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Abstract 6 

In this paper, we present a key expansion algorithm based on a high-performance one-dimensional 7 

chaotic map. Traditional one-dimensional chaotic maps exhibit several limitations, prompting us 8 

to construct a new map that overcomes these shortcomings. By analyzing the structural 9 

characteristics of classic 1D chaotic maps, we propose a high-performance 1D map that 10 

outperforms multidimensional maps introduced by numerous researchers in recent years. 11 

In block cryptosystems, the security of round keys is of utmost importance. To ensure the 12 

generation of secure round keys, a sufficiently robust key expansion algorithm is required. The 13 

security of round keys is assessed based on statistical independence and sensitivity to the initial 14 

key. Leveraging the properties of our constructed high-performance chaotic map, we introduce a 15 

chaotic key expansion algorithm. 16 

Our experimental results validate the robust security of our proposed key expansion algorithm, 17 

demonstrating its resilience against various attacks. The algorithm exhibits strong statistical 18 

independence and sensitivity to the initial key, further strengthening the security of the generated 19 

round keys. 20 
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1 Introduction 22 

With the rapid advancement of information technology, the significance of information security 23 

has garnered increasing attention, consequently driving the progress of cryptography. Among 24 

various encryption techniques, block ciphers hold a crucial position. In 2000, the Advanced 25 

Encryption Standard (AES) emerged as a pivotal block cipher. The AES encryption algorithm 26 

consists of multiple encryption rounds, where each round involves XOR operations between round 27 

keys and encryption blocks [1].  28 

 Chaos is renowned for its sensitivity to initial values and the unpredictable nature of the 29 

sequences it generates [2,3]. In recent years, chaotic maps have found extensive applications in the 30 

realm of encryption [4-12]. However, traditional low-dimensional chaotic systems exhibit certain 31 

shortcomings in cryptographic applications, such as discontinuous chaotic intervals and 32 

predictable chaotic signals. To address these issues, researchers have proposed high-dimensional 33 

chaotic maps [13-16]. Although higher dimensions result in more complex mapping forms, they 34 

also increase computational requirements. Consequently, we draw inspiration from these 35 

developments and aim to design a high-performance one-dimensional chaotic map with a simple 36 

structure.  37 

 In a block cipher algorithm, apart from round key addition, all other steps do not utilize keys. 38 

This implies that an attacker could calculate the inverse without possessing the key, underscoring 39 

the pivotal role of the round key in ensuring the security of the block cipher. The round key is 40 

derived from a key expansion algorithm, thus emphasizing the significance of devising a secure 41 

key expansion algorithm. Upon analyzing the key expansion algorithm employed by AES, we 42 
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observe that it undergoes a reversible serial transformation process. If the round key for any round 43 

is known, one can deduce the round key for other rounds or even the initial key. This substantially 44 

diminishes the security of block ciphers and exposes vulnerabilities to side-channel attacks and 45 

other forms of intrusion. Inspired by the successful applications of chaotic maps in various 46 

cryptographic domains, we propose leveraging chaotic maps to generate a more secure key 47 

expansion algorithm.  48 

 In this study, we introduce a high-performance 1D chaotic map tailored for our key expansion 49 

algorithm, drawing insights from the analysis of various classical 1D chaotic map structures. By 50 

examining the nonlinear dynamics inherent in our mapping, we showcase its superiority over 51 

alternative maps. Subsequently, we put forth a chaotic key expansion algorithm built upon this 52 

chaotic map, accompanied by a thorough security analysis. 53 

 The subsequent sections of this paper are organized as follows: Section 2 provides an analysis 54 

of several well-established classical 1D chaotic maps. In Section 3, we present our high-55 

performance 1D chaotic map, along with an examination of its Lyapunov Exponent and K-Entropy. 56 

Section 4 introduces our chaotic key expansion algorithm, while addressing its security 57 

considerations. Finally, Section 5 concludes this paper, summarizing the key findings and 58 

contributions.  59 

2 Classic 1D chaotic maps 60 

2.1 Logistic map 61 

The Logistic map represents a classical 1D chaotic map, which can be mathematically 62 

expressed by Eq. (1) [17].  63 
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( 1) ( )(1 ( ))x i rx i x i+ = − ,                            (1) 64 

where [0,1]x  is the state variable and [0,4]r  is the control parameter. Its bifurcation 65 

diagram is shown in Fig. 1. When [3.56995,4]r , the system enters a chaotic state [17]. 66 

 67 

Fig. 1 Bifurcation diagram of the Logistic map 68 

2.2 Quadratic map 69 

The Quadratic map can be mathematically represented by Eq. (2) [18]. 70 

2( 1) ( )x i r x i+ = − ,                          (2) 71 

where [ 2,2]x −  is the state variable and [0,2]r  is the control parameter. The bifurcation 72 

diagram of the Quadratic map is depicted in Fig. 2. 73 

 74 

 75 
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Fig. 2 Bifurcation diagram of the Quadratic map 76 

2.3 Sine map 77 

In addition, we introduce another classical one-dimensional map, known as the Sine map. The Sine 78 

map can be mathematically represented by Eq. (3) [19]. 79 

( 1) sin( ( ))x i r x i+ = ,                          (3) 80 

where [ 4,4]x −  is the state variable and [0,4]r  is the control parameter. The bifurcation 81 

diagram of the Sine map is depicted in Fig. 3. 82 

 83 

 84 

Fig. 3 Bifurcation diagram of the Sine map 85 

3 The proposal of efficient 1D chaotic map and performance evaluations 86 

Upon examining the limitations of the previously introduced classical 1D chaotic maps, it becomes 87 

evident that they share common weaknesses, such as discontinuities in the chaotic interval. These 88 

maps may exhibit non-chaotic phenomena, including fixed points, at certain control parameter 89 

values. Consequently, the predictability of chaotic signals restricts their applicability in 90 

cryptography. Our objective is to overcome these limitations without increasing the dimensionality 91 
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of the map. 92 

We embark on improving the structure of the existing 1D map by leveraging the inherent 93 

characteristics of nonlinear components. Chaos, as a typical nonlinear phenomenon in iterative 94 

maps, necessitates the presence of nonlinear components that eliminate the superposition effect. 95 

The sine map, a classical nonlinear component, effectively constrains the range of state variables. 96 

Additionally, the tangent map displays exceptional sensitivity to changes in initial values within 97 

specific ranges, making it an ideal candidate for constructing chaotic maps. 98 

By amalgamating these existing structures and incorporating both the sine map and the tangent 99 

map, we propose a high-performance 1D chaotic map, mathematically expressed by Eq. (4). 100 

2 2( 1) sin(tan( ( ( ) )))x i r r x i+ = − ,                      (4) 101 

where [ 1,1]x −   is the state variable and 4[0,3 10 ]r    is the control parameter. We have 102 

named this new chaotic map the 1D-sin-tan-quadratic chaotic map (1D-STQCM). The bifurcation 103 

diagram of the 1D-STQCM is presented in Fig. 4, demonstrating its ability to exhibit chaos across 104 

a significantly wider parameter range. In the subsequent analysis, we delve into the dynamical 105 

performance of the 1D-STQCM, evaluating its key characteristics and properties. 106 

 107 

Fig. 4 Bifurcation diagram of 1D-STQCM 108 

3.1 Lyapunov Exponent 109 



7 

The Lyapunov Exponent serves as a crucial index for describing the stability and chaotic properties 110 

of dynamical systems. It quantifies the rate at which adjacent orbits in phase space diverge, thus 111 

capturing the system's sensitive dependence. This measure is commonly employed to analyze 112 

nonlinear dynamical systems, particularly those exhibiting chaotic behavior [20]. Chaotic systems 113 

display a high degree of sensitivity to initial conditions, where small perturbations can lead to 114 

significant deviations in system behavior. The Lyapunov Exponent effectively captures this 115 

sensitive dependence and provides insights into the stability and chaotic nature of the system. 116 

Typically, the Lyapunov Exponent is expressed as a real number or a set of real numbers. Each 117 

index corresponds to a specific direction within the system, describing the rate of separation along 118 

that particular direction. A positive Lyapunov Exponent indicates exponential divergence between 119 

adjacent orbits, indicating chaotic behavior. Conversely, a negative Lyapunov Exponent suggests 120 

exponential convergence between adjacent orbits, indicating stability. A Lyapunov Exponent of 121 

zero signifies linear separation or convergence, indicating bounded behavior within the system. 122 

It is worth noting that the Lyapunov Exponent is a statistical measure that is not sensitive to 123 

the specific evolution path of the system. It is typically obtained by calculating an average value 124 

and can be estimated using numerical simulation or mathematical analysis methods. In other words, 125 

a larger positive Lyapunov Exponent indicates a more pronounced chaotic performance. Ref. [21] 126 

provides a method for computing the Lyapunov Exponent, expressed by Eq (5).  127 

1
'

0

1
lim ln ( )

n

i
x

i

LE f x
n

−

→
=

=  ,                           (5) 128 

where LE  denotes the Lyapunov Exponent and ( )
i

f x  is the time series of length n  generated 129 

by the chaotic system. The curve illustrating the Lyapunov Exponent of the 1D-STQCM in relation 130 

to the control parameter is presented in Fig. 5. Furthermore, a comparison between the maximum 131 

Lyapunov Exponent of the 1D-STQCM and other chaotic maps is presented in Table 1. Notably, 132 
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despite being one-dimensional, the dynamic performance of the 1D-STQCM surpasses that of 133 

more recent three-dimensional maps, as evident from the table. 134 

 135 

Fig. 5 Lyapunov Exponent of 1D-STQCM 136 

Table 1 A comparison of the maximum K-Entropy and maximum Lyapunov Exponents of 1D-137 

STQCM with other maps. 138 

Map Max Lyapunov Exponent Max K-Entropy 

Logistic map 0.6929 0.3456 

Quadratic map 0.7025 0.2876 

Sine map 0.6919 0.3791 

ICQM [22] 15.2462 0.8862 

EQM [23] 16.6540 1.4343 

3D-ICQM [24] 17.1231 0.6893 

3D-ECM [25] 16.9166 0.9238 

1D-STQCM 17.9990 1.4440 

 139 

3.2 K-Entropy 140 
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In discrete chaotic systems, K-Entropy serves as a vital concept for measuring the complexity and 141 

uncertainty inherent in the system. It stems from the notion of entropy, which is a fundamental 142 

concept in information theory used to quantify the uncertainty of random variables. In the context 143 

of discrete random variables, entropy describes the average amount of information present. In 144 

discrete chaotic systems, K-Entropy extends the concept of entropy to discrete variable sequences. 145 

It characterizes the rate at which information grows during the dynamic evolution of discrete 146 

chaotic systems. 147 

The calculation method for K-Entropy involves dividing the state sequence of the system into 148 

different subsequences of length K . Subsequently, the entropy of each subsequence is computed, 149 

and the average of these entropies is determined. This average reflects the overall rate of 150 

information growth within the system. The value of K-Entropy is typically directly linked to the 151 

complexity and chaotic nature of the system. In a simple periodic system, the K-Entropy value 152 

may be low as the entropy of the sequence tends to remain stable. However, in a chaotic system, 153 

characterized by high sensitivity and uncertainty, the K-Entropy value tends to be higher due to 154 

the rapid increase in sequence entropy. 155 

Ref. [26] provides a method for calculating K-Entropy, as expressed in Eq. (6). 156 

 
1 2

1 2 1 2
0 0

, ,...,

1
lim lim lim ( , ,..., ) ln( ( , ,..., ))

n

n n
n

i i i

KE p i i i p i i i
n  → → →

= −  , (6) 157 

where n  is the embedding dimension,   denotes the time delay, p  is the joint probability.  158 

The K-Entropy of the 1D-STQCM is illustrated in Fig. 6, revealing that with the appropriate 159 

selection of control parameters, our map exhibits a significantly high K-Entropy. This 160 

characteristic renders the generated chaotic sequence highly unpredictable. The superiority of the 161 

1D-STQCM in terms of K-Entropy is also demonstrated in Table 1, further highlighting its 162 

advantages over other chaotic maps. 163 

https://www.sciencedirect.com/topics/engineering/joint-probability


10 

 164 

Fig. 6 K-Entropy of 1D-STQCM 165 

4 Key expansion algorithm based on 1D-STQCM and its security analysis 166 

4.1 Proposed key expansion algorithm 167 

Our proposed key expansion algorithm targets the AES encryption algorithm structure with a key 168 

length of 128 bits, which encrypts the block for 10 rounds, so our key expansion algorithm will 169 

produce 10 round keys with a length of 128 bits. For other structures of block ciphers, the 170 

corresponding key expansion algorithm can be obtained by making simple changes. Before 171 

presenting the algorithm, we first make some notational conventions. We agree that a word is 4 172 

bytes, that is, 32 bits, and use the array IK[0:3]  to represent the initial key of 4 words, and the 173 

array [0 : 43]w  to represent the 11 keys including the initial key and the 10 round keys of 44 174 

words. Both initial and round keys are expressed in hexadecimal. Our proposed key expansion 175 

algorithm is denoted by Algorithm 1. We need computers with high floating-point precision to 176 

better exploit the performance of 1D-STQCM and thus obtain better properties in key expansion. 177 

Algorithm 1: Key expansion Algorithm based on 1D-STQCM 178 

Input: IK[0:3] . 179 

Output: [0 : 43]w . 180 

Initial:  181 
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 Let [0 :3]x = IK[0:3] ; 182 

Set [0 :3]w = IK[0:3] ; 183 

Set control parameter max( 2 ( [0]),5)r hex dec w= , 1D-STQCM uses this control parameter. 184 

if  [0] [1] [2] [3]w w w w   = all zeros do: 185 

 [0]w = [0]w  36118107  // Any number that can eliminate the symmetry will do. 186 

end if 187 

for i=0, 1, 2, 3 do: 188 

[ ]x i =
8

2 ( [ ])

16 1

hex dec x i

−
; 189 

end for 190 

for i=1, …, 100 do: 191 

for j=0,..,3 do: 192 

 [ ]x j =1D-STQCM( [ ]x j ); 193 

end for 194 

end for 195 

 196 

for i=4, …, 43 do: 197 

for j=0,..,3 do: 198 

 [ ]x j =1D-STQCM( [ ]x j ) 199 

end for 200 

temp x= ; 201 

for j=0,..,3 do: 202 

 [ ]temp j = 16 82 (10 [ ]mod16 )dec hex x j  203 

end for 204 

The bitwise XOR operation of the components of temp  assigns the result to [ ]w i ; 205 

end for 206 

Output w  207 

 Given an initial key, the result of a key expansion is shown in Table 2. Then we analyze the 208 

security of the proposed key expansion algorithm. 209 

Table 2 An instance of key expansion using our algorithm. 210 

Round Round Key 

0(Initial key) 0F1571C947D9E8590CB7ADD6AF7F6798 

1 7E65712BD13C4285394244BF3CD8CD6A 

2 6CBA147DC3B2589D2F295666DAD889C6 

3 A7E1DDD08BC2C60133BE18EC73E3F520 

4 71B47C1D4E443387BCA43F77EF2C3B24 
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5 31E3C53F7AF4C192AE6AC7158964CB1B 

6 DBDA0082A00868D6604088EBEDE96A55 

7 049DCCED770C74A74EA5BE07E8C4B0CA 

8 64410DFEE40BCAF9C87E1AE0708E5F46 

9 0038AC193043977FB89955FF4EB2749A 

10 AD7E9A30FDE653E59C96AD3735F8B38E 

 211 

4.1 Independence of the round key 212 

To verify the independence of the round key, we need to calculate the number of bit change rate 213 

(NBCR). The ideal value of NBCR is 50%, meaning that the round key is independent [27]. To 214 

compute NBCR we first compute the Hamming distance, since NBCR is equal to the Hamming 215 

distance of two sequences divided by the bit length of the sequence. The Hamming distance 216 

between two sequences is defined as different bits in binary. We generated 10,000 round keys from 217 

an initial key according to our algorithm, counted the Hamming distance between these round keys 218 

and the initial key, and drew the histogram as shown in Fig. 7. 219 

 220 

Fig. 7 Distribution of Hamming distance between 10000 round keys and the initial key. 221 

 The Hamming distance divided by the key length, that is, divided by 128 bits, yields the NBCR. 222 

Naturally we can plot the NBCR distribution of 10000 round keys as shown in Fig. 8. It can be 223 
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seen that the NBCR of round keys is close to the ideal value of 50%, which indicates that round 224 

keys are independent.  225 

 226 

Fig. 8 Distribution of NBCR of 10000 round keys. 227 

4.2 Strict avalanche criterion 228 

After testing the independence of the round key, we also need to test the sensitivity of the key 229 

expansion algorithm to the initial key, which manifests as a strict avalanche effect. A strict 230 

avalanche effect means that any bit of the initial key is reversed, with a 50% probability for every 231 

bit of the round key [28]. We reverse the 1 bit of the initial key in Table 2, apply the key expansion 232 

algorithm to obtain 10 round keys, and for each round, calculate the Hamming distance between 233 

the corresponding round keys, and the results are shown in Table 3. It can be seen that the 234 

Hamming distance between each pair of corresponding round keys is about half of the key length, 235 

indicating that our key expansion algorithm satisfies the strict avalanche effect, thus proving the 236 

sensitivity to the initial key. 237 

Table 3 Hamming distance between corresponding round keys. 238 

Round Value Hamming distance 

0(Initial key) 1F1571C947D9E8590CB7ADD6AF7F6798 1 
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1 36BB7A50B2A3171CE7DCAB909A932D62 70 

2 D22D7D34E9B177315B55A3AAFF6F7233 73 

3 5C1C3333FD2FEDE4337D554A627E201A 73 

4 8AC50398B7B8CF5C59100F2F7D5B8A44 74 

5 AD46D24D3417AA4C26ACE0569CCE0BD6 63 

6 9657AD31928AF6BAC5C3BC19A9F43C03 61 

7 650DBFF33F1CC53179C5B984E0121E8F 52 

8 5C75A3B9344C8C96208B94E584DD1CA9 66 

9 80910E3ACF17C565DDFE4F0460175354 64 

10 31EA9CB8BA229F56E558A606E4F5C4DD 60 

4.2 Diffusion and confusion analysis 239 

The combination of confusion and diffusion is considered a fundamental element in achieving the 240 

security of cryptographic algorithms. The effects of confusion and diffusion work together to 241 

reinforce each other, making the security of cryptographic algorithms more robust. In key 242 

expansion algorithms, diffusion can be understood as the idea that small changes in the initial key 243 

can be spread out and mixed in the round key by distributing each bit of information in the initial 244 

key to as many positions as possible. Based on previous experiments, our key expansion algorithm 245 

is sensitive to the initial key and satisfies the diffusion effect. 246 

Confusion, on the other hand, can be understood as creating a highly complex and 247 

unpredictable relationship between the initial key and the round key, by making the relationship 248 

between the initial key and the round key confusing and complicated. To implement the confusion 249 

effect, we use highly unpredictable chaotic mapping in our key extension algorithm. 250 

4.3 The ability to resist side channel attacks 251 
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A side-channel attack [29] is a method employed in cryptanalysis that utilizes the physical 252 

information leakage arising from the execution of encryption operations by an encryption device, 253 

rather than directly attempting to crack the encryption algorithm, in order to obtain sensitive 254 

information. The fundamental concept behind a side-channel attack is that the internal state of the 255 

encryption device exhibits various physical characteristics, such as changes in power consumption 256 

and electromagnetic radiation, during the execution of encryption operations. These physical 257 

characteristics are correlated with the device's internal operation process and data, which can be 258 

monitored and recorded by specialized devices or sensors. By collecting a significant amount of 259 

side-channel data, an attacker can employ statistical analysis, pattern recognition, and other 260 

techniques to infer the round key utilized by the encryption algorithm. 261 

Based on our previous analysis, the keys generated by our key expansion algorithm are 262 

independent, and even if an attacker manages to obtain a round key, they cannot deduce the initial 263 

key. Therefore, our key expansion algorithm effectively withstands side-channel attacks. 264 

4.4 Ability to resist differential attacks 265 

Differential attack is another commonly used method in cryptanalysis. It aims to obtain key 266 

information, such as the key or plaintext, by analyzing the output differences of cryptographic 267 

algorithms when subjected to different input differences [30]. The fundamental concept behind a 268 

differential attack is to select a pair of input plaintexts with a small difference between them and 269 

observe the resulting output difference during the algorithm's execution. By repeating this process 270 

multiple times, collecting a large number of differential pairs, and performing counting and 271 

analysis, an attacker can infer certain bits of the key or the internal state of the algorithm. 272 

 The key expansion algorithm satisfies the strict avalanche effect, and the change of initial 273 
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key does not cause the characteristic difference of round key, which can effectively resist 274 

differential attacks. 275 

5 Conclusion 276 

In this study, we have proposed a high-performance 1D chaotic map, named 1D-STQCM. The 277 

Lyapunov Exponent and K-Entropy tests conducted on 1D-STQCM have demonstrated its robust 278 

performance. Furthermore, our key expansion algorithm generates round keys that exhibit 279 

independence from the initial key and sensitivity to changes in the initial key. These characteristics 280 

address the limitations found in many existing key expansion algorithms, including the AES key 281 

expansion algorithm, and provide effective resistance against side-channel attacks and differential 282 

attacks. In the future, the application of 1D-STQCM can be extended to various domains, such as 283 

information encryption, random number generation, and the construction of strong S-boxes. The 284 

versatility and security properties of 1D-STQCM make it a promising tool for enhancing security 285 

measures in these areas. 286 
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