.0 377.0] 1.9}

121 1.70j159.3 1l4.9] 1.8l
lo6y] 237.00|1lv4.9 40.4] 1.9
5222 74l .521299.0 los.2| 2.0}

Y|
550}
lo34|

I 4.9 |
| 4.10]}
| 4.11]
I 4.12] 1.1}
i 4.3] 1.1
I 5.1 | 1.1
| 5.2 | 1.1}
I 5.3 | 1.14
- | 5.4 | 16] 1.1} kLY 4.97|3v86.1 3.0l 1.s]
= I 5.5 1 3ol 1.1} 72| 10.221327.3 2&6.1| 1.9}
L i 5.0 | 4| 1.11 4| 0.571359.0 273.0| 1.9|
& | 5.7 | 1711 1.1] 453] 64.33|368.9 302.0| 1.9}
5 I 6.1 8| 1.1} 11} 1.571144.6 31.0| 1.b]
h I e.2 | 35| 1.1} 8031 114.031205.2 43.8| 1.9|
o I 6.3 1 91 1.1} 18| 2.56|153.4 -37.11 1.9]|
& | 6.4 | el 1.1 ol 0.85(220.0 140.8{ 1.9]|
: I ©.5 (1456 1.1| 50311 714.40(305.4 155.2] 2.2|
| 6.6 | 24| 1.2§ 331 4.69)363.8 104.5| 1.8}
| 6.7 | 3] 1.1} 3 ‘0.43]1364.5 115.5) 1.9}
|l ée.8 1 13] 1.1] 28| 3.98{1319.6 235.6| 1.ul
| 6.9 | 4l 1.2 71 0.991335.9 202.11| 1.8l
| e.10l 12} 1.2] 12| 1.701378.8 291 .4| 1.9}
| 6.1l 374 1.1} 64| 9.091372.6 302.7| 1.9}
I 6.121 1l 1.31 4| 0.571360.5 306.5| 1.0l
I 7.1 | 334 1.1} 703} Yy .831210.4 4e .4l 1.9]
| 7.2 11435]1 1.1} 5059 718.38|314.7 152.5| 1.9}
I 7.3 1 901 1.1i 2971 «42.17{380.7 109.4| 1.9|
I 7.4) 76l 1.1} 6l "0.85{302.6 142.2| 1.9{
i 7.5 | i 1.1 1y 0.141363.5 139.5| 1.8l
I 8.1 | 231} 1.1} 459 | 65.18{213 .4 " 45.4] 1.9}
| 8.2 | 85| 1.11 14} "1.99)312.0 ‘58.0} 1.9}
I ©.3 11140] 1.2| 384Y]| 546.501330.5 135.8| 2.0l
b I 8.4 | 2| 1.21 2| 0.261339.5 .51.01 1.9}
- | 8.5 1 204} 1.1} 645 91.591375.7 1lv.l| 1.9}
Lo | 8.6 | 4f 1.1l 4| 0.571330.0 191.0| i.s8|
S i 9.4 | 1271 1.11 310/ 44.02|210.8 46.0| 1.9|
5i I 9.2 | 32} 1.1} 62| 8.80)314.8 102.5| 1.9}
— Il 9.3 | 74) 1.11 2001 25.40{338.4 75.5| 1.s|
e | 9.4 | 7751 1.1 2473] 351.171356.1 135.2| 1.9|
g I 9.5 | 5| 1.1 8l 1.14{381.9 195.9{ 1.9}
o | 20.0 | 35| 1.1} lle} lo0.47/203.1 «44.7| 1.9]
& I 10.2 | 35| 1.14 59| 8.38/373.8 »50.9] 1.6|
~ | 10.3 | 23| 1.1 35| 4.971353.8 98.0| 1.8|
o | 10.4 | 349 1.1| 1420| 201.64|350.7 154.4| 1.9
- il 211 | 274 1.1 571 b.091352.2 llo.2| 1.8{
. { 11.2 | 6l 1.1} 6l 0.85!302.5 173.0! 1.9}

,i

L PR 2P R R R I SR
LI ST S W AL I - N A A T U R T TN
g:.-'n', ANy g et gt ., -

TABLEL 5.4. FLOODPLAIN AREA RESULTS

| POLY-|NUMSBITIME| ARLA | AREA | CENTROID lTIMBl
| GON | OF | IN | IN | IN | | IN |
| INODE| SECS|PIXELS| ACRES | X Y |SECS|

lright |1031] 0.21104270114806.34}|277.1 241.8] O. sl
lleft |1525] 0.2| 46003| 6532.43| 82.1 141.6| 0.6]|
lcenterl2208l 0.2) 297271 4221.241108.9 292.2| 0.7|

TABLE 5.5. LANDUSE REGION PROPERTY RESULTS

(1L OF 5)
| POLY=|PER-|{TIME]| ENCLOSING I TIME|
| GON | IM=| IN | RECTANGLE | 1IN |

| |ETER|SECS| X Y WID HGT|SECS|

lacc.l | 7z 3.91 0133 14 22| 2.1|
lacc.2 | 501 3.7|] 21 164 13 12| 2.1}
facc.3 | 781 4.2| 35 190 18 19| 2.1}
lacc.4 | 114 4.0l €1 205 31 25| 2.3|
lacc.5 | 24} 3.61137 188 6 6| 2.3|
lacc.6 | 106} 3.81139 209 34 19| 2.2}
lace.7 | 88| 4.41170 195 20 24| 2.2}
lacc.8 | 94| 3.71164 236 39 8l 2.2}
lace.9 | 201 3.7| 37 297 4 6l 2.21
lacc.10|l 88| 3.8 3 368 34 10| 2.2}
lacc.11] 92| 3.81149 245 18 24| 2.3]
lacc.12) 212} 3.8l1le 297 47 46} 2.3}
lacc.13] 1201 3.71185 319 37 23| 2.1|
lacc.14| 92] 3.71246 370 17 29| 2.1}
lacc.15] 1621 3.71140 399 41 34| 2.1|
lacc.16l 76l 3.71235 385 20 1s| 2.1|
lacc.17| 86l 3.9(246 407 25 18| 2.1]|
lacc.i8) 136 3.7i313 375 33 35| 2.11
lacc.19|l 721 3.71340 425 16 17| 2.1}
lacp.l | 102} 3.8) 24 233 19 24| 2.1}
lacp.2 | 616l 4.21149 142 159 99| 2.1|
lacp.3 | 1181 3.71 0 336 18 35| 2.1}
lacp.4 | 561 3.9]1 28 356 15 13| 2.1}
lacp.5 | 104} 3.71 0 372 13 39| 2.1|
lacp.6 | 9gl 3.71166 296 21 28| 2.1}
lacp.7 | 9761 3.91.199 244 159 156] 2.1|
lacp.8 | 46| 3.81153 343 13 10| 2.1}
lacp.9 | 160| 3.7/ 0 413 30 37| 2.11
lacp.10| 324} 3.7(1861 412 78 38| 2.1|
lacp.11] 90| 3.7(285 422 17 28| 2.1|
lacp.12| 264| 3.71306 397 40 53| 2.1|
lacp.13| 282| 3.71340 404 53 46| 2.1}
| ar.l | 78} 3.71199 109 21 18| 2.1}
| ar.2 | 82| 3.81352 205 19 21| 2.1]|
| ar.3 | 2] 3.8l11%6 299 17 14| 2.1}
| ar.4 | 1061 3.91157 323 32 20| 2.1}
| ar.5 | 72| 3.7J171 429 11 21| 2.1} .
lare.l | 56| 3.81319 428 9 19} 2.1}
lave.l | 501 3.8l 22 18 17 8| 2.1|
lave.2 | 66| 3.7 s 111 17 1le| 2.1|
lav€.3 | 94| 3.71 vi 71 19 24| 2.1}
lavf.4 | 112 3.7|112. 88 19 36| 2.1|
lavE.5 | 84| 3.8] 95 101 20 22| 2.1}
lavf.6 | 766| 4.11107 8Y 104 130| 2.1|
lave.7 | 40] 4.01253 85 13 7] 2.1|
lave.bs | e8s| 4.0 0 129 95 108| 2.1}
lave.9 | 204) 3.91 0198 29 72] 2.1}

aane b . SUEs B i gend b) grodiaresruiign

............

134
LANDUSE REGION PROPEKTY RLSULTS
(2 OF 5)
| POLY=~|PEx~-|TIbE]| ENCLOSING | TIME |
I eonN | Ik~ In | RECTANGLE | In |
| IETERISECS| X Y wlb HGT|SECS|
lavE.l0l 432| 4.0} 33 229 72 52} 2.11
lave.lil 190l 3.91100 206 51 39} 2.11
lavE.l2] 100] 3.81174 244 26 24| 2.1}
lavE.l3] 202| 3.71213 244 58 24| 2.11
lavE.lael 36| 3.51293 0 101 57} 2.1}
lavf.1l5] 214 3.8] 33 260 49 56| 2.11
lavf.del ®0l 3.71 2 263 18 22| 2.1}
lavE.l7l 5ol 3.71 15 305 16 11} 2.1}
lavE.lul Sel 3.71 36 296 & 19| 2.11
lavt.lu| 216) 3.8) 70 315 36 55| 2.11
lav£.20l 30} 3.8l 0330 7 &l 2.1}
lavE.211 208) 3.71 4 372 58 40| 2.11
lavf.221 3«4l 3.71170 258 7 10| 2.11
lavE.23] «0] 3.71151 353 14 6] 2.11
lavE.24] 72| 3.7} 66 384 21 "15| 2.1}
lave.25| 2201 3.7] 30 436 93 14| 2.1}
lavf.20| 222 3.71l86 378 54 37| 2.1|
lavE.27] 30| 3.71269 363 4 11} 2.11
lavE.2ol 32) 3.71303 353 o 10| 2.1l
lave.2yl ©0) 3.71260 394 15 12| 2.11
|lavE£.30) 212 3.71272 397 42 53| 2.1|
lave.31]l 6wl 3.71356 411 10 23| 2.1}
lavv.l | 50| 3.7 0 73 14 11| 2.1}
lavv.2 | 3w| 3.7 87 70 11 &l 2.11
lavv.3 | 94| 3.71115 85 12 35| 2.11
lavv.e | 42| 3.7) 21 155 12 9} 2.1}
lavv.5 | 76} 3.7l 0170 21 17| 2.11
lavv.6 | 134 3.7] 0190 35 31| 2.1}
lavv.? | 132] 3.8] 18 226 45 15| 2.11
lavv.s | 44| 3.8| 80 237 7 15| 2.11
lavv.y | l48] 3.71173 157 32 37| 2.11
lavv.10] 98| 3.71147 155 19 28] 2.1}
lavv.l1| 100} 3.81214 180 25 19| 2.11
lavv.12] 80| 4.01167 244 29 11} 2.1}
lavv.13|l 66| 3.71250 244 21 12| 2.11
lavv.14| 90| 3.71272 0 28 12| 2.11
lavv.15] 3u] 3.71273 6 e 13| 2.1|
lavv.lel13%6) 3.9] 0 238 140 201 2.1|
lavv.17] 301 3.7] 76 258 6 9| 2.11
lavv.lael 112] 3.71 77 272 29 26} 2.1}
lavv.l9| 7¢4] 3.81110 302 99 109| 2.1}
lavv.20l 444 3.8|113 240 ©l &4] 2.1}
lavv.21l| 264f 3.71191 244 63 52| 2.11|
lavv.22] 96| 3.71192 342 32 16| 2.11
lavv.23] 226] 3.71 0 382 42 58] 2.1
lavv .24} 241 4.3] 0 442 4 8l 2.1}

...............

-

135
LANDUSE REGION PRUPERTY RuSULTS

(3 OF 5)
| PULY=|PEr=|TIME| EnCLUS LG ITImk|
oo | Ik=1 Iiv | RECIANGLE i In |
| |ETexISECS] X Y wIL HGTISECSI
lavv.25] 521 3.9] 18 430 12 14| 2.1}
lavv.20] 62] 4.2] 94 448 29 2] 2.1}
javv.27| 70| 4.2{182 415 23 12| 2.1}
lavv.28] 1261 4.2115% 417 26 33| 2.1}
lavv.2y|l 32| 4.11102 44l 7 vl 2.11
lavv.30] 10l 4.11211 3ve 33 17| 2.11
lavv.31) owal 3.91200 430 20 1la| 2.1}
lavv.32| 13ul 3.81256 250 2y 25| 2.1}
lavv.331 o4} 3.71307 351 13 19| 2.1}
lavv.34| 40| 3.81203 365 &8 12f 2.1{
javv.35] 114| 3.91205 390 2y 20l 2.1}
lavv.30l 24| 3.71319 444 o o] 2.1}
lavv.37| b4l 3.61334 392 6 3ol 2.11
lavv.3s8| 50l 3.581320 400 8 18| 2.11
lavv.39| 20| 3.9|30l1 411 5 5| 2.1}
javv.4Ul 38l 3.71300 421 6 13| 2.11|
lavv.el| 104) 3.7]375 406 18 31} 2.1}
ibbr.l1 | 48} 3.71 99 302 & 16} 2.1}
Ibbr.2 |} 160§ 3.71137 3v0 16 60} 2.1}
ibeqg.l | 130| 3.71122 429 19 21| 2.1|
lbes.l | o4l 3.8] 95 162 13 19} 2.1
| bt.d | 80l 3.9]1 35 0 35 5| 2.1
bt.2	o8l 3.81145 90 © 36l 2.1	
bt.3	670 4.11340 259 51 l47	2.1
bt.4	o©6] 4.01275 435 18 15	2.1
fo.l	190} 3.91460 0 81 12	2.1}
fo.2	302) 3.8	lvo 23 94 47
fo.3 (1300l 3.9	lv4 75 210 107} 2.1}	
to.4	540	3.81273 13 121 76
fo.5	2u	3.7
1r.1	w84l 3.71 84 118 29 1li}	2.1
l 1r.2	54	3.8llvl 1l 7 20 2.1}
Il lr.3	378l 3.91105 204 17 149	2.1}
l lr.4	92	3.81149 416 9 34
r.	204) 3.91176 117 61 37	2.11
I r.2 | 298l 3.91205 &4 62 471 2.11
I r.3 11724 4.1]195.101 196 301| 2.1|
I r.4 | 300l 3.91200 0 59 49| 2.1|
I r.5 | 456| 4.01273 46 121 63| 2.1}
lueb.l | 52| 3.91 70 4 17 9| 2.1|
lucb.2 | 50| 3.8l 44 99 11 13| 2.1}
lucc.l | owbl 3.8] 46 4 24 20| 2.1}
lucc.2 | 52} 4.2} 51 50 11 15| 2.1}
lucc.3 | 4ol 4.2 39 74 11 12| 2.1}
luce.4 | 32| 3.9 7¢ 70 8 wul 2.1}
luce.5 | 50} 3.71 82 77 12 13| 2.1}
lucc.o | 64| 3.81175 373 18 14| 2.1}

.....

AL M ENA G T TR S

.....................

136

- LANDUSLE RLGION PRUPERTY RESULTS
L (4 OF 5)

| POLY=~|PEx-|{IME| ENCLOSING 1 TIME]
I cun | IM=| In | RECTANGLE | 1w |
) JererlsEesS) X Y WID dGTIskcCs)

fucr.l | 24} 3.7 4 0 7 50 2.1
lucr.2 | 28l 3.71 6 23 7 71 2.1|
lucr.3 | 370f 3.71 14 65 406 67| 2.11
luer.« | 40} 3.7 63 152 ©v 12| 2.11|
jucw.l | 921 3.71 11 81 13 28l 2.11
juew.2 | 9ol 3.7] 19 117 17 2ol 2.1|
jues.l | las| 3.7| 9 125 40 311 2.11
lues.2 | 304 3.7| 76 260 27 7§ 2.11
furl.l | 8ol 3.7| 3y 124 21 20| 2.11
Juil.2 | e8] 3.7)127 194 19 15} 2.1}
luis.l | 18] 3.7f 0 o0 4 5| 2.11
luis.2 | 12| 3.7} 0 39 2 4| 2.1]
luis.3 | 1lel 3.71 2 44 14 3ol 2.1|
luis.« | 54| 3.71 42 162 12 14} 2.11
luis.5 | 8] 3.7/105 155 9 25| 2.1}
luis.6 | 50| 3.7] 6o 152 30 15| 2.1}
luis.7 | 82| 3.71153 310 27 14f 2.1}
luis.8 | 46l 3.71243 422 13 10| 2.1|
luiw.l | 36l 3.71216 177 7 11l 2.1}
luiw.2 | 64] 3.71139 245 15 14| 2.1|
iunk.l | 226} 3.71335 0. 59 54| 2.1}
lunk.2 | 80} 3.71378 248 16 21| 2.11
junk.3 | 12} 3.71392 1s6 2 4| 2.1}
funk.4 | 10] 3.713v2 193 2 3| 2.11
lunk.5 | 34| 3.7|385 200 9 8| 2.1}
lunk.6 | 70l 3.7|380 220 8 20| 2.11|
lunk.7 | 16l 3.713v2 338 2 o} 2.1|
lunk.o | 22| 3.7|365 402 5 6| 2.1
junk.y | 28] 3.7|13%0 421 3 11} 2.1
lunk.10] 18] 3.7|l309 445 a4 5| 2.1}
juoc.l | 76l 3.7} 867 %6 21 17} 2.1|
juog.l | 174) 3.7/105 30 21 6] 2.1}
juoo.l1 | 74| 3.7} 0 83 17 20| 2.1|
luoo.2 | 64] 3.7) 50 152 16 1le| 2.1|
juoo.3 | 541 3.71112 200 17 10| 2.11
luop.l | 26l 3.71 31 99 7 6] 2.1
luop.2 | 66} 3.7] 92 150 18 14| 2.1}
juov.l | 48| 3.7] 90 o0 11 13| 2.11
fuov.2 | 4&l 3.71101 13 7 17| 2.1}
furh.l | 46l 3.71 76 157 14 9| 2.1|
lurn.2 | 301 3.71171 302 o 71 2.1}
jurs.l 111201 3.8/ O 0 110 157] 2.11
jurs.2 | 116} 3.71 0 100 34 21} 2.11
lurs.3 | 638) 3.71 o0 111 11 23| 2.1
jurs.4 | 924) 3.8]100 0 177 128 2.11|
lurs.5 | 14| 3.71117 124 37 311 2.1

....................

. . .~ . . . S T
PSP U W P UL V. VAL SO S VAT Tl Wil W W UL WP TP PN S

TR - " o Ml mase e By o
SN . o Sulaen

137

LANDUSE RLEGION PROPEKTY RESULTS
(5 OF 5)

POLY- | PEx=~|TIFE| ENCLOSING { Ttk |
GoN | IM=~] IV | RECTRINGLE b I)
|ETER|SECS| X Y WID HGT|SLCS|

§f ———]

iurs.o | 116] 3.7] 65 leo 31 27| 2.
lurs.?7 | 40} 3.71110 173 7 13| 2.
furs.s | 74| 3.7] 60 243 22 15| 2.
lurs.y | 170| 3. 72 198 27 49| 2.
lurs .10} 136 3.7]1257 3 32 36| 2.
furs.11] 132] 3.71259 S5 36 27| 2.
furs.12{ 32| 3.71 13 300 10 el 2.

lurs.13} 7si
lurs .lal 5S4
lurs .15| 408{
lurs.lel 65|
lurs .17l 32}
jurs.lol s&2i
lurs .19l 40|
jurs .20} 110}
furs.21| 312}
furs .22| 14|
lurs.23] 1el
lurs.24] 76l

|

|

|

i

| 0 347 12 27|
Ilo2 268 13 14|
:173 307 73 83|
|

|

|

i

WLWLWLWWLWAWWLW—WLWLWLLWLWLWLLLLLWLWWLWLWWWLWLWW
\l\!d\l\l\l\(’\l\l\lc\!\l\l\l;l\lslsl\l\l\l\l\lﬂisl\l\l\l\l\l
[7%)

[

(¥

233 274 13 21}
5 383 & &l
27 406 26 14|

193 397 11 9|

197 408 28 26|

1232 400 54 50|

I1305 447 4 3|

}31a 447 5 3]

442 30 8l

e b b e b e b e e b b b b b b b e e e b e b b b b e b b b e e

{
NNV NDODNNNRNUDNDNNDNRRNNNDDIDODIDODOONDNNNNDND
Ld

luus.l | 76l 3.71 59 303 25 13| 2.
fuus.2 | 18] 3.71146 366 5 4} 2.
luut.l | 376l 3.71 0 104 96 93| 2.
fuut.2 | 1401 3.7 36 121 48 22| 2.
luut.3 | woel 3.81105 201 194 249 2.
} vw. | 0] 3.7)101 180 1le 13| 2.
| wo.l | 108] 3.71 82 312 15 35| 2.
I wo.2 | Sul 3.71425% 431 10 19| 2.
| ws.l 12170| 3.9] 0 0 281 450| 2.
lwwp.l | 14] 3.71359 251 4 3| 2.
lwwp.2 | 14} 3.71 1Q 438 3 4} 2.
lwwp.3 | 36| 3.71304 282 8 10| 2.
lwwp.4 | 46| 3.71296 370 e 15| 2.
lwwp.5 | - 40] 3.71317 365 9 11| 2.
lwwp.6 | 30| 3.71356 356 7 8| 2.

RS
At
..
n.':
» Ty
.~
..
ned

" -1‘1':; St ‘._.-

. f
.......

.....................................

138

TABLE 5.6. TOPOGRAPHY REGION PROPERTY RESULTS
(1 OF 2)
POLY~	PER=	TI1ME	ENCLOSING	TIME
GON	IM=	IN	‘RECTANGLE	IN
ETER	SECS	X Y wIb HGT	SECS	

i 1.1 131001 3.7] O 0 283 450| 1.9|
| 2.1 Jl1e08}) 3.4/ O O 276 143} 1.9}
I 2.2 | 50| 3.21187 0o 21 4| 1.8}
I 2.3 |3646| 3.8l106 O 272 450| 1.9|
i 2.4 | 121 3.2] 85149 2 4| 1.9]
Il 2.5 |1 10| 3.2| 93 145 3 2| 1.8l
| 2.6 { 48l 3.2| 94 146 15 9| 1.9]|
| 2.7 | 101 3.2] 98 132 3 2| 1.8l
| 2.8 1 12} 3.2{104 130 2 4| 1.8]|
I 2.9 | 101 3.2| 95 141 3 2] 1.9
| 2.101 1lel 3.2{100 140 3 5| 1.8l
| 2.11| 1el 3.2/106 156 2 6| 1.8]
i 2.12} 28l 3.21102 166 S5 9| 1.8
| 2.131 10| 3.21108 177 2 3| 1.8}
|- 2.14] 290| 3.21304 0©0 84 52| 1.9}
| 2.15] 14| 3.21 3 284 3 4| 1.8l
I 2.16l 16| 3.2l 0295 3 5| 1.8}
i 2.171 14| 3.21 0 303 3 4| 1.8}
I 2.18]1 86l 3.21 0 343 9 34| 1.8l
| 2.19) 10| 3.3l188 320 3 2| 1.9}
| 2.20]1 421 3.21187 360 12 9| 1.9{
I 2.21| 3541 3.3 0 380 65 70| 1.8l
I 3.1 |1244| 3.4 89 0 181 93} 1.9}
I 3.2 | 36l 3.21106 62 11 71 1.8]
| 3.3 | sl 3.2|1119 el 2 2| 1.9
I 3.4 |3162] 3.71186 0 194 406| 1.9|
I 3.5 | 1081 3.21196 190 14 38| 1.8}
Il 3.6 1 46| 3.21223 253 13 10l 1.8
I 3.7 | 334| 3.31295 0 93 57| 1.9]|
] 3.6 | 102}] 3.2|306 0 23 27| 1.8l
I 3.9 | 1wl 3.21226 350 5 4| 1.8l
I 3.10l 12| 3.21245 350 4 2| 1.8|
I 3.11} 8l 3.2)211 359 2 2| 1.91
i 3.12] 12} 3.21217 354 3 3| 1.9
I 3.131 101 3.21227 357 2 3] 1.8l
I 3.14' 20| 3.21252 354 5 5| 1.8}
I 3.15) 114} 3.2| 0 410 13 40| 1.9}
I 3.16] 12| 3.2| le 409 3 3| 1.8l
I 3.171 32| 3.2| 16 422 9 71 1.81
I 4.1 | 14| 3.21105 0O 5 2| 1.8l
| 4.2 | 14| 3.2§112 10 3 4] 1.8]|
| 4.3 11014 3.4]119 0148 771 1 .91
| 4.4 |2732] 3.61195 0 193 335| 1.9]
I 4.5 | 18} 3.21277 o 7 2| 1.8l
| 4.6 | 2] 3.21376 0 13 17| 1.9
i 4.7 | 12] 3.21335 305 2 4| 1.8l
| 4.6 | 18l 3.21346 329 5 4| 1.9

....................... e e e e e T e T T .. T .
I B N AP Y ol WS PR, WL I WA Ul W SRS DU . AP P U D PN SR S N U R

R

4

ST AREIEIRIAARY |

'''''''''

— n._;_q_'L P L‘.L._,‘L it

.......................

139

PUPOURAPHY KBGION PRUPEXRTY RLSULTS

(2 OoF 2)
PULY-leu-ITlhnI ENCLUSING jrirkl
Gow | It~| Iiv | ReCTANGLE | In |

leTiek|seCsl X Y wID nGT|SeCs|
4.9 | 1ol 3.21379 335 1 8l 1.9]
4.10] 1lo) 3.21370 347 2 ol 1.9}
«.11] So) 3.2|1364 360 15 10| 1.sl
«.12] 8l 3.21367 372 2 2| 1.8l
«.13] Bl 3.21374 377 2 2| 1.8l
5.1 | lo] 3.2ll58 14 4 4| 1.8|

*
[

[195 40 19 10| 1.sl
i1367 76 15 71 1.8
iI350 95 7 &l 1.8}l
1334 106 42 8ol 1.9}
1347 113 11 9| 1.o|
21362 173 3 2] 1.9}

*

wN

[
(=]
-

11.1
1.2

i

|

|

i

|

|

)

|

i

I 5.2 | 770) 3.31136 15 126 57| 1.9|
| 5.3 12024} 3.51204 20 183 257| 1.9
Il 5.4 | 20} 3.2138¢ 0 5 sl 1.8}
] 5.5] 56 3.21324 280 & 17| 1.6}
] 5.0 | 8] 3.21359 273 2 2} 1.5)
} 5.7 | 244) 3.21352 285 30 35| 1.8l
} e.d | 14| 3.21144 30 3 4] 1.8l
| ©.2 | 554| 3.2l168 25 86 401 1.9|
| ©.3 |1 20| 3.211510 36 o 4| 1.9|
I 6.4 | 12| 3.2/219 141 4 2| 1.8l
| ©.5 117801 3.41230 29 157 217} 1.9|
I 6.6 | 321 3.21380 102 7 9| 1.9
| 6.7 | 8l 3.21385 115 1 3| 1.u8|
I 6.8 | 24] 3.21317 234 7 5| 1.9}
i 6.9 | 12) 3.21335 261 3 3| 1.sl
| e.10l 1ol 3.21376 290 3 5| 1.sl
| e.111 60| 3.21304 299 17 9| 1.8l
| e6.12} 8l 3.21360 306 2 2| 1.9}
| 7.1 i 470 3.31174 27 78 36l 1.9}
I 7.2 llevel 3.41244 41 143 1911 1.9
i 7.3 1 1301 3.21373 92 14 37| 1.si
I 7.4 |1 12| 3.21302 142 3 3| 1.8l
i 7.5 1 4 3.21364 140 1 1| 1.9
| 6.1 | 348] 3.21183 30 61 31| 1.9l
| &.2 | 18| 3.21310 58 6 3| 1.sl
i 8.3 11400| 3.41265 53 122 172{ 1.8l
i ©.4 | 6l 3.21340 51 1 2| 1.9
i 8.5 | 2606l 3.31365 88 22 79| 1.8}
| 8.6 | sl 3.21330 191 2 2| 1.8l
I 9.4 | 19l 3.31192 34 43 22| 1.sl
I 9.2 | 44| 3.21309 99y 12 10l 1.8l
I 9.3 | 921 3.21326 67 20 221 1.8!
I 9.4 | 9821 3.41325 70 62 127 1.8l
i 9.5 | 12| 3.21361 195 3 3| 1.8}
I 9.0 1 56f 3.21372 202 12 16| 1.8}
i 10 | 3.2

| 10 | 3.2

| 10 | 3.2

i | 3.3

| | 3.2

| | 3

VL. TN R P A S

140

TABLE 5.7. FLOODPLAIN REGION PROPERTY RESULTS

| POLY-|PER=-|TIME| ENCLOSING I TIME]
| GON | IM=| IN | RECTANGLE | IN |
| IETER|ISECS}| X Y WwID HGT|SECS|

Ilright |1776] 0.91105 0 295 450| 0.4|
lleft 22701 0.91 0 O 274 450! 0.4]
lcenter|2642| 1.0/ 3 0 280 450| 0.4l

.......

Al o ol o J PO Y PP

.................

141

TABLE 5.8. LANDUSE WINDOW RESULTS
(1 of 5)

} POLY=-|) wWINDOW ITIME|

| GonN | ¥X | FY |wWIDTH|SECS|

lacc.8 | lo4| 236| 64|

lacec.l | ol 133|§ 32| 0.8}
lacc.2 | 21| leé4| 16|l 0.2]
lace.3 | 35| 190| 32} o.
lacc.4 | 61| 205]| 321 1.
lacc.5 | 137) 18y} 8l 0.
lacc.6 | 139| 209] 64| 5.
lacc.? } 1701 195] 32| 0.
i

lacc.9 371 297| sl
lacc.10| 3| 368} o4l
lacc.l1] 1491 245| 32}
Jacc.12} 116} 297] 64|
lacc.13| 165 319} 04|

o
1
o
5
0
1
0
3
1
3
3
lacc.14] 240| 370]| 321 o
3
1
1
4
1
1
2
¢
0
1
0
<

lacc.15] 146 399| 64|
lacc.lo] 235| 385] 32|
lacc.17| 246| 407| 324
lacc.l18] 313 375} 64 |
lacc.1y| 340/ 425 32|
lacp.l 24| 233} 32|
racp.2 149 142] 25614
lacp.3 0l 336l o4 |
lacp .4 26 obul lo|
lav .5 Gl >7z| 64|
lacp.uv lool 290l 32|

P OUHFUBNOANAROVOWNFOX O D

— ——— p—— — ————

lacp.7 | 19Y2| 244| 25634
lacp.s | 153| 343| le| 0.
lacp.9 ol 413 64| 2.8l

lacp.10|l 181 34| 128i10.5|
lacp.11| 2851 422 32| 1.2
lacp.12| 3081 397| 64| 3.71
lacp.13| 340| 404| 64 |

| ar.l 199| 109| 324 1.
| ar.2 | 3521 205] 32| o.
| ar.3 | 156]) 299} 32| 1.
| ar .4 1571 323| 321 1.
| ar.5 | 1711 429| 321 1.
lare .l 319| 428/ 32|

laveE.l 221 1s| 32| o.

lavf.3 91l 71| 32|
lavf.4 | 126] 88} 64
lave.s 95| 101| 32|
lave.6 | 107| w&y| 256]|5
lavE.?7 | 253] 85| 16| 0.
lave.B ol 129 1l28i15.2}
lavf.9 | ol 1981 1280 7.8l

N HROOKFFFO N
WFNE FALWOFWW SO

|
| |
| |
i |
I |
| |
| I
| |
lavt .2 : 8l 111} 32} :
| |
| |
| |
| |
i

g LANDUSE WINDOW RESULTS
P{ (2 of 5)

£l | PULY-] wINDOW | TLME |
I o | #X | Y |wILiPH)SECS]

lavE.l10l 33| 2291 120i17.11
lavE.lif| 108l 2uel o4l 2.2
lavt .2l L74] 244 32| 0.6l
lavE.13] 213| 244l 64| 3.11
lavf.lal 293| ol 128110.5]
lavE.l5] 33| 200| 04l 3.5|
lavt.lo) 2| 283i 321 0.9i
lave.17) 15| 305] lol 0.4l

lavz .lel 38l 296l 321 0.51
lave.lyl 70| 3150 o4l 4.3])
. lavi.20] ol 330l sl 0.1}
lavE.21! 4| 372| o4l 1.3|

lavf.22| 1701 258| lol 0.2|
lavf.23] 1511 353} 16l 0.4|
lavf .24l o6l 384| 321 0.31
lavE.25| 30| 3w4l 1281 3.8l
lavf.26| luve| 378 64l 2.5]
lave.27] 289| 363| lél 0.3
lavf.20l 303) 353| lol 0.4
lavf.29| 260| 3val 321 0.7}
lave.301 2721 3971 64| 3.91
lave.31| 356l 4ll} 321 1.0}

jlavv.l | ol 73l 16| 0.3]
lavv.2 | 871 70l lel 0.3
lavv.3 | 115] wssl o4l 3.4}
lavv.4 | 21| 155]| lol 0.4]
lavv.5 | 0l 170} 321 0.5}
lavv.6 | ol 190| 64| 2.0}
lavv.7 | 18| 22ei 04| 2.2
lavv.s | 80| 237| 16| 0.3}
lavv.9 | 173] 157| 64l 3.9}

lavv.10]) 147] 155} 321 1.11
lavv.ll| 214} 10| 32| 0.5]
lavv.12| 167| 2441 32| 1.1}
lavv.13| 2501 244| 321 0.5}
lavv.l4| 272} ol 32| 0.4l
lavv.15] 273| el lol 0.4]
lavv.lel 0l 238l 256|25.8|
lavv.17l 76| 25ul lol 0.1}
lavv.ly| 110l 3021 128} 8.1}
lavv.20] 113] 240 128l113.2]
lavv.21| 191 | 244l 64 2.9|
lavv.22| 192} 342| 32| 0.4|
lavv .23 ol 3s2l 64| 2.0}
lavv.24) ol «442| 8l 0.0}
lavv.25] 1l 436l 16l 0.11

)

LANDUSE wINDOw RESULTS

(3 of 5)
| POLY-| wInNDOW [TIME|
| GO | £X | PY IWIDTH|SECS]
lavv.25] 1lul 430l lo| 0.1}
lavv.20] Y4| 448] 32| 0.2
ilavv.27{ ls2| «l5] 32| 0.9l
lavv.26] 155} 417} o4 3.4l
lavv.29| 1821 441/ loel 0.31
lavv.30| 211} 3vel 64| 4.2
lavv.31| 206 430l 32| 0.4|
lavv.32| 258| 256] 321 0.4l
lavv.331 3071 351| 32| 1.1}|
lavv.34| 203]| 3385] lel 0.31
lavv.35| 265| 390l 321 1.1
lavv.30| 319] 444} gl 0.1
lavv.37| 334| 392| 64| 2.2
lavv.3s| 320| 41vul 32| 0.5
lavv.39| 301l 4111 8| 0.l1|
lavv.40| 360l 421] le| 0.3}
lavv.4l| 375| 405/ 321 0.91
iobr.l | 991 302| 16l 0.3]
Ibbr.2 | 1371 390]| 64| 4.0l
Ibeg.l | 122| 429| 321 1.21
ibes.l | 95| le2] 32} 1.2}
| bt.l | 351 ol 64| 2.2
| ot.2 | 145] w0] o4l 3.8l
I bt.3 | 250l 25| 256] 5.1|
| br.e | 2751 «35) 32| 1.11
| fo.l | 180l 0Ol 126l 4.6
| fo.2 | loowl 23] 128il2.4l
| £0.3 | le4l 751 250|34.51
| fo.4 | 2731 13| 128l14.5]
| fo.5 | 100l 36l 8l 0.11
| Ir.d | &4l Llls| 321 0.6l
| 1r.2 | 101| 1s1] 321 1.41
| lr.3 | 1051 2041 256l47.7|
| lr.e | 149] 4lo]l 64| 2.8
I r.l | 176l 117| 64| 3.4|
| r.2 | 205] &4 64| 3.9]
| r.3 | ol ol 512]39.4)
| r.4 | 260} ol 64| 1.5
I r.5 | 2731 46| 128]11.5|
lucb.lr | 70| 4| 32| 0.4
lucb.2 | 44| 99| 16l 0.3}
luce.l | 46| 4| 32| 0.31
luec.2 | 51| 50| lo| 0.3|
lucc.3 | 391 74| lél 0.31
lucc.4 | 741 70| sl 0.0l
lucec.5 | 82| 771 lo| 0.4|
luce.6 | 175| 373| 32| 1.4]

pa dhnie Aabe M s

CHMRL. L.t
. »

/

»

* '\- -" -a' >- Coa l"

144

LANDUSE WINDOW RESULTS

(4 of 5)
| PoLY-| WINDOUW |TIME|
I GUN | FX | £Y IWIDTH|SECS]
luer.l | 4] ol 8l 0.0}
fuer.2 | o] 23} oi 0.1}
luer.3 | 1la| 65| 1l2sll5.6}
luer.4 | 63| 152| le| 0.3}
luew.l | 11| &1l 32| 1.2}
luew.2 | 19| 117} 32] 1.5}
lues.l | w©y|] 125§ o4l 4.2
lues.2 | 70l 200l 1281 8.2}
juil.l | 39] 124} 32) 1.1}
fuil.2 | 127] 194l 32) 1.0}
luis.l | o} ol 8| 0.0l
luis.2 | ol 39i 4| 0.0}
luis.3 | 2l 44 64| 1.6}
fuis.4 | 42| le2l le) 0.1}
fuis.5 | 105] 155| 32| 1.0l
luis.6 | 6ol 152 lél 0.2}
luis.7 | 153]| 310l 32| 1.0}
luis.&8 | 243] «22} lol 0.4}
fuiw.l | 21e6| 177| le| 0.3|)
luiw.2 | 139) 245} 16l 0.4
lunk.l | 335] ol 64] 2.8
lunk.2 | 37¢| 248l 32} 0.3)
funk.3 | 392| 1luel 4| 0.0}
lunk.4 | 392} 193} 4} 0.0}
“lunk.5 | 385| 200| 16| 0.3}
lunk.0 | 3w6| 220| 32] 0.3}
lunk.7 | 392l 330l 8| 0.0}
lunk.8 | 3s8) 402] s 0.1}
funk.9 | 3v0] 421} le] 0.2}
lunk.10| 389| 45| 8l 0.1}
fuoc.l | &71 50| 32| 0.8l
ivog.l | 105 30| 128j11.2]
fuoo.l | ol &3} 32} 1.0}
luco.2 | 501 152} 16} 0.2}
fuco.3 | 112| 200! 321 0.3}
luop.l | 31} 99} 8} 0.1}
luop.2 | 92| 150} 32} 0.6l
luov.l | 90| (o]] lel| 0.2}
fuwov.2 | 101} 13} 321 0.9}
furh.l | 70| 157] 16| 0.3}
lurn.2 | 1711 302} 8l 0.1}
lurs.l | ol ol 256(12.2|
lurs.2 | 0l 100} 64] 1.6}
lurs .3 | 0| 111l 321 1.3}
lurs.4 | 101 0l 256|43.8i
lurs.S | 117} 124] 64! 3.11

Clia Bve Aae Arindia GeA IR AT

- —v - W — -

DA WL AN

—— CEAAP St AT B A ah du b S o

LANDUSE wWINLOw RLSULTS
(5> of 5)

| POLY-] wInDOw BT

I Gui | ¥X | FY |wIDTn|suCo|

lurs.o | 65| loel 321 1.0}
lurs.7 | 110l 173} le| 0.2i
lurs.s | 60| 243| 321 1.2i
lurs.9 | 72} 1lvcl os] 2.11

lurs.lol 2571 sl 64l 3.51
lurs.ll| 2591 58| o4l 3.0}
lurs.12) 13| 300] lo|l 0.3]
lurs.13| ol 3471 321 1.0l
lurs .l«l 1821 20b| lol 0.2
lurs.15) 1731 3071 12sll15.11
jurs.lol 2331 274| 321 0.5l
lurs.17| 5i 3u83| 6| 0.1
lurs.lel 271 406] 321 1.0l
lurs.19| lw3| 3971 16} 0.3|

Eﬁ lurs.20] 197] 408| 32| 0.9}
w lurs.21| 232]1 4001 4| 1.1l
o lurs.22| 305) 447] 4| 0.1}
o lurs.23| 3lal| 447| 8l 0.1}
iy lurs.24| 3251 4421 32| 0.6l

| uus .1 59§ 303| 32] 1.2}
146] 306l sl 0.11
Ol 104] 123] 4.71
30| 1211 - 64l 4.2
105} 2011 256i58.7]
101} 1lsol lol 0.4
o2l 3121 o4| 2.01

|

| uus .2 !

|

|

| |

| |
{ wo.2 { 125] 4311 321 1.2}

i

|

|

|

|

|

Juut .l
' uut .2

ol ol 512i35.3|
3s5w| 251 4| 0.0l

"~ 10| 438} 4) 0.
304l 2a2| 16l 0.
2vsl 3701.° 16l 0.
3171 365 16| 0.
356] 356| 8l o.

oOhNNHO

v,
]

(3 -
bt
.
I'.\a'
o
&
e
>

J
[
ot
e
A
.. .1
so .
LR
ln- .
%
—
7
b
AL
"

B

-

...........

146

TABLE 5.9. TOPOGKAPHY WINDOW RESULTS
(1 of 2)
| POLY-| WINDOW ITIME|
GUN | FX | PY |wWIDTH|SECSI

ol ol 512/26.71
ol ol 512129.2])
1871 ol 32| 1.5
ol ol 512|30.8I
85| 1491 4|
93| 145| 4|
94| 146| 16|
98| 132} 4|
104i 130l 4|

ol 303]| 41
ol 343} 64|
18l 320]| 4|
17| 380]| lo]|
ol 3801 128}
89| ol 256l6
le| 0.
119 el 2| 0.
ol ol 512|33.2|
1961 190] 64| 1.9}
223| 2531 16l 0.4|
295] ol 128l15.5]
3661 ol 32| 0.5|
2261 350! 8l 0.5}
245| 3501 4| 0.0]|
211| 359] 2| 0.0l
2171 354| 4|
227| 357| 4|
252| 354| bl
ol 410l 64|
16| 409| 4|
16| 422} 16|
105| ol 8i
1121 10| 4|
119} ol 256l6
ol ol 5123

FOYENoOULaEWNTO

[
©
o
o
N

[

©

o

—

~J

~

'S
FREOOFCOOPRPROOODOOOCOCOOO

O FAWOVOHOLOFHHOOONOO

OCO0OO0OO0COLCOOOO+-OOO
=roNnNFUOCKrHrHFOFEFOO

e o
~NouUds WO
. o

*
-

EE S PP P L PULWLWLWWLWWWWWWWWWWINNNNNNNNNNDDNNUNNNUNDNMDMMOMDNNLN
L
TOENCURLWNFFEFFEFFEFEEREFEFCENCOUVBWNFEFNNKFERERERM/PREPRFERERRQOEINOOEHEWN -

. 2771 ol 8l o0.
. 3761 ol 32| o.
. 335| 305| 4| o.
. 3401 329| sl 0.
. 3791 335| 8l o.

: e et ettt 4" a"at et atatatat N, T T e . . P WA WL LAY NI S LT |

TOPOGRAPHY wlIiiboW RESUL1S

(2 of 2)

POLY~| . wlwDuw ITIME]
GON | FX | FY |WIDTdlswcs)
4.101 370| 347} sl 0.1l
4.111 304| 300} 16} 0.2}
4.2 367| 3721 2| o.0l
4.3 3741 3771 2] 0.0l
5.1 1581 1lal 4| 0.l1i
5.2 130l 151 1l2blleo.91

-

|
|
|
|
|
|
| |
| |
- 5.3 1 ol ol 512127.81
I 5.4 | 304l ol sl 0.0l
I 5.5 | 324] 280l 32i 0.4l
I 5.6 | 3591 273| 2| 0.0l
I 5.7 | 3521 2yu5] 64| 2.1}
i eo.1 | 144 301 4| 0.0l
| 6.2 | les8l 251 12&ll18.9{
Il ©.3 | 151} 36l sl 0.1l
| 6.4 | 21v| 141 4| 0.0|
| 6.5 | 2301 291 256|456.2}
| ©.6 | 380| 102} 16| 0.11
I ©.7 | 385] 115| 4| 0.0}
| .8 | 317] 234] 8l 0.1
| 6.9 | 335| 261} 4| 0.0l
| e6.10| 3781 290l 8l 0.1}
I 6.1 364| 299| 32| 0.9|
I 6.12| 3601 300l 2|, 0.0}
| 7.1 | 174 271 128120.0}
I 7.2 | 244| 41l 250l42.71
I 2.3 | 3731 92| o4| 1.8}
I 7.4 | 302] 142} 4| 0.0]
| 7.5 | 34| 140]| 1| 0.0}
| s&. | ls3| 301l 04| 5.7}
| 8.2 | 310f{ 58] 8| 0.1}
I 8.3 | 256] 531 2560139.6}
| .4 | 340f 51| 2| 0.0}
I 8.5 | 365| w&l 128| 4.6]
I ®.6 | 330| 191| 2| 0.0}l
b 9.4) 1v2l 34} 64| 3.21
) 9.2 | 309 99| 16} 0.4]
| 9.3 | 328| e7] 32| 1.1}
| 9.4 | 3251 70l 12wl1i.3|
I 9.5 | 381 195| 41 0.1
I 9.6 | 3721 202] 16| 0.1}
| 10.1 | 193] 40} 32] 1.5}
| 10.2 | 367| 7sl 16| 0.4
| 10.3 | 350| 95| 8] 0.1}
{ 10.4 | 334 106l 128] 5.1]
I 11.1 | 347 113| lol 0.4}
I 1.2 | 3e02| 173} 4} 0.0}

| i L Lt e i e s GOt e et e s e Bt St S hliniid i idendt sl JaSaEn Ena ittt RN M N M T T S e T e v e
P R SR i A Rt e o e T T T T R s T .
R e el fes e tel e e TelTe Tes e Te e N R Y ST e e e T Tl T e e T e Te e e et T W T Tl Te o .
d
.

148

TABLE 5.10. FLOODPLAIN wINDOW RESULTS

| POLY~| WINDO ITIME|
| GUN | FX | FY |wlDTH|SECS|

| ol ol 512 | 5.21
lleft | o] o] 512 | 5.2|
i ol ol 512 | 5.4|

.‘.
bad PaaN]

ey e
"y 2ust

..........
e T N R N R

149

TABLE 5.11. INTERSECTION STATIS.Q. <8 ¢
' (1 of 3)

| AREA | AREA | NUMBER OF NODES |TIME]

| TREE 1 | TREE 2 |PIXELS| ACRES | GRAY|BLACK|wHITE|SECS|
| f.center| t.l | 28446/4039.33| 1672| 23941 2623 5.0}
| £f.center| t.2 | 1281| 181.90| .798{ 780| 1e6l15| 2.6l
| f.center| t.3 | ol 0.00} ol ol 1] 0.1
| £.center| t.4 | ol 0.00l ol ol 1| 0.0|
| £f.center| t.5 | ol 0.00| ol ol 1| 0.0l
| £.center| t.6 | ol 0.00] ol ol 1l o.o0l
| £f.center| t.7 i ol 0.00| ol ol 1{ 0.0l
|£f.center| t.8 | ol o0.00| of ol 1| o.ol
| £f.center| t.9 | ol 0.00] ol ol 1| 0.0}
|t.centerli t.l0 | ol 0.00| ol ol 1| 0.0l
| £f.center| t.ll1 | ol 0.00| ol ol 1] 0.0}
| £f.center|l 1l.acc | 1472| 209.02| 2231 278l 392| 0.71
| £f.center| 1l.acp | 1521 21.5%| 72| 66| 149| 0.3}
|f.center{ 1l.ar | ol 0.00] ol ol 1{ 0.0}
| £.center| 1.are | ol 0.00} ol ol 1l 0.0l
) £.centerl 1l.avf | 5869| 833.40| 1225| 1555| 21211 4.0l
| £f.center] 1l.avv | 1137611615.39| 1277| 1653| 2179| 4.1|
| £f.center| 1i.bbr | 4321 e6l1.34| 134| 153| 250| 0.4l
| £.center| 1l.beq | 229| 32.52| 88} 97 168} 0.3|
| £f.center| 1l.bes | 147] 20.871 48| 511 94| 0.11
| f.center| 1l.bt | 132] 18.74| 46| s1l 88l 0.1}
|£.centeri{ 1l.fo | 469| 66.60f 166l 178 321| 0.5|
|f.centerl 1l.lr | 905| 128.51] 3541 416| 647] 1.0|
| f.center| 1l.r | 46| 6.531 42| 34| 93| 0.1}
| £f.centerl 1l.ucb | ol 0.00]| ol ol 1l 0.0l
| £f.center| 1l.ucc | 3 0.43] 13| 3| 371 0.1}
|£.center|l 1l.ucr | ol 0.00| 0l ol 1| 0.0}
| £f.center| 1l.ucw | o} 0.00] ol ol 1| 0.0l
|f.center| 1l.ues | 1286| 182.611 2751 3351 491 1.0l
| £f.center| 1l.uil | ol 0.00| ol ol 1l 0.0l
| f.center| 1l.uis | 107] 10.65]| 35| 38| 68| 0.11
| f.center| 1l.uiw | ol 0.00] ol ol 1l o.0l
| £ .center| 1l.unk | ol 0.00| ol (o]] 1l 0.0}
| £.center| 1l.uoc | ol 0.00} ol ol 1| 0.0l
| f.center| 1l.uog | ol 6.00| ol ol 1| 0.0}
| £ .center| 1l.uoo | 751 10.65} 31| 331 61| 0.1}
i f.center| 1l.uop | 184 20.13| 47| 55| 871 0.21
| £.center| 1l.uov | ol 0.00| ol (o] 1|l 0.0}
| f.center| 1l.urh | 201 2.84| 19| 11} 47| 0.1}
|f.center} 1l.urs | 2180| 309.56) 817] 935| 1517} 2.5|
| f.center| 1l.uus | 249| 35.36l 65| 721 124 0.2}
| £.center| 1l.uut | 224 31.81| 771 83| 149| 0.3|
| £f.center|i 1l.vv | 108| 15.34} 3ul 39| 76! 0.2}
|£.center| 1l.wo | 66l| 93.80| 121| 139| 2251 0.3}
|f.center| 1l.ws | 3401| 482.94| 1170] 1l46l| 2030| 3.4|
| £f.center| 1l.wwp | ol 0.00]| ol ol i1l 0.0l

PP
TR TN PRI PP)

et Sttt s B

| AREA |
| PIXELS| ACRES |

INTERSECTION SVATISTICS

AREA |

39071 554.79]
1432 199.¢8]

58l |
ol

82 .50|
0.00|

16358}2322.84]
20268|2880.90|

432|
229
114}
88|
381
913
25|
ol
139|
769 |
305]
1404]
3711
627|
ol

ol

ol

ol
490|
148|
ol
126!
3851
261 |
938 |
108}
661 |
3402|
ol

6l .34
32.52|
15.19]
12.50]|
54.10|

129.65]

3.55|
¢.00|
19.74|

109 .20}

43.311

199.37]

52.68|
89 .031
0.00|
0.00|
0.00|
0.00|
69 .58|
21 .02|
G .00}
17.89]

546 .84 |

37.006}

133.20|

15 .34}
93 .80|

483 .081

.00}

- Y f A
. TP TP P PR P I

R e VI SO S U N T
B R T . . B I U e S S

1071
50|
ol
32|

1336|

74|
314|
38|
121

1168|

ol

- - - - - - S S G D D @ T P (IS D S WD s D G S G TS G R G G S G G S G S G i G e G S T S S G D D S S S

NUMBER OF NODES |TIME|
GKAY | BLACK | WHITE | SECS |

- D D D D R D S S S WD G S G G G G S o WD @ D G e G o G G S G D - S W S e A

844 1125}
490| 7351
2031 290}
ol 1
2972} 3350}
2984| 3557|
153, 250|
97| 1le8|
54| 103}
37| 66|
1é68| 328l
424| 654|
25| 90|
ol 1
58| 102|
223} 315}
140] 197,
447| 598|
101 167|
204| 328|
ol 1

ol 1l

ol 1

ol 1
121| 201|
58| 93|
ol 1)
33| 64/
15081" 2501 |
8l 142|
359| 584|
39| 761
139 225]
1482| 2023|
ol 1]

obbiroNMOFONWOOOOLWWOWNNOKF UM

OCWOoOOFOPOOOOOOOOOOHFOOOOOKFOO

151

INTERSECTIOIW STATISTICS
(3 of 3)

| | | AREA | AKEA | NUMBER OF NODES |TIME|
| TREE 1 | TREE 2 |PIXELS| ACRES | GRAY|BLACKIWHITE|SECS|

2434| 345.63] 5061 e6le] 903| 1.5
1285211824 .96] 17501 2412| 28391 5.5|
3401 48.28| 1301 1301 261| 0.4l
152} 21.38| 22| 26) 71} 0.1}

. l.avf 6716 953.67| 1163| 1469| 2021| 3.8|
. 1.avv 7922|1124.92| 1535| 1886| 2720| 4.9|
. 1.bbr ol 0.00]| ol ol 1] 0.0}
. 1l.beg ol 0.00| ol ol 1| o.ol
. l.bes

I

|

i

|

|

|

'.

[33| 4.69| 251 21| 55| 0.11)

| 941| 133.62| 228| 257 428! 0.7| .

| 1009| 143.28] 3451 394] e642] 1.0}

| 35i 4.97| 42| 29| 98| 0.2|

| 2209| 313.671 4431 571 759| 1.4|

| 249) 35.36| 62} 69| 118l 0.2|

| 879 124.821 172f 183] 334} 0.5

| 749| 106.361 1791 224| 314| 0.6l

| ol 0.00| ol ol 1] 0.0}
l.ues ‘ 224 31.81| 106| 113| 206l 0.3|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

i

|

51| 7 .24| 37| 33| 791 0.1|
415 58.93] 137) 151} 2e1l
16l1| 22.86l 69| 71| 1371
660| 93.72| 99| 1261 172|
282 40.04| 46| 571 82|
7651 108.63] 1401 195| 226|
ol 0.00| ol ol 11
651 9.23| 51| 321 122}
171 24.28| 571 72} 100]|
41| 5.821 28| 201 65!
15811(2245.161 2079| 2866| 3372}
ol 0.00] ol ol 1)

L) L d L L d .&

ettt tretrttrttetttet ettt ettt ettt
NNNNNNNNNNNNNNNNN.&!NNNNNNNNNNNNNNNNI\)

DNWOoOOUVORFRNNOR W

OCCOOrOO0OOO0O0OO00O0OO

. 1l.uut 98l 139.301 491| 5701 904l 1.
. l.vv ol 0.00| ol ol 1| 0.
. 1.wo ol 0.00}| ol ol 1] o.
. l.ws 71 0.99| 29| 71 81l O.
: . 1.wwp 1181 16.76| 63| 55| 135| 0.

« 2 2 PTYTR T AT T
s S
P R T R RTARS
. ; B N

2%

1M

47
o

'o".'ur-:n-‘.‘:"-

PERART 3

152

TABLE 5.12. QUADTREE TRUNCATION STATISTICS FOR EACH MAP

N | DEPTH | LANDUSE MAP | TOPOGRAPHY MAP| FLOODPLAIN MAP|
- | OF | NUM OF| & RE- | NUM OF| § RE- | NUM OF| & RE- |

| TREE | NODES | DUCED | NODES | DUCED | NODES | DUCED |

i 10 | 38233 | 00.00 | 33349 | 00.00 | 6941 | 00.00 |
3 | 9 | 22089 | 44.22 | 18517 | 44.47 | 4473 | 35.55 |
& i & | 9489 | 75.18 | 7473 | 77.59 | 2297 | 66.91 |
- | 7 | 3341 | 91.26 | 2537 | 92.39 | 1093 | 84.26 |
B | 6 I 1057 | 97.23 | 833 | 97.50 | 529 | 92.38 |
c | 5 | 309 | 99.19 | 296 | 99.19 | 213 | 96.94 |
N | a4 | 5] 99.78 1 771 99.77 1 77 | 98.89 |
. | 3 | 21 | 99.95 | 21 | 99.94 | 21 | 99.70 |
8 o2 5 | 99.99 | 51 99.99 | 5| 99.93 |
- | 1 | 1| 99.99 | 1] 99.99 | 1 | 99.99 |

- - - - . . e Y e T N * - . - . '.‘-‘\,‘y'-. .~'\
P T P R R A R e e ., R L e e L =l e PR VA S O PRT - O |

- 153

o 6. Bibliography on quadtrees

1. Rutovitz, D. Data structures for operations on digital
T images, in Pictorial Pattern Recognition, G.C. Cheng et
o al., Eds., Thompson Book Co., Washington, DC, 1968,
2 105-133.

s 2, Freeman, H. Computer processing of line-drawing
" images, ACM Computing Surveys, 1974, 6, 57-97.

3. Ballard, D.H. Strip trees: a hierarchical representa-
tion for curves, Communications of the ACM, 1981, 24,
310 - 321.

4. Blum, H. A transformation for extracting new descrip-
tors of shape, in W. Wathen-Dunn, Ed., Models for the
o Perception of Speech and Visual Form, M.I.T. Press,

5. pPfaltz, J.L. & Rosenfeld, A. Coméuter representation
i of planar regions by their skeletons, Commun1cat1ons of
Eﬂ the ACM, 1967, 10, 119-122.

6. Finkel, R.A. & Bentley, J.L. Quad trees: a data
structure for retrieval on composite keys, Acta Infor-
matica 4, 1-9.

7. Samet, H. Deletion in two-dimensional quad trees, Com-
munications of the ACM, 1980, 23, 703-710.

- 8. Lee, D.T. & Wong, C.K. Worst-case analysis for region
i and partial region searches in multidimensional binary
search trees and balanced quad trees, Acta Informatica
1977' 20 23"29.

9. Bentley, J.L. Multidimensional binary search trees
- used for associative searching, Communications of the
"---‘,: ACM' 1975' 18' 509-517.

- 10. Eastman, C.M. Representations for space planning, Com-
- munications of the ACM, 1970, 13, 242-250.

> 11. Warnock, J.E. A hidden surface algorithm for computer
b generated half tone pictures, Computer Science Depart-
i ment, TR 4-15, University of Utah, June 1969.

12. Sutherland, I.E., Sproull, R.F., & Schumacker, R.A. A
characterization of ten hidden-surface algorithms, ACM
Computing Surveys 1974, 6, 1-55.

e 13. Newman, W.M. & Sproull, R.F. Principles of Interactive
= Computer Graphics, Second Edition, Mc-Graw Hill, New
:-:': Yot ’ 1;71 .

o

b
)
¥
v
3

L4 "“_‘z
k]

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

........................

154

Klinger, A. Patterns and search statistics, in Optim-
izin Methods in statistics, J.S. Rustagi,” Ed.,
Academic Press, New York, 1971.

Klinger, A. & Dyer, C.R., Experiments in picture
representation using regular decomposition, Computer
Graphics and Image Processing, 1976, 5, 68-105.

Tanimoto, S.L. & Pavlidis, T. A hierarchical data
structure for image processing, Computer Graphics and
Image Processing, 1976, 4, 104-119.

Tanimoto, S.L. Pictorial feature distortion in a
pyramid, Computer Graphics and Image Processing, 1976,
§, 333-3520

Riseman, E.M. & Arbib, M.A. Computational techniques
in the visual segmentation of static scenes, Computer
Graphics and Image Processing, 1976, 6, 221-276.

Klinger, A. & Rhodes, M.L. Organization and access of
image data by areas, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1979, 1, 50~60.

Alexandridis, N. & Klinger, A. Picture decomposition,
tree data-structures, and identifying directional sym-
metries as node combinations, Computer Graphics and
Image Processing, 1978, 8, 43-77.

Hunter, G.M. Efficient computation and data structures
for graphics, Ph.D. dissertation, Department of
Electrical Engineering and Computer Science, Princeton
University, Princeton, NJ, 1978,

Hunter, G.M. & Steiglitz, K. Operations on images
using quadtrees, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1979, 1, 145-153.

Shneier, M. Calculations of geometric properties using
quadtrees, Computer Graphics and 1Image Processing,
1981, 16, 296-302.

Hunter, G.M. & Steiglitz, K. Linear transformation of
pictures represented by quadtrees, Computer Graphics
and Image Processing, 1979, 10, 289-296.

Reddy, D.R. & Rubin, 8. Representation of three-
dimensional objects, CMU-CS- 78-113, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, April 1978.

Jackins, C.L. & Tanimoto, S.L. Oct-trees and their use
in representing three-~-dimensional objects, Computer
Graphics and Image Processing, 1980, 14, 249-270.

JPLET S I Y

ey

rrrr{ -y AZBAS e
AR AP PN RS S
St ‘.. L

[pbaa)

W

O LA

L% 2R
P

[N

» L 2 wye ¢ v

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

155

Meagher, D.J.R. Octree encoding, a new technique for
the representation, manipulation, and display of arbi-
trary 3-4 objects by computer, Rensselaer Polytechnic
Institute, TR 8G- 111, Troy, New York, 1980.

Srihari, S.N. & Yau, M. A hierarchical data structure
for multidimensional digital images, Department of Com-
puter Science Technical Report Number 185, State
University of New York at Buffalo, Buffalo, New York,
August 1981.

Samet, H. Region representation: quadtrees from
binary arrays, Computer Graphics and Image Processing,
1980, 13, 88-93.

Samet, H. An algorithm for converting rasters to quad-
trees, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1981, 3, 93-95.

Samet, H. Algorithms for the conversion of quadtrees
to rasters, Computer Science TR-979, University of
Maryland, College Park, MD, November 1980.

Samet, H. Region representation: quadtrees from boun-
dary codes, Communications of the ACM, 1980, 23, 163-
170.

Dyer, C.R., Rosenfeld, A., & Samet, H. Region
representation: boundary codes from quadtrees, Commun-
ications of the ACM, 1980, 23, 171-179.

Samet, H. Connected component labeling wusing quad-
trees, Journal of the ACM, 1981, 28, 487-501.

Samet, H. Computing perimeters of images represented
by quadtrees, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1981, 3, 683-687,

Dyer, C.R. Computing the Euler number of an image from
its quadtree, Computer Graphics and Image Processing,
1980, 13, 270-276.

Samet, H. Distance transform for images represented by
quadtrees, IEEE Transactions on Pattern Analysis and
Machine Intelllgence, 1982, 4, 298-303.

Shneier, M. Path-length distances for quadtrees,
Information Sciences, 1981, 23, 49-67.

Ranade, S., Rosenfeld, A., & Samet, H. Shape approxi-
mation using quadtrees, Pattern Recognition, 1982, 15,
31-40.

:i 156

40. Ranade, S. Use of quadtrees for edge enhancement, IEEE
Transactions on Systems, Man, and Cybernetics, 1981,

41. Ranade, S., Rosenfeld, A., & Prewitt, J.M.S. Use of
quadtrees for image segmentation, Computer Science TR-
878, University of Maryland, College Park, MD, February
1980.

42, Wu, A.Y., Hong, T.H., & Rosenfeld, A. Threshold selec~
tion using quadtrees, IEEE Transactions on Pattern
Analysis and Machine Intelligence 1982, 4 90-94.

43. Ranade, S. & Shneier, M. Using quadtrees to smooth
images, Computer Science TR-894, IEEE Transactions on
- Systems, Man, and Cybernetics, 1981, il, 373-376.

44. Samet, H. Neighbor finding techniques for images
represented by quadtrees, Computer Graphics and Image
Processing, 1982, 18, 37-57.

45. Rosenfeld, A. & Kak, A.C. Digital Picture Processing,
Academic Press, New York, 1976.

46. Samet, H. A quadtree medial axis transform, Computer
Science TR-803, University of Maryland, College Park,
MD, August 1979, to appear in Communications of the
ACM.

47. Jackins, C. & Tanimoto, S.L. Quad-trees, oct-trees,
and K-~trees: a generalized approach to recursive
decomposition of euclidean space,, Department of Com-
puter Science Technical Report 82-02-02, University of
Washington, Seattle, 1982.

48. Dyer, C.R. Space efficiency of region representation
by quadtrees, KSL 46, Department of Information
Engineering, University of Illinois at Chicago Circle,
Chicago, IL, March 1980.

49. Grosky, W.1. & Jain, R. Optimal quadtrees for image
segments, Intelligent Systems Laboratory, CSC-81-010,
Computer Science Department, Wayne State University,
Detroit, MI, December 1980,

50. Li, M., Grosky, W.I., & Jain, R. Normalized quadtrees

with respect to translations, Proceedings of PRIP 81,
Dallas, Texas, August 1981, 60-62.

51. Jones, L. & lyengar, S.S. Representation of regions as
a forest of quadtrees, Proceedings of PRIP 81, Dallas,
Texas, August 1981, 57-59,

---------- AR I PN IR NP A R I I P L W N N T AL N N T I N N P VS S LU P |

L ———— v - i it S LS gl Shalh S S) Py TV TR T W e W W T W T w T m s e e T T, 3T w w s e - ,]

157

Gargantini, I. An efficient way to represent quad-
trees, University of Western Ontario, 1981.

Kawaguchi, E., Endo, T., & Matsunaga, J. DF-expression
viewed from digital picture processing, Department of
Information Systems, Kyushu University, Japan, 1982,

Gibson, L. & Lucas, D. Spatial data processing using
generalized balanced ternary, Proceedings of PRIP 82,
Las Vegas, Nevada, June 1982, 566-571.

Ahuja, N. Approaches to recusive image decomposition,
Proceedings of PRIP 81, Dallas, Texas,. August, 1981,

Samet, H. & Webber, R.E. On encoding boundaries with
quadtrees, Computer Science TR-1162, University of
Maryland, College Park, MD, February 1982,

-
s

F 2l N
Al b

e
NN

A

ey, veovae vy

Y LR
i;’..

TITUR TV oy

R SRS

e rr- e ey aE e £
SRR AR P T e

e R A VA I, PP S RPN

158

Conclusions and future plans

2
7.1. Conclusions

This project gave a firm empirical basis to much of the
theoretical analysis previously undertaken for quadtrees
both as to their structure and their algorithmic efficien-
cies. In particular, the following conclusions should be
noted:

(1) Errors in the calculations of properties encoded by
quadtrees (e.g., areas and perimeters of various land
use classes) are due entirely to errors introduced by
the original digitization. No new errors are introduced
by quadtree manipulation.

(2) significant reductions in file size are achieved when
an image 1is converted from a binary array representa-
tion to a quadtree representation. This is true for
both the multicolored and black/white cases.

(3) The block decomposition of the image resulting from the
quadtree representations yields major increases in
display speed.

(4) Truncation of quadtrees can be used to generate reason-
able image approximations that are consistently more
compact.

(5) Quadtree algorithms are easy to implement in structured
programming languages (e.g., C).

(6) Nexghbor finding was found to require visiting 3.5
nodes on the average for each instantiation. This was
even better than what was expected theoretically.

(7) Ropes (an alternative neighbor finding technique) were
found to be not worth the added expense of extra
storage.

(8) Set operations such as union and intersection are effi-
cient and can be wused to extract information from
images containing different properties.

It should also be noted (in conjunction with (3) and (4)
above) that quadtrees could be used effectively in image
transmission, enabling the viewer to recieve a very compact
approximation of the image followed by a series of modifica-
tions that render the image increasingly more precise.

7.2. Future plans

The first phase of this project has dealt with digiti-
zation of a government-furnished geographic database and its

.............................

S BN Ay M ST LT
v N - - - . Al e & s


~~~~~~~~~~~
..........................

159

representation in quadtree form; and with development of
algorithms for basic operations on quadtree-represented
regions (set-theoretic operations, point-in-region determi-
nation, region property computation; submap generation). The
efficiency of these algorithms was studied theoretically and
‘experimentally.

The following tasks are planned for the second phase:

(a) Query language. Design of a high-level query language
permitting easy interaction with the database by users,
thus making the quadtree representation transparent to
the users.

(b) Database updating. Develpment of algorithms for addi-
tion, deletion, and editing of data items in a
quadtree-encoded database.

(c) Point and linear feature data. Quadtree-like data
structures will also be used for the storage,
retrieval, and editing of point geographic data. Algor-
ithms will be incorporated for performing these func-
tions and for interfacing between tree representations
of point and area data. Recently, quadtree-like data
structures have been developed for representing region
borders and curves. The interface between these struc-
tures and the tree representations of points and
regions will be investigated.




8. Appendix: Facilities used

Two computers produced by the Digital Equipment Cor-
poration are used by this project. Program development and
small-scale testing are performed on a PDP 11/45. Our PDP
11/45 has a 256k bytes of actual memory of which only 64k
bytes are directly addressable, no virtual memory capabili-
ties, a disk fetch speed of 1.2 megabits/second, and a
memory cycle speed of approximately 500 microseconds. The
execution times in the tables of this report refer to the
execution speed on the VAX 11/780. The VAX 11/780 has 2000k
bytes of actual memory, 6000k bytes of virtual memory, a
disk fetch speed of approximately 0.6 megabits/second, and
a memory cycle speed of approximately 1400 nanoseconds.
The size of a quadtree node is 12 bytes on the PDP 11/45
and 24 bytes on the VAX 11/780. This difference is caused
by the different word size on each machine. Both the PDP
11/45 and the VAX 11/780 run the UNIX operation system
(versions 6 and 7 respectively).

The picture output device used by this project is a
Grinnell GMR-27 Display Processor. Its memory consists of
thirteen 512x512 bitplanes. Twelve of these bitplanes carry
color information (4 bits for each of the colors: blue,
green, and red). The thirteenth bitplane is used for a
white overlay capability. The high order eight bitplanes of
the twelve color bitplanes can also be displayed to create a
grayscale output. The output speed of quadtrees on this
device is considerably faster than a raster scan output of a
picture file, because the GMR-27 can output a rectangle on
the display screen directly from the rectangle’s coordinates
(i.e., a separate command is not necessary for each pixel in
the rectangle as is done when a picture file is output in
raster scan mode). .

As our display device is connected to a computer with
restricted memory (see Appendix), we will, in addition to
the above, be investigating more compact in-core representa-
tions and the effect of user-controlled paging on algorithm
efficiencies. This will be done in conjunction with the
development of a quadtree editor (which requires interactive
use of display device).

.........................

R
e







