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PREFACE

This report was produced under contract DAAK7O-81-C-
0059/P00007. The report was prepared for the U.S. Army
Engineer Topographic Laboratories (ETL), Ft. Belvoir, Vir-
ginia 22060. The Contracting officer's Representative was
Joseph Rastatter.

* This report was prepared by Azriel Rosenfeld, Hanan
pSamet, Cliff Shaffer, and Robert Webber.
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SUMMARY

This document is the final report for an investigation
of the application of hierarchical data structures to geo-
graphical information systems, under Department of the Army
Contract DAAK70-81-C-0059/P00007. The purposes of this
investigation were twofold: (1) to construct a geographic
information system based on the quadtree hierarchical data
structure, and (2) to gather statistics to allow the evalua-
tion of the usefulness of this approach to geographic infor-
mation system organization. To accomplish the above objec-
tives, a database was built that contained three maps sup-
plied under the terms of the contract. These maps described

the flood plain, elevation contours, and landuse classes of

a region in California.

--I This study report presents the results of the prelim-
inary investigation. It includes analysis of the merits and
deficiencies of the various approaches, and provides recom-
mendations for further research.

. . .



iv

TABLE OF CONTENTS

page

1. Introduction .................. ........ 1

2. Tutorial on quadtrees ......................... 1

3. Database, digitization, and editing ...... 15

74

4. Quadtree encoding ................................

5. Region analysis and manipulation .............. 94

6. Bibliography on quadtrees 153

7. Conclusions anu plans ......................... 158

Appendix: Facilities used ................. 160
• oo oooo oooo oooo oooe qo

,1

I-



• V
IA

FIGURES

page

Figure 2.1. A region, its maximal blocks, and the corresponding
quadtree. Blocks in the region are shaded, background
blocks are blank. Horizontal lines indicate ropes..... 2

2.2. Adjacency tree for the western neighbor of node 16
in Figure 2.1 .......................................... 6

2.3. Sample pair of blocks illustrating border following .... 6
2.4. Blocks M and N ending at a common corner ............... 6
2.5. Possible configurations of blocks that meet at

and surround a common point ................ 12

* 3.1. Land use classes ..... ............... 16

3.2. Elevation contours ........................ 17
3.3. Flood plain boundaries ................... 18
3.4. The 19 components of the land-use class ACC ......... 20

3.5. The 13 components of the land-use class ACP ......... 0. 21
3.6. The 5 components of the land-use class AR .............. 22
3.7. The 1 component of the land-use class ARE .............. 23
3.8. The 31 components of the land-use class AVF ............ 24
3.9. The 41 components of the land-use class AVV ............ 25
3.10. The 2 components of the land-use class BBR ............. 26
3.11. The 1 component of the land-use class BEQ .............. 27
3.12. The 1 component of the land-use class BES .............. 28

3.13. The 4 components of the land-use class BT .............. 29
3.14. The 5 components of the land-use class FO .............. 30
3.15. The 4 components of the land-use class LR .............. 31
3.16. The 5 components of the land-use class R ............... 32
3.17. The 2 components of the land-use class UCB ............. 33
3.18. The 6 components of the land-use class UCC ............. 34

3.19. The 4 components of the land-use class UCR ............. 35
3.20. The 2 components of the land-use class UCW ............. 36
3.21. The 2 components of the land-use class UES ............. 37
3.22. The 2 components of the land-use class UIL ............. 38
3.23. The 8 components of the land-use class UIS ............. 39
3.24. The 2 components of the land-use class UIW ............. 40

3.25. The 10 components of the land-use class UNK ............ 41
3.26. The 1 component of the land-use class UOC .............. 42
3.27. The 1 component of the land-use class UOG .............. 43
3.28. The 3 components of the land-use class UOO ............. 44
3.29. The 2 components of the land-use class UOP ............. 45
3.30. The 2 components of the land-use class UOV ............. 46
3.31. The 2 components of the land-use cliss URH ............. 47
3.32. The 24 components of the land-use class URS .. o......... 48
3.33. The 2 components of the land-use class UUS ..........o.. 49

-* 3.34. The 3 components of the land-use class UUT ............. 50
3.35. The 1 component of the land-use class VV ............... 51
3.36. The 2 components of the land-use class WO .............. 52
3.37. The 1 component of the land-use class WS ............... 53
3.38. The 6 components of the land-use class WWP ............. 54
3.39. The 1 component of the 1st elevation level

~~~( 0 - 1 0 0 f t .) ...... . . . . . . . . . . . . . . . . 5 5

3.40. The 21 components of the 2nd elevation level
.(100 -.200 ft.) ................. 56



vi

FIGURES

page

Figure 3.41. The 17 components of the 3rd elevation level
(200 - 300 ft.) ..................................... 57

3.42. The 13 components of the 4th elevation level
(300 - 400 ft.) ..................................... 58

3.43. The 7 components of the 5th elevation level
(400 - 500 ft.) ..................................... 59

3.44. The 12 components of the 6th elevation level
(500 - 600 ft.) ..................................... 60

3.45. The 5 components of the 7th elevation level
(600 - 700 ft.) ..................................... 61

3.46. The 6 components of the 8th elevation level
(700 - 800 ft.) ..................................... 62

3.47. The 6 components of the 9th elevation level
(800 - 900 ft.) ..................................... 63

3.48. The 4 components of the 10th elevation level
(900 - 1000 ft.) .................................... 64

3.49. The 2 components of the llth elevation level
(1000 - 1100 ft.) ................................... 65

3.50. The 3 components of the flood-plain map ................ 66
5.1. Result of executing UNION on the flood.center

region of the flood-plain map and the 7th
elevation level (600 - 700 ft. elevation) of
the topography map ..................................... 103 -

5.2. Result of executing INTERSECTION on the entire
land-use map and the complement of the 5th
elevation level (400 - 500 ft. elevation) of the
topography map ......................................... 104

5.3. Result of executing INTERSECTION on the 1st
elevation level (0 - 100 ft. elevation) of the
topography map, the flood.center region of the
flood-plain map, and the entire land-use map ........... 105

5.4. Result of executing QDISPLAY on flood.center of
the flood-plain map using 10 levels .................... 108

5.5. Result of executing QDISPLAY on flood.center of
the flood-plain map using 9 levels ..................... 109

5.6. Result of executing QDISPLAY on flood.center of
the flood-plain map using 8 levels .................... 10

* 5.7. Result of executing QDISPLAY on flood.center of
the flood-plain map using 7 levels ..................... 111

5.8. Result of executing QDISPLAY on flood.center of
* the flood-plain map using 6 levels ..................... 112

-. . - . . ... - . . -, . . •-



vii

TABLES

page

Table 4.1. QUADTREE BUILDING STATISTICS FOR LANDUSE MAP ............ 88
4.2. QUADTREE BUILDING STATISTICS FOR TOPOGRAPHY MAP ......... 89

4.3. QUADTREE BUILDING STATISTICS FOR FLOODPLAIN MAP ......... 90
4.4. LANDUSE CONNECTED COMPONENT RESULTS ..................... 91
4.5. TOPOGRAPHY CONNECTED COMPONENT RESULTS .................. 92

4 6. FLOODPLAIN CONNECTED COMPONENT RESULTS .................. 93
5.1. AREA RESULTS FOR LANDUSE POLYGONS IN FIGURE 5.3 ......... 106
5.2. LANDUSE AREA RESULTS .............................. 125

5.3. TOPOGRAPHY AREA RESULTS ................................. 130

5.4. FLOODPLAIN AREA RESULTS ................................. 132
5.5. LANDUSEREGIONPROPERTYRESULTS ..................... ... 133
5.6. TOPOGRAPHY REGION PROPERTY RESULTS ...................... 138
5.7. LANDUSE REGIONPROPERTY RESULTS ........................ 140
5.8. LANDUSE WINDOW RESULTS .................................. 141

5.9. TOPOGRAPHY WINDOW RESULTS ............ ................ 146

5.10. FLOODPLAIN WINDOW RESULTS ............................... 148
5. 11. INTERSECTION STATISTICS ............................. 149
5.12. QUADTREE TRUNCATION STATISTICS FOR EACH MAP ............. 152



viii

ALGORITHMS

page

Algorithm 3.1i FIXPIX ....... . ........ 69 ,

3.2 LINERM ......................... 70

3.3 MKBIN o.*...*........ ...... *.......... 71
3.4 RELABEL ...... ................ ........... 73
4.1 PRIMITIVE ................................. 78

4.2 QCONCOM ................................... 81

4.3 R2Q ....................... .. .. . ........ 83 .

5.1 NDCOUNT ... ... .... . ..... ... .............. 96

5.2 AREA . .... . ..................... 117
5.3 HANDW e .................. 98

5.4 PERIMETER ................. 99
5.5 PT2 POLY *.,...............113"
5.6 WINDOW ....... *........114
5.7 INTERSECTION ................ 117

5.8 UNION ....... ............................. 18
5.9 QMASK ......... *............... ........ 119
5. 10 QDISPLAY .................................. 120

... . . ..



1I

. introduction

This project is concerned with the applicability of a
class cf hierarchical data structures, known as "quadtrees",
to the representation of cartographic data. Section 2
presents a tutorial on quadtree data structures. Section 3
describes the database used, and the process of digitizing
and editing it. Section 4 describes the process of quadtree
encoding of the data, including algorithms and
space/time/acreage tables. Section 5 discusses region
analysis and manipulations using quadtrees, including algor-
ithms and tables (time, etc.). The algorithms implemented
include set theoretic operations on regions, point-in-region
determination, region property measurement, and construction

" of submaps and merged maps. Section 6 presents a bibliogra-
phy on quadtrees. The facilities used on the project are
described in the Appindix.

o. 2. Tutorial on guadtrees

2.1. Introduction

In Rur discHssion we assume that a region is a subset
of a 2 by 2 array which is viewed as being composed of
unit-square pixels. The most common region representations
used in image processing are the binary array and the run
length representation [1]. The binary array represents

. region pixels by l's and non-region .-ixels by 0's. The run
length representation represents each row of the binary
array as a sequence of runs of l's alternating with runs of
O's.

Boundaries of regions are often specified as a sequence
of unit vectors in the principal directions. This represen-
tation is tesmed a chain code [2]. For example, letting i
represent 90 * i (i-0,1,2,3), we have the following sequence
as the chain code for the region in Figure 2.1a:

0302352312330325160101030101

*Note that this is a clockwise code which starts at the left-
* most of the uppermost border points. Chain codes yield a

compact representation; however, they are somewhat incon-
venient for performing operations such as set union and
intersection. For an alternative boundary representation
see the strip trees of Ballard [3].

Regions can also be represented by a collection of max-
imal blocks that are contained in the given region. One
such trivial representation is the run length where the
blocks are 1 by m rectangles. A more general representation
treats the region as a union of maximal blocks (of l's) of a
given shape. The medial axis transform (MAT) [4,5] is the
set of points serving as centers of these blocks and their

* * .
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Figure 2.1. A region, its maximal blocks, and the corresponding
quadtree. Blocks in the region are shaded, background
blocks are blank. Horizontal lines indicate ropes.
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corresponding radii.

The quadtree is a maximal block representation in which

the blocks have standard sizes and positions (i.e., powers
of two). It is an approach to region representation which
is based on the successive subdivision of an image array
into quadrants. If the array does not consist entirely of
los or entirely of 0s, then we subdivide it into quadrants,
subquadrants,... until we obtain blocks (possibly single
pixels) that consist of l's or of Os, i.e., they are
entirely contained in the region or entirely disjoint from
it. This process is represented by a tree of out degree 4
(i.e., each non-leaf node has four sons) in which the root
node represents the entire array. The four sons of the root
node represent the quadrants (labeled in order NW, NE, SW,
SE), and the leaf nodes correspond to those blocks of the
array for which no further subdivision is necessary. Leaf
nodes are said to be "black" or "white" depending on whether
their corresponding blocks are entirely within or outside of
the region respectively. All non-leaf nodes are said to be

n n"gray". Since the array was assumed to be, 2 by 2 , the
tree height is at most n. As an example, Figure 2.1b is a
block decomposition of the region in Figure 2.1a while Fig-
ure 2.1c is the corresponding quadtree. Each quadtree node
is implemented, storage-wise, as a record with six fields.
Five fields contain pointers to the four sons and the father
of a node. The sixth field contains type information such
as color, etc. Note that the quadtree representation dis-
cussed here should not be confused with the quadtree
representation of two-dimensional point space data intro-

* duced by Finkel and Bentley [6] and also discussed in [7,8]
and improved upon in [91.

The quadtree method of region representation is based
on a regular decomposition. It has been employed in the
domains of computer graphics, scene analysis, architectural
design [10), and pattern recognition. In particular,
Warnock's [10-131 algorithm for hidden surface elimination
is based on such a principle--i.e., it successively subdi-
vides the picture into smaller and smaller squares in the

process of searching for areas to be displayed. Application
. of the quadtree to image representation was proposed by
. Klinger [14] and further elaborated upon in [15-20]. It is

relatively compact [15] and is well suited to operations
such as union and intersection [21-23], and detecting vari-
ous region properties [15,21,22, 24]. Hunter's Ph.D. thesis
[21,22,24], in the domain of computer graphics, develops a
variety of algorithms (including linear transformations) for
the manipulation of a quadtree region representation. In
[25-271 variations of the quadtree are applied in three
dimensions to represent solid objects and in [28] to more
dimensions.

There has been much work recently on the

4°
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interchangeability between the quadtree and other tradi-
tional methods of region representation. Algorithms have
been developed for converting a binary array to a quadtree
[29), run lengths to a quadtree [30] and a quadtree to run
lengths [31], as well as boundary codes to a quadtree [32)
and a quadtree to boundary codes (331. Work has also been
done in computing geometric properties such as connected
component labeling [341, perimeter (35], Euler number [36],
areas and moments [23], as well as a distance transform
[37,38]. In addition, the quadtree has been used in image
processing applications such as shape approximation (39],
edge enhancement [40], image segmentation [411, threshold
selection [42], and smoothing [43].

2.2. Preliminaries

In the quadtree representation, by virtue of its tree-
like nature, most operations are carried out by techniques
which traverse the tree. In fact, many of the operations
that we describe can be characterized as having two basic
steps. The first step either traverses the quadtree in a
specified order or constructs a quadtree. The second step
performs a computation at each node which often makes use of
its neighboring nodes, i.e., nodes representing image blocks
that are adjacent to the given ncde's block. For examples,
see [30-38). Frequently, these two steps are performed in
parallel.

In general, it is preferable to avoid having to use
position (i.e., coordinates) and size information when mak-
ing relative transitions (i.e., locating neighboring nodes)
in the quadtree since they involve computation (rather than
simply chasing links) and are clumsy when adjacent blocks
are of different sizes (e.g., when a neighboring block is
larger). Similarly, we do not assume that there are links
from a node to its neighbors, because we do not want to use
links in excess of four links from a non-leaf node to its
sons and the link from a non-root node to its father. Such
techniques, described in (44], are used in [30-38] and
result in algorithms that only make use of the existing
structure of the tree. This is in contrast with the methods
of Klinger and Rhodes (19) which make use of size and posi-
tion information, and those of Hunter and Steiglitz [21,
22,24) which locate neighobrs through the use of explicit
links (termed nets and ropes).

Locating neighbors in a given direction is quite
straightforward. Given a node corresponding to a specific
block in the image, its neighbor in a particular direction
(horizontal or vertical) is determined by locating a common
ancestor. For example, if we want to find an eastern neigh-
bor, the common ancestor is the first ancestor node which is
reached via its NW or SW son. Next, we retrace the path
from the common ancestor, but making mirror image moves
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about the appropriate axis, e.g., to find an eastern or
western neighbor, the mirror images of NE and SE are NW and
SW, respectively. For example, the eastern neighbor of node
32 in Figure 2.1c is node 33. It is located by ascending
the tree until the common ancestor, H, is found. This
requires going through a SE link to reach L and a NW link to
reach H. Node 33 is now reached by backtracking along the
previous path with the appropriate mirror image moves (i.e.,
going through a NE link to reach M and a SW link to reach
33).

In general, adjacent neighbors need not be of the same
size. If they are larger, then only a part of the path to
the common ancestor is retraced. If they are smaller, then
the retraced path ends at a "gray" node of equal size. Thus
a *neighbor" is correctly defined as the smallest adjacent
leaf whose corresponding block is of greater than or equal
size. If no such node exists, then a gray node of equal
size is returned. Note that similar techniques can be used
to locate diagonal neighbors (i.e., nodes corresponding to
blocks that touch the given node's block at a corner). For
example, node 20 in Figure 2.1c is the NW neighbor of node
22. For more details, see [44].

In contrast with our neighbor finding methods is the
* use of explicit links from a node to its adjacent neighbors

in the horizontal and vertical directions reported in
*: (21,22,24]. This is achieved through the use of adjacency

trees, wropes," and "nets." An adjacency tree exists when-
ever a leaf node, say X, has a GRAY neighbor, say Y, of
equal size. In such a case, the adjacency tree of X is a
binary tree rooted at Y whose nodes consist of all sons of Y
(BLACK, WHITE, and GRAY) that are adjacent to X. For exam-
ple, for node 16 in Figure 2.1, the western neighbor is GRAY
node F with an adjacency tree as shown in Figure 2.2. A rope
is a link between adjacent nodes of equal size at least one
of which is a leaf node. For example, in Figure 2.1, there

* exists a rope between node 16 and nodes G, 17, H, and F.
Similiarly, there exists a rope between node 37 and nodes M
and N; however, there does not exist a rope between node L

*and nodes M and N.

- The algorithm for finding a neighbor using a roped
*quadtree is quite simple. We want a neighbor, say Y, on a

* given side, say D, of a block, say X. If there is a rope
from X on side D, then it leads to the desired neighbor. If
no such rope exists, then the desired neighbor must be

* larger. in such a case, we ascend the tree until encounter-
ing a node having a rope on side D, that leads to the
desired neighbor. In effect, we have ascended the adjacency
tree of Y. For example, to find the eastern neighbor of node
21 in Figure 2.1, we ascend through node J to node F, which
has a rope along its eastern side leading to node 16.

4o.
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At times it is not convenient to ascend nodes searching
for ropes. A data structure named a net is used [21, 22,

241 to obviate this step by linking all leaf nodes to their
neighbors regardless of their size. Thus in the previous

example there would be a direct link between nodes 21 and 16
along the eastern side of node 21. The advantage of ropes

and nets is that the number of links that must be traversed
is reduced. However, the disadvantage is that the storage

- requirements are considerably increased since many addi-
" tional links are necessary. In contrast, our methods are

implemented by algorithms that make use of the existing
* .structure of the tree -- i.e., four links from a nonleaf

node to its sons, and a link from a nonroot node to its
father.

2.3. Conversion

2.3.1. Quadtrees and Arrays

The definition of a quadtree leads naturally to a "top
down" quadtree construction process. This may lead to
excessive computation because the process of examining
whether a quadtrant contains all ls or all O's may cause
certain parts of the region to be examined repeatedly by
virtue of being composed of a mixture of ls and O's.
Alternatively, a "bottom-up" method may be employed which
scans the picture in the sequence

1 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24
9 10 13 14 25 26 29 30

11 12 15 16 27 28 31 32

33 ...

where the numbers indicate the sequence in which the pixels

are examined. As maximal blocks of O's or l's are

discovered, corresponding leaf nodes are added along with

the necessary ancestor nodes. This is done in such a way
that leaf nodes are never created until they are known to be
maximal. Thus there is never a need to merge four leaves of
the same color and change the color of their common parent
from gray to white or black as is appropriate. See [291 for
the details of such an algorithm whose execution time is
proportional to the number of pixels in the image.

If it is necessary to scan the picture row by row
(e.g., when the input is a run length coding) the quadtree
construction process is somewhat more complex. We scan the

picture a row at a time. For odd-numbered rows# nodes
corresponding to the pixel or run values are added for the
pixels and attempts are made to discover maximal blocks of
0s or l's whose size depends on the row number (e.g.,. when
processing the fourth row, maximal blocks of maximum size
4-by-4 can be discovered). In such a case merging is said

10
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to take place. See [301 for the details of an algorithm
that constructs a quadtree from a row by row scan such that

at any instance of time a valid quadtree exists. This
algorithm has an execution time that is proportional to the
number of pixels in the image.

Similarly, for a given quadtree we can output the
corresponding binary picture by traversing the tree in such
a way that for each row the appropriate blocks are visited ..

and a row of O's or l's is output. In essence, we visit
each quadtree node once for each row that intersects it
(i.e., a node corresponding to a block of size 21 by 2K is
visited 2K times). For the details see [311 where an algor-
ithm is described whose execution time depends only on the
number of blocks of each size that comprise the image - not
on their paticular configuration.

2.3.2. Quadtrees and borders

In order to determine, for a given leaf node M of a
quadtree, whether the corresponding block is on the border,

we must visit the leaf nodes that correspond to 4-adjacent
blocks and check whether they are black or white. For exam-
ple, to find M's right hand neighbor in Figure 2.3, we use
the neighbor finding techniques outlined in Section 2.2. If
the neighbor is a leaf node, then its block is at least as
large as that of M and so it is M's sole neighbor to the
right. Otherwise, the neighbor is the root of a subtree
whose leftmost leaf nodes correspond to M's right-hand
neighbors. These nodes are found by traversing that sub-
tree.

Let M,N in Figure 2.3 be black and white leaf nodes
whose associated blocks are 4-adjacent. This thf pair M,N
defines a common border segment of length 2 (2 is the
minimum of the side lengths of M aid N) which ends at a
corner of the smaller of the two blocks (they may both end
at a common point as in Figure 2.4). In order to produce a
boundary code representation for a region in the image we
must determine the next segment along the border whose pre-
vious segment lay between M and N. This is achieved by
locating the other leaf P whose block touches the end of the
segment between M and N. If the M,N segment ends at a
corner of both N and N, then we must find the other leaf R
or leaves P,Q whose blocks touch that corner (see Figure
2.4) Again, this can be accomplished by using neighbor find-
ing techniques as outlined in Section 2.2.

For the non-common corner case, the next border segment
is the common border defined by M and P if P is white, or
the common border defined by N and P if P is black. In the
common corner case, the pair of blocks defining the next
border segment is determined exactly as in the standard
scrack following" algorithm [451 for traversing region
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borders. This process is repeated until we re-encounter the
block pair M,N. At this point the entire border has been
traversed. The successive border segments constitute a 4-
direction chain code, broken up into segments whose lengths
are sums of powers of two. The time required for this pro-
cess is on the order of the number of border nodes times the
tree height. For more details see [33].

Using the methods described in the last two paragraphs,
we can traverse the quadtree, find all borders, and generate
their codes. During this process, we mark each border as we
follow it, so that it will not be followed again from a dif-
ferent starting point. Note that the marking process is
complicated by the fact that a node's block may be on many
different borders.

In order to generate a quadtree from a set of 4-
direction chain codes we use a two-step process. First, we

S.• trace the boundary in a clockwise direction and construct a
quadtree whose black leaf nodes are of a size equal to the
unit code length. All the black nodes correspond to blocks
on the interior side of the boundary. All remaining nodes
are left uncolored. Second, all uncolored nodes are set to
black or white as appropriate. This is achieved by travers-
ing the tree, and for each uncolored leaf node, examining

* its neighbors. The node is colored black unless any of its
neighbors is white or is black with a border along the
shared boundary. At any stage, merging occurs if the four
rows of a non-leaf node are leaves having the same color.
The details of the algorithm are given in [32]. The time
required is proportional to the product of the perimeter
(i.e., the 4-direction chain code length) and the tree
height.

2.3.3. Quadtrees of derived sets

Let S be the set of l's in a given binary array, and
* let 3 be the complement of S. The quadtree of the comple-

ment of S is the same as that of S, with black leaf nodes
changed to white and vice versa. To..get the quadtree of the
union of S and T from those of S and T, we traverse the two
trees simultaneously. Where they agree, the new tree is the
same and if the two nodes are gray, then their subtrees are
traversed. If S has a gray (-nonleaf) node where T has a

*i black node, the new tree gets a black node; if T has a white
node there, we copy the subtree of S at that gray node into

!V the new tree. If S has a white node, we copy the subtree of
T at the corresponding node. The algorithm for the inter-
section of S and T is exactly analogous, with the roles of
black and white reversed. The time required for these
algorithms is proportional to the number of nodes in the
smaller of the two trees (231.

4...3
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2.3.4. Skeletons and medial axis transforms

The medial axis of a region is a subset of its points
each of which has a distance from the complement of the

region (using a suitably defined distance metric) which is a
local maximum. The medial axis transform (MAT) consists of
the set of medial axis or "skeletonm points and their asso-
ciated distance values. The quadtree representation may be
rendered even more compact by the use of a skeleton-like
representation. Recall that a quadtree is a set of disjoint

maximal square blocks having sides whose lengths are powers
of 2. We define a quadtree skeleton to be a set of maximal
square blocks having sides whose lengths are sums of powers
of two. The maximum value (i.e., "chessboard") distance
metric [45] is the most appropriate for an image represented
by a quadtree. See [37] for the details of its computation -

for a quadtree; see also 138] for a differenc quadtree dis-
tance transform. A quadtree medial axis transform (QMAT) is
a quadtree whose black nodes correspond to members of the
quadtree skeleton while all remaining leaf nodes are white.
The GMAT has several important properties. First, it
results in a partition of the image into a set of possibly
non-disjoint squares having sides whose lengths are sums of
powers of two rather than, as is the case with quadtrees, a
set of disjoint squares having sides of lengths which are
powers of two. Second, the QMAT is more compact than the
quadtree and has a decreased shift sensitivity. See [46]
for the details of a quadtree to QMAT conversion algorithm
whose execution time is on the order of the number of nodes
in the tree.

2.4. Property measurement

2.4.1. Connected component labeling

Traditionally, connected component labeling is achieved
by scanning a binary array row by row from left to right and
labeling adjacencies that are discovered to the right and
downward, During this process equivalences will be gen-
erated. A subsequent pass merges these equivalences and
updates the labels of the affected pixels. In the case of
the quadtree representation we also scan the image in a
sequential manner. However, the sequence's order is dic-
tated by the tree structure - i.e., we traverse the tree in
postorder. Whenever a black leaf node is encountered all
black nodes that are adjacent to its south and east sides
are also visited and are labeled accordingly. Again,
equivalences generated during this traversal are subse-
quently merged and a tree traversal is used to update the

labels. The interesting result is that the algorithm's exe-
cution time is proportional to the number of pixels. An '2
analgous result is described in the next section. See [34]
for the details of an algorithm that labels connected com-
ponents in time on the order of the number of nodes in the
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tree plus the product of B'log B where B is the number of
black leaf nodes.

2.4.2. Component counting and genus computation

Once the connected components have been labeled, it is
trivial to count them, since their number is the same as the
number of inequivalent labels. We will next describe a
method of determining the number of components minus the
number of holes by counting certain types of local patterns
in the array; this number, g, is known as the genus or Euler

rnumber of the array.

Let V be the number of l's, E the number of horizon-
tally adjacent pairs of l's (i.e., 11) and vertically adja-
cent pairs of l's, and F the number of two by two arrays of
l's in the array; it is well known [451 that g-V-E+F. This
result can be generalized to the case where the array is
represented by a quadtree [36]. In fact, let V be the
number of black leaf nodes; E the number of pairs of such
nodes whose blocks are horizontally or vertically adjacent;
and F the number of triples or quadruples of such nodes
whose blocks meet at and surround a common point (see Figure
2.5). Then g-V-E+F. These adjacencies can be found (see
section 2.3.2) by traversing the tree; the time required is
on the order of the number of nodes in the tree.

2.4.3. Area and moments

The area of a region represented by a quadtree can be
obtained bK summing the areas of the black leaf nodes, i.e.
counting 4 for each such node that represents a 2 by 2
block. Similarly, the first x and y moments of the region
relative to a given origin can be computed by summing the
first moments of these blocks; note that we know the posi-
tion (and size) of each block from the coordinates of its
leaf in the tree. Knowing the area and the first moments
gives us the coordinates of the centroid, and we can then
compute central moments relative to the centroid as the ori-
gin. The time required for any of these computations is
proportional to the number of nodes in the tree. Further

*details on moment computation from quadtrees can be found in
[23].

2.4.4. Perimeter

An obvious way of obtaining the perimeter of a region
represented by a quadtree is to simply traverse its border
and sum the number of steps. However, there is no need to
traverse the border segments in order. Instead, we use a
method which traverses the tree in postorder and for each
black leaf node examines the colors of its neighbors on its
four sides. For each white neighbor the length of the
corresponding border segment is included in the perimeter.

* o.~. . . . .
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See [351 for the details of such an algorithm which has exe-
, cution time proportional to the number of nodes in the tree.

An even better formulation is reported in [47] which gen-

* eralizes the concept of perimeter to n dimensions.

*. 2.5. Concluding remarks

We have briefly sketched algorithms for accomplishing
traditional region processing operations by use of the quad-
tree representation. Many of the methods used on the pixel

level carry over to the quadtree domain (e.g., connected
*i component labeling, genus, etc.). Because of its compact7
* ness, the quadtree permits faster execution of these opera-

tions. Often the quadtree algorithms require time propor-
tional to the number of blocks in the image, independent of
their size.

The quadtree data structure requires storage for the
various links. However, use of neighbor finding techniques
rather than ropes a la Hunter [21, 22, 241 is a compromise.

In fact, experimental results discussed in the data analysis
segment of this report show that the extra storage cost of
ropes is not justified by the resulting minor decrease in
execution time. This is because the average number of links

traversed by neighbor finding methods is 3.5 in contrast
with 1.5 for ropes. Nevertheless, there is a possibility

*- that the quadtree may not be efficient spacewise. For exam-
", ple, a checkerboard-like region does not lead to economy of

space. The space efficiency of the quadtree is analyzed in
[48). Some savings can be obtained by normalizing the quad-
tree [49,50] as is also possible by constructing a forest of
quadtrees [51] to avoid large regions of WHITE. Storage can

*also be saved by using a locational code for all BLACK

blc,:ks [52). Gray level quadtrees using a sequence of array

codes to economize on storage are reported in [53].

The quadtree is especially useful for point in polygon
operations as well as for query operations involving image
overlays and set operations. The hierarchical nature enables

one to use image approximations. In particular, a breadth-
first transmission of an image yields a successively finer
image yet enabling the user to have a partial image. Thus
the quadtree could be used in browsing through a large image
database.

Quadtrees constitute an interesting alternative to the
standard methods of digitally representing regions. Their
chief disadvantage is that they are not shift-invariant; two
regions differing only by a translation may have quite dif-
ferent quadtrees (but see [461). Thus shape matching from
quadtrees is not straightforward. Nevertheless, in other
respects, they have many potential advantages. They provide
a compact and easily constructed representation from which
standard region properties can be efficiently computed. In

'"i'," ." - -. ,.--- --. ', * . .. . -- ".... . .. ' -' , - -. -- - . .
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effect, they are "variable-resolution arrays" in which
detail is represented only when it is available, without
requiring excessive storage for parts of the image where
detail is missing. Their variable-resolution property is
superior to trees based on a hexagonal decomposition [54]
in that a square can be repeatedly decomposed into smaller
squares (as can be done for triangles as well [55]) whereas
once the smallest hexagon has been chosen it can not be
further decomposed into smaller hexagons. Note that the

variance of resolution only applies to the area. For an
application of the quadtree concept to borders, as well as
area, see the line quadtree of [561.



1.5

3. Database, digitization, and editing

:: 3.1. Procedures and results

The data supplied by ETL consisted of three map over-
lays (Figures 3.1-3) representing land use classes, terrain
elevation contours, and flood plain boundaries for a small
area of Northern California. These overlays are shown, at a
reduced scale, in the figures attached to this section. In
the case of the elevation contours, only those at multiples
of 100 feet were to be digitized, and for all three over-
lays, only the portions bounded by the fiducial marks.

Conversion of the data to machine-readable form was
carried out as follows: Each overlay was superimposed on a
grid (graph paper, 20 boxes to the inch). The boundaries to
be digitized were followed by hand and marked on a second
sheet of graph paper. Every box on the original graph was
copied onto a 2-by-2 block of boxes on the second sheet.
This yielded increased resolution and also separated boun-
dary lines which on the original graph would have been in
adjacent boxes. This graph was then hand chain-coded and
the chain-codes were typed into the computer (see the
description of the program "mkbin" for a definition of the
chain-code used).

A binary array was created for each of the three
overlays in which the pixels that were on a boundary in the
original overlay are represented by a value of 1, and all
other pixels are represented by a value of 0. A connected
component labeling program was then applied to this array
yielding an array in which the pixels in each connected
region have a unique label. (Pixels of value 1 were
regarded as connected even if they were only diagonally
adjacent, whereas pixels of value 0 were regarded as con-
nected only if they were horizontally or vertically adja-
cent.) A lookup table was then created to convert these
labels to a consistent label set in which all regions of a
given land-use class,or all regions between a given pair of
elevation contours, had the same label. At this time, all
polygons on the landuse map which either had no label or for
which the label was unclear were placed in a special landuse

class "unk".

The final data preparation task was to remove the
boundary lines separating the regions (those pixels given a
value of 1 in the binary array). This was uniformly done by
assigning to each boundary pixel the label of its right-hand
neighbor, or if this was also a boundary pixel, the label of

its neighbor in the row above. The three digital maps (one
per overlay) resulting from this processing were 450 pixels
high by 400 wide, partitioned into labelled regions with no
"black" boundary lines separating them.

. .- __ _ _
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The resulting maps were then quadtree encoded using

the quadtree building algorithm described in the Section 4.

For each map# a multi-color quadtree was built giving every
region in the map a unique label. A multi-color quadtree

refers to a quadtree in which the leaf nodes can have dif-
ferent colors. Thus a multi-color quadtree is an extension
of the black and white (or binary) quadtree that is dis-
cussed in Section 2. Certain operations, for example union

and intersection, are not defined in terms of multi-color
quadtrees, but rather are defined in terms of binary quad-
trees that are derived from the multi-color quadtrees by
considering one of the colors as black (this is usually the
color of the object of interest) and the other colors to be
white. In addition to the above three multi-color quad-
trees, a quadtree was built for each land-use class or
elevation level (i.e. regions in the class or elevation are

labeled, all other regions are white). Programs were then
written to manipulate and display quadtrees, as well as cal-

culate region properties and compute set theoretic opera-

tions on the trees. These programs are described in later

sections.

The hand digitization process took approximately 100
manhours, including both planning and implementation. This

time could be greatly shortened by using coordinate digitiz-
ing equipment. Editing of the hand-input data was carried
out by visual inspection of the resulting regions to verify
that there were no gaps or overlaps. This process, together
with a few hand corrections of touching lines, took at most
20 manhours.

Figures 3.4-3.38 show the components of each land use
class. Figures 3.39-3.49 show the components of each eleva-
tion level, and Figure 3.50 shows the three components of
the flood plain map.
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3.2. Data editing functions

Below we describe the algorithms that were implemented

to edit the maps prior to storing them as quadtrees. These
algorithms were implemented in the programming language C to
run on the PDP-11/45, VAX 11/780, and GRINNELL conf igura-
tion, which is described in the Appendix to this report.
The maps provided were initially hand-digitized and stored
in a chain code representation, as described in Section 3.1.
Although quadtrees could have been built directly from the
chain code representation, it was considered useful instead
to use picture files as an intermediate representation
between the initial chain codes and the final quadtrees.
This allowed access to many standard routines that are part
of our software library. Below, we describe the nonstandard
routines that were used on this project.

The algorithm descriptions proceed in the following
manner. First we describe the program MKBIN, which converts
the chain codes to picture file format. Then three routines
for manipulating the picture files are described. These are
FIXPIX (changes the value of pixels referenced by their
coordinates), RELABEL (translates one list of pixel values
into another), and LINERM (erases lines from maps).

The function MKBIN (make binary array) takes as input a
file that describes a chain code segmentation of the origi-
nal maps and creates a picture file. For the following

* descriptions, it is simplest to view a picture file as a
binary array that t as been laid out on a disk in a row by

*: row manner. The file that results from MKBIN will describe
the map as a white map broken up by a series of black lines.
Since the black lines are described by the chain codes,
MKBIN simply traces the chain code on a binary array, mark-
ing each pixel that lies on the chain code as black.

Having created the picture file, two minor utility rou-
tines were found useful. One of these is FIXPIX, which
changes the value of a pixel when given the coordinates of
the pixel and the new value. This is the equivalent of
assigning to an entry in a 2-d array. FIXPIX is used to fix
problems that result from errors in the entry of the chain
code digitization and also errors that result from labeling
the regions of the map. The other utility is RELABEL, which
produces a copy of the input picture file where all the

:* pixel values ate changed according to a given translation
table. Both of these utilities are used for changing pixel

* values, but FIXPIX does this based on specified coordinates,
whereas, RELABEL changes all pixels that have a given value.

The land-use classes (as well as contours, etc.) are
labeled by using a standard connected component program and
then using RELABEL to merge the labels of components of the
same class. There still remains the problem of which labels
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to assign the pixels that lie on the boundaries of the
regions. It is this assignment plus the original hand encod-
ing of the map that accounts for any errors in the calcula-
tion of statistics by the quadtree algorithms. The assign-
ment decision is rather arbitrary (but applied consistently
to each pixel alike) and implemented by the function LINERM.
The decision of which region to assign a given boundary
pixel is based on the direction of easiest movement through
a picture file (which is from right to left and from top to
bottom). Thus a BLACK pixel (a pixel having the color of
the boundary line) is given the value of its neighbor on the
right if that neighbor is not BLACK and the value of the

" neighbor above otherwise. Note that at any point during
2 LINERM, the algorithm stores two rows of the picture in

core. When working with the first row of the picture, the
second neighbor used is the neighbor below since there is no
neighbor from above. This processing is repeated over the
entire picture file as many times as the maximum of the
line's thickness (measured in pixels). A line of thickness
greater than one can be created by MKBIN when many lines

*i touch.
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/* Take a picture and a data file "input" which contains records
declared: "x-coord y-coord newval". The pixel at coord
<x-coord, y-coord> will be changed to newval. The records must
be in ascending order of y-coords as only one pass is made
through the picture (getting new rows as necessary).
The procedure getrow reads the picture file filling the buffer

* with the next row.

" *fixpix(inpic, input, numcols, numrows)
INTEGER numcols, numrows;
DATA FILL inpic, input;

I L£GER ARRAY rowbuff[numcols];

INTEGkk rownum = 0;
IL Tk-GE x, y, val;

getrow(inpic ,rowbuff);
WHILM(NUT end of file "input")

getrecord(input ,x ,y,val);
if(y > rownum)
kuk(rownum=rownum TO y)

*ge trow (inpi c ,rowbuf f);
rowbuff[x) = val;

VI

aI

:4
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/* temove the black pixels from a multi-color picture. For every
pixel in the picture, do the following: If the pixel is black,
then if the right neighbor is not black, give the pixel the
value of its right neighbor. If the right neighbor is also
black, then give the pixel the value of the neighbor above it.
Some pixels may remain black (they have both neighbors black),
if so the algorithm should be repeated. */

linerm(inpic ,numcols ,numrows)
INTLGER numcols ,numrows;
DATA FILE inpic;f
INTGLR ARkAY inbuff[ 2j[numcols+l];
IiNTEUk' ARAY outbuff[numcols];
INTkGER POINTER currpnt, otherpnt;
ILTLGER i ,j

currpnt = 0;
otherpnt = 1;
getrow(inpic,inbuff[ 0J);
getrow(inpic ,inbuff[ 0));
reset inpic file to beginning;
/* As a special case, the top row actually ubas the neighbor below

it rather than the neighbor above it, and the right hana col
uses the neighbor to the left. This is done by putting an
imaginary row above the first, and an extra col to the right
of the last. */

inbuff[O][numcols) - inbuff[O)numcols-2);
for(i=l TU numrows)

currpnt = (currpnt - 0)
otherpnt = (otherpnt - 0); /* flip these two pointers */

/* Currpnt always points to the current row. Otherpnt points at
the row above. */
getrow(inpic ,inbuf f[currpntj);
inbufftcurrpnt]Cnumcols3 - inbuff[currpnt][numcols-2];
FXO(j-O TO numcols-1)

IF(inbutt[currpntjtjJ = BLACK)
Ik(inbuff[currpntJ[j*l] <> BLACK)

outbutf[j] - inbuffCcurrpnt][j+1);
LLst

outbuft[j] - inbutf[otherpnt][j;
* . ELbk

outbuff[tj] inbuft[currpnt][j] :

output(outbuff);
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/* fNke a binary array from a set of chaincoics. The chaincode
used is as follows: coord-part><directional-part>#"
<coord-part> is simply a six digit number with the 3 digit
x-coord and the 3-digit y-coord.
<directional-part> is one or more occurrences o.

<direction-character> or "[ <number><direction-character•]"•
<number> is a 2-digit number which means that the
<direction-character> occurs number times.
<direction-character> is one of of:

i op

k -*-

/.\

If the character is "k" this would indicate one step west,
," woul indicate one step southwest, etc. These symbols

were chosen because of their location on the keyboard. */

makebin(width ;height)
IiTGEK width, height;

/* ,:reate a binary array of size width X height. *1
/* The function getchar returns the next character that is not a

line-feed from file "input". ./

BIA ARY ARKAY arr[width][height];
INTL(kR xcoord, ycoord, numb, i;
CkAMACTLR ch;

WkHL (getcoords(xcoord ,ycoord))
" /* 'or each chaincode in the file ... */
arr[xcoordj[ycoord] 1;
cn - getchar(input);

k'W.IL(ch <> '#'

L-(ch 'C'
run(numb ,ch);

numb = I;
F'UR(i=l TJ numb)

CASL OF ch

'i': xcoord - xcoord - 1; ycoord = ycoord - 1;

o' : ycoord - ycoori - 1;
op': xcoord - xcoord + 1; ycoord - ycoord - 1;
'K': xcoord - xcoord - 1;

1: xcoord - xcoord + 1;
8 : xcoord - xcoord - 1; ycoord - ycoord + 1;

. : ycoord = ycoord + 1;
/'I xcoord - xcoord + 1; ycoora - yc-ord + 1;

arr[xcooru]Cycoord) 1;
cn - getcnar(input);I

}
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bOuLEAN FUCTILPN getcoords(x,y)
INTLU-LGK x, Y/,

/* it the i$ut file is empty return FALkt. Otherwise read the
coors from the input file (into x;y) and return TRUE. '/

PROCEDURE: myget(numb ,ch)
INTEGEA numb;
CHARACTER ch;
/* Read tne 2-digit number and the following character from the

input file, then skip the character "J", returning the number
in numb and the character in ch. */

• j - I-,,I -.
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Algorithm 3.4. RLLAbEL

7. /* Change the value of the pixels in a picture as determined by the
labels given in file "labels". This file has as its first value
an integer which is the largest value occurring in the original
picture; followed by records of the form "old-val new-val". */

relabel (inpic ;labels ,numcols ,numrows)

I : INTEGER numrows, numcols;
F.' INTEGER ARRAY inpic[numcols][numrows)]

DATA FILL labels;

ILTEGkR val ;new ;old *i ;j;
IAL Gk, ( POINT R table;

val = getnum(labels);
table - create-storage((val~l) * sizeof val);
/* Create-storage is a system function which dynamically reserves

the number of words given by the parameter. The sizeof operator
returns the number of words used by the variable following. */

/* Initialize table so that the new label will be the same as the
old label, unless a chang. is indicated in the file "labels". */

FUR(i - 0 TO val)
tableCi] = i;

WHILL(not at end of "labels")

old - getnum(labels);
new = getnun(laorls);
table[old] - aew;)

/* Change picture. */
FOR(i=O TO numcols)

FOR(j=0 TO numrows)
itlpic[i][j] = table[inpicCi)[j33;

lim j

a"

4

4.
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4. Quadtree encoding

4.1. Introduction

This section describes the quadtree encoding algorithms
as well as various primitive functions used in conjunction
with quadtree data structures. Display of quadtree-encoded
data was particularly facilitated by the ability of the
GRINNELL to accept specifications of rectangles to be out-
put. It should be noted that all of the following algor-

0 ithms work on the digitized version of the maps described in
Section 3 and that no new errors are introduced by these
algorithms' manipulations of the quadtrees, since the
representation of the digital data remains exact. No devia-
tion from pure quadtree representation has been introduced.

The algorithm descriptions proceed in the following
manner. First we present a set of primitive functions that
form the building blocks for later algorithms. Then we dis-
cuss two algorithms that were instrumental in building the
quadtree database from the digitized maps. The first of
these two algorithms builds a quadtree from a map by scan-
ning the map in a row by row fashion (referred to as raster
scanning). The second algorithm labels the connected com-
ponents of a map.

4.2. Primitive functions

The functions SON, FATHER, SONTYPE, NODETYPE, BLACK,
WHITE, and GRAY can be thought of as defining the quadtree
as an abstract data type. Although their implementation is
trivial, their usage gives the other quadtree algorithms a
certain independence from the chosen representation of the
quadtree data structure. Since it is our intent to experi-
ment with other quadtree representations, this will save
future programming effort. Currently each node of the quad-
tree is represented by a record consisting of five pointers
and an integer. The pointers are used to link to other
nodes; one pointer links to the node's father and the
remaining four pointers link to the node's four sons and are
indexed by the quadrant in which the son lies. A value of
NIL is stored to indicate the absenca of a son in a given
direction. An integer value is used to uniquely identify the
polygon, land-use class, or contour to which the region
represented by the node belongs. If this value is not unique
for the region, then the value is considered gray (this term
comes from the usage of gray nodes in black and white
binary-valued quadtrees).

Using such a quadtree representation, the above defin-
ing functions work as follows. The function SON takes a
node and a quadrant as parameters and returns the node that
is the son of the given node in the given quadrant by deref-
erencing the appropriate pointer. Similarly, the function
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FATHER takes a node as parameter and returns the father of
the given node by simply dereferencing the appropriate
pointer. The function SONTYPE takes a node as parameter and
returns the quadrant that expresses the direction from the
father of the given node to the given node by comparing the
address of the given node to the address of each of its
father's sons. This function returns a special value NIL to
indicate that the given node is the root of a quadtree and
hence has no father. The function NODETYPE takes a node as
its parameter and returns the integer data item that is
stored at that node which generally indicates a region
color, class type, or elevation. The predicates BLACK,
WHITE, and GRAY each take a node as parameter and return

. .true if the value of NODETYPE is to be interpreted as having
the value indicated by the function's name. This allows mul-
ticolor quadtrees to be easily interpreted as binary-colored

* quadtrees when it is convenient to do so.

The functions OPSIDE, CCSIDE, ADJ, REFLECT, QUAD, and
*OPQUAD provide a simple set of operations to manipulate

directions. There are two important classes of directions
used by quadtree algorithms. The first is the four basic
directions denoted N, E, S, and W that are used to indicate
the side of the square that lies in that direction from the
square's center. The second is the four compound directions
denoted NW, NE, SE, and SW that are used to indicate the
quadrant of the square that lies in that direction from the
square's center. The functions OPSIDE and CCSIDE each take
a side as parameter and return respectively the side in the
opposite direction and the side in the direction 90 degrees
counterclockwise from the square's center. The predicate

* ADJ takes a side and a quadrant as parameters and returns
true iff the given quadrant is adjacent to the given side.
For example, the NE quadrant is adjacent to both the N and E
sides but not to the S or W sides. The function REFLECT
takes a side and a quAdrant as parameters and returns the
quadrant that is the reflection of the given quadrant with
respect to a line through the center of the square that is
parallel to the given side. For example, the SW quadrant is

* the reflection of the NW quadrant with respect to a line
through the square's center that is parallel to either the N
or S sides. The function QUAD takes as parameters two sides
and returns the quadrant that is adjacent to both sides if
this condition uniquely determines one quadrant. If it does
not (i.e., the two sides are either opposite or the same),

*m then the value NEG is returned. The function OPQUAD takes a
quadrant as parameter and returns the quadrant that lies in
the opposite direction from the center of the square (i.e.,
180 degrees). In our particular implementation, each of the
two classes of directions is represented by the integers 0
thru 3 inclusive; so the above functions are implemented by

* modular arithmetic where convenient and otherwise by
enumeration of the possible values (i.e., table lookup via a
case statement).
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S.Central to the approach to quadtrees that we have
. adopted is the ability to find a node's neighbor without

storing explicit links to each node's neighbors as is done
in some other implementations. This ability is encoded in

-Z the function FIND NEIGHBOR, which takes as parameters a node
and a side and riturns a node that abuts the indicated side
of the given node and is either a leaf or is of the same

• :depth as the given node. The manner in which this is done is
described in the tutorial section of this report. The func-
tion MAKE NEIGHBOR behaves in the same manner as
FIND NEIGHBOR except that if it fails to find a common
ancestor or runs into a leaf before it has finished the mir-
rored path, then it modifies the tree by inserting the

sought-after node and continues on.

The remaining functions GETNODE, CREATENODE, and
RETURNTOAVAIL are used for storage management. Unused nodes
are kept on an AVAIL list. The function GETNODE returns a

.. used node by first looking on the AVAIL list and if the
AVAIL list is empty then requesting more storage from the
operating system. An error message results if no storage is
available and the program terminates. The function
CREATENODE takes a node, a quadrant, and an integer nodetype
as parameters and uses GETNODE to create a new node of the
given nodetype which has the given node as father, lies in
the given quadrant of the given node, and itself has no
sons. The function RETURNTOAVAIL takes a node as parameter
and inserts it into the AVAIL list.

4.3. Database building

Prior to constructing the quadtree database, the maps
were stored in picture files, which can be viewed as 2-d
arrays laid out on a disk in row-by-row order. Thus the
first task to be performed to convert each picture file into
a quadtree file, which is a preorder listing of the nodes in
a quadtree. This is accomplished by the R2Q (raster to quad-
tree) function. This function reads a picture file one row
at a time (raster scan order) and builds the corresponding
quadtree using the MAKE NEIGHBOR primitive. As the quadtree

- is being built, identical leaf brothers are merged as indi-
cated in the discussion of the WINDOW function. An addi-
tional efficiency results from realizing that it is only

* *necessary to check for these mergers on even-numbered rows;
any leaf on an odd-numbered row, still has two brothers that

W have yet to be read in.

* The original picture files had each pixel labeled
according to the land-use class (contour, etc.) to which it
belonged. Thus, these labels were the only distinctions

"' that could be carried over in the construction of the quad-
*trees by R2Q. However, the database design called for unique
- labels on each connected component of each class. Hence, it

was necessary to perform a connected component analysis in

.o1

b * **-*

' '"... '' **:' *:' " ' * *" * '::l| Il l n l ll i ll l , I
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order to label the quadtrees in the desired format. This was
done by the function QCONCOM (quadtree connected component
finder). This analysis was performed on the quadtree data
structure directly (instead of being done on the picture
files prior to quadtree construction) because the number of
nodes to be processed in the quadtrees was substantially
smaller than the number of pixels to be processed in the
original picture thereby allowing the analysis to be per-
formed faster. The function QCONCOM works in the following
manner (processing only one class at a time). The first step
assigns an initial tentative labeling to the quadtree. This
labeling is based on a preorder traversal of the quadtree
that starts in the northwest corner of the image and moves
in the south and east directions. If a BLACK node is met
that is unlabeled (with respect to the component within
which it is contained), then a new label is created for it.
When processing a BLACK node, FIND NEIGHBOR is used to exam-
ine its southern and eastern neighBors to determine if they
are also BLACK, but have no component label. In such a case,
they are assigned the component label of the BLACK node
being processed. If they already had a component label, then
both labels are placed (as an ordered pair) on an
equivalence list. Once all the nodes have been tentatively
labeled, one merges the equivalence classes and then updates
the component labels so that each connected component has
just one label.

a

-0
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~kilgoritn 4.. PRiLL'ITIVEb7

/ The following is a description of the primitive functions
used in the quadtree algorithms. /

node YULCiON son(p,i)
/* Given node p and quadrant i, return the node which is the

son representing quadrant i of node p. */

node FUNWC'ION father(p)
/* Given node p, return the node which is the father of p. 3/

INTEGER F'UN CTION sontype(p)
/ Given node p, return q where son(father(p) ,q) - p. If p is

I -,:, the root, then return NIL. '/

INTEGER 'ULCTIO nodetype(p)

/* Return the value of node p. This can be considered as GRAY,
WHITE, or BLACK for a binary tree; and GRAY, WHITE or a class
type or elevation level value for a multi-colored tree. '/

bOULLAN 'ULCTION black(p)
/* TRi'U when nodetype(p) is BLACK if the tree is binary; or

when nodetype(p) is a value specified as BLACK by the user
it the tree is multi-colored. 3/

B. LkAN F'Ui CiIUOk white(p)
/* TRUh when nodetype(p) is WHITE if the tree is binary; or

when nodetype(p) is a value specified as WHITE by the user
if the tree is multi-colored. '1

BOOLEAN FULNCTION gray(p)
/* TRUE iff nodetype(p) is GRAY. '/

IN .TLUER 'UhCTIUSJ opside(b)
/* Given a side b, return the opposite side (e.g.

opside () - W). /

I".Jr;Gh.k FUNCTION ccside(b)
/* Returns the side adjacent to side b in the clockwise

direction (e.g.; ccside(E) " N). 3/

bOuIJLAW t'UN~CTION adj(b,i)
/* TnUE iff quadrant i is adjacent to bou.lary b of the node's

block (e.g., adj(N,Nw) - TRUE; adj(N,Sw) - e'ALbE). 3/

• . ITEGER 'UkCTIOLN reflect(b,i)

/* Returns the quadrant which is adjacent to quadrant i along
* boundary b (e.g., reflect(&Nw) - Sw). /

INTEGER 'Ui4CTIUN quad(b,c)
/* Returns the quadrant bounded by b and c it it exists and the

value L~EG if it does not exist. /

INTEGER FUNCTIONJ opquad(q)
/* Returns the quadrant opposite (non-adjacent) to q

(e.g. opquad(NW) - SW) ./

-.- 2•. * - - - - - - - -
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nooe FULCX'IUw find neigaor(q,s)
/* Return the node which is adjacent to side "s" oi node "q"

and is either a lear or is at the same depth as node "q".
This is done by following the father links until the common
ancestor is reached and then following the reflected path
downward, stopping s.ort only it a leaf is met. "/

node PUINTER q;
INTEGER s;

node PUINTER p;
INTEGER i ,stypeq;

/* kirst fina a common ancestor. */
Ik '(iULL(sontype(q))) /* Common ancestor does not exist. */

RLTURLY(NIL);
ELSE IF(adj(s,sontype(q))) /* Neighbor is not a sibling -

go up to next level. */
p - find neighbor(father(q) ,s);

ELSL /* Neighbor is a sibling. eather is a common ancestor. */
p = father(q);

/* After finding the common ancestor, reflect about side "s"

back to the level ot tne original request. */
IF(NULL(p) OR NULL(son(p,reflect(ssontype(q)f}))

/* Either there was no common ancestor or p is a leaf
and in either case p is what we want to know;
so; don't change it. '/

RETUR (p) ;
ELSE /* keturn the calculated son. '/

RETURN(son(p ,reflect(s ,sontype(q))));
}

node FUNCTIUN make neighbor(q,s)
/* Return the node which is adjacent to side "s" ot node "q"

and at the same depth as the node "q". Tnis is done by
following the path through the tree that would lead us

to said neighbor it it existed and creating, along the way,
any nodes that are necessary. whenever such nodes are created,
all created sons are set to WHITE. They are later reset to
GRAY or BLACK as appropriate, c.f., find-neighbor */

node POILNTER q;
INTEGER s;

node POINTER p;
INTEGEA i ,stypeq;

/* First find the nearest common ancestor. */
IF(NULL(sontype(q))) /* Common ancestor does not exist. '/

/* Create a common ancestor and initialize its
pointers. '/

p - createnode (NULL u ULL ,UAY);
stypeq - quad(ccside(s) ,opside(s));
p->sons[stypeq] -q
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q -1fathr p;
/* Create the other three sons of p. */
createnode (p ,opq uad (st ypeq) ,wHITE);
createnode(p,opquad(reflect(s ,stypeq)) ,wkiTE);
createnooe (p ,re flect (s stypeq) ,WHITkj)I

ELSE IF(adj(s~sontype(q))) /* Neighbor is not a sibling-
go up to the next level.

p - make-neighbor(father(q) ,s);
ELS4 /* Neighbor is a sibling. Father is common ancestor. '/

p - father(q);

-"• /* After finding the nearest common ancestor,; reflect about
side "s" back to the level of the original request. '/

l'(LULL(son(p ,reflect(s ,sontype(q)))))
./ It the node does not have children to descend a level'.

change the node to gray and give it children. */
p->nodetype = GRAY:

createnode (p ,i ;wkiIa);
return(son(p ,reflect(s ;sontype(q))))

node YUNCTION getnode()
/* Reserves storage for a quadtree node and returns a pointer

to this unit of storage */

node FUaCTIOL createnode(root ,s ;t)
/ Create a node p with nodetype t which corresponds to son s

of node root and return p. '/
node POINTER root;
INTEGER s ,t;

node PUINTER p;
p - getnode(;
if(root I- NIL)

"- root->sons~s- P;
p->fathr - root;
p->ntype - t;
for(i - NW;NE;SE;SW)

p->sons[iJ NIL;
return(p);

PROC-DURE returntoavail(p)
/* Return node p to the available storage pool. *

.,. .. -..,
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I/ Run a connected components algorithm on a binary quadtree -

i.e..,assign every connected component a unique label. This is
achieved in three steps. Step I assigns labels to each BLACR
node. This is done by traversing the tree and tor every BLACKY
node; examining its eastern and southern neighbors. If these are
unlabeled, a new label is generated for the current node. If
either of them are labeled and the current node is unlabeled,
then assign current node the label of its neighbor. It the
neighbor is labeled and the current node is labeled, then these
labels are equivalent and so the pair of labels is aded to a
list of equivalence classes. The second step is to put the list
of equivelance classes into a hierarchal order so that all of
the nodes in the class can be given one label. N 1o algorithm is
given for this step - for an example of a typical algorithm ot
this Kind see Knuth, Vol 1. The third step simply traverses
the tree again; relabeling each node to the value of the
representative for its equivalence class. */

component ( quadtree)
/* "Quadtree" is a pointer to the input tree. At the end of this

algorithm, "quadtree" will point to the labeled tree. '/
node POINTER quadtree;

pairlist POINTER merges; /* Pointer to the list of pairs of
:..:.. equive lances •*

merges = NIL;
label(quadtree); /* step 1 */
Process the equivalences in the list merges; /* step 2 */
update(quadtree); /* step 3 */

label(p)
/* Perform step 1. Assigns labels to node p and its sons.
node PUI k4ER p;

node POINE'kR q:
INTEGER i;

If(gray(p))
FOR(i = NW,NSL,sw)
label(son(p ,i));

ELSE I'(black(p)

q - find-neighbor(p.E);
if(NUT(NULL(q)))

label adjacent (q ,NW ;8W ,p);
q - find neighbor(p'S);
i f (NOT (hBULL (q))

label adjacent(q ;NW ;NE ,P)
if (NOT(labeled(p)))

p->nodetype - getnewregiono)
I

• +
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label adjacent(r ;ql ;q2,p
* /' Fijid all descenaants of node r adjacent to node p i- .,

*in quadrants qi and q2. -
node POINITER r~pp;
INTEUkk( qi ,q2;*

* Ik'gray(r))

* label -adjacent(son(r qi) q.l q2 #p);
labei7adjacent(son(r .q2) ,ql ,q2 p);

ELS IF(black(r))

assignlabel(pxr);

* as signlabel (p~q)
* 1* Assign a label to nodes p and q if they do not already have one.

If both have different labels; then enter them in "merges". ~
node POINTER p~q;

* IF(labeled(p) ANDJ labeled(q))

* IF(nodetype(p) <> nodetype(q))
add <nodetype(p) ;nodetype(q)> to merges;

ELSE IF(labeled(p))
q->'nodetype - nodetype(p);

ELSE Ii'Clabeled(q))
p->nodetype -nodetype(q);

ELSE
* p-)-nc~etype - q->nodetype -getnewregiono;

* update(p);
* /* Perform step 3. *

node POINTER p;

INTEGER i;-

* IF(gray(p))
* FOkR(i - NWL4ESESW)

* . update(son(p~i));

ELSE IF(black(p))
* p-)onodetyps equivalence of value nodetype(p)t
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I* Convert an input picture in the form of a binary array (or
raster) into a binary quadtree. Basically; the algorithm works
by doing a raster scan of the input picture; and as each pixel
is read, the quadtree is modified so that it would be a valid
quadtree representing the input picture if all unprocessed pixels
were WHITE. This is in contrast to an algorithm which first
builds a complete quadtree with one node per pixel and then
attempts to merge nodes (replace GAY nodes that have all sons
the same color with a node of that color). The input picture is
read one row at a time by a special function getrow which
returns the next row of the picture. The function color returns
the color of the pixel given as an argument. The boolean
function lastrow is true iff the current row is the last row of
tne picture. knenever all the children of a node nave been
processed, an attempt is maae to merge them togetner. because
or this there is a distinction between odd rows and even rows
(no pixels in an odd row can ever complete tne processing of all
the children of a gray node, hence there is never an attempt to
merge after processing any of these pixels). The picture is
assumed to be an 2**N by 2"*I picture - if not; WHITE pixels are
assumed to fill it out. */

node POINTER quadtree(p,wicith);

S/* Given a picture p (viewed as a list of rows) and its width,
return a quadtree. */

LIST p;
INTEGER width;

BOOLEANJ ARRAY q[l:width); /* Holds a row of the picture. */
node POINTER first;
INTkGER i;

* q = getrow(p);
first = createnode(NIL,NULL,q[l]); /* First pixel. */
oddrow(q ,first ,width);
i i 2;

• p NEXT(p};
*" first = evenrow(getrow(p) ;make_neighbor(first,S) ,i'widtn);

WHILE (NOT lastrowo) DO
1 /* Process the rest of the rows. /
p - NEXT(p);
oddrow(getrow(p) ,first ,width) *
p - NEXT(p);
i i 2;
first - evenrow(getrow(p) ,make-neighbor(first ,S) ,i ,width);

* while(NOT NULL(father(first)))
first - father(first); /* Set first to root of the tree. '/

return(first);

oddrow(row nd ,width)
/* Add th odd-numbered row of width "width" represented by array

"row" to a quadtree whose node "nd" corresponds to the first
pixel in the row. */
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INTEGER width;
IATLGER ARkAY row[l:wiath];
node POINTER nd;

nd->nodetype = color(row[;l);
FOR(i-2 LkTIL width)

nd - make-neighbor(ndEk);
nu->nodetype - color(rowEi]);

J

node 'UN CTIUN evenrow(row ,first ,i ,width)
/* Add even numbered row "i" of widtn "widtn" represented by array

'row" to a quadtree whose node "first" corresponds to the first
pixel in the row. During this process, merges of nodes having
four sons of the same color are performed. */

INTEGER ARRAY row;
node POIbJTER first;

"*: IdLTEGER i ;width;

node POINTER p ,r;
INTiEGER j;

p - first;
* IF(NOT lastrowo)

/* Remember the first node of the next row. */
first - make-neighbor(pS);: )R( j-1 UNTIL W-Idth-1 )

r - make-neighbor(p);
p->nodetype - color(row[j]);
IF(LEW (j))

merge (i ;j ;father(p))
p = r;

p->nodetype = color(row[width]); /* Don't invoke make-neignbor Lor

the last pixel in a row.
IF(EVE (width))

merge(i ,width father(p));
RETUN(first); /* Return the first node of the next row. */I

I * node FUNCTION merge(ijp)
/* Attempt to merge a node having four sons of the same color

starting with node "p" at row "i" column "j". */
node POINTER p;

. ITEGER i j;

INTLGEx k;

*' WkILL(EVEN(i) AND EVEN(J) and
(nodetype(son(p,Sw)) - nodetype(son(p,N.))
nodetype(son(p,sL)) - nodetype(son(p,.S)))
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i -i/2;

j j/2;
p->nodetype =nodetype(son(pv'lW));

=O~ - N NBSE ;SW)

returntoavail(son(p,k));
p->sons~k] NtI1L;

p =father(p);

return(p);
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4.4. Tabulation of results

Below we describe the tables of data collected about
the quadtree-represented regions. The times are measured in

seconds by a special routine on the VAX 11/780, which allows
us to factor out the disk I/O time. Thus the times reported
reflect the notion of CPU time 4s implemented on that
machine. These times were measured while the machine was
.not loaded with any other jobs, because the timing routine
does vary in its results as the system load changes. For
many algorithms, a better idea of the cost in time can be
determined from such machine independent concepts as number

2 -of nodes visited. These are also included in many of the
tables or are easily deducible from the descriptions of the
algorithms in the algorithm overview.

The tables are discussed in the order that they appear
- appended to this section. These tables treat the data base

as a collection of possibly unconnected regions on the maps
". that are logically connected by the sharing of some pro-

perty, e.g., having the same land-use class.

The first group of tables (4.1-3) are the QUADTREE
, BUILDING STATISTICS. These reflect a process by which the
.' R2Q algorithm was used to build a separate quadtree for each

logically connected class of polygons is a picture file. No
* execution time is indicated because the times were dominated

by the cost of reading an entire picture file, one line at a
2l time. Each quadtree took approximately 3 minutes to build.

If the quadtree had been constructed by building a complete
S 4-ary tree and then merging where possible, it would be

necessary for the memory to be large enough to contain
262,144 (512x512) nodes. By merging during the building
process,as R2Q does, a much smaller maximum memory is
required in practice. The size required is recorded in the
column *nodes created". Note that never are more than
15,000 nodes needed. The following column indicates the per-

) centage of this maximum that was actually used when the tree
was finished. The remaining columns give a breakdown of
the number of nodes of each type in the resulting binary

3. quadtree.

The CONNECTED COMPONENT RESULTS (Tables 4.4-6) record
the data collected on three variations of the connected com-

.* ponent algorithm, QCONCOM. In each variation, the algorithm
uses two of the neighbors of a node, as described in the
algorithms overview, to assign a tentative label to a node.
The 'number of neighbors sought' is the number of times this
process of finding a neighbor must be performed, thus yield-
Ing an indication of its importance to the algorithm's
analysis. The three variations are three different methods
of finding the required neighbors. For purposes of com-

4parison, the average cost for a single finding of a neighbor
Is calculated to show clearly the variance within each

.. . - ... . . . . . . . .
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1 7technique as well as the relative costs among techniques.

The average cost is measured in number of nodes accessed per
neighbor found. Since the ammount of work performed by the
algorithm is proportional to the number of nodes accessed,
this average cost measure gives an accurate view of the
relative tradeoffs among the various methods. The portion
of a second required to find a neighbor (an alternative

" measure) could not be calculated due to the inaccuracy of
the system timing algorithm. Also, measurement in seconds
of algorithm efficency can be misleading because the algor-
ithms were coded in a highlevel language and some of the
timing differences could reflect the relative efficencies of
the compiler's optimizer rather than that of the quadtree
algorithm.

The first method is FINDNBR, which is the FIND NEIGHBOR
primitive mentioned in the algorithm overview and described
in the tutorial section. The time in the final column is
for this method. The second method, ROPES, is due to
Hunter's quadtree work referred to in the tutorial. It con-
sists of placing a link directly between each neighbor of
the same size. This results in a reduction in execution
time at a major cost in storage (due to storing the extra
links). The third method was discovered during work on this
project and consists of causing the traversal algorithm to
pass as parameters the neighbors of each subtree's root.
This requires more time than ropes, but does not require as
much memory. The added memory cost with respect to the
FIND NEIGHBOR technique results from the additional stack
size needed due to the larger parameter list of the recur-
sive routines. The average value is based on equating the
cost of passing a parameter to a subroutine with the cost of
dereferencing a link. This equivalence is clearly
compiler-dependent as well as machine-dependent. The final
column of the table indicates overall execution time of the
connected component algorithm, QCONCOM, which uses the
FIND NEIGHBOR.

4
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.1. QUADTL'R. 1UILD~Is. 6rAT1bTICb &'u LAWDU~b . iAp

iI "~UDLb I £UDJ.b I U Ubk.L) I GAY A djjTg. !:-LAL*CA
I ;LA.So A IL4 Tui.L I C.a*ATkb I lIi T*rikL I "Cot! L40.ftb. A IiUA

acc 4337 I b25 73.2' 10041 1647 1-40f
acp 7725 I p A bo.0 1931 3040 27*A
ar I1145 2697 42.5 2ob *gg 3bo
are 129 1725 7.5 32 71 26
avt A11937 13341 A bv.5 2g8'I 477* 4177
avv 1313 I14445 91.3 32 pI 5 V 4.c3

bbr 537 2109 25.5 A 14 250 153
beq 363 173 I1.1 bo lb8 97

bes 193 1625 10.6 4ts 94 51
bt 2293 3641 59.7 I $73 951 7*9
fo 5485 7109 77.2 1371 2121 19P3
Ir 1461 3045 4d.6 370 b70 41I
r 7001 bbO b1.3 750 27g2 2459
ucb 249 S1 13.2 b2 lid 691
ucc 8 617 2433 33.6 2U4 3tl 232

Aucr 1069 2701 39.b A 2b7 457 3,*5

ucw 449 201i 21.6 112 197 140
Ues 1113 2737 40.7 27d 50b 329
u.l 345 1977 17.5 b6 158 101
uis 1037 2649 39.1 2591 453 325

uiw 2v3 1917 15.3 73 139 A sI

unk 1121 2bl 41 .b 20 540 301
uoc 173 1ts05 9.0 I 3 7 g 51
uog 377 200V lb.6 9,, 1.9Io 134

1uoo 1 429 A 2061 20.b 1 1071 2011 1211

uop 2b9 19011 14.2 I o7 1 .jf Ib1
uov 22v lbl 12.3 57 V91 73
urn 237 l6bl 12.7 59 126 53
urs 9921 11313 b7.7 2u0I 3v3 344b1
uu2 297 1921 15.5 74 142 di
Uut I 3069 4b21 b6.4 7o7 137v 923
vv 153 17b5 b .6 3d 76 3to
wo 485 2029 23.9 121 225 139
we 4677 6245 74.9 1169 2025 14 3

wwp 457 2049 22.3 11,1 101 2%2
-------------------------------------------------------
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, TAB" 4.2. QUAZYDb BUILDIbG S'kA'IbTICS F'O TUPO iAP Y LAP

i , I&ODb AODLS I % USED Gk.AY IWIT .- bLACK
I Lk.VATIUbi I L' i'iiL Ci'.ATkDf I INi Tk± US0Li I UDL vvlN4A.b

o 0- loo 66U9 I wib I b3.4 I17U21 2677 2b301
100- 2001 1353 14913 92.9 3403 52V5 5095

I 200 - 300I 11613 I 133blI b-3 I 2953I 4713 4147I
1 300 - 400 8645 I10469 b 4.5 2211 3596 3031
"4U0- 5001 71211 6745 i bl.4 I 17bOl 29171 2424i
.500- boo 6005 I 7b2V I 7*.7 I 1hOl 25341 1970

W.O - 700 5341 6973 76.6 I 13351 2140 lbIc
1700 -o01 4725I b3571 74.31 11a 19b5 1b69i
bO0- 900 3121 4753 65.71 7601 12921 10491

1900- 10001 1277 29099 43.9 I 31 g 51b i *421
11000 -1Joo 161. I 1793 I 9.0 I 40 bb 331

.-

*.

.. ° S . .
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TA IL: 4.3. QUA!T :L BUIILDi S'ATSTICS eQA eLODPLAIN LP

I I L4ODL.6 NUiQrkbI USLLI I AAI I kii'Ck 6 LACKI
"EAKZA IIb TALLk I ACkD I1i" TMRkL IOL L40DLS. IhaUDzb

lef.t bank I4021 I5473 I 73.5 I1005 1 N91 1525
fl~oodplain I6257 I7645 I61.b I1564 I24b5 220b
Iright bank I2bb5 I 4009 72.0 I721 I1133 IU131

,.

9

- - - - - -- - - - -- - - - -

.1..
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TAaL 4.4. LNAUS - CONBC'riD COihPNJwT LSULT,

I ILLb~b db Ueif'1LUSAI &WPk.S I Aa(G8 I'J1-AL
CLASS IkiLIAGhOSI AVG I AVG I AVG I IN

SU UG-T I CUT I CObT I COST ISLCSi
--------------------------------------------------------

I acc I 2812 3.55 I 1.40 1 3.08 I 1.61
acp 5492 3.5d 1 1.40 1 2.81 1 3.b
ar 720 3.4d I 1.33 1 3.16 1 0.41

are 52 1 5.63 1 1.98 1 4.96 1 0.01
avf I 8354 1 3.53 I 1.40 1 2.bo 1 5.41
avv io072 1 3.55 1 1.3t 1 2.91 1 5.71

I bbr i 30( 1 3.59 I 1.35 1 3.51 1 0.21
beq 1 194 1 3.82 I 1.31 1 3.6,k 1 0.11

-bes 1 102 3.30 1 1.3b i 2.8O 1 0.11
I bt I 153d 3.53 1 1.35 1 2.98 I 1.01
Itfo I 396 3.54 I 1.45 1 2.75 1 2.b1
I ir I b2 3.71 I 1.25 1 3.36 1 0.51

I r 4t4s.bl 3.63 1 1.4b 12.85 13.21
I.ucb 1 138 3.31 I 1.20 1 3.61 1 0.11
. ucc 1 464 3.64 I 1.37 1 3.52 1 0.31

ucr 1 690 3.60 I 1.42 1 3.10 1 0.41
ucw I 2tO 3.5b 1 1.36 1 3.21 1 0.21

us UsI 658 3 .81 I 1.3 I 3.3d 1 0.41
I uji 202 1 3.75 I 1.55 1 3.42 1 0.11
I uis 650 1 3.53 I 1.39 1 3.1v 1 0.41

uiw 162 3.b4 I 1.35 1 3.62 1 0.11
J unk 602 3.45 I 1.35 1 3.72 1 0.41
,uoc 102 3.59 I 1.49 1 3.39 1 0.11
. uog 268 3.66 I 1.40 1 2.il 1 0.21

I:u0o 242 3.22 1 1.35 13.55 1 0.11
I uop I 132 3.64 I 1.42 1 4.06 1 0.11

uov 146 3.42 I 1.29 1 3.14 1 0.11
I.urn .106 3 . 91 1 .2c% 4.47 0.11
,.urs 6896 3.54 I 1.40 2.8 i 4.51
I uua 162 1 3.55 1 1.35 1 3.b7 1 0.11
I uut 18l46 1 3.62 I 1.36 1 3.33 1 1.01
""vv 76 3.33 1 1.26 1 3.92 1 0.11

wo 278 1 3.97 I 1.36 1 3.4w 1 0.21

w I 2966 3.70 I 1.28 1 3.15 1 1..o
Swwp 202 1 3.62 I 1.3s 1 4.52 1 0.21

-......................----------
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• Aj3.5 . '.5. BPOGRAPHY CUl.,dL( ThI C PUQ.)kWT £(LSUL'

* iUka OFVavl~ ICUPt;S I Ab ITIMIk
IkLVATIUji Ltt.IiiBORSI A" 1 AV0 1 AV0 1 IN~ I

S I I S0 UI- CUST I C6T I CU•T ISz.CbI

I 0 - i0I 5060 1 3.4c 1.41 12.b913.71
IUUo - 200 I 10190 3.51 1 1.41 1 2.72 1 7.aI

200 - 300 I 5294 1 3.53 I 1.41 1 2.u 5 5.bI
300 - 400 b7b 1 3.57 I 1.36 1 2.91 1 4.01
400 - 500I 44b I 3.62 1 1.36 1 2.94 I 3.01

I 500 - boo 3940 1 3.b4 1 1.36 1 3.065 2.51
bo I oo- 700 I 3732 3.b2 1 1.3#a 2.86 1 2.41
70U- 600 317b 3.691 1.36 1 2.97 1 2.11

I boo - 90 2098I 3.57 I 1.37 I 2.9b 1 1.31
goo - luoo I s4 1 3.54 1 1.41 1 2.89 1 0.61

11000 -1100 I 66 I 3.56 I 1.41 I ,.8 I 0.11

-
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TAB 4.6. iLUODPLA.INd COLi C.'jLD (CUL-.)JLJ'T' Rk.SULb

, ILUbI;A, OFIFILNDNLB i bI I .A IT I#I
A kClbIO i ii~WIUUSA AVG !AVG AVG I IN I
-I I SOUGUT I COST i COST I co ICSI

A.left bank 3050 I 3.25 J 1.3b A 2.b4 I 1.91
flooaplain 441b 3.50 1.4b A 2.3 A 1.51

" right bank A 2062 I 3.b2 i 1 .b6 2.dO I 3.11
------------------------------------------------

... . . . . . . . . . .
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5. Region analysis and manipulation

5.1. Region analysis

* The functions described in this section are used to
gather basic statistics about the regions encoded by the
quadtree data structure. The simplest of these is NDCOUNT,
which sets three global variables to indicate the number of
gray nodes, white nodes, and black nodes in the given quad-
tree. This is achieved by performing a preorder traversal

* of the quadtree -- i.e., first it calculates its statistic
for the current node (in this case incrementing a
global counter) and then it recursively processes the
node's four subtrees (if they exist). It should be noted
that the functions described in this and in subsequent
sections are currently implemented as stand alone pro-
grams that are invoked by executing a file under the UNIX
operating system. This entails a fairly large amount of
housekeeping details, such as decoding the arguments with
which the file is invoked, opening various files, and

* initializing various devices. None of this will be discussed
herein, nor will it appear in the algorithm descrip-
tions. Among the other details that are thus swept under
the rug, so to speak, would be the initializing of
the variables queried by the functions BLACK, WHITE, and
GRAY in order to determine (when processing a multicolored
quadtree) which nodes should be considered of the indi-
cated colors. Although we speak herein of functions
computing values, we actually have programs that generate
files and output listings containing function values.
For instance, the implementation of NDCOUNT terminates
by outputting the counts for the three types of nodes.

Closely related to NDCOUNT is a function called AREA.
AREA takes as parameters a node and an indicated width for
that node. AREA calculates the area and centroid of the
region encoded by black nodes relative to this indicated
size for the entire quadtree. This is achieved by a preorder
traversal that works as follows. If the current node is a
leaf, then its size is added to the global count in accor-
dance to whether or not it is black. If the current node is
not a leaf, then AREA processes each of its four subtrees
using a width value adjusted to half of the value associated
with the current node.

Next in order of complexity is HANDW, which takes as
its parameters: a node, the x and y coordinates of its upper
left corner, and its width. Its value is the coordinates of

the upper left corner, the height, and the width of the
smallest rectilinear rectangle (i.e., the smallest rectangle
with sides parallel to the x and y axis) that encloses all
the regions that are considered black. This is done by com-
paring the coordinates of each black node to the most
extreme values found so far. Again we are dealing with a
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preorder traversal of the quadtree with the x, y, and width
values being updated as one descends from a gray node to its

children.

. The last of the statistics gathering functions is PER-
IMETER. It also updates a global variable and calculates
its desired value via a preorder traversal. Like AREA, it
takes a node and its width as parameters. Unlike AREA, it
uses the width value to calculate the length of a node's
side instead of the node's area. The function PERIMETER
returns as its value the sum of the lengths of the perime-
ters of all the black regions. Like AREA, it does this from
the point of view, so to speak, of the black nodes. The
side of a black node is part of the perimeter (and hence its
length is to be counted) only if the neighbor on that side
of the black node is a white node. The neighbor is located
using FINDNEIGHBOR.

I.
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/' A simple tree traversal to count the number of GRAYM, wdlTk; aria

B~LACK nodes. ~

IuTLULX* niugray -0;

INTi(TLULA numwhite - 0;
IN~TtGk~x nublack - 0;

* P&AUDU ndcount(rt)
node PUINdT~kk rt;

INiTEGER~ i;

IF(gray(rt->ntype))

numgray - numgray + 1
k"OR(i = Lw,E,SL J'Sw)

ndcount(rt->sons~i));

ELSE
Ik(black(rt->ntype))

nwiiblack - niublack + 1;
ELSE

numwhite - numwhite + 1;
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/ Given a quadtree, compute the area and centroid of the black
region of that tree. '/

I.: TLGER area, xsum, ysum;

main(root, width)
k /* To compute tV'e area, simply sum up the number of pixels in each

black node.
*To compute the centroid, for x-coord sum up all of the x-coord

of black pixels and divide by area; for y-coord sum y-coords
and divide by area.

node POINTER root;
INTLGER width;

area = xsum - ysum - 0;

doarea(root ,width ,0,0); /* compute area
(stored in global, variable area) */

xcent - xsum/area; /* xcoord of centroid */
ycent - ysum/area; /* ycoord of centroid */

doarea(root, width, fx, fy)
/* This function does the work of computing the area and the

centroid. For each black node, add the number of pixels to the
global variable area; sum up the x-coordinates and add to the
global variable xsum, and sum up the y-coordinates and add this
to global variable ysum. '/

node POINTER root;
INTEGER width, temp;
I NTEGER fx, fy; /* Coords of the upper left pixel of the node. "/

if(gray(root))
S /* for each child, compute area
doarea(width/2 ,son(root ,NW) ,fx,fy);
doarea(width/2 ,son(root ,NL*) ,fx+width/2,fy);
doarea(width/2 ,son(root ,Sk} ,fx+width/2 ,fy+width/2);
doarea(width/2 ,son(root ,sW) ,fx,fy+width/2);

else
if(black(root))

- /' Incorporate area of current node into
running totals. '/

temp - width * width;
xsum - xsum + (fx + width/2 - .5) * temp;
ysum - ysum + (fy + width/2 - .5) * temp;

area - area + temp;

"o o
',.o
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F ind the smallest enclosing rectangle for the black area of a

quadtree. bpecify this rectangle by its upper left coordinates

and its height and width. */

ITk.ER leastx.leastyhighx,highy; /* The highest and lowest
values yet found. */

kin(root ,width)
Given a quadtree, call handw to get the highest and lowest

values of x and y coords. The upper left corner is <least-x,

least-y• and the width and height is the difference between the

x's and y's respectively. */
lode POINTLI root;
UsTLGL± height ,width;

Leastx - leasty - width + 1;
Uighx - highy = 0;
iandw(root ,0,0 ,width);
ieight - highy - leasty;

iidth - highx - leastx;

kndw(root ,x ,y ,width)
X and y are the coordinates of the upper left corner of the

node width is the width of the node. If the node is black,

check if the extreme corners of the node are within the least

and high bounds - if not, then change the bounds. If the node

is gray, check the sons. '/
ENTEGER x ,ywidth;
iode POINTER root;

Lf(gray(root))
f/* For each son, do handw. '/
handw(son(root ,.w) ,x ,y,width/2);

handw(son(root ,t k) ,x+width/2 ,y ,width/2);
handw(son(root ,SE) ,x+width/2 ,y+width/2 ,width/2);

handw(son(root ,Sw) ,x ,y+width/2 ,width/2);J
Ilse

if ( black (root) )

if(x l leastx) leastx- x;
if((x+width-l) • highx) highx - x + width - 1;

if(y 4 leasty) leasty - y;

if((y+width-l) > highy) highy - y + width - 1;
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/* Given a quadtree and its width, compute the length of the
perimeter of the black areas. This is done by traversing the
tree and calling addperim for each black node. Adaperim looks
at each of the neighbors of the black node. If that neighbor is
white, then the length of the edge is aaded to the perimeter
total. If it is gray, then sons along the edge of the the black
node are run with addperim. */

ILTEULR perimlength 0;

perim(root ,width)
/* Traverse the tree calling addperim for black nodes. */
node POINTEK root;
INTEGEk width;

IF(gray(root))
FQR(i = NW to Sw)

perim(width/2 ,son(root ,i));
ELSE

Ik(black(root))

addperim( find neighbor(root ,4) ,width ,S,SE,);
addperim(find neighbor(root ,E) ,width ,k.4 ,Sw);
addperim(find-neighbor (root ,S) ,width ,NW 'NE).;
addperim(findneighbor(root ,W) ,width ,NE ,SE);

addperim (root ,width ,ql ,q2)
/* Root is a neighbor of a black node. If root is white, add width

to the perimeter length, if it is gray, then perform addperim on
the children which are adjacent tO the original black node
(quadrants ql and q2). */

node POINTER root;
I14TEGER width ,ql ,q2,-

IP(nil(root)) /* The black node was on the edge of the tree - no
neighbor exists. */

perimlength = perimlength + width,

ELSE[.1 IF(white(root))
perimlength - perimlength + width;

ELSE IF(gray(root))

addperim(son(root,ql) ,width ql ,q2),
addperim(son(root q2) ,width ,ql ,q2);

/". I

l~rI

-4
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5.2. Region manipulation

Of the basic operations described herein, the only one
that does not produce a new quadtree is the PT2POLY func-
tion, which given a quadtree, a coordinate structure (x and
y coordinates of the upper left corner and the width for the
entire tree), and a (u,v) coordinate pair, returns the value
(color) of the leaf node that represents the region that

.-contains the coordinate pair. Unlike the statistics gather-
ing programs that had to traverse the entire tree, the
PT2POLY function only visits those nodes that lie on a
direct path between the quadtree's root and the sought after
leaf. This is done by determining the quadrant of the

*. current node within which the coordinate pair lies and then
recursing down into that subtree while updating the coordi-
nate structure to reflect the new location.

One of the basic operations that take one quadtree as a
parameter and return a new quadtree as the result is the
WINDOW function. Besides its quadtree parameter, the WINDOW
function also takes a specification of where the window
should be placed-- i.e., the current width of the quadtree,
the coordinates of the upper left corner of the window, and
the width of the window. For the present, the window must be
a square whose width is a power of 2. The new quadtree is
constructed by recursively performing the following steps.
Find the smallest subtree of the given quadtree that con-
tains the window. If this subtree coincides with the window
then return the subtree. If this jubtree is a leaf then
return a leaf of the same color. Otherwise, split the
current window into quadrants and process each of these
subwindows with respect to the current subtree. Upon return-
ing from each recursive call, it is necessary to check if
four leafs are brothers of the same color, and when this
happens, replace the father by one of the four leafs. This
process results in a quadtree that represents the windowed
portion of the map encoded by the given quadtree.

The two basic operations that take two quadtrees as
parameters are the set-theoretic operations of INTERSECTION
and UNION. Both of these functions work on binary quadtrees,
taking two quadtrees as parameters and creating a resulting
quadtree. In both cases, we assume that the input quadtrees
are of the same width and have the same upper left coordi-
nates. If this were not the case, the user could perform
the WINDOW function to align the two quadtrees. Like the
statistics gathering functions, these two operations perform
preorder traversals of the quadtree parameters. However,
now the traversals are performed in parallel; so that at any
time during the processing, the algorithms keep track of the
two nodes (one in each quadtree) which correspond to the
same areas in the two encoded maps. The logic of these two
operations is summarized below.
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if current function is function is
nodes are INTERSECTION UNION

both black return black return black

both white return white return white

both gray recurse recurse

one black return other return black
subtree

one white return white return other
subtree

In the above table, 'recurse' indicates that one needs to
traverse each of the remaining subtrees, and 'return other
subtree' indicates that the value of the function is a copy
of the other subtree. Just as with windowing, when the
recursion unwinds, one has to check to see if four brothers
are identical leaves and merge them as indicated in the
discussion of the WINDOW function. Examples of performing

7these basic set-theoretic operations are shown in Figures
5.1-5.3. Table 5.1 shows the area of the landuse polygons
in Figure 5.3, using the naming conventions discussed in
Section 5.3.

The set-theoretic operation of complement can be per-
formed using the more general function QMASK. QKASK takes a
quadtree and a range as parameters and returns a quadtree
that has all the nodes with values within the range set to
BLACK and all the nodes with values outside the range set to
WHITE. Thus the tree that results from QMASK is always a
binary-colored quadtree. The QMASK algorithm is implemented
as a preorder traversal of the input quadtree that simul-
taneously constructs the output quadtree. In constructing
the output quadtree, the QMASK algorithm merges nodes when
necessary as indicated in the discussion of the WINDOW func-
tion.

The final quadtree manipulation function is QDISPLAY,
which does double duty both as a quadtree manipulator (it
truncates quadtrees) and as an output routine. The parame-
ters of QDISPLAY are a quadtree, specifications of how the
quadtree should be displayed (location, width, coloring
algorithm, etc.), and the depth at which the quadtree
should be truncated. The coloring algorithm is determined
by two flags, COLOR and BLOCK. If COLOR is true, then the
quadtree is displayed as is, each node's value being inter-
preted as a color. If COLOR is true and BLOCK is false,
then the quadtree is output as a binary-colored quad-
tree, where the colors mapped to BLACK are defined by set-
ting the range used by the primitive function BLACK. If
BLOCK is true, then a special table of colors is used

..................



102

and the color of a node is determined by its depth and its
binary-colored value. If COLOR is false, then one has

the option of setting the maximum depth of a node that will

be displayed. When a gray (internal non-leaf) node is

to be displayed, the function examines the gray node's des-
cendants and considers the node to be BLACK if the black

nodes (when weighted according to their depth in the tree)
exceed the white nodes (when similarly weighted). Thus a

,node is output as BLACK in the truncated tree, if it is

BLACK or it is a gray node at the maximum depth and the
- average color of the region it subtends is more black than

white. The algorithm is implemented as a preorder
- traversal of the input quadtree that outputs the nodes in
the order they are visited. Figures 5.4-5.8 show the
.output of QDISPLAY when COLOR and BLOCKS are false and the

polygon flood.center is considered BLACK. These figures
give an idea of the initial gentle degradation of the image

as the quadtree is truncated. Table 5.12, discussed in
Section 5.3, shows that Figure 5.5 uses only two-thirds

the number of nodes as Figure 5.4, with virtually no loss
in the basic image shape. This shows that quadtree trunca-
tion is a useful image approximation technique.

........... . .
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4 ~igqure 5.2. Result of executing l~~~~on the entire
land-use map and tne complement of tne 3tn
elevation level (4UU-bUCj it. elevation) of ine
topography map.
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Figure 5.3. Result of executing INTERSECTION on the lst
elevation level (0-100 ft. elevation) of the
topography map, the flood.center region of the
floodplain map, and the entire land-use map.

,.oitmbv 1 .d i
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TAsLE 5.1.
AREA RESULTS FOA LANDUSE
POLYGO14S IN FIURE 5.3

(1 of 2)

I PoLY-I AR.EA I AREA I
UNI II IN I IN

I  I JPIXELSI ACRES I
lacc.9 1 I 0.141

lacc.10l 711 10.061

Iacc.12l 9481 134.621
Iacc.15b 4521 64.181
lacp.1 I 281 3.981
lacp.4 1 1241 17z61I
lavf.4 1 2091 29.681
lavf.5 1 2791 39.621
"avt.6 1 4231 60.071
lavf.b I bbl 7.811
Iavf.9 1 811 11.50

lavf.10l bill t$6.761

lavf.1II 5381 76.401
-avf.15l 10331 146.b9
"avf.171 151 2.131
Iavf.181 721 10.221
.avf.191 7131 101.251

lavf.21I 7501 106.501
Iavf.241 2141 30.391

lavf.251 6591 93.581
lavv.3 1 2141 30.391

lavv.b 1 71 0.991
lavv.7 1 231 3.271
Iavv.16I 793611126.911

-avv.171 341 4.831
lavv.181 2551 36.211
lavv.19l 18801 2b6.9b
lavv.201 5821 82.641

Iavv.231 129 18.321
.avv.2bi b8 I .241

lavv.2aI 2171 30.611
"bbr.i 1 711 1O.O8

' . bbr.2 I 3611 51.2b6

" Ibeq.1 1 2291 32.521
Ibel 1 1141 16.191

Ibt.2 I bb 12.501

: tO .1 2031 41.611

"fo.3 1 291 4.121

-fo.4 8i 1.141
I lr .1 1 911 12.921
Ilr .2 1 631 8.951

Ilr.3 1 6201 tW.041
- lr.4 1 1291 1d.321

- -~- -- -------------

,' -._..;...'.,.,. .. ":" , ., . . ,. •. • . " ..-.... .....- .,-... .. , . . . .• .- . . ..... .... , ....
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AkEA RESULTS FOR LAIDUSE

PULY(U.MS ILN 'IGURE 5.3
(2 of 2)

--------------------------

I PULY-I AREA I A EA I
I GON IN I IN I

- I IPIXELSI ACRES I

Ir.2 I 231 3.271

Ir.4 1 11 0.141

ucc.6 31 0.431

Iues.1 1 5481 77.821
"ues.2 1 6581 93.441

Iuis.5 1 1011 14.341
luoo.3 1 751 10.651

luop.2 1 1481 21.021

Iurh.1 1 201 2.841

I urs .1 1 2451 34.791

Iurs.4 1 7221 102.521
Iurs.5 1 731 10.371

Iurs.6 1 1071 15.191
lurs.7 1 501 7.101
lurs.8 1 1231 17.471

lurs.9 1 921 13.061
I urs.10l1 341 4.831

lurs.11I 481 6.821
1 urs .1tt 321 4.541
Iuus.1 2461 34.931
luus.2 1 31 0.431
,uut.1 1 281 3.961
-uut.3 1 1961 27.831

vv.l 1 1081 15.341
.wo.1 1 5351 75.971

-wo.2 1 1261 17.891
lws.1 I 33941 4l.951

-- - - - - - - - - - -
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'44

Figure 5.4 Result of executing QL16PLAY on flood-center a

the flood-plain map using It) levels.

* * 3 * . . 4 ' . . & .. . 3 3
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.'

--4

[.44

.I

"rigure 5.i. kesult of executing QDIPLAY on Zlood.center or

the flood-plain map using o levels.
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Figure 5.6. kousult of executing QD1IbPLAY on tlcoI-center ot
the flood-piain map usinq. b levels.



.

- rvigure 65.7. k~sult ot executing OD)ISPLAY on flow .center or
trio flowo-plain map using 7 levels.
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Vigure 5.d. Result of executing QLISPLAY on tilood.center of

the floo-plain map using b levels.
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/. Given a tree ana tne coordinates of a point; return the value of
the leaf node contalning that point. It is assumed that in a
database system the tree used for this operation would have a
different node value for each polygon. This would allow a
simple lookup to determine the corresponding polygon once the
node value in th-3 tree has been found by this algorithm../

ILT4GtR FUNCTION pt2poly(tx. fy, width, xcoord, ycoord. rt)
node POINTER rt; 14 The root of the tree. *I
INTEGER fx, fy; /* This is the upper left coord of the tree. '/
INTE-GER width; /* The width of the tree. */
INTEGER xcoord, ycoord; /* The given coord being searched for '1

IF(I gray(nodetype(rt)))
R,TUR4 (node type (rt));

ELSE /* Gray tree - find which quadrant contains the coord. '/
IF(ycoord < (fy + width/2)) /* North half */

IF(xcoord < (ix + width/2)) /* NW */
RETURN(pt2poly(fx ,fywidth/2 ,xcoord ,ycoord ,son(rt ,Nw));

ELSE /" NE'/
kkTUM(pt2poly(fx+width/2 ,fy ,width/2 ,xcoord ,ycoord,

son(rt ,NE));
ELSE /* South haLf n)' IF(xcoord >- (fx v width/21) /* SE *

RETUi( pt 2pol y( fx~width/2;fy+width/2,widtn/2 ,xcoord ,ycoord,

son(rt )
-: ELSE /* SW/

RETURN (pt2poly( Zx ,fy+width/ 2 width/2 ,xcoord ;ycoord,
son(rt ,SW));

.

]oI
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/* Given a quadtree and its width; along with the specitications of
a window, create a tree which is the section of the input tree
specified by the window. '/

main (root ,width ,wcol wrow wwidtn)
node POINTER root; /* Root is tne input tree. '/
INTEGER width ,wcol ;wrow ,wwidth;

* -: /* Width is the width of the input tree, <wcol ,wrow> is the coord
of the upper left corner of the window.; wwidth is the size ot
the window (must be a power of 2). 'I

!I
node rnode; /* Dummy node to start the answer tree. */

Snode PuINTL rptr; /* Eventual root of the answer tree.

rptr = rnode;
rnode.fathr = NIL;

!* dowindow(root ,width , ;;rptr ,W ,wwidth ,wcol ,wrow);
rptr = son(rptrNw);
/* Rptr is now the root of the answer tree. */

"* I

:* dowindow(inrt ,inwidth ,incol ;inrow outfthr ;whichson ,outwidtn
outcol ,outrow)

/ From the input tree create a tree described by the given 'window
which has father outfthr and is son whichson. */

node PUILTLR inrtoutfthr; /* nrt is the root of the current
input tree. Outfthr is the father of the output tree. */

INTEGER inwidth ,incol ;inrow ;whichson ,outwidtn ;outcol ,outrow:
/* Inwidth; incol and inrow are the window described by the input

tree; outwidth, outcol, and outrow are the window to be
described by the tree being built and whichson indicates the
sontype of the tree being built in relation to the whole
output tree. */

JI

node POINTER no ;
• .. T14TEGER i, goodquad;

/* First, cut the input tree down to the smallest subtree which
contains the window desired - i.e.; if the window is completely
contained in one of the children of the input tree; make the
the input tree that child (and continue for its children...) 'I

goodquad 1;
while((goodquad <> SEG) AND (inrt - GRAY))I

goodquad - NEG;
/* For each quadrant; check if window in quadrant. 'I
if(inrect(incol ,inrow ;inwidth/2 ;outcol ,outrow ;outwidth))
goodquad - &W;

if(inrect(incol+inwidth/2 ;inrow ;inwidtn/2 ,outcol ,outrow;
outwidth))

goodquad - NE;
if(inrect(incol+inwidth/2 ;inrow+inwidth/2 ,inwidth/2 ,outcol;

outrow ;outwiath))

goodquad - SE;
it(inrect(incol ,inrow+inwidth/2 ,inwidth/2 ;outcol ,outrow;



OUtwidth))
goodquad -SW;

if(qoodquad <> LG)
* I'window in input quadrant-
make input tree that quadrant *

inrt - son(inrtgooiquadi);
inwidth - inwiath/2;
if(goodquad -- NE UK.)

incol - incol + width;
if(goodquad -- SE OR SW)
inrow - inrow + width;

if((incol -- outcol) ANDW(inrow mmoutrow) AciD
(inwicith mmoutwidtl))
/* It the windows are the same, then the output tree is the

same as the input tree,' so copy the input tree. '
copysub(inrt ,outfthr whichson);

else
it(nodetype(inrt) <> GRAY)

/* It the input tree is a leaf node; then the window is
also a leaf of the same color. ~

createnode(outfthr whichson ,nodetype(inrt));
else

t/* No single child of the input tree contains the window; and
the input tree is not a leaf node. Therefore; repeat
dowindow on each quadrant of the windo-' desired. To do
this; first install a GRAY node in the output tree and

then call dowindow for each quadrant. */
nd -createnode(outfthr ,whichson ,inrt->ntype);
dowindow(inrt inwidtn ~incol ,inrow;

nd .MW outwidth/2 ,outcol ,outrow);
dowindow(inrt inwidth ,incol ,inrow;

nd ,NE ,outwidth/2 ,outcol+outwidth/2 .outrow);-
dowindow(inrt ,inwidth ;incol ,inrow;

nd ;sk;outwidth/2 ,outcol+outwidth/2 ,outrow+outwidith/2);-
-. dowi.ndow(inrt ,inwidth ,incol ,inrow;

nd ;SW outwidth/2 ,outcoi ;outrow+outwidth/2);-
if(All children of nd have the same nodetype)

nd->ntype - nodetype(son(ndNW));
Return all children of nd to avail list;

BOOLEAN kUNCTMON inrect(bigcol ,bigrow ,bigwidth ;litcol ,litrow;
litwidth);

/' Return TiiUk if and only if the second window is contained
in the first window. *

INTEGERt bigcol ,bigrow ,bigwidth ;litcol ,litrow ,litwidtn;

if((bigcol 4- litcol) AND (bigrow 4- litrow) AND
(bigcol+bigwidth >- litcol+litwidth) &ND
(bigrow+bigwidth >- litrow+litwilth))

return(TAL~);
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K return(eALSE4;

copysub(root fthr ,whichson)
/* Create a copy of the subtree with root "root". The created

tree will be son "whichson" of the node "fthr" (part of the
global answer tree). *

node P014TEiA root .fthr;
IN~TEGER whichson;

node POIN~TER~ root;
ISLGER i;

nd - createnode(fthr whichson .nodetype(root));
for(i - N~W;NL*.SESw)

copysub(son(root i),nd i);
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'/ Given two (possibly multi-colored) quadtrees, return a binary

quadtree which is the intersection of the input trees.

node VUW:CTIOW inter(rtl, rt2, fthr, whichson)
/* Return the intersection of the trees whose roots are pointed to

rtl and rt2. This is done by simultaneously traversing tne

input trees and performing inter on each quadrant. It either

tree is WHITE, the intersection is WHITE. If either tree is

ULACK, the intersection is the other tree.

Fthr is the father of the resulting tree. This allows the

current subtree to be inserted into tne complete output tree.
Whichson tells which son of the output tree the current tree
is. The function is initially called with these values equal
to NIL. '/

node POI4TER rtl, rt2, fthr;
int whichson;

node POINTER nd:
INTEGER i;

IF (white(nodetype(rtl)) OR white(nodetype(rt2)))
-RETURN (createnode(fthr ,whichson ,WHITE);

IF (black(noetype(rtl))
iRkETUJ(copysub(rt2 ,fthr ,whichson))

IF (black(nodetype(rt2))
RETUIR(copysub(rtl ,fthr ;whichson));

/* Both trees are URAY - call inter for each quadrant. '/
nd - createnode (fthr ,whichson ,URA )

*"kOR(i - kWESk.,W)
*inter (rtl-> sons[ i ,rt2-3,sons[il ,nd ,i)

IF(all children of nd are WHITE)
- ( '/* Condense tree. /

*.-' nd-)ntype - WHITE;
ek(i - hWkk.6kSW)

returntoavail(nd->sons[i]);

XLTURNd(nd);}

FA--

- 7
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/* Given two (possibly multi-colored) quadtrees, return a binary
quadtree which is the union of the input trees. /

node FUCrION union(rtl, rt2, ±thr; whichson)
/* Return the union of the trees whose roots are pointed at by

rtl and rt2. Tnis is done by simultaneously traversing the
input trees and performing union on each quadrant. If either
tree is black', the union is BLACK. If either tree is WHITE,
the union is the other tree. Fthr is the father o'. the
resulting tree. This allows the current subtree to be inserted
into the complete output tree. whichson indicates tae sontype
of the current tree relative to the output tree. Union is
initially called with these values equal to WIL. '/

node POINTER rtl; rt2, fthr;
int whichson;

node POIbTER nd;
INTEGER i;

IF (black(nodetype(rtl)) OR black(nodetype(rt2)))
RETULw(createnode(fthr 0whichson ;LACK);

IF (white(nodetype(rtl)) /* If treel is WHITL. O'
RETURL(copysub(rt2 ,fthr ,whichson)); /* copy tree2. '1

If (white(nodetype(rt2)) /* If tree2 is WHITE; /
RETURM(copysub(rtl fthrwhichson));- /* copy treel. •/

/* Both trees are GR¥AY and union must be applied to
each quadrant. */

nd - createnode(fthr;whichson;GRAY);
fORti - 4W,;NEL;sSESW)

union(rtl- sons[i] ,rt2->sons[iJ ;n;i )
IF(All children of no are BLACK)

/* Condense tree. '/
nd-)ntype - BLACK;
k'Oh-(i - Nk;SkE;Sw)
returntoavail (nd-> sons[ iJ)

*RTURN(nd);

'iI



/* ror a quacitree with root 'root', for eacti leak noe, it its
value is between tne parameters nigh and low (inclusive) , titen
set nooe value to 6LA%.A. else set to wvrIJ.At bdflef necessary,
ma~rge cnilaren ot a gray nodie togeiner. *

qinasxtrt)
A noue Puii4J~T~k rt;

Qmasrt-)sons~ij);
Ik'(all children of ri are tne same leaf color)

t I conuense tree '
rt->ntype - nouetype(rt->sonsL4w));-

=411r J~IVbr, bW)
- . returntoavail(rt->sons~i]);

- - Ir((rt->ntype >- low) AIWD (rt->ntype <= high))
rt->ntype - B~LACK;

rt-)ntypa - hv1TtL;

main(root,iow ,high)
noae PuIliTLA~ root; /* input tree *
Ii-vV~k.I low, ilign; /* input parameters -values in this range

are ±aLAci'r ,

qmasx(root);

AEI u (ot
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/* Lisplay a quaatree on the grinnell. This is done by traversing
tne tree. bonile tne traversal is oeing done, tne program keeps
tracK or tne size and position of tne current node, and displays
that node on tne grinnell. There are two boolean options -
color and olocK. It color is TKUL, then nodes will oe displayed
by their color, it k'ALL then all non-KHITL nodes are displayed
as LLACk. It block is true, then the displayed color depends
on tne aepth of the node in the tree - not its value. ftt most
one of tuese options may be true. Additionally, if color is
trI d , the user may wish to display nodes only down to a certain
depta by adjusting maxdepth. In tnis case, tne smallest node
size displayed can be changed. e'or example, witn a 512 X 512
picture, there are 10 levels and tne smallest node is one pixel
wide. It the user sets maxdeptn as 9, then tne smallest noae is
2 A 2 pixels. eor any gray noaes at level 9, tne runction OK
auus up tne number of black pixels or its cnilaren ana it more
than nalt are black, tne gray node is aisplayea as black, otner
wise it is aisplayea as white.
4 next' is a tunction which returns the value of tfie next node
of the preoraer traversal of the input tree stored in tree.

DAiA kILk tree; /* preorder traversal of the input tree. "/
Ihvwzit;k~ color, block;
INTLw.K maxlevel;
I4TLU.I larr[O); /* Trnis array holds grinnell color values to be

used with option block. */

colorot(val ,currlevel)
/* Determine tne actual color value to be displayed on the grinnell.

for the node witn value val. This is determined by the options,
tne value of the node and possibly tne level of the note in the
tree. */

* IT£whGt val, currlevel /* currlevel is the level in the tree or
the current node. "/

ILNTLGEk v;

IY(block)
/* color determined by level '/

v - larr~currlevel - I];
IF(black(val))

/* white nodes will be displayed as some tint of red, black nodes
will be displayed as some tint of blue. bultiplying cy 2oD
shifts a red value to a blue one when displayed. */
return(v);

l(blacK(val))
Ik(color)

kbTUAW (val)
,. kLbk.
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/' iwturn the number ox pixels of tfle current noae ana its
children which are olack. ~

li±Lk val;

val = nexto; 1* causing this function to have a side errect ~
It'(blacx(val))

'ML1u1(a(wiUtn * width);
Ik'(white(val))

/' gray noae -calculate black pixels in chiloren ~
K~ra-Ue(4(bk(widtnl/2) + bk(widtix/2) + bk(width/2) + bk(widtn/2));

display(Zcol ,frow ,width ,currlevel)
/* Display the next node of the preorder traversal on the grinnell.

This node has its upper leit corner at f vol, trow ana has widthi
widtn. It is at level currlevel in the tree.

INTk~i% rcol, frow, width, currlevel;

IhaJkbdLk col , total, val;

val -nexto;
I'ti~uLr qray(val))

col = colorof(val,currlevel);
<#,rite to grinnall a square at icol ,irow of size wiattn witn

color col.> /* this is a command and not a comment ~

Ik'(currievel ==maxievel)

Ik'(block)

col - colorot(val,currlevel);
<write to grinnell a square at fcol ,frow of size width and

color col.>

total = k(width/2)+bk(wiathi/2)+bk(wiat/2)bk(widtn/2);
Lk'((2 *total)) > (width *width))
val 1 ;

val =0;

col - colorof (val 'currlevel);
<write to grinnell a square at fcol .frow of size widthl and

color vol.)
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/* D~iisplay Chldren of a gray node ~

display(rcol ,(frowi-wiath/2) ,(wiath/2) ,(currlevel+l));
aisplay$((col+witn/2) ,(frow+widtn/2) ,(widtn-/2) ,(currlevel+l));
display((fcol+widti/2) ,zrow,(wiutn/2) ,(currlevel+l));
aisplay((f col trrow ,(wicith/2) ,(currievei+i))

nain4Ltcol ,trow ,color ,bioci ,maxlevel ,widtn);
Iar:.Gi col ,frow,wiaith;

.*Angle brac~ets enclose commands written in kLnglish and are not
]LUSt conments.*

4*'ill larr witn grinnell-depenaent values used wiin option blocyK. >
di splay( Zcol ,rrow ,widtn ,l);
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5.3. Tabulation of results

In the tables presented in this section, the basic
unit of manipulation is the connected component. The names
of these basic units are created by suffixing a digit to the
land-use class (or contour) to which the unit belongs. These
digits can be dereferenced by referring to the figures in
Section 3. For example, in Table 5.2, the first polygon
name we encounter is acc.l. Looking at Figure 3.4, one sees
the 19 components of the class ACC. The component labeled 1
in that figure is the polygon refered to by the name acc.l.
The units of the flood-plain map are so few that they are

* given names of their own, i.e., left and right bank instead
of bank.l and bank.2. Note that there are no tables showing
the execution times for the PT2POLY function. This is
because all times were less than a tenth of a second and
hence were beyond the range of the system timing algorithm.

The first group of tables (Tables 5.2-4) are the AREA
RESULTS tables. They are organized according to which map
the polygons (i.e., simply-connected components) belong.
They summarize the results of two programs: NDCOUNT (which
counts the number of black nodes, i.e., those belonging to

.. the polygon) and AREA (which calculates the area in pixels
and centroid (first moment) of the polygon). The execution
times immediately follow the results of the same algorithm.
The times for NDCOUNT indicate the cost of visiting every
node in the tree exactly once. Hence the time is relatively
constant for each map because so little processing is done
at each node. This value also gives an indication of the
reliability of the system timing routine used. Substan-
tially more calculation is performed by AREA with more vari-

* ation with respect to the amount of time spent at a black
node vs. a gray or white node. The conversion from area in

: pixels to area in acres was calculated based on .142 acres
per pixel. The value is given in hundredths of an acre,
although the pixel size is about one seventh of an acre.
The coordinates used for the centroid are based on the
upper left-hand corner being (0,0) and the number of pixels

* in both directions range from 0 to 512. The same coor-
dinate system is used in the other tables.

The REGION PROPERTY RESULTS (Tables 5.5-7) show the
cost of two statistics gathering programs: PERIMETER and
HANDW. The perimeter is measured in pixel widths. The

* enclosing rectangle calculated by HANDW is given by the
coordinates of its upper left-hand corner and its width and
height. HANDW is another algorithm that treats each node
equally and hence produces little variation in its timings
within a given map. This is quite different from PERIMETER,

" which performs four FIND NEIGHBOR operations for each black
4node; hence the variations in the cost of PERIMETER.

The data for the WINDOW program is presented in the
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WINDOW RESULTS (Tables 5.8-10). The window used is the
smallest square whose width is a power of two, that encloses
the smallest bounding rectangle of the polygon (calcu-
lated by HANDW), and sharing the same upper left-hand
corner with that rectangle. The relation between the
times and the input is complicated, as it is effected by
both the size of the window and the greatest common
denominator of the tree size and the two coordinates of the
upper left-hand corner. The smaller the greatest common
denominator of these three numbers, the greater the possible
fracturing of large nodes in the input tree.

The next table, INTERSECTION STATISTICS (Table 5.11),
is the only table showing a binary relation, that of INTER-
SECTION. Three large regions (the center of the flood
plain and the two lowest contours) are chosen to be
intersected with the land-use classes because they are most
likely to yield interesting results. Since the center
of the flood plain is not equivalent to a contour class,

* it is also intersected with each of the contour classes.
Note that the cost of INTERSECTION can be less than the cost
of doing a NDCOUNT on both trees because a large white
node in one tree can make it unnecessary to process a large
subtree in the other tree. As well as the cost of per-
forming the INTERSECTION operation (measured in seconds),
the table also gives the area and number of nodes in the

* result. Note that a UNION table is not shown because UNION
behaves in the same manner as INTERSECTION on the logical
complement of the inputs (i.e., switch the black and white

* node colors). Note that the INTERSECTION algorithm is
greatly simplified by the digitization process's alignment
of the maps so that the pixel at (0,0) corresponds to the

*" same ground truth in each map.

The final table, QUADTREE TRUNCATION STATISTICS (Table
5.12), shows the amount of compression one can obtain by
truncating the quadtree maps. The usability of the truncated
quadtrees is discussed at the end of Section 5.2 and shown
in Figures 5.4-5.8. Under each map's name there are two
columns. The first column shows the number of nodes in the

* quadtree that is formed by truncating the full (depth 10)
quadtree to the depth indicated in the far left column. The

* second column shows the percentage of nodes in the full
*" (depth 10) quadtree that would not be needed for the trun-

cated quadtree.
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TABLL 5.2. LANDUSE AREA RESULTS

(1 OF 5)

I POLY-INUbilTIt .E, AREA I AREA I CENTROID ITIMEI

i ON I OF ILI iN i IN I IIN
I INODEISECSIPIXELSI ACRES I X Y ISECSl

Iacc.1 1 451 1.31 2011 28.541 4.6 143.71 2.71

Iacc.2 1 251 1.31 1541 21.871 27.0 169.51 2.31
Iacc.3 1 611 1.31 2021 28.681 40.6 197.61 2.21
lacc.4 1 1071 1.31 5931 84.211 76.6 218.51 2.31
lacc.5 1 131 1.31 281 3.91139.7 190.41 2.51
"acc.6 1 921 1.31 3561 50.551157.0 218.41 2.11
lacc.7 1 721 1.31 3451 48.991180.6 206.11 2.11
Iacc.8 1 331 1.31 2701 38.341183.6 239.51 2.11
Iacc.9 1 121 1.31 181 2.561 38.2 299.11 2.11
lacc.10l 591 1.31 1461 20.731 18.6 372.21 2.11
'acc.11i 851 1.31 2561 36.351157.0 256.51 2.11
-acc.121 2111 1.31 11741 166.711131.7 317.71 2.21
I acc.Li) 7ol 1.31 5281 74.9b1202.b 3.52.21 2.11

• c l b) .3$ 2v2i *I .,f 125 o/5 3b2.71. 2.11

Iacc.15I 12,,1 1.31 uo2l tu. c4 162.9 412.91 2.11
lacc.161 581 1.41 2141 30.391244.3 393.91 2.11
lacc.171 701 1.31 2291 32.521258.2 414.51 2.11
Iacc.181 1201 1.31 4b5 66.031329.0 390.61 2.11
Iacc.191 561 1.41 1881 26.701349.3 432.21 2.11
lacp.1 1 731 1.51 1871 26.551 33.4 242.61 2.11
lacp.2 1 5751 1.51 60351 857.971238.2 182.31 2.21
Iacp.3 1 991 1.51 3391 48.141 9.5 349.31 2.11
Iacp.4 1 481 1.51 1321 18.741 34.3 361.51 2.11
Iacp.5 1 581 1.61 2441 34.651 3.3 394.91 2.11
Iacp.7 1 8771 1.51 148061 2102.451288.9 32101 2.21
lacp.8 1 421 1.51 931 13.211157.4 348.01 2.11
lacp.9 I 1201 1.51 6661 94.571 15.8 432.01 2.11
lacp.1Oi 2961 1.61 14121 200.501219.0 434.61 2.11
Iacp.11I 661 1.51 25l 40.471295.3 434.71 2.11
lacp.121 1791 1.51 9771 138.731323.7 425.61 2.1i
lacp.131 2311 1.31 13561 192.551366.9 426.21 2.11
I ar.1 1 691 1.41 2041 29.971209.7 117.b1 2.11
I ar.2 1 601 1.31 1981 28.121359.7 213.01 2.11

I ar.3 1 571 1.41 1351 19.1711b4.4 306.41 2.31
I ar.4 1 1141 1.31 4531 64.331172.9 333.91 2.41
I ar.5 1 601 1.31 2071 29.391176.1 439.41 2.21
Iare.1 1 261 1.31 1521 21 .581323.1 436.01 2.11
lavf.1I 281 1.31 1211 17.181 29.1 21.31 2.11
Iavf.2 1 441 1.31 1341 19.031 16.4 118.31 2.11
Iavf.3 1 771 1.41 3261 46.291100.6 82.31 2.11
lavf.4 1 1031 1.41 6281 89.181135.1 104.91 2.11
Iavf.5 1 901 1.31 2d51 40.471105.6 111.41 2.11
lavf.6 I 6t7l 1.41 49141 697.791157.5 16b.11 2.21
iavf.7 I 2t1 1.31 461 b.531259.1 87.61 2.11
lavf.8 1 5651 1.31 38231 542.871 39.5 185.51 2.21
Iavf.9 1 1511 1.31 9011 127.941 9.8 235.61 2.11
-- -- -------------------------------------------------------
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LANDUSE AkEA RESULTfS
(2 OF 5)

I P0LY-iUfl,.8ITLlEI AikA I AkRLA I CL~iTUIDiIiE
i (o 0Fi ,, .i ,I . I IJ I I l.u i

lN ILjSkCblPIX"SL1 ACkAiS I X Y Is~.cbi

iavf.lOi 3651 1.31 17151 243.531 71.1 250.01 2.21
lavf.lll 1541 1.31 9bli 136.461129.0 231.11 2.11
iavf.121 791 1.31 3251 4b.1511b7.2 257.31 2.11
lavt.13I li1i 1.31 7041 99.971242.3 253.51 2.11
1 avf .141 31bI 1.31 15901 225.761347.3 22.31 2.11
1 avf.1!1 1761 1.31 16191 229.901 59. 2t53.41 2.11
lav.lbl 4o 1.31 2351 33.371 11.1 293.51 2.11
lavf.17l 361 1.31 1521 21.5bI 22.9 310.11 2.11
Iavf.ibl 4bl 1.31 lo6 15.051 41.9 305.1 2.21
Iavf.191 1671 1.31 7131 101.251 85.5 351.91 2.11
lavf.201 131 1.31 461 6.531 2.7 333.91 2.11
lavf.21l 1821 1.31 8511 120.841 36.6 366.81 2.11
iavf.221 201 1.31 351 4.97 1172.4b 262.91 2.11
lavf.231 401 1.41 761 10.791157.2 355.21 2.11
Iavf.2,kl 551 1.31 2141 30.391 76.9 390.31 2.11
lavf.251 1361 1.31 11561 164.151 74.8 442.61 2.21
lavf.2u1 1771 1.31 7711 109.41213.6 3-7.0 2.21
lavf.271 2bl 1.31 401 5.6b1290.2 367.71 2.11
lavf.2o 171 1.31 441 6.251305.3 357.21 2.21
lavf.291 451 1.31 1381 19.601266.6 399.11 2.11
lavf.301 1441 1.31 9841 139.731295.9'41o.51 2.21
lavf.311 451 1.31 1231 17.471359.0 420.91 2.11
lavv.l I 2vi 1.31 1101 15.621 5.3 78.91 2.11
lavv.2 1 291 1.31 661 9.bbl 91.3 73.41 2.21
lavv.3 I 1001 1.31 3731 53.971120.5 106.51 2.21
lavv.4 1 241 1.31 U71 12.351 27.3 150.41 2.31
Iavv.5 1 541 1.31 1051 14.911 9.6 177.91 2.11
Iavv.o 1 1091 1.31 7031 99.63l 19.9 201.51 2.11
lavv.7 1 1001 1.41 3281 46.56I 40.b 231.21 2.11
Iavv.b 1 291 1.31 5b1 7.951 83.1 244.91 2.11
lavv.9 1 1071 1.31 4491 63.76il19.3 177.71 2.11
Iavv.10l 661 1.41 2431 34.511155.4 170.51 2.11
lavv.lli 961 1.41 3391 4d.141225.6 191.21 2.21
lavv.121 471 1.31 2001 28.40I179.b 247.41 2.21
lavv.131 351 1.31 1401 19.t6 I259.b 24u.41 2.21
lavv.141 551 1.31 1631 23.1512bb.9 4.51 2.21
Iavv.15I 191 1.31 401 5.b6 275.9 11.8d 2.31
lavv.16110761 1.41 113901 1617.3d1 62.b 362.21 2.31
lavv.171 201 1.41 381 5.401 7d.7 261.41 2.11
lavv.161 851 1.41 2951 41.6d9 91.5 283.61 2.11
Iavv.191 7401 1.31 45801 650.361157.6 363.51 2.21
Iavv.201 4021 1.31 32941 467.751149.2 277.71 2.51
lavv.211 2291 1.41 215u1 306.44121b.0 272.01 2.51
lavv.221 691 1.51 3091 43.861205.4 347.21 2.21

lavv.231 1751 1.51 10361 147.111 17.6 405.01 2.41
Iavv.241 41 1.41 261 3.96i 1.4 445.91 2.11
lavv.251 251 1.31 1271 16.031 24.8 442.01 2.31

---------- ---------- ---------- ----------
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LAA.'LUSY. ARE.A Rk~bULT.S
(3 0' 5)

I POLY-lUk,6!TItl AkaA I ARfA I CLLk XiU11) ITII-
I L,,, I )0k')e I IJ I 1iJ II

!,,,,-1..C o!p1Xk L! Acak b I x Y ISLCSI
*- -- -- - - - - -- - - - - - -- - - - - -- - - - - -

, )avv.2*1 l1 1.3! 5b) b.2d)lU.0 44b.51 2.31

,avv.271 521 1.31 151! 21.44 11!2. 419.71 2.51
lavv.2o! 1221 1.31 boo1 71.001166.4 432.51 2.31
lavv.29l 241 1.31 631 6.9511b4.9 444.91 2.11
lavv.301 b1i 1.3! 31bl 45.161224.9 404.bi 2.11
lavv.311 u! 1.31 3021 42.8b!217.6 442.9 2.11
.avv.321 731 1.41 35b! 50. '1271.i 270.11'2.11
lavv.331 4V1 1.31 124! 17.611313.4 359.0! 2.1!
lavv.341 33! 1.3! 721 10.2212b5.7 390.5! 2.11
Iavv.3u! 151 1.31 361 5.111321.3 446.3) 2.21
lavv.371 30! 1.31 207! 29.39133i.6 410.21 2.21
-avv.36! 23! 1.3! lull 14.341324.3 %20.01 2.1!
-avv.391 111 1.3! 23! 3.271363.0 413.0! 2.21
lavv.40! 22! 1.31 73! 10.371362.b 427.2! 2.21
lavv.411 97! 1.41 331! 47.0013b4.3 424.21 2.2!

!bbr.1 I 32! 1.3! 711 10.06!102.4 30b.5! 2.2!
!bbr.2 1 121! 1.3! 361 51.261145.0 422.9! 2.2!
2beq.1 1 971 1.3! 229! 32.521131.6 439.3! 2.1!
lbes.1 1 51! 1.3! 1471 20.7 101.4 169.41 2.1!
I bt.1 I 30! 1.3! 132! 16.74! 54.1 1.5! 2.11
1 bt.2 I 100! 1.3! 26b! 38.061148.4 10b.6! 2.1!
1 bt.3 I 5b9I 1.3! 286bl 409.101360.2 351.0! 2.2!
I bt.4 1 50! 1.3! 1221 17.321283.5 442.2! 2.1!
I fo.l 1 75) 1.31 5651 83.071226.b 3.6! 2.11
i fo.2 1 292! 1.3! 2605! 3o9.91I215.b 44.9 2.1!
I fo.3 111451 1.3) 10010! 1421.421304.5 123.01 2.3!

fo.4 1 4651 1.4! 37291 529.52133b.3 50.7! 2.2!
I fo.5 I 16! 1.4! 25! 3.551lb4.0 362.6! 2.1!
I lr.1 I 56 1.41 107! 15.19! 9b.3 120.4! 2.2!
I lr.2 1 33! 1.4! 63) 8.951103.9 190.6) 2.11
Ir.3 I29! 1.4! 649! 92.161112.7 281.3! 2.11
I lr.4 1 63! 1.4! 129! lb.321152.7 437.9 2.1!
1 r.1 I 181 1.41 8691 126.24119b.7 136.6! 2.2!
I r.2 1 227! 1.4! 1178! 167.261233.0 108. 1 2.2!
I r.3 114281 1.4! 17277! 2453.331330.2 232.2! 2.3!
I r.4 1 232! 1.31 1003! 142.431290.2 17.1! 2.21
I r.5 1 391! 1.4! 2600! 397 .60 33d .6 79.2! 2.2!
Iucb.1 1 39! 1.4! 1531 21.731 77.9 7.9! 2.1!
lucb.2 1 30! 1.3! 96! 13.63! 49.3 105.4! 2.1!
!ucc.1 1 52! 1 .4 430! 61.06! 5b.4 14.3! 2.1!
lucc.2 I 4b! 1.3! 1411 20.02! 55.2 57.51 2.1!
lucc.3 23! 1.3! 1011 14.34! 44.b 79.9! 2.2!
Iucc.4 1 13! 1.4! 64! 9.09! 77.5 73.5! 2.3!
ucc.5 1 35! 1.31 1191 b.90! 86.4 83.7! 2.3!

lucc.6 1 61! 1.3! 1631 23.151163.3 379.1! 2.2!
------mn eb f-- - - - - - - - - - - - -
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LALNDUbi Ak.kA RESULTS
(4 OF 5)

I PULY-IoiUt'bIT1LE A EA I AAkA I CLATzUID 1ZV I

Ga IU OFji 1L U4 1 mb IN Ii
IbUvMhSCSIPIXkELsl ACA~h. I x y ISkLUSl

I ucr.1 1,, 1I 1.31 351 4.971 6 . 1.61 2.21

lucr.2 1 211 1.31 451 b.391 6.9 25.51 2.21

lucr.3 1 2771 1.31 13421 190.b61 34.2 lOb.5 2.21

Iucr.4 1 331 1.31 961 13.631 66.4 157.41 2.11
lucw.1 I b7l 1.31 1391 19.741 17.6 95.51 2.11

"ucw.2 1 731 1.31 1661 23.571 27.5 127.91 2.11

Iues.1 1 1171 1.41 960 13b.32I1O .1 137.1 2.11
Iues.2 1 2121 1.31 6)d1 94.861 87.4 31b.1I 2.11
I u1.1 1 501 1.31 2391 33.941 50.0 134.61 2.11

Sluil.2 1 511 1.31 1631 2b.99 135.9 200. 1 2.21
Iuis.1 1 51 1.31 201 2.a4l 1.4 1.91 2.21
luis.2 1 51-1.31 b1 1.141 0.3 40.31 2.11
l uis.3 1 961 1.31 2651 40.471 10.2 5b.71 2.11

luis.4 1 251 1.41 1571 22.291 47.3 lb.91 2.11
luis.5 1 471 1.41 1461 20.731109.4 167.11 2.11
Iuis.6 i 34I 1.31 6bl 12.501 72.0 160.01 2.11

*uis.7 I b51 1.31 2o61 38.06116U.2 317.11 2.21
Iuis.8 1 261 1.41 701 9.94124b.9 426.11 2.31

.Uiw.1 1 291 1.31 561 7.951219.2 181.21 2.21
Iuiw.2 1 521 1.41 1301 18.461146.4 252.11 2.21
lunk.1 1 1261 1.31 13431 190.711374.5 15.31 2.31
lunk.2 1 501 1.31 1761 24.991387.6 255.91 2.21

Junk.3 1 21 1.31 8 1.141392.5 167.51 2.21

Iunk.4 1 51 1.41 5I 0.711392.1 193.31 2.21

I unK .5 1 211 1.31 331 4.69136d.7 203.01 2.11
I unk.o 1 471 1.41 1131 16.051390.5 230.b1 2.11
lunk.7 1 41 1.31 101 1.4213t2.5 340.U 2.11
lunk.6 1 151 1.31 211 2.9bi3t0.3 403.61 2.11

lunk.9 1 191 1.31 281 3.9 13!0.9 425.31 2.11
Iunk.101 101 1.31 6l1 2.27139U.b 447.11 2.11
Iuoc.1 I 511 1.31 2861 40.901 97.2 64.01 2.11
luog.1 I 1341 1.31 11151 15b.33i11b.2 59.11 2.11
luoo.1 1 391 1.31 2731 3b.771 7.3 91.41 2.21

luoo.2 471 1.31 1251 17.751 5.2 157.51 2.31

uoo.3 135 1.31 921 13.0121.7 2043 2.31

luop.1 1 11 1.31 291 4.121 33.9 101.41 2.21
,uop.2 1 551 1.31 1841 26.131100.0 15o.01 2.11

iuov.1 1 351 1.31 1191 16.901 95.6 5.21 2.11

luov.2 I 31 1.41 1191 16.t0 103.9 20.91 2.11

lurh.1 1 331 1.31 1261 17.wtI b2.4 160.91 2.11

Iurn.2 1 201 1.41 411 5.b21174.5 304.b1 2.21
I urs .1 1 6731 1.31 901b1 1280.561 57.b 62.ui 2.31
Iurs.2 1 751 1.31 2461 34.931 15.1 10b.51 2.21
Iurs.3 1 371 1.31 1481 21.021 3.3 123.61 2.11

lurs.4 I 77fo 1.31 104271 1,,b0.b3I179i. 49.61 2.21

Iurs.5 1 1301 1.31 7301 103.6011390.0 139.51 2.21
- - - - - - ---
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LLibDJr AREA Rt.SULTS
(5 OF :5)

I k'ULY-I~aUtfiITibI AikkA I A.rA I CL,6Ts4IDj IT f NEI

IoWI bLCbIP1X.LLsI ACk.k.b I X Z I b.Cb I

lurs.o I c51 1.31 3971 5b.371 82.b 175.11 2.21

lurs.7 1 321 1.41 b2l b.601112.4 l7o.ol '..1I
iurs. I 531 1.3 19, 27.b5l 6b.1 24,.2 2.2.
lurs. 1 1,51 1.31 4031 57.231 92.1 21t.61 2.11
lurs.loU 1051 1.31 2791 39.621277.4 25.,1 2.11
I urs .111 1191 1.31 4b5I bb.b7 127,%.b 74.31 2.11
-urs.121 191 1.31 491 b.ob 1 7.b 302.31 2.21
Iurs.131 371 1.31 211i 29.9c1 3.9 3bl.bi 2.11
IU5s.141 371 1.41 1121 15.90 1b9.0 272.o 2.21

lurs.15l 3271 1.31 16501 234.301211.9 3b2.8I 2.31
Iurs.lb 661 1.31 2b 1 37.061238.6 263. 1 2.21
lurs.17I 251 1.31 431 6.111 7.6 3b6.01 2.41

Iurs.ldI 671 1.31 1991 28.261 40.3 413.31 2.41
Iurs.191 331 1.31 b31 8.95119a.5 400.01 2.31
Iurs.201 911 1.31 53di 76.401212.9 420.21 2.41
lurs.21I 2461 1.31 10141 143.991259.1 ,*26.41 2.41

lurs.22I 71 1.31 101 1.421306.4 4,7.91 2.31
Iurs.231 91 .,1 151 2.131315. 447 .1 2.21

lurs.241 541 1.31 1981 2b.121341.5 445.71 2.11
luus.1 691 1.31 2461 34.931 70.6 306.91 2.11
luus.2 1 121 1.31 151 2.131147.6 367.21 2.11
Iuut..1 1 2461 1.41 b001 85.201 40.0 14w .01 2.11

luut.2 I 911 1.31 1661 23.571 61.4 132.41 2.11
iuut .3 I 5bl 1.31 11b21 1u5.00I196.3 30b.2I 2.11

I vv.1 1 391 1.3 10 o 15.34110d.6 1!.91 2.11
I wo.1 1 941 1.31 5351 75.971 89.b 32,.3i 2.11
i wo.2 1 451 1.31 1261 17.6t9 129.5 43o.71 2.11
I ws.1 1*83I 1.31 34091 4a4.01131.8 213.21 2.21
Iwwp.l I b1 1.31 8 1.1413 o0.0 2)1.31 2.11
Iwwp.2 ' 81 1.31 11 1.561 10.d 43v.31 2.11
Iwwp.3 1 241 1.31 451 6.391307.5 287.01 2.11
Iwwp.4 1 241 1.31 511 7.241300.6 377.21 2.11
Iwp.5 1 221 1.31 611 8.661321.5 370.71 2.11
I p.b 1 151 1.31 301 4.26135o.3 359.71 2.11
-------------------------------------------------------

a.

K.
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* TABLL 5.3 TUPOGRAPHY AREA RESULTS
(1 OF 2)

I POLY-INUW1ITIN ' AREA I AREA I CENTROID ITIMEI

* I Fo IoF INI IN I z I IINI
I IkNODEISECSIPIXELSI ACRES I X Y ISECSI

--------------------------------------------------------
I 1.1 125301 1.11 583181 8281.161 96.4 270.11 2.21

1 2.1 112681 1.11 162021 2300.681 86.9 61.41 2.01

1 2.2 1 181 1.21 511 7.241196.6 1.51 1.81

1 2.3 131461 1.21 353511 5019.841242.0 312.61 2.21

1 2.4 1 81 1.21 81 1.141 85.0 150.01 1.81

1 2.5 1 51 1.21 51 0.711 93.3 144.91 1.81

I 2.6 1 351 1.21 681 9.661101.1 149.91 1.81

2.7 1 21 1.21 51 0.711 98.7 132.31 1.81

I 2.8 1 41 1.21 71 0.991104.4 131.11 1.81

2.9 I 41 1.11 41 0.571 95.5 141.01 1.81

I 2.101 51 1.11 ill 1.561100.7 142.01 1.81

1 2.111 71 1.11 71 0.991106.2 157.81 1.81

1 2.121 211 1.11 331 4.691103.8 169.41 1.81

1 2.131 31 1.11 61 0.851108.3 177.81 1.81

1 2.141 1791 1.11 17181 243.961355.7 18.41 1.91

I 2.151 6I 1.11 121 1.701 3.8 285.31 1.91

I 2.10 (a 1.11 121 1.701 0.6 296.b1 2.01

1 2.171 71 1.11 101 1.421 0.5 304.21 1.91

1 2.181 491 1.11 2141 30.391 3.1 361.71 1.91

1 2.191 31 1.11 61 0.85118b.8 320.31 1.81

1 2.201 351 1.11 891 12.641192.4 384.01 1.81

1 2.211 2d41 1.21 24531 34b.331 28.3 424.91 1.81

1 3.1 1 9071 1.11 34001 482.801166.7 42.51 2.01

1 3.2 1 201 1.21 531 7.531111.1 64.71 1.81

1 3.3 1 31 1.11 31 0.431118.6 60.81 1.91
1 3.4 126771 1.11 131111 1b61.761294.3 263.71 2.21

1 3.5 1 6b1 1.1 1821 25.841201.7 207.41 1.81

1 3.6 1 391 1.11 1021 14.4b1228.7 257.41 1.91

1 3.7 1 2411 1.11 8411 119.421342.6 27.31 2.01

1 3.8 1 6bl 1.11 2431 34.511376.7 11.71 1.81

1 3.9 1 111 1.11 141 1.991227.5 351.11 1.81

I 3.10 5i 1.11 b1 1.141246.3 350.31 1.81

1 3.111 41 1.11 41 0.571211.0 359.01 1.81

1 3.121 51 1.11 5I 0.711217.3 354.31 1.81

1 3.131 41 1.11 41 0.571227.0 357.51 1.81
1 3.141 141 1.11 201 2.b41254.1 355.51 1.81
1 3.11 551 1.11 3131 44.451 4.1 425.51 1.81

I 3.161 71 1.11 71 0.991 16.5 409.51 1.81
1 3.171 211 1.11 511 7.241 19.9 424.51 1.81
I 4.1 1 51 1.11 81 1.141106.8 0.11 1.91

I 4.2 61 1 .11 91 1.2 1112.8 11.21 1.81
I 4.3 I 7361 1 .11 23081 327.741175.4 36.91 2.01

S4.,1 121651 1.11 74661 1060.171300.1 169.31 2.21

1 4.5 61 1 .11 121 1.701279.b 0.31 1.91

I 4.b 441 1.21 1341 19.031382.2 7.71 1.91

I 4.7 1 81 1.21 81 1.141335.0 306.01 1.81

I 4.b 1 91 1.21 151 2.131347.4 330.21 1.81
- ----------------------------------------
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TOPOGR&APHiY AAE.A ABS.ULTbi

(2 Od 2)

I PULY-jL4.UL\blTIL..kl AAIiA I AkE.A IC~dahiwJD ITIF-,L

Wt I~~kCI1k8 OFk. I U, IN a .IL

I '.9 1 bl 1.21 81 1.14137b.5 3tas.oI 1.bl
1 4.101 51 1 .41 ill 1.561378.3 349.11 1.91
1 4.111 3bl 1.21 63 1 11 .7to13 7 2.8 364.91 1.81
. 4.121 41 1.11 41 0.57 1367.0 372.01 1.91
1 4.131 41 1.11 41 0.57J374.0 377.01 1.91

I 51I V1 1...1 121 1 .70 1159.3 1,4.9 1 1.81
1 5.2 55bl 1 .11 lbb6,1 237.0 O1 ,1.9 40.41 1.91
I 5.3 116341 1.11 52221 7,,1.521299.0 166.21 2.01
I 5.4 1 141 1.11 351 4.97 136.1 3.01 1.81
S 5.5 1 3bl 1.il 721 10.221327.3 266.11 1.91

I 5.b 1 41 1.11 41 0.571359.0 273.01 1.91

1 5.7 1 1711 1.11 4531 64.33136U.9 302.*1 1.91
1 6.1 1 al I II i 1.571144.b 31.01 .bl
1 6.2 1 3951 1.11 6031 114.031205.2 43.b1 1.91
1 6.3 1 91 1.11 181 2.56 1153.4 .37.11 1.91
. 6.4 1 61 1.11 6i O.51220.0 140.Ui 1.to1
I 6.5 114561 1.11 50311 714.401305.4 155.21 2.21
I 6.6 1 2§1 1.21 331 4.b91363.0 104.51 1.61
1 6.7 1 31 1 .11 31 10.431364.5 115.51 1.91

I 6.d 1 131 1.11 281 3.9b1319.6 235.61 1..1
i 6.9 1 41 1.21 71 0.991335.9 262.11 1.81
1 6.101 121 1.21 121 1.701378.6 291.41 1.91

I 6.111 371 1.11 641 9.091372.6 302.71 1.91
I 6.121 iI 1.31 41 0.571360.5 306.51 1.0l

i 7.1 1 33,k1 1.11 7031 9.b3I21U.4 4*.41 1.91
I 7.2 11435i 1.11 $0591 716.3613114.7 152.51 1.91
i 7.3 1\ 901 1.11 297i 42.17 13bO.7 10.41 1.91

- 7.4 --6l 1.11 61 O.tbl3U2.b 142.21 1.91
i 7.5 1 I .1 11 0.1413*3.5 139.51 1.bl
I 8.1 1 2311 1 .11 4591 65.1 1213 .,, 45.41 1 .9 1

I 8.2 1 ul 1.11 141 1.991312.0 56.bl 1.91

I 6.3 111401 1.21 3d491 546.506330.5 135.61 2.01

i 8.4 1 21 1.21 21 0.261339.5 51.01 1.91
I 8.5 2041 1 .11 6451 91.591375.7 l19..1 1.91
I 8.6 1 41 1.11 41 0.571330.0 191.01 1..1
I 9.1 1 1271 1.11 3101 44.021210.8 46.01 1.91
I 9.2 1 321 1.11 621 8.1314.b 102.51 1.91
1 9.3 1 741 1.11 2001 2b.401338.4 75.51 1.dl
i 9.4 1 7765 1.11 24731 351.17135b.1 135.21 1.91
I 9.5 5 5I 1.11 al 1.14138l.9 195.91 1.91
I 9.6 1 361 1.11 1351 19.171376.5 20b.31 1.91

I 10.1 1 351 1 .11 116 1 b.471203.1 44.71 1.91

*1 10.2 1 3b1 1.11 591 8.361373.6 bO.91 1.b1
1 10.3 1 231 1.11 351 4.97 1353.6 96.01 1..l
1 10.4 1 3491 1.11 14201 201.64135O.7 154.41 1.91

1 11 .1 1 271 1.11 571 b.091352.2 110.21 1.81
1 11.2 1 61 1.11 bI 0.851302.5 173.01 1.91

................

.7 .- -. ,.



132

TABL 5.4. FLOODPLAIN AREA RESULTS

I POLY-INUWWITIEI AREA I AREA I CLbTROID ITbIMl
i GUN I OF Ii I IN I IN I I I I
I INODEISECSIPIXJ.LSI ACRES I X Y ISECSI

Iright 110311 0.21104270114806.341277.1 241.81 0.51

Ileft 115251 0.21 460031 6532.431 82.1 141.61 0.61

IcenterI22081 0.21 297271 4221.241108.9 292.21 0.71
-------------------------------------------------------------
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TABLL 5.5. LANDUSE REGION PROPERTY RESULTS
(i UF 5)

I POLY-iPER-iTIEl ENCLOSING ITIMEI
I GUN I I bi-I IN i RECTANGLE IN i
" IETERiISECSI X Y WID HGTISECSI

Iacc.1 A 71i 3.91 0 133 14 221 2.11
.acc.2 A 501 3.71 21 164 13 121 2.11
lacc.3 1 7B1 4.21 J5 190 lb 191 2.11
lacc.4 1 1141 4.01 bl 205 31 251 2.31
lacc.5 I 241 3.81137 188 6 61 2.31
lacc.6 I 1061 3.81139 209 34 191 2.21
lacc.7 1 881 4.41170 195 20 241 2.21
lacc.8 1 941 3.71164 236 39 81 2.21
lacc.9 1 201 3.71 37 297 4 61 2.21
lacc.10 bb1 3.81 3 36d 34' 101 2.21
Iacc.11I 921 3.81149 245 lb 241 2.31
-acc.121 2121 3.81116 297 47 461 2.31
lacc.13l 1201 3.71±85 319 37 231 2.11
lacc.141 921 3.7124b 370 17 291 2.11
Iacc.15I 1621 3.7114b 399 41 341 2.11
lacc.161 7b1 3.71235 3b5 20 181 2.11

• Iacc.17I 8bl 3.91246 407 25 181 2.11
lacc.18I 13b1 3.71313 375 33 351 2.11
Iacc.191 721 3.71340 425 lb 171 2.11
lacp.1 1 1021 3.dj 24 233 19 241 2.11

.acp.2 1 6161 4.21149 142 159 991 2.11
Iacp.3 1 1181 3.71 0 33b 1 351 2.11
Iacp.4 1 561 3.91 2t8 356 15 131 2.11
-acp.5 1 1041 3.71 0 372 13 391 2.11
Iacp.b I 9di 3.71186 296 21 281 2.11
Iacp.7 1 9761 3.9i 99 244 159 1561 2.11
-acp.8 1 461 3.81153 343 13 101 2.1
lacp.9 1 1601 3.71 0 413 30 371 2.11
lacp.10 3241 3.7 181 412 78 381 2.11
Iacp.11I 901 3.712d5 422 17 281 2.11
lacp.121 2641 3.7130ti 397 40 531 2.11

lacp.13I 2821 3.71340 404 53 461 2.11
1 ar.1 I 7d1 3.71199 109 21 181 2.11
I ar.2 1 821 3.81352 205 19 211 2.11
I ar.3 I b2l 3.81156 299 17 141 2.11
I ar.4 1 1061 3.91157 323 32 201 2.11
I ar.5 1 721 3.71171 429 11 211 2.11
lare.1 I 561 3.81319 428 9 191 2.11
Iavf.1 1 501 3.81 22 ld 17 81 2.11

lavf.2 1 661 3.71 6 111 17 lb 2.11
lavf.3 1 941 3.71 91 71 19 241 2.11

lavf.4 I 1121 3.7112w 8b 19 361 2.11
lavf.5 1 841 3.81 91 101 20 221 2.11
Iavf.b I 78b6 4.11107 89 104 1301 2.11
Iavf.7 I 401 4.01253 85 13 71 2.11
.avf.b I 68t1 4.01 0 129 95 1081 2.11
"avf.9 I 2041 3.91 0 198 29 721 2.11
------------------------------------------ --
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LAL'DUSE kA.kGlu1 PAJ)PLkrY X~bULTS

(2 O " 5)

POL-IPEA-lTiLSEI LX ,JCLOSIU I TI E I
IGUNL I I b,-1 I I I RM.'1'AbaULk; I Iii~
I IkTLAkISECSI X Y wI kLUTISECS1

Iavf.101 4321 4.01 33 229 72 521 2.11
Iavf.11±I 1. 0j 3.9110b 206 51 391 2.11
lavf..21 lO0l 3. 1174 244 26 241 2.11
lavf.131 2021 3.71213 244 58 241 2.11
Iavf.141 3661 3. 1293 0 101 571 2.11
lavf.151 2141 3.81 33 260 49 561 2.11
lavf.1i d01 3.71 2 263 16 221 2.11
lavf.171 SbI 3.71 15 305 16 III 2.11
lavf.16 561 3.71 3b 296 8 191 2.11
1avt. °l1 2161 3.81 70 315 36 561 2.11
Iavf.201 30J 3.b1 0 330 7 dl 2.11
lavf.211 20b1 3.71 4 372 58 401 2.11
lavf.221 341 3.71170 25t 7 101 2.11
Iavf.231 401 3.71151 353 14 b1 2.11
lavf.241 721 3.71 66 3b4 21 151 2.11
lavf.2bi 2201 3.71 30 436 93 141 2.11
lavf.2b1 2221 3.7i16b 37b 54 371 2.11
lavf.27l 301 3.71269 363 4 111 2.11
Iavf.2ol 321 3.71303 353 b 101 2.11
i avf .2tI b01 3.71260 394 18 121 2.11
lavf.301 2121 3.71272 397 42 531 2.11
lavf.311 bt1 3.71356 411 10 231 2.11
Iavv.1 1 501 3.71 0 73 14 111 2.11
Iavv.2 I 3o, 3.71 87 70 11 61 2.11
lavv.3 1 9-1 3.71115 86 12 351 2.11
i avv.4 1 421 3.71 21 155 12 91 2.11
lavv.5 1 761 3.71 0 170 21 171 2.11
lavv.6 1 1341 3.71 0 190 35 311 2.11
lavv.7 1 1321 3.b1 16 226 45 151 2.11
lavv.b 1 441 3.81 60 237 7 151 2.11
lavv.9 I 141 3.71173 157 32 371 2.11
Iavv.10 981 3.71147 155 19 281 2.11
Iavv.11l 1001 3.81214 180 25 191 2.11
"avv.121 801 4.01167 244 29 111 2.11
Iavv.131 6b1 3.71250 244 21 121 2.11
lavv.141 901 3.71272 0 26 121 2.11
lavv.151 3bl 3.71273 6 b 131 2.11
lavv.bl1356 3.91 0 238 140 2011 2.11
Iavv.171 301 3.71 76 25b 6 91 2.11
lavv..Io 1121 3.77177 272 29 261 2.11
Iavv.19I 74l 3.81110 302 99 1091 2.11
Iavv.201 44,1 3.81113 240 tl 841 2.11
Iavv.211 2641 3.71191 244 63 521 2.11
Iavv.22I 961 3.71192 342 32 161 2.11

Iavv.231 22b1 3.71 0 362 42 561 2.11
lavv.24l 241 4.31 0 442 4 d1 2.11
--------------------------------
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LAW USL l(IGION PRUPLAkTY R.C.ULTS

(4 or' 5)

IPOLY-IPER-ITiN61 &ACwliuSM I TI h I
i-U I 14.4- I'I.' I CL Lk I

avv.26I 521 3.91 l 43b 12 141 2.11
lavv.20l 621 4 .21 91* 446 29 21 2.11

Iavv.27I 701 .2 11ts2 415 23 121 2.11
lavv.2bi 1261 4.21155 417 26 3312.11
lavv.2vi 321 4.1112 441 7 to1 2.11
.avv.301 4I0 3.11211 3bo 33 171 2.11

I avv .311 'iuI 3.v12Uu 435 fo 12 d1 2.11
lavv.32I 13u 3.9l2*1 2-53 29 2bI 2.11

iavv.33I 2'.I 3.713U7 34 13 19 2.11
Iavv.341 44 3.bI 23 35 d 3L1 2.11

• avv.351 1141 3.912,o5 3t#0 2 1 2,b 2.11
l:"avv.3al 2,* 3.71319 444 6bi( 2.11
l. avv 71 b4i 3-b 133,* 3to2 (6 3bl 2.11

lavv.36l 561 3.b1320 410 8 181 2.11
Iavv.39I 201 3.913o1 411 5 51 2.11
lavv.ul 3bl 3.713oU 421 b 131 2.11
:avv.4il 1041 3.71375 40d Id 311 2.11
lbbr.1 I 481 3.71 99 302 u 161 2.11
-bbr.2 i 160i 3.71137 30 16 601 2.11
l.eq.1 1 1301 3.71122 429 19 211 2.11
lbes.1 1 41 3.td1 95 162 13 191 2.1i

bt.1 I b0i 3.91 35 0 35 51 2.11

I bt.2 i bal 3.61145 90 U 361 2.11

I bt.3 1 6701 4.11340 25V 51 1-*71 2.11

I bt.4 1 661 4.01275 445 16 151 2.11
I to.1I 1901 3.91lb0 0 d1 121 2.11
. fo.2 1 3021 3.68I116 23 94 471 2.11
I fo.3 1130oI 3.911d4 75 210 1071 2.11
I t-.4 1 5401 3.b1273 13 121 761 2.11
I fo.5 I 2b, 3.711bO 3bl d 61 2.11
I lr.1 1 641 3.71 84 116 29 1l1 2.11

I lr.2 1 541 3.61101 161 7 201 2.11
I lr.3 I 37dI 3.91105 204 17 1491 2.11

I lr.4 1 921 3 .6149 416 9 341 2.11
I r .1 1 2041 3.91176 117 61 371 2.11
I r.2 I 29dl 3.91205 64 62 471 2.11
I r.3 17241 6 .1 19u.101 19( 3011 2.11
I r.4 1 3061 3.i2f0 0 59 491 2.11
I r.b 1 4561 k.01273 46 121 631 2.11

-ucb.1 1 521 3.91 70 4 17 91 2.11
lucb.2 1 501 3.ul 44 99 11 131 2.11

Iucc.1 I i 3.61 di6 4 24 201 2.11
Iucc..2 I 521 4.21 51 50 11 151 2.11
Iucc.3 I 4bi 4.21 39 7 11 121 2.11
Iucc.4 1 321 3.91 74 70 8 bi 2.11
lucc.5 1 501 3.71 b2 77 12 131 2.11
lucc.b 1 641 3.d117! 373 lb 141 2.11

. im. 
'

--------- . ---. ,,T . . "----- ---- ---- ---
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LAuDUSL I .,GuI0, PRUPL%'TY RULTS
(4 of 5)

---- ---- ---- ---- ---- --- - ---- -

IPOLI- IftkA-j~f IiIt kkCLSIM,(. ITIbLi
UV14 1 1 Ii- I IL4 I kRLiC.MdGk I lLI4 I

Jk.T".I Sk%;SI X I hvID riGT I SLCSI

lucr-lI 12iiI 3.71 4 0 7 51 2.11
Iucr.2 i 2b1 3.71 6 23 7 71 2.11
lucr.3 1 37rI 3.71 14 65 401 b71 2.11
1 ucrs .. 401 3.71 63 152 b 121 2.11
lucw.l 1 !021 3.71 11 81 13 2b1 2.11

iucw.2 9f 1I 3.71 19 117 17 2bI 2.11

I iues.1 I 1..d 1 3.71 ts 12 - 40 311 2.11

lues.2 1 30'iI1 3.71 7 f 26b 27 671 2.11
I uil.1 1 861 3.71 3to 124 21 201 2.11
Iuil.2 I 6b1 3.71127 194 19 15) 2.1.1

Iuis.1 I 181 3.71 0 U 4 51 2.11
Iuis.2 1 121 3.71 0 39 2 41 2.11
luis.3 1 1161 3.71 2 44 14 3d1 2.11
I uiss* 1 !)41 3.71 42 162 12 141 2.11
luis.5 I (o81 3.71105 155 9 251 2.11
luis-6 1 501 3.71 bb 152 40 151 2-.11
iuis.7 1 821 3.71153 310 27 141 2.11
luis.6 1 461 3.71243 422 13 101 2.11
luiw.1 I 3b1 3.71216 177 7 111 2.11
Iuiw.2 1 641 3.71139 245 15 141 2.11
iunk.1 1 2261 3.71335 0. 59 541 2.11
lunK.2 1801 3.71378 248 16 211 2.11
iunx.3 1 121 3.71392 1u6 2 41 2.11
Iunk.4 I 101 3.713!02 193 2 31 2.11
lunk.5 1 341 3 .71365 200 9 61 2.11
lunix.b 1 70'1 3 .713tw8 220 8 2b1 2.1
Iunk.7 1 161 3.71392 33b 2 b1 2.11
Iluni. I 221 3 .713bti 402 S 6'1 2.11
lunk.9 I 2to1 3 .713to0 421 3 111 2.11
lunk.101la18 3 .713tst 445 '& 51 2.11
Iuoc.1 1 761 3.71 W7 56 21 171 2.11
luog.1 1 1741 3.71105 30 21 66) 2.11
luoo.1 1 741 3.71 0 83 17 201 2.11
Iuoo.2 1 641 3.71 50 152 lb 161 2:11
Iluoo.3 1 541 3.71112 200 17 lol 2.11
Iuop.I1I 261 3.71 31 99 7 61 2.11
luop.2 1 661 3.71 92 150 18 141 2.11
Iuov.1 1 481 3.71 9u 0 11 131 2.11
Iuov.2 I 4,b1 3.71101 13 7 171 2.11
lurh.1 1 461 3.71 76 157 14 91 2.11
lurh.2 I 301 3.71171 302 a 71 2.11
Iurs.1 111201 3.b1 0 0 116 1571 2.11
lurs.2 1 1161 3.71 0 100 34 211 2.11
lurs.3 I 681 3.71 0 111 11 231 2.11
Iurss. 1 9241 3.81101 0 177 1281 2.11
I urs. -6 14cs1 3.71117 124 37 311 2.11
--- - -- - -- - - ---- - - -- - -

m 4m

.......... *......
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LANDUSE , LGIUi', PiROPEkTY RLSULTS
(5 OF 5)

IPULX-lPB-lIT-Lj Li4CLO6IUG I TI L I
( $.jNJ I It' -I I I 1RCT ,GLL I ii.4 I

ILTiEiISk.Cb X Y WIID kGTISLCSI

i urs.j 1 1161 3.71 65 16o 31 271 2.11
lurs.7 1 401 3.71110 173 7 131 2.11
Iurs.b 1 741 3.71 60 243 22 151 2.11
I urs.t 1 1701 3.71 72 196 27 491 2.11

Iurs.1IU 1361 3.71257 8 32 361 2.11
Iurs.1ll 1321 3.71259 5b 36 271 2.11
lurs.121 321 3.71 13 300 10 61 2.11
'urs.131 7tI 3.7) 0 347 12 271 2.11
lurs.141 541 3.711b2 26ts 13 141 2.11
I urs.15 408) 3 .8173 307 73 831 2.1)
Iurs.lbl 661 3:71233 274 13 211 2.11
lurs.17i 321 3.71 5 363 b t 2.11
lurs.1al 82) 3.71 27 406 26 141 2.11
lurs.191 401 3.71193 397 11 91 2.11
lurs.2O) 1101 3.71197 40b 28 2b1 2.1)

lurs.211 3121 3.71232 400 54 501 2.J.1
lurs.221 1,1 3.71305 447 4 31 2.11
I urs.231 161 3.7131, 447 5 31 2.1)
lurs.241 761 3.71325 442 30 81 2.1)
iuus.1 1 761 3.71 59 303 25 131 2.1)
Iuus.2 i 181 3.7 1146 366 5 41 2.11
luut .1 I 37tl 3.71 0 104 96 931 2.11
luut.2 1 1401 3.7) 36 121 48 22) 2.1)
-uut.3 I tob 3.8 105 201 194 2491 2.11
I vv.1 1 bO 3.7101 180 lb 131 2. I
I wo.1 1 1081 3.71 82 312 16 35) 2.1)
I wo.2 1 561 3.7)125 431 10 19) 2.1)
I ws.1 121701 3.9) 0 0 28I 4501 2.1)
Awwp.l1 141 3.71359 251 4 31 2.11
Iwwp.2 1 141 3.7) 10 438 3 4) 2.1)
lwwp.3 1 31 3.7J304 262 8 10) 2.11

)wwp.4 1 461 3.7129b 370 6 151 2.1)
lwwp.5 1 40) 3.71317 365 9 111 2.1)

)wwp.6 1 30) 3.71356 356 7 8) 2.11
,------------------ - --------
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TABLL 6.6. TOPOGRAPHY REGION PROPERTY RESULTS

(1 OF 2)

I POLY-lPER-ITbMEI LNCLOSING ITIt4EI
I I GOL I Ik- I IN I RECTANGLE I IN I

I IETERISECSI X Y WID kiTJSECSI

- 1.1 131001 3.71 0 0 283 4501 1.91
2.1 116081 3.41 0 0 276 1431 1.91

1 2.2 1 501 3.21187 0 21 41 1.81
1 2.3 136461 3.8110b 0 272 4501 1.91
1 2.4 1 121 3.21 b5 149 2 41 1.91
1 2.5 I 101 3.21 93 145 3 21 1.81
1 2.6 1 4b1 3.21 94 146 15 91 1.91
1 2.7 I 101 3.21 98 132 3 21 1.81
1 2.8 1 121 3.21104 130 2 41 1.81
1 2.9 1 101 3.21 95 141 3 21 1.91
1 2.101 161 3.21100 140 3 51 1.81
1 2.111 161 3.21106 156 2 61 1.81
1 2.121 281 3.21102 166 5 91 1.81
1 2.131 101 3.21108 177 2 '31 1.81
1 2.141 2901 3.21304 0 84 521 1.91
I 2.151 141 3.21 3 284 3 41 1.81
1 2.161 1b6 3.21 0 295 3 51 1.81
1 2.171 141 3.21 0 303 3 41 1.81
1 2.181 861 3.21 0 343 9 341 1.81
1 2.191 101 3.3I1bd 320 3 21 1.91
1 2.201 421 3.21187 360 12 91 1.91
1 2.211 3541 3.31 0 380 65 701 1.81
1 3.1 112441 3.41 89 0 181 931 1.91
1 3.2 1 361 3.21106 b2 11 71 1.81
1 3.3 1 81 3.21119 61 2 21 1.91
1 3.4 131621 3.71186 0 194 4061 1.91
1 3.5 1 1061 3.21196 190 14 381 1.81

1 3.6 1 461 3.21223 253 13 101 1.81
1 3.7 1 3341 3.31295 0 93 571 1.91
1 3.b 1 1021 3.21366 0 23 271 1.81
1 3.9 1 101 3.21226 350 5 41 1.81
1 3.101 121 3.21245 350 4 21 1.81
I 3.111 81 3.21211 359 2 21 1.91
1 3.121 121 3.21217 354 3 31 1.91
1 3.131 101 3.21227 357 2 31 I.81
I 3.14k 201 3.21252 354 5 5I 1.81
1 3.151 .141 3.21 0 410 13 401 1.91
1 3.161 121 3.21 16 409 3 31 1.81
1 3.171 321 3.21 16 422 9 71 1.81
1 4.1 1 141 3.21105 0 5 21 1.dl
1 4.2 1 141 3.21112 10 3 41 1.81
1 4.3 110141 3.41119 0 148 771 1.91
1 4.4 127321 3.61195 0 193 3351 1.91
I 4.5 1 181 3.21277 0 7 21 1.81
1 4.6 1 621 3.21376 0 13 171 1.91
1 4.7 1 121 3.2335 305 2 41 1.81
1 4.8 1 181 3.21346 329 5 41 1.91

.....------------------------ ~&t- . . A.- S... - --- - -- - - - - - - - ---
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*TuUkLiRAPtiY ttLwIOx Pi(UP.LJAT~ kRkULTb
(2 ti 2)

i PULY-I PEA- I T11.z I &VCLUS1kG I .',hI

II I Wfi~k I brCS1 X X bvID I1GT Sk;CbI

1 4.9 1Isl1 3.21379 335 1 161 1.91
1 4.101 lbi 3.2137b 347 2 bi 1.91
1 5&.111 1 3.213b4 360 15 101 1.81
1 .121 21 3.21367 372 2 21 1.81
I 13 5b 3.21374 377 2 21 1.81

I 5.1 1 1I 3.21158 14 4 41 1.81
1 6.2 1 7701 3 .3113o 1: 126 571 1 .9I
1 5.3 120241 3.51204 20 183 2571 1.91
1 5.4 1 21 3.213c14 0 5 1 1.81
1 6.5 1 561 3.21324 2b0 15 171 1.81
1 5.6 1 81 3.2135V 273 2 21 1.8b
15.7 1 2441 3.21352 2615 30 351 1.tl
1 6.1 1 141 3.21144 30 3 41 1.81
1 6.2 5541 3.21168 25 bb 401 1.91
I b.3 1 201 3.21151 36 6 41 1.91
1 6.4 1 121 3.21219 141 4 21 1.61

b 6.5 1176 1 3.41230 29 157 2171 1.91
I 6.6 1 321 3.213,0 102 7 91 1.91
1 6.7 1 81 3.21385 115 1 31 1.81
1 6.6 I 241 3.21317 234 7 51 .1.91
I 6.9 1 121 3.21335 261 3 31 l.bl

1 6.101 161 3-2137b 290 3 5I 1.b1
I b.111 601 3.213(4 299 17 91 1 .b
1 6.121 dl 3.21360 306 2 21 1.91
I 7.1 '&701 3.31174 27 7b 361 1.91
1 7.2 116b 3.41245 41 143 1911 1 .91
1 7.3 1 1301 3 .21373 92 14 371 1.til

7 7.4 1 121 3.21302 142 3 31 1. I
1 7.5 1 41 3.2364 14i 1 1 1.91
1 8.1 1 34a1 3.211b3 30 61 311 1.91
I .2 I 181 3.21310 5 6 31 1.61
1 8.3 114001 3.41265 53 122 1721 1.61
I b.4 1 61 3.21340 51 1 21 1.91
1 8.5 1 26(1 3.31365 88 22 791 l.b
I 8.6 1 81 3.21330 191 2 21 1 .1

I 9.1 1 1961 3.31192 34 43 221 1.bl
1 9.2 1 4,1 3.21309 99 12 101 1.61
1 9.3 1 921 3.2132b 67 20 221 1.81
1 9.4 I 9b2 3.k1325 70 62 1271 1.61
1 9.5 1 121 3.21361 195 3 31 1.61

1 9.6 1 561 3.21372 202 12 161 1.61
1 10.1 1 5bI 3.21195 40 19 101 1.81l
1 10.2 1 4bl 3.21367 7-b 15 71 1.81
1 10.3 I 301 3.21350 95 7 8l1 1.i
I 10.4 1 3881 3.31334 106 42 86)1 1.91
1 11.1 1 401 3.21347 113 11 91 1..I
I 11.2 I 101 3.21362 173 3 21 1.91

--------------------------------
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TABLE 5.7. FLUODPLAIai REGION PROPERTY RESULTS

I POLY- PER- TI ,- I ENCLOSING lTIVI'Ei
G GUN I T.-I 1LI I RECTANGLE I iN I

I IETERISECSI X Y WID IGTISECSI

Iright 117761 0.91105 0 295 4501 0.41

hleft 122701 0.91 0 0 274 4501 0.41
Icenterl26421 1.01 3 0 280 4501 0.41
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TABLE 5.b. LALNDUSE WIN~DQW RESULTS

(1 of 5)

I PULY-) WIND0W lTItIE
I GObJ I YX I FY IWIDTkiISECSI

iacc.1 1 01 1331 321 0.81
lacc.2 1 211 1641 161 0.21
lacc.3 1 351 1901 321 0.81
lacc.4 1 611 2051 321 1.11
lacc.5 1 1371 18bl 81 0.11
lacc.6 1 1391 2091 641 5.01

- l acc.7 1 1701 1951 321 0.8 1
Iacc.b I 1b4l 2361 641 1.01
lacc.9 1 371 2971 81 0.11
lacc.10L 31 3681 b41 3.21
Iacc.11I 1491 2451 321 1.31
lacc.121 1161 2971 641 3.6)
lacc.131 1861 3191 641 3.91
Iacc.14I 2461 3701 321 0.61
Iacc.151 14bi 3991 641 3.81
lacc.lbi 2351 3851 321 1.41
lacc.171 2461 4071 321 1.21
lacc.181 3131 3751 641 4.41
lacc:191 3*401 4251 321 1.01
lacp. I1 241 2331 321 1.21
iacp.2 1 1491 1421 256142.41
lacp.3 1 01 3361 b4) 0.71
lacp.4 I 2b) o>i lul 0.11

Ildcp.u I luu) 29u1 321 0.51
lacp.7 i 19 oi 244) 2bb)4.Ul

Iacp-ts 1 153) 3431 16) 0.41
lacp.9 1 01 413) 641 2.81
lacp.10I 1811 3641 128110.51
Iacp.111 265) 422) 321 1.2)
l acp.121 3081 3971 64) 3.7)
Iacp.131 340) 4U41 64) 1.0)
I ar.1 1 1991 109) 32) 1.2)
I ar.2 1 352) 205) 321 0.71
I ar.3 1 156) 299) 32) 1.3)
I ar.41 1 1571 323) 32) 1.3)
I ar .! 1 1711 429) 321 1 .11
Iare.1 1 319) 4281 32) 0.8)
lavf.1 I 221 16) 321 0.3)
Iavt.2 1 81 111) 32) 1.41
lavf.3 1 911 71) 32) 1 .1)
)avf.4 1 1261 88) b4) 1.81
)avf.5 1 95) loll 321 1.2)
)avf.6 I 107) dvi 256155.11
)avf.7 I 253) 85) 16) 0.31
lavt.b 1 0) 1291 128115.21
)avf.9 1 01 198) 1281l 7.8)
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L"dDUSE WIN~DOW lk;6ULTS
(2 of 5)

INoLY-I blww T IT-AEI
G:I exLl I .) I el' I1 iiLIw .C6-

lavf.10i 331 22tI l2b17.I
It"3-.a v fi .1 ., 1 1 0 6 1 2 U rol b ), l 2 .2 1

lavf.12l 1 7,I 2,%d'1 321 0.61
_avf..3I 2131 2441 641 3.11
lavf.1,1 2931 01 126110.51

•av.lbI 21 2t4I 321 0.91lavi.171 J.i 3051 1I 0.,k

I-' avl ..1t I UI 31bi" o l 4.31
i avf.201 01 3301 bi 0.11

lavf.21 41 3721 b4I 1.31
'avf.221 1701 2581 161 0.21

Iavf.231 1511 3531 161 0.41
Iavf.241 bb6 3641 321 0.31
Iavf.251 301 3b4l 12d1 3.81
lavf.261 16I 3761 641 2.51
Iavi.271 2891 3631 161 0.31
lavf.2al 3031 3531 *l1 0.41
lavf.29I 2601 3b4l 321 0.71
lavf.301 2721 3971 641 3.91
avf.311 3561 4111 321 1.01

Iavv. 1 I01 731 161 0.31

lavv.2 1 871 701 161 0.31

Iavv.3 1 1151 tUI b4 3.41
Iavv.4 1 211 1551 14b 0.41
lavv.5 1 01 1701 321 0.51
lavv.6 1 01 1901 641 2.01
Iavv.7 1 181 22oi 641 2.21
Iavv.t I Uol 2371 161 0.31

,lavv.9 1731 1571 641 3.91

Savv.101 1471 1551 321 1.11
"avv.1ll 2141 lO 321 0.51
Iavv.121 1671 2441 321 1 .11
lavv.131 2501 2441 321 0.51
lavv.141 2721 01 321 0.41

l avv.151 2731 61 161 0.41
I avv.lb0 01 23b1 256125.81

Iavv.171 761 25di lbi 0.11
Slavv.16l 771 2721 321 1.21

lavv.19I 1101 3021 12a1 d.11
Iavv.201 1131 240 128113.21
Iavv.211 1911 2441 641 2.91
lavv.221 Itt2i 3421 321 0.41
Iavv.231 01 3U21 641 2.01
.avv.241 01 4421 al 0.01

.avv.251 1l1 43b1 161 0.11

---------------------------.--- - .
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LAkDUi IWWw k'.SULTS
i~ii ( of 5)

GUN I i'X i FY I J, ''C.

,avv.25 1 li 43ol ibo 0.11

.avv.2bl 941 '4i 321 0.21
lavv.27I lb21 4151 321 0 .V
iavv.2tsl 1551 4171 6k1 3.41
lavv.291 162! 4411 161 0.31

lavv.301 2111 3961 6,1 4.21
lavv.311 20bl 43bl 321 0.41
lavv.321 25ul 25bi 321 0.41
lavv.331 3071 3511 321 1 .11

Iavv.341 2b31 3d65 161 0.31

Iavv.35l 2651 3901 321 1.11
lavv .3bi 3191 4,4 ti I .J.

iavv.371 3341 3921 641 2.21

Iavv.3bi 3201 klui 321 0.51

lavv.391 3611 4111 81 0.11
Iavv.401 3601 4211 161 0.31

Iavv.411 3751 40b1 321 0.91
Iobr.1 1 991 3021 161 0.31

lbbr.2 1 1371 3901 641 4.01
lbeq.1 1 1221 4291 321 1.21

lbes.1 1 451 1621 321 1.21
*I bt.1 1 351 01 641 2.21

I ' ot.2 1 1461 01 f0 I 3.bl
I bt.3 1 25b1 25b! 2561 5.11
I o- .4 2751 435 321 1 .11

I ±o.1 1 1tsO 01 12o1 *.61
I fo.2 I lobl 231 126112.41
I o.3 1 ld1 751 25b 13%.51
I . o ., 1 2731 131 12114.51

" o.5 1 1601 3b1l b1 0.11
.. I lr.1 I 641 libi 321 0.61
*-I lr.2 1 101 161! 321 1.41

I lr.3 1 1051 2041 25bl'.7.71
I r . 1 1491 4161 641 2.b1
I r.1 1 1761 1171 641 3.41

I r.2 1 2051 6 4 641 3.91
I r.3 1 01 01 512139.41
I r.4 1 2601 01 641 1.51
I r.5 1 2731 461 128111.51
lucb.1 1 701 41 321 0.41
Iucb.2 1 441 991 161 0.31
Iucc.1 1 461 41 321 0.31

Iucc.2 1 511 501 16! 0.31
Iucc.3 1 391 741 161 0.31
Iucc., 1 741 70! 1 0.01
Iucc.5 I 62! 77 1l1 0.4!
lucc.6 1 1751 3731 321 1.41
- -----------------------------



4144
L"DUSE WIN DOW RSULrs

(4 of 5)

I POLY-1 W1LIDUN I TILE
I GUNj I i'X I &'Y )vWILTti)k.C8)

lucr.1 I 41 01 8) 0.01
lucr.2 b 231 dl 0.11
lucr.3 I i'* 651 12b I1.6i
tucr.4 1 631 1521 161 0.31

SIucw.l I 11 611 321 1.21
lucw.2 1 191 1171 321 1.5)
I ues.1 i 1 1251 641 4.21

, )ues.2 i 7D1 2ca) 12di 8.21
< uil. .I 5to 12* 321 1 .11

luil.2 1 1271 1941 321 1.01
Suis.1 I 01 01 8) 0.01

luis.2 1 0) 391 41 0.01
Iuis.3 1 21 ,*41 641 1.61
Iuis.4 1 421 1621 161 0.1)
luis.5 1 105) 1551 321 1.0)
luis.6 I bod 1521 161 0.21
1uis.7 1 1531 3101 321 1.01
luis.b ' 2431 ,221 161 0.41
luiw.1 1 2161 1771 1b1 0.31
luiw.2 1 1391 2451 161 0.,1
Iunk.1 1 3351 0) 64) 2.81
lunk.2 1 3761 2461 321 0.31
Iunk.3 1 3921 16) 41 0.0)
.unk.4 1 3921 1931 4) 0.01

lunk.5 1 3651 2001 16) 0.31
lunk.b 1 3a6) 2201 32) 0.31
lunK.? I 3,21 33bi 8 0.01
Iunk.8 I 3vo) 402) u 0.1)
lunk.9 1 3!00 4211 16) 0.2)
lunk.10 3u9l 415 al 0.11
luoc.1 I 87) 561 321 0.8)
Iuog.1 1 105) 301 12dill.21
)uoo.1 1 01 d3) 32) 1.01
luoo.2 1 501 1521 161 0.21
.uoo.3 1 112) 200) 32) 0.31

luop.1 1 311 991 t 0.11
)uop.2 1 92) 150) 32) 0.6)
*uov.1 1 90) 01 16) 0.21
luov.2 1 1011 131 321 0.91
I urh.1 1 76) 1571 161 0.3)

lurh.2 1 1711 302) 81 0.11
)urs.1 I 0 01 256112.21
lurs.2 I 00 luOl 64) 1.61
lurs.3 1 0) 11 32) 1.3)
lurs.4 I 1011 01 256143.8)
lurs.5 1 1171 124) 641 3.11



p'.-.

4145

LALUSro bJI~INJw LS.ULTS
(b of 5)

I (uJi e x I k'y I W I an s~CbI
-------- ------- --- e-- ---

Iurs.b 6 6Iibb1 321 1.01
Siurs.7 1 1101 1731 161 0.21
L1urs'. 601 2431 321 1.21
)urs- 1 721 ivI b4i 2.11
lurs.1Ul 2571 61 641 3.51
iurs.11I 2591 561 641 3.01
Iurs.121 131 3001 IbI 0.31
lurs.13I 01 3471 321 1.01
I ur .'* I ld2I 2t~b 1 i16I 0.21
1 urs.151 1731 3071 12t 115.11
I urs .111 2331 2741 321 0.b1

lurs.171 51 3b3I b1 0.11
-urs.lbi 271 4061 321 i.01
lurs.191 1. 3I 397 161 0.31
iurs.201 1971 40t1 321 0.91
Iurs.211 2321 .400 641 i .I1
.urs.221 3061 4,7 4) 0.1)
Iurs.231 31,41 4471 u 0.1)
lurs.24I 3251 4421 321 0.61
luus. 1 591 3031 321 1.21

luus.2 1 1461 3bb1 b 1 0.11
Iuut.1 1 01 1041 laul 4.71
uut-.2 1 36) 1211 641 4.21

luut.3 1 1051 2011 25615b.71
I vv.1 I loll 101 ibi 0.41
I wo.1 I b2) 3121 b4I 2.01
1 wo.2 1 1251 4311 321 1.21

I w .1 i 01 01 512135.31
I wp.1 I 35t1 2511 41 0.01
lw p.2 I' lol 43) 4) O.OI
Iwwp.3 I 3U4l 2d2I 161 0.11
iwwp.4 I 2'is1 3701. 16i 0.21
I wp.5 1 3171 3651 161 0.41
Iwwp.6 1 3561 3561 8 0.01

* * 4 . - . -.. . .

".-.7
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TABLE 5.9. TOPOGIAPHY WINDUW RLSULTS
(1 of 2)

I POLY-I WZlbDOW ITIhEI

I GUN I F'X I FY IWIDTkISECSI

1 1.1 I 01 01 512126.71
1 2.1 1 01 01 512129.21
1 2.2 1 1871 01 321 1.51
1 2.3 1 01 01 512130.81
1 2.4 I 851 1491 41 0.01
1 2.5 I 931 1451 41 0.01
1 2.6 1 941 1461 161 0.21
1 2.7 1 981 1321 41 0.01

2 I 1041 1301 41 0.01
1 2.9 1 951 1411 41 0.01
1 2.101 1001 1401 81 0.11
I 2.111 101b 1561 al 0.11
1 2.121 1021 1661 1b1 0.11
1 2.131 1081 1771 41 0.01

1 2.141 3041 0l 1281 4.41

1 2.151 31 2841 41 0.01
1 2.161 01 2951 61 0.11
1 2.171 01 3031 41 0.01
1 2.181 01 3431 641 1.51

1 2.191 lb8 3201 41 0.01
1 2.201 1671 3801 Ibi 0.31
1 2.211 01 3801 1281 1.41
1 3.1 1 b91 01 256161.11

1 3.2 1 1061 621 161 0.21
1 3.3 1 1191 611 21 0.01
1 3.4 1 01 01 512133.21
1 3.5 1 1961 1901 641 1.91

1 3.6 1 2231 2531 161 0.41
1 3.7 1 2951 01 128115.51
1 3.8 1 36b1 01 321 0.51
1 3.9 1 2261 3501 81 0.51

1 3.101 2451 3501 41 0.01
1 3.111 2111 3591 21 0.01
1 3.121 2171 3541 41 0.01

1 3.131 2271 3571 41 0.01
1 3.141 2521 3541 bi 0.11

1 3.151 01 4101 641 1.11
1 3.161 161 4091 41 0.01
1 3.171 161 4221 161 0.11
1 4.1 I 1051 01 81 0.11
1 4.2 1 1121 101 4) 0.01
1 4.3 1 1191 01 25616b.01
1 4.4 ul 01 512134.51
1 4.5 1 2771 01 81 0.11
1 4.6 1 3761 01 32) 0.21
1 4.7 1 335) 3051 41 0.0)
I 4.b I 34b1 3291 bi 0.11
1 4.9 1 3791 3351 t1 0.11
---------------------------------
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TUPoU.iPAPHY v~it.WW RLSULTS

(2 of 2)

SPULY-I bvliifuwv i TIbE I
W .:I I.X I eY IWI lbtCl 02

* -------------------------------------------

*.I4.101 37o1 3'&01 61 0.11
1 4 .111 3 o, 3,001 161 0.21
I -k.121 3671 3721 21 0.01
1 4.1.31 3741 3771 21 0.01

b .11 i 51 141 41 0.11
1 5.2 I 1301 15i 12611o.91
1 5.3 1 01 01 512127.di

1 0.4 i 3,I4I ol 0I o.01
I 5.S I 32,1 2601 321 o.,,i
1 5.6 i 350i 2731 21 0.01

1 5.7 1 3521 2t51 b41 2.11

I f.1 1 1441 301 41 0.01

1 6.2 I 168l 251 l26ll.91
1 6.3 1 1511 361 61 0.11

1(b.4 I 21t1 1411 41 0.01
1 6.5 1 2301 291 25614tS.21
, 6.6 I 3b01 1021 161 0.11

1 6.7 I 3851 1151 41 0.01
: I 6.8 1 3171 2341 1 0.11

6.9 i 3351 2611 41 0.01

1 6.101 3781 2901 al 0.11
1 6.111 3641 2991 321 0.91
1 6.121 3601 3061 21 0.01
1 7.1 1 1741 271 1.26120.01
1 7.2 1 2441 411 256142.71
1 7.3 1 3731 921 64 1.b1

1 7.4 1 3021 1421 ,i1 0.01
.. 7.5 1 3 4 1401 lI 0.01

6 .1 1 l631 301 b41 5.71
""8.2 I 3101 5b1 I 1 0.11
" 8.3 1 2561 531 256139.61

U .4 1 3401 511 21 0.01

1 6.! 1 3651 bl 1281 4.61

U.6 1 3301 1911 21 0.01
":9.1 I 1921 341 b41 3.21

9.2 1 3001 991 lb) 0.41

9.3 1 3261 671 321 1.11

I9.4 1 3261 701 12bi11.31
9.5 1 3611 1951 41 0.11

I9.6 1 3721 2021 161 0.11
• 10.1 I 1961 401 321 1.51
.'10.2 1 3671 7b1 161 0.41

I"10.3 1 3501 951 1 0.11
I10.4 1 3341 1061 1261 5.11
I 11.1 I 3471 1131 DI 0.41
:"11.2 1 3b2i 1731 41 0.01

" "''o,-,'P"" 4 , •, ""-". T •"•
•

•"-" " '.•. . . . .. . . . . . . . . . . . .*
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TABLE 5.10. FLUODPLAIN wINDOW RESULTS

I POLY-I WINDOW ITIMiE

I GUN I FX I FY IWIDTHIISECSl

Iright I 01 01 512 I 5.21
hleft I O 01 512 1 5.21
Icenterl 01 01 512 I 5.41

-

Ii

.°

. . . . . . . . . . ...............................................................
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TABL. 5.11. INTLRSCTION STATIb'i, Z. !
(1 of 3)

I I A kA I AREA I NUNSE OF DODES ITZIMI
TRLL 1 I TLEL 2 IPIXELSI ACRES I GRAYIBLACKIWHITEISECSI

SIf.centerl t. I 2d44614039.331 16721 23941 26231 5.01

If.centerl t.2 I 12811 181.901 .7981 7801 16151 2.61
If.centerl t.3 1 01 0.001 01 01 II 0.11
lf.centerl t.4 1 01 0.001 01 01 11 0.01
If.centerl t.5 1 01 0.001 O1 01 11 0.01
1t.centerl t.6 1 01 0.001 01 01 11 0.01

If.centerl t.7 1 01 0.001 01 01 11 0.01
lf.centerl t.8 1 01 0.001 01 01 1I 0.01

lf.centerl t.9 1 01 0.001 01 01 11 0.01
It.centerl t.10 I 01 0.001 01 01 11 0.01
If.centerl t.ll 1 01 0.001 01 01 II 0.01
If.centerl 1.acc I 14721 209.021 2231 2781 3921 0.71
if.center l.acp 1 1521 21.581 721 661 1491 0.31
If.centerl 1.ar 1 01 0.001 01 01 I1 0.01
If.centerl 1.are 1 01 0.001 01 01 I1 0.01
1±.centeri 1.avf 1 58691 833.401 12251 15551 21211 4.01
If.centerl 1.avv I 11376I1b15.391 12771 16531 21791 4.11
"f.centerl i.bbr 1 4321 61.341 1341 1531 2501 0.41
.f.center l.beq 1 2291 32.521 8Sb 971 1681 0.31
"f.center l.bes 1 1471 20.871 4d1 511 941 0.11
I fI.center 1.bt 1321 18.741 461 511 881 0.11
If.centerl 1.fo 4691 66.601 1661 1781 3211 0.51
lf.centerI 1.ir 9051 128.511 3541 4161 6471 1.01
If.centerl 1.r I 4b1 6.531 421 341 931 0.11
f- f.centerl 1.ucb I Ol 0.001 01 01 11 0.01
If.centerl 1.ucc 1 31 0.431 131 31 371 0.11
If.centerl 1.ucr 1 01 0.001 01 01 11 0.01
If.centerl .ucw I 01 0.001 01 01 II 0.01
,f.centerl 1.ues I 12b61 182.611 2751 3351 4911 1.01
If.centerl 1•uil I 01 0.001 01 0 i 0.01
,f.centerl l.uis 1 1071 10.651 351 381 681 0.11
lf.centerl 1 uiw I 01 0.001 01 01 i 0.01
If.centerl 1.unk I 01 0.001 01 01 I 0.01
If.centerl 1.uoc I 01 0.001 01 01 11 0.01
If.centerl 1.uog 1 01 0.001 01 01 11 0.01

. If.centerl 1.uoo 1 751 10.b5 311 331 611 0.11
If.centerI 1•uop I 1841 2b.131 471 551 871 0.21

If.centerl 1.uov 1 01 0.001 01 01 I 0.01
lf.centerI 1.urh 1 201 2.841 191 11 471 0.11
If.centerI 1.urs 1 21801 309.561 8171 9351 15171 2.51

If.centerl 1.uus 1 2491 35.361 651 721 1241 0.21
If.centerl 1•uut 1 2241 31.811 771 831 1491 0.31

It.centerl 1.vv 1 1081 15.341 3dI 391 761 0.21
lz.centerl 1.wo 1 6611 93.8bI 1211 1391 2251 0.31

If.centerI 1.ws 1 34011 4d2.941 11701 14811 20301 3.41
If.centerl 1.wwp 1 01 0.001 01 01 I 0.01
--- ------------------- ---
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INTERSkECT1QLJ S.CATISTICS
(2 of 3)

1 I I ALA I ARA I NUM8EA O' NODES ITINEI
T R' EE+ 1 1 TAEL 2 PIKXkLSl ACitkS I GRAYIIBLACKIWHITEISECSI

,:t.1 I 1.acc 1 39071 554.791 6561 6441 11251 2.01
•.t.1 I l.acp 1 14--21 199.081 .4081 4901 73 1 1.21

t.1 I 1.ar 1 5811 b2.501 1641 2031 2901 0.51
t.1 I l.are 1 01 0.001 Ol 01 11 0.01
t.1 I 1.avf 1 1635812322.841 21071 29721 33501 6.51

I-t.1 I l.avv 1 2026812680.901 21801 29841 35571 6.61
t.l I l.bbr 1 4321 61.341 1341 153i 2501 0.41

I-t.1 I 1.beq 1 2291 32.521 686 971 1b8l 0.31
, t.1 I l.bes 1 1141 15.191 521 541 1031 0.21
IIt.1 I l.bt 1 681 12.501 341 371 661 0.11
I t.1 I l.fo I 3611 54.101 1651 1681 3281 0.51

. t.1 I .lr 1 9131 129.651 3591 4241 6541 1.11
1 t.l 1.r 1 251 3.551 381 251 901 0.11

t.1 I 1.ucb 1 01 0.001 01 01 11 0.01
t.1 I 1.ucc 1 1391 19.741 531 581 1021 0.21
t.1 I 1.ucr 1 7691 109.201 1791 2231 3151 0.51
t .1 I 1.ucw 1 3051 41.311 1121 1401 1971 0.31

. t.1 1 1.ues 14041 199.371 3481 4471 5981 1.01

. t..1 I 1.uil 1 3711 52.681 b9 101 1671 0.31
1-t.1 I 1.uis 1 6271 b9.031 1771 2041 3281 o5I

t.1 I 1.uiw 1 01 0.001 01 01 11 0.01

I t.1 1 1.unk 1 01 0.001 01 01 11 0.01
-. t.1 I 1.uoc 1 01 0.001 01 01 Ii 0.01
- t.1 I 1.uog 1 01 0.001 01 01 1I 0.01
I t.1 I 1.uoo 1 4901 69.581 1071 1211 2011 0.31
I t.1 I 1.uop I 14d 21.021 501 5bi 931 0.21

t.1 I 1.uov I 01 0.001 01 01 11 0.01
1 t.1 I 1.urh 1 1261 17.891 321 331 641 0.11
I t.1 I 1.urs 1 38511 546.841 13361 1506l "25011 4.01

t.1 I 1.uus 1 2611 37.Oh 741 811 1421 0.21
t.1 I 1.uut 1 9381 133.20 3141 3591 5841 1.01

-'t.1 I 1.vv I 10si 15.341 381 391 761 0.11

t..1 I 1.wo 6611 93.6b6 1211 1391 2251 0.41

t.1 I 1.ws 1 34021 483.061 11681 14821 20231 3.41
t.1 I 1.wwp 1 01 0.001 01 01 11 0.01

--
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ILTkSkCTIONL STATISTICS

(3 of 3)

I AR A I ARkEA I NUZBLR OF NODES ITIHEI
I TE I i TREE 2 iPIXELSI AC E.S I GRAYIBLACKIWHITEISECSI
------------------------------------------------------------------

t.2 I 1.acc 1 24341 345.631 5061 6161 9031 1.51

t.2 I 1.acp I 1285211824.9b! 17501 24121 28391 5.51
t .2 I 1.ar 1 3401 46.281 1301 1301 2611 0.41
t.2 I I.are 1 1521 21.381 321 261 711 0.11
t .2 I 1.avf 1 67161 953.671 11631 14691 20211 3.81

I t..2 I l.avv 1 792211124.921 15351 18661 27201 4.91
: t..2 I 1.bbr 1 01 0.001 01 01 1! 0.01
I t.2 I 1.beq 1 01 0.001 01 01 ii 0.0!

t .2 I 1.bes 1 331 4.691 251 211 551 0.11

t .2 I 1.bt 1 9411 133.621 228! 2571 4281 0.71

I.2 I l.fo 1 10091 143.281 3451 3941 6421 1.01
I t.2 i .lr 1 351 4.971 421 291 981 0.21

t .2 I 1.r 1 22091 313.671 4431 5711 7591 1.41

1 t.2 1 l.ucb 1 2491 35.361 621 b91 1181 0.21
I t.2 I 1.ucc 1 8791 124.821 1721 1831 3341 0.51

tI .2 I 1.ucr 1 7491 106.361 1791 2241 3141 0.61

t.2 I l.ucw 1 0! 0.00! 0 01 11 0.01

t.2 I 1.ues 1 2241 31.11 1061 1131 2061 0.31

t.2 I l.uil 1 511 7.241 371 331 791 0.11

t.2 I 1.uis 1 4151 58.931 1371 1511 2611 0.41
t .2 1 1.uiw 1 1611 22.8b 69! 711 1371 0.21
t.2 I 1.unk I 6b01 93.72! 99! 126! 172! 0.31
t.2 I 1.uoc 1 2821 40.04! 461 571 82! 0.1!
t.2 I l.uog I 7b51 108.63! 140! 195! 2261 0.4!
I t.2 I 1.uoo 1 0! 0.00! 01 01 11 0.01

t.2 I 1.uop 1 65! 9.23! 51! 32! 1221 0.21
I t.2 I .uov 1 171! 24.28! 571 721 1001 0.21
t.2 I 1.urh 1 411 5.821 28! 20! 65' 0.1!

t.2 I 1.urs I 1581112245.1bl 2079! 2866! 3372! 6.4!

t.2 I l.uus 1 01 0.001 0! 01 1! 0.0!
t.2 I 1.uut I 9611 139.301 4911 570! 904! 1.5!

t.2 I 1.vv 1 01 0.00! 01 01 1! 0.0!
t.2 I 1.wo 1 01 0.00! 0! 0! 11 0.0!
t.2 I 1.ws 1 7! 0.99! 29! 71 61! 0.31
t .2 I 1.wwp I 11i 16.761 63! 551 135! 0.21

---------------------------------------------------------------
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TABLE 5.12. QUADTREE TRU1iCATION STATISTICS FOR EACH M4AP

I DEPTH I LANDUSE MNP I TOPOGRAPHY 'API FLOODPLAIi MPli
I OF i NUM OFi RE- i NUH OFI RE- i NUN. o'J I RL- i
TREE I NUDEb I DUCED i NUDES I DUCED I NODES I DUCED

10 38233 00.00 33349 00.001 6941 I 00.00
I 9 22089 44.22 I 18517 I 44.47 I 4473 I 35.55
'b 9489 75.181 74731 77.59 I 2297 66.91
I 7 3341 91.261 2537 92.391 1093 84.26
I 6 1057 97.231 833 97.501 529 92.38

I 5 309 99.191 296 99.191 213 96.94
4 85 99.781 77 99.771 77 98.89

. 3 21 99.951 21 99.941 21 99.70
2 5 99.99 i 5 i 99.99 I 5 I 99.93

.1 I 1I 99.99I 1 99.991 1 99.99
,

----------------------------------------------------------------------
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7. Conclusions and future plans

7.1. Conclusions

This project gave a firm empirical basis to much of the
theoretical analysis previously undertaken for quadtrees
both as to their structure and their algorithmic efficien-
cies. In particular, the following conclusions should be

* noted:

- (1) Errors in the calculations of properties encoded by
quadtrees (e.g., areas and perimeters of various land
use classes) are due entirely to errors introduced by
the original digitization. No new errors are introduced
by quadtree manipulation.

(2) Significant reductions in file size are achieved when
an image is converted from a binary array representa-
tion to a quadtree representation. This is true for
both the multicolored and black/white cases.

(3) The block decomposition of the image resulting from the
quadtree representations yields major increases in
display speed.

* (4) Truncation of quadtrees can be used to generate reason-
able image approximations that are consistently more
compact.

(5) Quadtree algorithms are easy to implement in structured
programming languages (e.g., C).

(6) Neighbor finding was found to require visiting 3.5
nodes on the average for each instantiation. This was
even better than what was expected theoretically.

(7) Ropes (an alternative neighbor finding technique) were
found to be not worth the added expense of extra
storage.

(8) Set operations such as union and intersection are effi-
cient and can be used to extract information from
images containing different properties.

It should also be noted (in conjunction with (3) and (4)
above) that quadtrees could be used effectively in image

transmission, enabling the viewer to recieve a very compact
approximation of the image followed by a series of modifica-
tions that render the image increasingly more precise.

7.2. Future plans

The first phase of this project has dealt with digiti-
zation of a government-furnished geographic database and its
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representation in quadtree form; and with development of
algorithms for basic operations on quadtree-represented
regions (set-theoretic operations, point-in-region determi-
nation, region property computation; submap generation). The
efficiency of these algorithms was studied theoretically and

. experimentally.

The following tasks are planned for the second phase:

(a) Query language. Design of a high-level query language
permitting easy interaction with the database by users,
thus making the quadtree representation transparent to
the users.

(b) Database updating. Develpment of algorithms for addi-
tion, deletion, and editing of data items in a
quadtree-encoded database.

(c) Point and linear feature data. Quadtree-like data
structures will also -used for the storage,
retrieval, and editing of point geographic data. Algor-
ithms will be incorporated for performing these func-
tions and for interfacing between tree representations
of point and area data. Recently, quadtree-like data
structures have been developed for representing region
borders and curves. The interface between these struc-
tures and the tree representations of points and
regions will be investigated.

.-J
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8. Appendix: Facilities used

Two computers produced by the Digital Equipment Cor-
poration are used by this project. Program development and
small-scale testing are performed on a PDP 11/45. Our PDP
11/45 has a 256k bytes of actual memory of which only 64k
bytes are directly addressable, no virtual memory capabili-
ties, a disk fetch speed of 1.2 megabits/second, and a
memory cycle speed of approximately 500 microseconds. The
execution times in the tables of this report refer to the
execution speed on the VAX 11/780. The VAX 11/780 has 2000k
bytes of actual memory, 6000k bytes of virtual memory, a
disk fetch speed of approximately 0.6 megabits/second, and
a memory cycle speed of approximately 1400 nanoseconds.
The size of a quadtree node is 12 bytes on the PDP 11/45

* and 24 bytes on the VAX 11/780. This difference is caused
by the different word size on each machine. Both the PDP
11/45 and the VAX 11/780 run the UNIX operation system
(versions 6 and 7 respectively).

The picture output device used by this project is a
Grinnell GMR-27 Display Processor. its memory consists of
thirteen 512x512 bitplanes. Twelve of these bitplanes carry
color information (4 bits for each of the colors: blue,
green, and red). The thirteenth bitplane is used for a
white overlay capability. The high order eight bitplanes of
the twelve color bitplanes can also be displayed to create a
grayscale output. The output speed of quadtrees on this
device is considerably faster than a raster scan output of a
picture file, because the GMR-27 can output a rectangle on
the display screen directly from the rectangle's coordinates
(i.e., a separate command is not necessary for each pixel in
the rectangle as is done when a picture file is output in
raster scan mode).

As our display device is connected to a computer with
restricted memory (see Appendix), we will, in addition to
the above, be investigating more compact in-core representa-

*tions and the effect of user-controlled paging on algorithm
efficiencies. This will be done in conjunction with the
development of a quadtree editor (which requires interactive

"* use of display device).
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