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Recent advances in the statistical theory of hierarchical linear models should enable important

breakthroughs in the measurement of psychological change and the study of correlates of change. A

two-stage model of change is proposed here. At the first, or within-subject stage, an individual's status

on some trait is modeled as a function of an individual growth trajectory plus random error. At the

second, or between-subjects stage, the parameters of the individual growth trajectories vary as a

function of differences between subjects in background characteristics, instructional experiences,

and possibly experimental treatments. This two-stage conceptualization, illustrated with data on

Head Start children, allows investigators to model individual change, predict future development,

assess the quality of measurement instruments for distinguishing among growth trajectories, and to

study systematic variation in growth trajectories as a function of background characteristics and

experimental treatments.

Finding adequate measures of individual change and valid

techniques for research on change are problems that have long

perplexed behavioral scientists. Many concerns catalogued by

Harris (1963) continue to trouble quantitative studies of psy-

chological growth. On the substantive side, the most fundamen-

tal question is whether quantitative change over time is a mean-

ingful issue. Lord (1963) and Bereiter (1963), for example, de-

scribe situations in which the structure of the abilities under

study actually changes over the period of investigation. In such

a case, the changing structure of abilities, not the amount of

change, should be the prime research focus.

On the methodological side, it has been frequently noted

(Linn & Slinde, 1977; Rogosa, Brand, & Zimowski, 1982) that

high test stability (the correlation between scores across two or

more time points) accompanies low change score reliability.

Such low reliability may indicate that the measures are incapa-

ble of supporting precise statements about individual change.

Yet when change score reliability improves, instrument stabil-

ity typically declines, raising questions about whether the struc-

ture of the abilities themselves is changing.

Further, errors of measurement can produce particularly per-

verse effects on the assessment of change. Investigators rou-

tinely find, for example, that observed change over two occa-

sions is negatively correlated with the subject's initial status.

Bereiter (1963) demonstrated that this is, at least in part, a sta-

tistical artifact of measurement error. Even in situations in

which the structural relation between change and initial status

is positive, the observed relation can be negative (see, for exam-

ple, Blomqvist, 1977). Thus, the true relation between initial

status and rate of growth typically remains elusive.
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These methodological problems have led to a bewildering ar-

ray of well-intentioned but misdirected suggestions about the

design and analysis of research on human change. Major re-

views include Cronbach and Furby (1970), Linn and Slinde

(1977), and Linn (1981). Recent research (Rogosa et al., 1982;

Rogosa & Willett, 1983), however, dispells many of these mis-

conceptions.

In essence, research on individual change has been plagued

by inadequacies in conceptualization, measurement, and de-

sign. Brief reviews of these inadequacies follow.

1. Conceptualization. In any research context, a model of

the phenomena under study is an important heuristic for guid-

ing inquiry. Yet in most previous research on individual change,

the model of individual growth is rarely addressed explicitly.

2. Measurement. Studies of change typically use tests that

are developed to discriminate among individuals at a fixed

point in time. Their adequacy for distinguishing the rate of

change among individuals is rarely considered during the in-

strument design process. Further, statistical procedures rou-

tinely applied to these instruments, such as standardizing the

scores to a common mean and variance over time, effectively

eliminate the essence of individual growth (Rogosa et al., 1982).

Psychometric procedures are needed that enable assessment of

the adequacy of instruments for measuring both status and

change.

3. Design. Much of the research on change has been based

on data on individual status at two time points, for example,

scores on a pretest and a posttest. In general, two time points

provide an inadequate basis for studying change (Bryk & Weis-

berg, 1977; Rogosa et al. 1982). Further, even in instances in

which data have been collected on multiple occasions, research-

ers have typically analyzed the data as a series of separate de-

signs with two time points.

No coherent analytic strategy fully responds to these con-

cerns. Recent developments in the statistical theory of hierar-

chical linear models (HLMs), however, now enable an inte-

grated approach for studying the structure of individual
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growth, examining the reliability of instruments for measuring

status and change, investigating correlates of status and change,

and testing hypotheses about the effects of background vari-

ables and experimental interventions on individual growth. In

subsequent sections we present a two-stage model of growth,

discuss the statistical theory for estimating its parameters, and

illustrate in detail its application using data on preschoolers'

cognitive development.

Two-Stage Conceptualization

At Stage 1, each individual's observed development is con-

ceived of as a function of an individual growth trajectory plus

random error. This trajectory is determined by a set of individ-

ual parameters. At Stage 2, we assume that these individual pa-

rameters vary as a function of certain measurable characteris-

tics of the individual's background and environment.

The explicit individual growth model at Stage 1 opens for

scrutiny the theoretical basis of the study: psychologists can

consider whether the abilities under investigation can plausibly

be viewed as changing quantitatively over time. Further, the

model's second stage requires a precise, falsifiable theory about

how individual differences and experiences translate into

differences in growth. This two-stage conceptualization implies

the need for a model in which the parameters in the first stage

become the outcome variables in the second stage. Because of

this two-stage character, it is convenient to refer to this concep-

tualization of growth as a hierarchical linear model (HLM).

Within-Subject Model

In general, we assume that Ya, the observed status of individ-

ual i at time t, is a function of a systematic growth trajectory or

growth curve plus random error. It is convenient to assume that

systematic growth over time can be represented as a polynomial

of degree K - 1. Thus, the within-subject model is

YU = TTO, + *„ au + ir2, al + • • • + IT*- „• cf, ~ ' + RI, (1)

for;' = 1 . . . n subjects, each of whom is observed on 7", occa-

sions. Here a,, is the age of subject / at time t, Trki (k = 0, 1 , . . .

K - 1) are the growth trajectory parameters for subject i, and

Ri, is the random error assumed normally distributed with a

mean of zero and some covariance structure S/. Note that 2, is

dimensioned Tt X T:.

In general, 2, can take on a wide variety of structures, as will

be discussed. We assume, however, that the within-subject error

terms are uncorrelated across subjects, that is, cov(Ru, Ri:) = 0

for any values of (.

Between-Subjects Model

An important feature of Equation 1 is the assumption that

the growth parameters (the TU values) vary across individuals.

We formulate a between-subjects model to represent this varia-

tion. We are particularly interested in situations in which the

individual growth parameters are a function of measured vari-

ables, such as characteristics of the individual's background

(e.g., sex or social class) or of the experimental setting (e.g., type

of curriculum, or amount of instruction).

Specifically, each of the k individual growth parameters can

be modeled as

*"fa = 0kO + fttl Xkli + 0k2 Xki,

where there arep = 1, • • • , P — 1 measured variables (Xtf), 0kp

represents the effect of Xkp on the £th growth parameter, and

Un is random error.

We further assume that the U ki are normally distributed with

mean zero and covariances given by

COV([/A,, Ukl) = cov(jrw, jrt,) = (3)

for h, k, = 0,1, ... ,K~ 1.

In the language of analysis of variance, the parameters (}kf of

the between-subjects model are known as fixed effects. The er-

rors Vki are the random effects — the unique increments to the

growth parameters associated with each subject.

We note that each subject's growth can be measured at

different ages and a different number of times. Thus, the within-

subject model does not assume a uniform data collection design

across subjects. The between-subjects model is also quite flexi-

ble. In particular, it can accommodate different X variables for

each wk.

Model Assumptions

To realize the increased flexibility of HLM requires careful

attention to the necessary statistical assumptions. Three kinds

of assumptions are needed: distributional assumptions, as-

sumptions about the covariance structure, and assumptions

about the metric in which the outcome variable is measured.

Distributional Assumptions

Both the individual outcomes, Ya, and the growth parame-

ters, Tki, are assumed normally distributed. Because psycholog-

ical measures often used as outcome variables have been devel-

oped intentionally to produce near-normal distributions, the

first assumption is often not hard to satisfy. Further, analysts

can check the validity of this assumption by examining histo-

grams and normal probability plots.

The assumption that the growth parameters *k, are normal is

more difficult to assess because they are not directly observable.

However, Waternaux, Laird, and Ware (1985) have recently de-

veloped methods for checking this normality assumption by

comparing the sample frequency distribution of the growth pa-

rameter estimates (the *f, estimates presented later) against the

distribution expected under normality. The method identifies

outliers and enables the investigator to assess their influence on

substantive inferences.

Assumptions About the Covariance Structure

Among the Observations

The HLM does not require the same data collection design

for each individual. In the illustration that follows, some chil-

dren have three data points, some four, and the spacing between
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the data collection points varies somewhat across cases. In such

situations, it is often not sensible to assume a common covari-

ance structure among the observations, as is customary in mul-

tivariate repeated measures (see, for example, Bock, 1975, p.

447ff). However, HLM is very flexible in that it permits model-

ing of a broad array of covariance structures through specifica-

tions imposed on both the individual growth model and on the

random error term J?,,.

Specification of the individual growth model. Specification

of a model with random individual growth parameters as in

Equation 1 has strong implications for the covariance structure

among the observations. In general, both the variances of the

Yt, and the covariances among them are functions of age (or

time).

To illustrate, consider a simple within-subjects model:

I - TO, + T'1,-flji + (4)

Here the intercept, TO/, and the linear rate of growth, TI,,

determine the growth curve for each subject. For simplicity,

suppose that information is available on just one background

variable, X,. The simplified between-subjects model is then

given by

iroi = ft» + Pa\X< + Ut>i, (5a)
and

T,.- = 0,o + 0iiA,+ t/u. (5b)

Combining Equations 4 and 5 yields a single linear model,

,oa,i + 0nX,a,, + eit, (6)
with

e,,= Uoi+Uiidu + Ri,. (7)

Equation 6 is a standard linear model with an intercept, A»,

and three predictors: the between-subjects variable, Xt; age, a,,;

and the interaction term, Xfli,. However, the error term, en,

consists of two components: a component that depends on the

random increments to the individual growth parameters, l/0, +

U i flu, and the random error, /?/,.

Now suppose that the simplest assumption is used for Ru so

that the errors RI, are independently distributed with a mean of

zero and variance ir2. Then, for any subject i, the errors elt have

variance

var(e,,) = TOO + cfo\\ + 2aitr0i + a
1
, (8)

and covariance between any two observations at times / and f

of

cov(e,,, 6jf) — TOO + (®it + Off)TOI + altait'T\\. (9)

Equations 8 and 9 reveal the following statistical properties

for this simple linear growth model. First, the variance of the

observations is a function of age (or time), which is sensible,

because individuals are presumed to grow at different rates.

Second, each pair of observations for a given subject is corre-

lated. Third, the size of this correlation depends on the spacing

of the observations, on the relative magnitude of the variances

among the intercepts and slopes, and on the covariance between

them. A special case of Equations 8 and 9 merits particular

mention. When the individual growth rates are constant across

individuals (i.e., Tn = 0 and, by implication, rm = 0), the covar-

iance structure for the simple linear model reduces to a well-

known structure, termed compound symmetry, often assumed

in univariate repeated measures (Winer, 1971, p. 136).

In general, the structure of variances and covariances among

the observations will depend both on the functional form as-

sumed for the individual growth model and on the amount of

variance and covariance among the individual growth parame-

ters (see Bryk, 1977; Rogosa & Willett, 1985). By varying the

specification of the individual growth model, it is possible to

represent a broad range of covariance structures.

Specification of the random error term. It is most common

with individual growth curve modeling (see Ware, 1985, p. 98)

to assume a simple structure for the error term R,,, namely, the

Ru are independently and normally distributed with a mean of

zero and constant variance a
2
. Other assumptions can be ac-

commodated, however. Although the statistical computations

become more complex, Strenio (1981) presents an application

in which the variance of/?„ is person-specific, that is, varf.R,,) =

a\. It is also possible to represent serial correlations among the

random errors (Louis & Spiro, 1984), or to make Ra a function

of measured characteristics such as age (Goldstein, 1986).

These more complex models for Ru seem most useful when

there are many time points per subject (Ware, 1985; Waternaux

et al., 1985). For data sets with a short time series, the assump-

tion of independent errors with constant variance is often most

practical, and we use this assumption in the example that fol-

lows.

Metric of the Response Variable

Growth curve modeling requires that the outcome data col-

lected at each time point be measured on a common metric,

so that changes across time reflect growth and not changes in

measurement scale. In our example we used item response the-

ory to construct a common metric for each test, in logits, spe-

cifically to facilitate measurement of change.

Statistical Estimation

The statistical theory for estimating the parameters of HLM

appears in a number of places under a variety of titles. The

problem can be viewed as a mixed-model analysis of variance

(Elston & Grizzle, 1962), as regression with random coefficients

(Dielman, 1983;Rao, 1972; Rosenberg, 1973;Swamy, 1973), as

James-Stein estimation (Efron & Morris, 1979), as a covariance

components model (Harville, 1977), and as Bayesian estima-

tion for linear models (Dempster, Rubin, & Tsutakawa, 1981;

Lindley& Smith, 1972; Morris, 1983; Smith, 1973). We prefer

the title "hierarchical linear model" because it highlights the

class of substantive problems that can be addressed through

these related approaches.

Estimation Assuming Known Variances

Within-subject model. To clarify the logic of statistical esti-

mation for HLM without resorting to matrix notation requires

a slight model simplification. Within subjects, we "center the

data," so that the outcome, now denoted yu, and age, a,-,, are in

deviation-score form. This eliminates the intercept from con-



150 ANTHONY S. BRYK AND STEPHEN W. RAUDENBUSH

sideration and restricts our attention to the linear growth rate.1

As a result, Equation 1 becomes

W, = T/(T + v,), (18)

y,, = TC, a,, + R,,. (10)

We also assume for simplicity that the errors R,, are indepen-

dent, with common variance a
2
.

Under these assumptions, subject fs growth rate, IT,, can

readily be estimated by means of ordinary least squares, based

only on the repeated measurements for that subject.2 The least

squares estimate ir, is given by

aj, (11)

and the sampling variance of »/, for fixed JT,, is

(r
2/2ai (12)

Between-subject! model. The simplified between-subjects
model becomes

7T, = ft, + &*,+ {/„ (13)

where the {// are assumed to be independent and normally dis-

tributed with a mean of zero and variance r. Now the outcome

variable in Equation 13 is JT,, which is an unknown parameter.

We have, however, an estimate for JT, from Equation 11. Our

estimate in may be viewed as a function of the true ir, plus error,

ir, — IT, . Thus equation 1 3 can be rewritten as:

i + P,Xt + e,, (14)

where the et = U, + (ir, — TT,) are independent and normally

distributed with a mean of zero and variance T + vt = £>,. Note

that DI is just the total variance in ir, and consists of the parame-

ter variance, T, and the sampling variance, v(. That is,

DI = var(ir,) = var(ir,) + var(jf/ |ir,) = T + t),-. (15)

Efficient estimates for /30 and 0, in Equation 14 can be ob-

tained by using a weighted least squares regression where each

subject's data (ir,, X,) are weighted inversely proportional to

VA (see Seber, 1977). We denote the resulting estimates ft>

Empirical Bayes estimation of individual growth curves. Es-
timates ft> and /3, can be used to produce a second estimator of
the individual growth parameter, JT,:

K
 =

 @o + ft\Xj. (16)

An interesting dilemma results from our having now derived

two estimates of TT, (; = ! , . . . ,«) , the individual growth rates

for each subject. The first estimate, ir,, from Equation 11, is

simply the least squares estimate based on separate regressions

for each subject. The second estimate, £,, from Equation 16, is

the predicted growth rate, based on Xit the value of each sub-

ject's background variable. Rather than forcing a choice be-

tween one estimate and the other, empirical Bayes theory, re-

viewed by Morris (1983), provides a composite estimator, jrf,

which is an optimally weighted average of ir, and jr,:

Interestingly, the weights, W,, have substantive interpretability.

It can be shown (see Raudenbush & Bryk, 1985) that

Notice that Wt is just the ratio of the parameter variance in

the growth rates, T, to the total variance, T + v,. This ratio is

analogous to a reliability coefficient, where we compare the

"true score" variance (in this case r) to the observed score vari-

ance (r + v,).

We see, then, that the influence of an individual's time series

data (as captured by »() on irf depends on the reliability of the

ir, estimate. When this is highly reliable, the HLM estimate for

an individual's growth rate will lean heavily on the individual

time series data. When this is unreliable, however, (i.e., Wt —>

0), irf will be based primarily on the background data.

In essence, HLM uses whatever strength exists in the data

in order to form its estimate for »•/. Both statistical theory and

empirical research have shown that the composite estimator

fff has a smaller mean squared error than the estimator ir,,

based only on the individual data, or the estimator £,, based

only on the group data (Efron & Morris, 1979; Morris, 1983).

Finally, under the assumptions just laid out, n?, ft, 2nd /9i

are all normally distributed with estimable sampling variances

and covariances. These results provide the basis for both small

and large sample hypothesis testing.

Estimation When the Variances Are Unknown

We have assumed so far that the variances a
2 and r were

known. In most applications, however, those variance compo-

nents must be estimated from the data. If all subjects are ob-

served at identical times, variance estimation is straightfor-

ward. However, when the number and spacing of the time series

observations vary across subjects, variance estimation requires

iterative, numerical approaches that are just becoming accessi-

ble to researchers.

In particular, the development of the EM algorithm by

Dempster, Laird, and Rubin (1977) affords a theoretically satis-

factory and computationally manageable approach to vari-

ance/covariance estimation in HLMs. It has been successfully

applied in a broad range of situations (see, for example, Demps-

ter et al., 1981; Mason, Wong, & Entwhistle, 1983; Strenio,

Weisberg, & Bryk, 1983), and we use it in the Illustrative

Example.

Under fairly general conditions, the EM algorithm produces

maximum likelihood estimates for variance components. These

estimates have the desirable properties of being asymptotically

unbiased, consistent, efficient, and asymptotically normally

distributed. When the EM estimates are substituted for the un-

known variances and covariances, the resulting /3 estimates are

also maximum likelihood estimates with known asymptotic

distributions. The latter provides the basis for large sample sta-

1 The elimination of the intercept actually robs HLM of part of its

strength. To the extent that the intercept and slope are correlated, HLM

uses this association to increase estimation precision. Thus, centering

the data is generally undesirable from a data analysis point of view, al-

though it simplifies the presentation.
2 If we assume a more general structure for 2,, then the first compo-

nent to T* would be derived from generalized least squares, where 2,"'

is used in the weight matrix.
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Table 1

Enumeration of Head Start Sample

Observations

Variable

Test

Math Reading Perception Natural science

No. per subject

3
4

Total n

12
131

143

84

45

129

45
46

91

14

126

140

M SD M SD M SD SD

Age at test

1st

2nd

3rd

4th

Ability at test

1st

2nd

3rd

4th

51.85
55.15

56.29
58.35

-0.694

-0.170

-0.032

0.303

5.37

5.33

5.36
5.36

1.13
1.43
1.36

1.14

53.52

55.53

57.58

58.85

-0.480

-0.310
0.367

0.200

5.30
5.37

5.25

5.30

0.827

0.761

0.739

0.843

54.15

55.55

57.60

58.67

-0.672
-0.411

-0.269
0.219

5.76

5.93

6.25

5.98

0.897

0.960
0.794

1.14

52.34

55.41

56.55

58.65

-0.731
-0.218

-0.018
0.407

5.29
5.24

5.27

5.26

0.808

0.940
0.984

1.82

tistical inference with HLM. The Appendix illustrates the logic

of EM variance components estimation with HLM using the

simple univariate model presented in Equations 10 and 13.

Generalization of the Model

A wide range of growth models can be formulated under

HLM theory with EM variance component estimation. The

within-subject model can be a polynomial of any degree. Sub-

jects may be observed at different times and on a varied number

of occasions. We can also assume a variety of models for the

within-subject errors, R,,. Similarly, the between-subjects

model may incorporate any number of background variables,

and each between-subjects equation need not be identical for

all growth parameters. For example, we might have one set of

variables predicting TO, and another predicting ir,,.

In the general case, when there is more than one individual

growth parameter, the estimation formulas extend naturally.

Whereas the univariate model discussed earlier required that

we estimate the variance in the growth rate parameters, which

we termed T, and the sampling variance of the estimates jr,-,

which we termed v,, we now must estimate the variance/covari-

ance matrices of the parameters and their errors of estimation,

which we term T and V,. The elements of these two matrices

are important substantively in estimating the reliability of mea-

sures and the correlation of change and initial status.

Illustrative Example3

We illustrate six potential uses of HLM in research on psy-

chological change: describing the structure of the mean growth

trajectory, estimating the extent of individual variation around

mean growth, assessing the reliability of measures for studying

both status and change, estimating the correlation between en-

try status and rate of change, examining how background and

instructional variables influence change, and predicting future

individual growth.

Data description. The sample consists of 143 preschoolers

at three Head Start centers located in the Southeastern United

States. The original design called for each child to be tested in

four areas—reading, mathematics, language, and natural sci-

ence—on each of four occasions approximately equally spaced

throughout the year. In practice the testing dates varied across

children and not every child was tested on all four occasions.

Table 1 provides an enumeration of the sample, the ages (mea-

sured in months) at which data were collected, and descriptive

statistics on the ability scores (measured in logits) for the four

outcomes at each of the four occasions.

In addition to the test data, a limited amount of student back-

ground and program exposure information was collected. We

use two such variables in our between-subjects model: "home

language" (Spanish or English), and "amount of direct instruc-

tion" (hours per academic year). Nearly 15% of the children

were from families in which Spanish was the dominant home

language. The amount of direct instruction varied widely across

centers and classrooms within centers. Both factors had signifi-

cant bivariate relations with individual growth.

Examining the Individual Growth Model

Two distinct features of the growth system must be consid-

ered: the structure of the mean or average growth trajectory, and

the nature of the deviations of the individual growth trajectories

from the population mean. The first step in the analysis is to

identify the degree of the polynomial to be fitted to the data.

For clarity of exposition we consider only the simple linear indi-

vidual growth model. The example is sufficiently rich, however,

to demonstrate the statistical procedures used in estimating the

model's parameters and examining its adequacy.

3 All of the analyses described that follow were performed with an

original FORTRAN program developed by the authors. The program is

written in FORTRAN 77 and runs on a Hewlett-Packard 9000 mini-com-

puter. The program is available for distribution by writing the authors.
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Table 2

Estimated Mean Growth  Parameters  (Fixed  Effects)

Dependent variable

Perception

Intercept, ftx,

Linear,  ff
m

Natural science

Intercept, /3
W

Linear, /3
0
i

M growth

parameter

estimates

-0.5095

0.1733

-0.1352

0.1818

SE

0.0168

0.0256

0.0052

0.0249

Z

30.327*

6.770«

26.000'

7.274*

*p<.№.

Under  a  linear growth  model,  IT,  is  the  individual's  growth

rate over  the data collection  period  and  is  identical  to  the ex-

pected amount of change that would occur  in any  fixed  unit of

time.  The  intercept  parameter,  jr
c
,  is  the  true  ability  of  each

individual at some fixed time point. The specific time point de-

pends  on  the scaling of  the  age  metric.  For the  examples pre-

sented in this article, we defined  the age metric  in terms of the

amount of time that had elapsed  from  the first data collection

point.  Under this specification, the  JT
O
 parameter  in  the  linear

growth model  represents  the true ability level of the individual

at the onset of data collection, or what we call the initial status.

Thus, both  TO and  TTJ  are  of substantive  interest.

Specifically, we pose the following within-subject model:

Y&  — TO;  +  ""i/a/, +  RH, (19)

where we assume that the errors  R,, are  independent  and nor-

mally distributed with common variance a
2
.

The between-subjects model is

U
ki
  (20)

for/t  = 0,  1.

Equation  19 assumes  that for each individual, growth  can be

represented  as a linear trajectory  plus random  error. Equation

20 is the simplest  representation  of a between-subjects  model.

We assume that each  ir/t, is random with some expectation, vari-

ance, and a covariance between them.

At  this point  our  substantive  interest  focuses  first  on the 0

parameters,  which represent the mean growth curve for the en-

tire sample:  ft»  is the mean intercept,  and (tin is the mean linear

growth  rate.  We  are  interested  in  determining  the  simplest

mean  growth  model that  is consistent with  the data. Thus  we

test the hypotheses

H
0
t: ftto

 =
 0

forA:  = 0,  1.

A  simple Z test  is available by  computing the ratio of  each

estimate to its standard error. This ratio has a large sample unit

normal distribution  under He*. Table 2 presents the results  for

two  of the outcome measures,  perception  and natural  science.

We find statistically  significant results on both tests for both the

intercept and growth rate parameters, which suggests that both

parameters are necessary for describing  the mean growth trajec-

tory. (In many applications, the intercept will be retained  in the

model  even  if  it  is  not  significantly different  from  zero.)  The

results  for the reading and mathematics  tests are not presented

here for reasons discussed in the next section.

Next, we consider the nature of the deviations of the individ-

ual  growth  trajectories  from  the  mean  curve.  The  EM algo-

rithm  yields  estimates  for  ?-«,  the  variances  of  individual

growth parameters,  that is,

for k -  0, 1 . These statistics are reported in Table 3.

We  might wish  to consider  the  hypotheses  of  no  parameter

variation among either initial status, KO, or the growth rates, ir, .

If the hypotheses  that all children shared the same entry ability

(i.e.,  HOC:  TOO = 0) were true, the variation among the estimated

jr
0
i would consist only of sampling variance, denoted  v

0
/. Thus,

under the assumptions specified  previously the statistic

would  have  a  chi-square  distribution  with  n  -  1 degrees  of

freedom.

For our data, the test  statistic equals  356.90  (df=  139, p  <

.00 1 ) and 432.64 (df=  90, p < .00 1 ) for the natural science and

perception  tests,  respectively,  which  leads  us  to  reject  the  null

hypotheses and conclude that  for both tests, children vary sig-

nificantly  in their initial  status.

Similarly,  we can examine  the hypothesis  that there are  no

individual differences  among children's growth  rates (i.e.,  HOI :

T-]  i  =  0).  Retention  of  this hypothesis  implies  that  the  linear

effect  of  age  is  fixed,  with  no  subject-specific deviations.  As

noted earlier, retention of the hypothesis is equivalent to assum-

ing compound  symmetry of the variance-covariance matrix of

the observations  Y,,.

Under  this  hypothesis  and  the  assumptions  specified pre-

viously, the statistic

has a chi-square  distribution  with n -  1 degrees of freedom.

Here  the  test  statistic  equals  724.91  (df=  139,  p  <  .001) for

natural  science and 465.05  (df=  90, p  <  .001) for  perception,

which leads us in both cases to reject the hypothesis of no varia-

tion  in  linear growth  rates  (Table  3). Thus there  is significant

variation  among  individual  growth  rates,  which  also  implies

that the compound symmetry assumption is untenable for these

data.

The procedures just  illustrated  generalize  directly  to  more

complex growth  models.  In principle,  a polynomial of any de-

gree can be  fitted and tested as  long as  the time series is  suffi-

ciently long.
4
 Transformation of the age metric, for example, by

representing  Y
u
  as  a  function  of  logto),  can  also  be  easily

accomodated  by  transforming  the age variable first, and  then

proceeding as shown previously. We suggest visual examination

of  the  individual time  series and  mean  trajectories  to  identify

4
 The statistical estimation  procedures used in HLM do not require

that  the  number  of observations per  individual  exceed the  number of

parameters  estimated  per  case (see Braun,  Jones,  Rubin,  &  Thayer,

1983). Although this offers  interesting data analysis options, the practi-

cal  utility  of  fitting  multiparameter models  from  sparse data  has  not

been adequately assessed.
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Table 3

Estimated Variance Components (Random Effects)

Dependent variable

Perception

Intercept, TOO
Linear, T\,

Natural science
Intercept, TOO

Linear, TU

Estimated parameter

variance, van»

0.6393

0.0690

0.5111

0.0230

X
2

432.64*

465.05*

356.90*

724.91*

df

90
90

139
139

*p<.001.

possible models that might be fitted to the data. In general, the

mean growth curve and the individual growth curves could have

different forms. For example, in fitting a quadratic model to

the data, we might find that some individual trajectories with

positive curvatures cancel out others with negative curvatures.

In this case, a line would be a fine description for the group

development, but an inadequate representation for individual

growth.

Reliability of Assessments of Initial Status and Change

Before we expand the between-subjects model in order to ex-

amine the possible factors associated with the entry ability and

growth rate, we should consider the psychometric characteris-

tics, particularly the reliability, of the f estimates. If most of the

variability in r were due to error, we would likely not find any

systematic relations between these estimates and the second

stage variables. We might then falsely conclude that there are

no relations when in fact the data are incapable of detecting

such relations.

Recall that for each of the K individual growth parameters

the observed variance in the estimated individual parameters

consists of sampling variance and parameter variance. Specifi-

cally,

vai(vki) = varOfo-l irfa) + var(irfa). (21)

Following classical measurement theory, the ratio of the "true"

parameter variance, var(irtj), to the "total" observed variance,

var(irfa), is the reliability of the individual data estimate, TB, as

a measure of the "true" growth parameters, wkl. Formally,

pk, = var(Trt,)/var(Tto) (22)

for the k = 0 K- 1 growth parameter estimates, where pu

is the reliability of individual f s estimate for growth param-

eter, TU.

Estimation of pu is straightforward. Because HLM provides

maximum likelihood estimates for var^,) and var(»>/), substi-

tuting these estimates into Equation 22 provides maximum

likelihood estimates for the individual growth parameter reli-

ability coefficients. Averaging the estimates across the n individ-

uals provides a summary index of the instrument's reliability

in measuring each of the K growth parameters on this popula-

tion of subjects. Table 4 shows the estimated variance compo-

nents and instrument reliabilities for the four measures.

All four tests seem quite reliable as measures of entry status.

The reliability of ir0 ranges from .65 for reading to .86 for per-

ception. As measures of change, however, only perception and

natural science demonstrate high reliability, .76 and .80, respec-

tively (Table 4). The reliability of T, for mathematics is only .03

and for reading, .24. These results indicate that there is very

little variation in the growth rate parameters for the mathemat-

ics test and only slightly more on the reading test. To be sure,

the abilities of individual students are developing in these areas

(see Table 1), but the rate of development is relatively constant

across individuals. As a result, the reliability of the growth rates

is low for these two tests, and we have excluded them from fur-

ther analysis.

Relation of Change to Initial Status

As noted at the beginning of the article, the correlation be-

tween change and initial status is an interesting characteristic

of any collection of growth trajectories. It is impossible to esti-

mate this relation on the basis of a simple pretest-posttest de-

sign. With multiwave data, however, HLM readily produces an

estimate for this structural parameter as well. Under a linear

individual growth model, the true correlation between change

and initial status is just the correlation between rr0 and T, . This

correlation is a simple function of the covariances among the

TS, that is,

corr(iro, TI) = To.AToo-Tn)1". (23)

Because the EM algorithm provides maximum likelihood es-

timates for each of the elements in Equation 23, substituting

these estimates into Equation 23 yields a maximum likelihood

estimate for corr(iro, iri). For the perception data, the estimated

correlation of change with initial status is -.562 and for natural

science, it is —.278.

Thus, HLM methods enable us to infer that the negative cor-

relation between estimated entry status and growth rate is not

entirely spurious. A substantial part of the observed negative

correlation is attributable to the negative association of the pa-

rameters themselves. In general, the students whose initial sta-

tus going into Head Start is low tend to grow at a somewhat

faster rate while in the program.

Correlates of Change and Status

Another major application of HLM focuses on the relations

between measured background and program characteristics on

Table 4

Reliability of Initial Status, and Growth Rates Estimates

Dependent

variable

Initial status, irc,

Math

Reading
Perception

Natural science
Growth rates, TI,

Math

Reading
Perception

Natural science

Estimated

parameter

variance

0.584'

0.309
2.237

1.689
van>,,)

.0007

.0027

.0314

.0400

Estimated

total

variance

var<T0:)

0.738
0.477

2.59
1.98

.0207

.0113

.0415

.0510

Reliability

.791

.648

.862

.854

varfiiyVvaitir,,)
.034

.240

.756

.799

* Estimated proportion of total variance that is parameter variance.
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the one hand, and entry status (ir0) and growth rate (TT,) on the
other. In illustrating this with the natural science data, we as-
sume a linear growth model and introduce two variables in the
between-subjects model: X^ is the home language (1 = Spanish,
0 = English), and Xi are the hours of direct classroom instruc-
tion (a continuous variable). Thus, our within-subject model is

Low Hours
of instruction

Medium Hours
of Instruction

High Hours
of Instruction '

and our between-subjects model is

and
1820*2,

(24)

(25)

(26)

Table 5 presents selected results from this analysis. Because
data in this example are nonexperimental, causal inferences
should be approached with caution. The discussion that follows
is intended primarily to illuminate the technical interpretation
of the results, rather than to make specific substantive infer-
ences about preschool education.

We first consider the estimates for the fixed effects. Neither
home language nor hours of instruction is significantly related

Table 5
Effects of Home Language and Hours of Instruction on Growth
Parameters for Natural Science

Effects Coefficient SE

0.304

Fixed, £
Effect of home language on

initial status, /Jio
Effect of hours of

instruction on initial
status, /32o 1.523XIO"3 0.853 X 10~3 1.79

Effect of home language on
rate of change, 0H 0.187 0.045 4.20*

Effect of hours of
instruction on rate of
change, ft,, 4.735 X lO^1 1. 252X10-* 3.78*

Random, T
Total variance in growth

parameters estimates
Initial status, var(iro) 1 .978
Growth rate, var(Jr,) 0.05 1

Unconditional parameter
variance

Initial status, van>0) 1 .689
Growth rate, varfir, ) 0.04 1

Reduction in parameter
variance due to X,,

Initial status, var(»0) -
vanVolXi.Xi)

Growth rate, var(iri) -
var(in|X,,X2)

P?: Percentage of total
variance explained

Initial status
Growth rate

R
2
: Percentage of parameter

variance explained
Initial status
Growth rate

.928

.031

38.4
56.0

54.9
75.0

54 56 58 60 62 54 56 56 60 62 54 56 56 60 62

Age in Months Age in Months Age in Months

Figure 1. Estimated mean growth trajectories incorporating infor-
mation on home language and hours of instruction (natural science
test). (The results presented in this figure are based on a between-sub-
jects model including both home language [Spanish vs. English] and
hours of instruction [M = 319.7, SD = 123.03]. The relation between
age and test results was plotted with hours of instruction held constant
at three values: 196.7 [low], 319.7 [medium], and 442.7 [high]. The low
and high values are I SD below and above the mean, respectively.)

to entry ability. Nevertheless, the direction of the estimated
effects seems plausible. On average, Spanish speakers start be-
hind English speaking children by .463 logits, that is, /J|0 =
—.463. It is a commonly encountered phenomenon in Head
Start that children from non-English speaking families tend to
score lower initially, but are also likely to show rapid progress.
The positive relation between total hours of instruction and ini-
tial status is also reasonable because the first testing occasion,
ti, occurred between 6 and 14 weeks into the program year.
Because a substantial amount of instruction had already been
given, the observed effect is not surprising.

Both home language and hours of instruction relate signifi-
cantly to individual growth rates. The scores for children whose
home language is Spanish are increasing, on average, at a rate
. 187 logits per month faster than the scores of their English-
speaking companions (holding constant hours of instruction).
Similarly, each additional hour of instruction per year is associ-
ated with a .0004735-logit increment to the growth rate (hold-
ing constant home language). To understand the latter result,
consider the expected growth rates for two children who have
the same home language but varying amounts of instruction.
Specifically, suppose the first child receives 40 hr per month of
instruction and the second 80 hr. (These numbers approximate
the minimum and maximum hours of instruction in the Head
Start sample.) The model predicts that over a 9-month period,
the extra 40 hr per month of instruction received by the second
child will yield an increment to that child's growth rate of 9 X
40 X .0004735, or .170 logits per month. That is, the child in
the 80 hr per month program will be expected to grow at a rate
of. 170 logits per month faster than his counterpart in the 40 hr
per month program.

These relations between background variables and ir0 and TT,
are illustrated in Figure 1. Estimated mean growth trajectories
for children of English and Spanish backgrounds are plotted
separately for selected values of hours of instruction. In each of
the figure's panels, the Spanish speakers start out behind, but
grow at a faster rate than the English speakers. As the amount of
instruction increases, the expected growth rates for both groups
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Figure 2. Alternative individual growth trajectory estimates
from the hierarchical linear model (HLM).

increase, with the greatest progress being displayed in the third
panel, where the hours of instruction are highest.

Returning to Table 5, estimates are also provided for the vari-
ances associated with the random effects, ir0, and xti, in the
model. In considering the explanatory power of a HLM mode],
two different versions of R2 can be computed: the percentage
of total variance explained, or the percentage of the parameter
variance explained. The latter is more informative because a
part of the total variance is sampling error in irk, which by
definition is not explainable by background variables. If this
sampling variance is substantial, the percentage of total vari-
ance explained may be very small even when the model is ac-
counting for most of the "explainable variance," that is, the pa-
rameter variance. In our illustration, for example, home lan-
guage and hours of instruction account for 54.9% of the
parameter variance in the initial status, and 75% of the parame-
ter variance in growth rates on the natural science test.

Using HLM Estimates to Improve Predictions

About Individual Growth

Recall from Equation 16 that HLM produces for each subject
an estimate of each individual growth parameter, irfa, which is a
weighted combination of two estimates: one derived solely from
subject f s own time series data, and one derived from knowing

the relation between background variables and growth parame-
ters. As noted previously, the composite estimator, ir*, has
smaller mean square error and as a result provides a better basis
for predictions (both in terms of interpolation and extrapola-
tion) than either of its component parts.

Figure 2 shows the estimated growth trajectories on the read-
ing and perception tests for the first subject in our data set. Both
the HLM composite estimator and its component trajectories
are presented. These results illustrate the important role that
the reliability of the individual growth parameter estimates, ir,
play in determining ir*. Recall from Table 4 that whereas the
reliability of the intercept parameter estimates for reading was
modest, .648, the growth rate reliability was quite low, .240. As
a result, the HLM estimate for the intercept for Subject 1 is
partly between the group and individual estimates. The HLM
growth rate estimate, however, is based almost entirely on the
background data. This is sensible, given the low reliability of
the individual growth data estimates. The estimates for the per-
ception test, however are quite different. Because the individual
data estimates for both intercept and growth rates are reliable
on this measure, the HLM estimates more closely follow these
results.

In short, HLM capitalizes on any strength in the data. If the
individual growth trajectory estimates are reliable then HLM
weights them heavily. If the latter estimates are not reliable, the
model substitutes values from mean growth trajectories that are
conditioned on available background information. Finally,
HLM also provides theory for approximate confidence interval
estimates for growth predictions (see Strenio et al., 1983).

Summary and Discussion

Long-standing problems of measurement, conceptualiza-
tion, and design have beset research on psychological change.
However, developments over the past 10 years in the statistical
theory of HLMs now enable an integrated approach for (a)
studying the structure of individual growth and estimating im-
portant statistical and psychometric properties of collections of
growth trajectories; (b) discovering correlates of change, that is,
factors that influence the rate at which individuals develop; and
(c) testing hypotheses about the effects of one or more experi-
mental or quasi-experimental treatments on growth curves.

The approach is based on a two-stage, hierarchical model. At
the first stage, a within-subjects model expresses status on a
given trait as a function of an individual growth trajectory plus
random error. At the second or between-subjects stage, individ-
ual growth parameters vary as a function of differences between
subjects in background and experience.

An example based on Head Start data illustrated key analytic
uses of HLM: (a) describing the structure of the mean growth
trajectory; (b) estimating the extent and character of individual
variation around mean growth; (c) assessing the reliability of
measures for studying both status and change; (d) estimating
the correlation between subjects' entry status and rates of
growth; (e) estimating correlates of both status and change; (f)
assessing the adequacy of between-subjects models by estimat-
ing reduction in unexplained parameter variance (reduction in
uncertainty about the individual growth parameters as distin-
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guished from errors in their estimation); and (g) predicting fu-

ture individual growth.

Although we do not illustrate it, HLM can be applied in ex-

perimental and quasi-experimental settings. An experimental

design could be incorporated into the between-subjects model

to represent both treatment group membership and possibly

covariates. (Experimental manipulations such as a treatment-

interrupted time series could also be incorporated into the

within-subject model.) This flexibility encourages an expanded

conceptualization for the effects of treatments on individuals.

Whereas experimental research conventionally assumes that a

treatment adds a constant increment to each individual's value

on the outcome variable, HLM permits a broader representa-

tion of the effects of interventions on the structure of growth,

including (for example) effects on growth rates, on the correla-

tion of entry status and growth, on the shape of the curvature

of learning curves, and on the variability of growth trajectories.

The HLM approach requires multi-time point data. This

simply reflects the reality that adequate design for the study of

individual change generally requires more than two time points.

In its handling of these data, however, HLM is quite flexible in

that the number and timing of observations may differ across

subjects.

The special strengths of HLM in individual prediction are

noteworthy. In making predictions, the model draws on what-

ever strengths are available in the data: if within-subject data are

precise, the model weights that data heavily. If between-subjects

relations are strong, that data receives emphasis. If the growth

parameters are correlated, empirical Bayes exploits this too, al-

though presentation of the model in matrix notation is required

to demonstrate this benefit (see Strenio et al., 1983).

The study of growth curves using HLM requires special care

to distributional assumptions, covariance assumptions, and the

metric of measurement. More research is needed on the conse-

quences of violating the assumption of normality of the growth

parameters. However, such violations will clearly have relatively

little influence on estimates of the fixed effects (the /3s). These

estimates are based on generalized least squares theory, a defen-

sible choice without resort to distributional assumptions. Also,

the jr* estimates of individual growth parameters will typically

be sensible even when the normality assumption fails.

More problematic are inferences based directly on the esti-

mated variances and covariances, as these estimates depend

more heavily on the normality assumption and are also likely

to be imprecise when sample sizes are small. This means that

the estimated correlation between initial status and rate of

change and the estimated reliability of the growth parameters

should be regarded as tentative when normality is questionable

or if samples are small. More research is also needed on the

robustness of these estimates to nonnormality and on the sam-

ple sizes needed for stable estimation. In addition, hypothesis

testing leans more heavily on distributional assumptions than

does point estimation of parameters. As a result, statistical in-

ferences should be regarded as approximate when distribu-

tional assumptions are in question.

On balance, hierarchical linear models seem broadly applica-

ble to the study of change and are likely to extend substantially

the empirical research on change. To the extent that HLM en-

riches the class of testable hypotheses about the structure of

growth, it may also encourage a broadened discussion about the

nature of change itself.
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Appendix

To illustrate the logic of variance components estimation, we consider

a simple two-stage model. Within subjects,

Yt, = vfl* + R,, , Rl: ~ N(0, a2
). (A 1 )

We assume for simplicity that yi{ and a,, have means of zero, thai is, that

they have been centered around their population means.

Between subjects, we model the growth rates «-,- as a function of their

grand mean, /*», and the effect of a single predictor, A",:

i, Ui - N(0, T). (A2)

This model is equivalent to the model

, (A3)

where the e, = «/ + (x; — IT,) are independent and normally distributed

with a mean of zero and variance r + v, = Df.

Estimation of a
2
, T. If all subjects are observed at identical times,

variance estimation is straightforward. Within subjects,

^ = 22 (vi, ~ »,a/,)2/[«(:r - D], (A4)
j /

where there are T observations on each of n subjects. The estimated

sampling variance of the estimated regression coefficients TT, would be
identical for each case:

v, = v = £Vl a,,
2
. (A5)

The estimated variance of i, across all subjects would be

D, = D = 2 [* - H, - fax, - X)f/(n - 2). (A6)
i

As a result, an unbiased, efficient estimate of ^ follows directly:

T = D - V. (A7)

When the number and/or spacing of the time series observations vary

across subjects, an iterative method, like the EM algorithm, is required

to estimate variances.

Logic of EM. As we indicate in the article, @, p.,, and j r , ( i = l , 2 , . . .

n) may be estimated when both o
2 and are ^ known. These estimates

are maximum likelihood estimates (Raudenbush, 1984). Alternatively,

if 0, it,, and the T/ were known, maximum likelihood estimates of tr
2

and r would follow:

2 2 (y,, - T,<z,,)VZ T,

and

(A8)

(A9)

Thus it is easy to derive maximum likelihood estimates for either the

structural parameters (T/, n,, and /3) assuming the variances (a
2 and r)

are known, or for the variances assuming the structural parameters are

known. The troublesome part is deriving estimates for all of these pa-

rameters simultaneously. The fact, however, that the structural parame-

ter estimates depend on the variances and the variance estimates in turn

depend on the structural parameters provides the basis for the applica-
tion of the EM algorithm to this problem.

Equations A8 and A9 are recognizable as residual mean squares. We

are interested in determining the posterior expectations of these mean

squares, when TT,, jt,, and (3 are unknown, in terms of empirical Bayes

estimates T*, /*»- and /3. It can be shown that

= 22 (y,, - Tfa,()
2/2 T, + 22 oK/Z T,, (AiO)

where

t)* = fF,u, + (1 - Wt)\v-, + (X, - X^v-g}.

Similarly,
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where

, - X)]
2
/n

= var[7rf - £, - 8(Xt - X)}

(All)

= W,Vi + Wj[Vi + (X, - Xfva],

and Ui and i>» are the sampling variances under weighted least squares.

The first components in Equations A 10 and A l l are identical to

Equations A8 and A9 except that we have now substituted the empirical

Bayes estimates for the parameters. Intuitively, we would expect that

when rt, M,, and S are unknown, Equations A8 and A9 (with estimates

substituted) would be too small as expressions for a2 and r, as they fail

to take into account the uncertainty associated with the estimation of

ir,, it,, and 0 from the data. The second components in Equations AID

and A 1 1 represent adjustments to the mean squares to account for this

additional variability. The actual computations in applying the EM al-

gorithm proceed as follows.

1. Initial values for a* and r must first be determined. A natural

starting point is to compute ordinary least squares (OLS) regressions

for each subject, yielding estimates, f,. The estimates, ir,-, are then re-

gressed on X,, also by means of OLS. The residual mean squares from

both regressions yield first cut estimates of <r! and r. For (r2, the sums of

squares from each within-subject model are pooled, as in Equation A4.

For T, a first cut estimate is similar to f of Equation A7, where S is the

average value of u f .

2. These initial estimates of the variances are used to find initial

estimates for jr,, /i., and 0.

3. The structural parameter estimates from Step 2 are substituted

into Equations A10 and A11 to derive new estimates for a2 and T.

4. These new variance estimates are in turn used to generate new

estimates for jr,, ft,, and 0.

5. The process in Steps 3 and 4 iterates back and forth between esti-

mating variances and estimating structural parameters until conver-

gence.

Dempster, Laird, and Rubin (1977) showed that the estimates of <r2

and T converge to maximum likelihood estimates. Generalization to

more complex within- and between-subjects models proceeds naturally,

but requires a general matrix formulation.
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