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Abstract. In order to circumvent difficulty caused by 
model uncertainty,   high dimensional model representa-
tion (HDMR) and interpolation were employed to ap-
proximate model outputs with different combinations of 
manipulated variables and model parameters. The results 
showed that HDMR and interpolation could be success-
fully applied to optimize nutrient removal under uncer-
tainty.  

INTRODUCTION 

Uncertainty is inevitable when using mathematical 
model to simulate real process that subject to both anthro-
pentic and natural disturbance. If uncertainty associated 
with a model is neglected, an optimal solution induced 
from this model may be far from optimal when applied to 
reality. Some control strategies have been proposed to 
take model uncertainty into account. The most popular 
method is to perform Mante Carlo simulations. However, 
with so many parameters in ASM, the computation cost is 
prohibitively high. On the other hand, high dimensional 
model representation (HDMR) is a fast algorithm that can 
circumvent the apparent exponential difficulty of high-
dimensional mapping problem. It has been successfully 
applied in atmospheric chemistry modeling (Li et al, 
2000). Interpolation is an algorithm used to estimate func-
tion values between data points. Here we adopted HDMR 
and interpolation to approximate model outputs under dif-
ferent combinations of manipulated variables and model 
parameters.  

 

PROCESS AND MODEL DESCRIPTION 

The basic process investigated here was an activated 
sludge process (AS) to which an anaerobic tank and an-
oxic tank were added to enhance nutrient removal (Figure 
1). The dimensions of the units were listed in Table 1. 

 

Table 1. Main dimensions of units 

 Construction Item Dimension

Bioreactor Anaerobic 
tank 

Volume 884 m3

 Anoxic tank Volume 1768 m3

 Aerobic tank Volume 6375 m3

Clarifier  Area 500 m2

  Height 4m  

Table 2. Flux-based average influent characterization 

Parameters Unit Dimension

Total COD mgCOD/l 404 
Ortho-P mgP/l 1.94 
Total phos-
phorus 

mgP/l 5.43 

NH4-N mgN/l 12.72 
TSS mgSS/l 261 

 

INFLUENT LOAD 

The influent data were collected in Athens No. 2 
wastewater treatment plant (WWTP) of Georgia in 1998 
(Liu, 2000; Liu and Beck, 2000). Generally, the influent 
quality can be classified as medium. Its main characteris-
tics were listed in Table 2. The influent COD was frac-
tioned into its components as in ASM No. 2d (Henze et al, 
1999). The range of components listed in Table 3 was in-
duced from the results of previous model calibration. 

 
 

MODEL AND SIMULATION DESCRIPTION 
 
ASM 2d was selected as it includes both nitrogen and 

phosphorus removal. The model was calibrated with the 
data collected in Athens No. 2 WWTP in 1998. Totally, 



there were 41 parameters in this model. We selected 16 
parameters according to their sensitivity, and included the 
fractionation of influent COD in the framework. Thus, 
totally 24 parameters were adjusted in each simulation. 
All simulations were performed on WEST simulation plat-
form (Hemmis nv, Kortrijk, Belgium). The implementa-
tion of the process was shown in Figure 2. 

 

  
Figure 1. Flowchart of the process 
 

 
Figure 2. Implementation of process in WEST 
 

Table 3.  Characterization of influent COD (Ratio of total 
COD)   

Compo-
nent Definition Range (%) 

SI Inert soluble organic material 4.33~5.75 
SA Fermentation products 4.59~6.31 
SF Fermentable, readily bio-

degradable organic substrates 
8.08~11.81 

XI Inert particulate organic mate-
rial 

25.4~28.7 

XS Slowly biodegradable substrates 36.5~51.8 
XH Heterotrophic organisms 5.13~9.81 
XAUT Nitrifying organisms 0.39~0.61 
XPAO Phosphate-accumulating organ-

isms 
0.20~0.34 

XPP Poly-phosphate 0 
XPHA A cell internal storage product 

of PAO 
0.08~0.15 

 
 
CONTROL STRATEGY DESCRIPTION 
 
The control strategy used here was essentially sto-

chastic optimization of manipulated variables under model 
uncertainty. The values of manipulated variables were 

chosen such that the expected objective function assumed 
a minimum (Infanger, 1993): 

 
z = min E f(x, ω) 
s/t x∈ C = ∩ω∈Ω Cω 
 
Where x – manipulated variables; 
            ω - model parameters; 
           Ω - set of possible realizations of ω; 
            f(x, ω) – objective function; 
            C – set of feasible solutions. 
 

The optimal solution represented the realistic solution of 
the stochastic optimization problem. 

 
X* ∈ arg min {Ef(x, ω) | x∈∩ω∈Ω Cω } 

Table 4.  Range of model parameters 

Parame
ter Definition Unit Range 

µPAO Maximum growth rate 
of PAO 

d-1 1.62~1.79 

qPP Rate constant for 
storage of XPP

gXppg-

1XPAO 
d-1

1.98~2.16 

YPHA PHA requirement for 
PP storage 

gCOD
g-1P 

0.06~0.16 

KPS Saturation coefficient 
for phosphorus in 
storage of PP 

gPm-3 0.08~0.12 

ηNO3_HE

T

Reduction factor for 
denitrification 

- 0.33~0.49 

KO2_AUT Saturation/inhibition 
coefficient for oxygen 
for XAUT

gO2m-3 0.29~0.45 

µAUT Maximum growth rate 
of XAUT

d-1 0.87~1.04 

bH Rate constant for lysis 
and decay 

d-1 0.33~0.45 

bPP Rate for lysis of XPP d-1 0.0019~0.10
KNH4_AU

T

Saturation coefficient 
for ammonia for XAUT

gNm-3 0.6~1.03 

KA Saturation coefficient 
for acetate 

gCOD
m-3

3~5 

KF Saturation coefficient 
for growth on SF

gCOD
m-3

3~5 

µH Maximum growth rate 
on substrate 

d-1 4.93~5.96 

fXI Fraction of inert COD 
generated in biomass 
lysis 

- 0.10~0.15 

KX Saturation coefficient 
for particulate COD 

gCOD
m-3

0.11~0.15 

V0 Settling velocity of 
sludge 

m/d 617~916 

 



For this research, 6 manipulated variables were em-
ployed, i.e. allocation of influent and return sludge among 
the three tanks, dissolved oxygen in aerobic tank, internal 
recirculation, outer recycle, and waste sludge. For each 
manipulated variable, we selected 5 values. Thus, totally 
we had 56 = 15,625 different combinations of manipulated 
variable values. Obviously, the simulations of all these 
combinations cannot be finished in a reasonable period of 
time. Alternatively, we used HDMR (Li et al, 2000) to 
approach model outputs as the following 

f(x) ≅ f0 + f∑
=

n

i 1
i(xi) + f∑

≤∠≤ nji1
ij(xi,xj) 

Where  
f0 = f( x ) 
fi(xi) = f(xi, x i) – f0
fij(xi,xj) = f(xi,xj, x ij) – f  – f  – fi j 0 
(xi, x i) = ( x 1, …, x i-1, xi, x i+1,…, x n), 
 
(xi,xj, x ij) = ( x 1, …, x i-1, xi, x i+1,…, x j-1, xj, 

x j+1,…, x n) 
 
The resultant computational effort to determine the 

expansion function will scale polynomically with n rather 
the traditional view of it being exponential (Saltelli, Chan, 
and Scott, 2000). By using HDMR we dramatically re-
duced the number of simulations needed. For example, 
only 265 simulations were needed to evaluate different 
combinations of 6 manipulated variable values. 

In addition, for each combination of manipulated 
variable values (X), we need to find the model outputs 
when model parameters take different values (ω). Here we 
selected 120 combinations of model parameter values (i.e. 
ω1, ω2, …, ω120). If we did not use HDMR, the computa-
tion cost would be very high. Even if we use HDMR, we 
still need to do 265*120 = 31,800 simulations. Obviously, 
we need some way to reduce simulations further. Then we 
plotted the model output with one combination of manipu-
lated variables (e.g. X1) against that with another combi-
nation of manipulated variables (e.g. X2) under different 
combinations of parameter values (i.e. ω1, ω2, …, ω120), 
we found that there was a strong relationship between 
them (see Figure 4). The correlation coefficients of efflu-
ent total phosphorus (TP) concentration, TP load, and op-
eration cost (energy cost plus sludge disposal cost) were 
all over 0.87, which implied that we could use the model 
outputs of  at some data points to estimate or interpolate 
model outputs at other points. The details of interpolation 
can be found in Burden and Faires (2001). 

In short, with interpolation and HDMR, the number of 
simulation needed was reduced to 2,232, which was only 
about 1/840 of the original work (15625*120 = 1,875,000). 

 
 

APPLICATION OF OPTIMIZATION STRATEGY 
 
For nutrient removal process, model-based control 

can find many applications. At least two possible targets 
can be used to optimize manipulated variables: one is to 
produce best effluent quality for a given plant configura-
tion; the other is to give lowest operation cost for given 
plant configuration and effluent limit. Here we optimized 
the manipulated variable values to meet the following lim-
its:  effluent TP mean < 1.25 mg/l, effluent TP 95th per-
centile < 2 mg/l, and effluent TP load < 23 kg/day. As 
there was uncertainty with model parameters, we wanted 
to be 95% confident that the limits above can be met with 
lowest operation cost. Then we used HDMR to predict the 
model outputs of all combinations of manipulated vari-
ables and model parameters, and selected manipulated 
variable values that can meet our targets with minimum 
operation cost.  

As expected, for the optimal combination of manipu-
lated variables, all influent was allocated to anaerobic tank 
because the carbon compound in the influent can be de-
composed into short chain volatile fatty acid (VFA) 
needed by PAOs. The levels of internal recirculation, 
outer recycle, and waste sludge were shown in Figure 5. 
The results showed that the internal recirculation was kept 
at low level (equal to influent flow), which enhanced en-
ergy saving and TP removal. The outer cycle was kept at 
low level (20% of influent flow), whereas the waste 
sludge was kept at relatively higher level (17.5% of outer 
cycle), resulting in more TP removal through sludge dis-
posal. The DO set-point was 2 mg/l, and the aeration level 
was shown in Figure 6.  

Generally aeration level was relatively low, which 
was beneficial to energy saving and fermentation in the 
anaerobic tank. The effluent TP profile was shown in Fig-
ure 7, and the cumulative probability of TP mean, TP 95th 
percentile, and TP load were shown in Figure 8, Figure 9, 
and Figure 10, respectively. From these results, it was 
found that the probability levels that TP mean exceeded 
1.25 mg/l, TP 95th percentile exceeded 2 mg/l, and TP 
load exceeded 23 kg/d were respectively 5 %, 0 %, and 5 
% respectively. 
     These results were equal to or better than our preset 
targets (violation probability of 5%), indicating that 
HDMR and interpolation could be used to control compli-
cated process such as nutrient removal. 
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Figure 4. Correlation of effluent TP concentration, efflu-
ent TP load and operation cost  with two combinations of 
manipulated variables (X1 and X2) under 120 combina-
tions of model parameters (ω1~ω120). 
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Figure 5. The levels of internal recirculation, outer recy-
cle, and waste sludge 
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Figure 6. The level of aeration (Kla) in aerobic tank 
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Figure 7. The effluent TP profiles 
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Figure 8. The cumulative probability of effluent TP mean 
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Figure 9. The cumulative probability of effluent TP 95th 
percentile 
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Figure 10. The cumulative probability of effluent TP load 
 

 
CONCLUSIONS 

 
     In this research, HDMR and interpolation were used to 
approximate model outputs at different combinations of 
manipulated variable levels and model parameter values. 
According to the approximation, the levels of manipulated 
variables were optimized to meet different control targets 
in a reasonable time. The agreement between the ap-
proximate results and actual simulation outputs indicated 
that these algorithms could be used to control complicated 
process such as nutrient removal.  
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