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The oral microbiome is one of most diversity habitat in the human body and they are
closely related with oral health and disease. As the technique developing, high-throughput
sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial
profiles have been studied to explore the relationship between microbial diversity and oral
diseases such as caries and periodontal disease. This review describes the application
of high-throughput sequencing for characterization of oral microbiota and analyzing the
changes of the microbiome in the states of health or disease. Deep understanding the
knowledge of microbiota will pave the way for more effective prevent dentistry and
contribute to the development of personalized dental medicine.
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INTRODUCTION
Improvements in bio-technologies have spurred a large number
of studies aimed at obtaining a better understanding of the com-
position and effect in microbiota and its associations with various
human diseases. Early studies of the human microbiome have
revealed most of the microbes that occupy in different habitats
of human body and are ∼10 times more numerous than our
own cells, more attention has paid to viewing ourselves as a
supraorganism (Gill et al., 2006).

Traditional culture independent methods, such as DNA–DNA
hybridization or cloning sequencing of DNA is widely used to
identify oral organisms and found over 700 bacterial species in
oral cavity (Aas et al., 2005). However, they still have significant
biases that do not allow microbial diversity to be fully studied, as
many low richness species cannot be detected.

Recently a major advance over conventional sequencing tech-
niques is the development of high-throughput sequencing meth-
ods, which is a part of the next-generation sequencing (NGS)
techniques (Ronaghi, 2001). These methods can largely be
grouped into three main types: sequencing by synthesis (Roche 454
pyrosequencing, Illumina, The Ion Torrent system), sequencing
by ligation (SOLiD, Polonator G.007 system), and single-molecule
sequencing (Helicos, Pacific BioSciences). This has been proving

amenable for use in massively parallel signature sequencing
technologies (Rothberg and Leamon, 2008), including Roche
454 genome sequencers, Illumina sequencers, Applied Biosys-
tems SOLiD sequencer, Life Technologies Ion Torrent, Helicos
biosciences HeliScope, Pacific Biosciences SMRT DNA sequencer.
The most frequently used methods are the 454 pyrosequencing
(Roche, Bradford, CT, USA), Illumina (Illumina, San Diego, CA,
USA), and SOLiD (Applied Biosystems, Foster City, CA, USA).
Each of them had their own character. Nucleotide detection in
Illumina and SOLiD systems is performed one at a time. As a
result, homopolymer regions can be accurately sequenced. Sec-
ond advantage of them is their high output per run compared
to 454 pyrosequencing, which lead it soon became a workhorse
for whole-genome resequencing applications and for exploring
metabolic processing potential and pathway representation in
health and disease. Owning to its optical signal decay and dephas-
ing, these systems have relative short-read length (Zhou et al.,
2010). On the other hand, the 454 pyrosequencing platform
had long read length and relatively short run time. Further-
more it does not need to carry out an extra chemical deblocking
step, which would reduce the chances of premature chain ter-
mination and non-simultaneous extension (Metzker, 2010; Zhou
et al., 2010). Although the drawback of relatively high cost per
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megabase sequencing output, the 454 pyrosequencing has still
become one of the most prevalent used worldwide (Rogers and
Venter, 2005).

Oral cavity is one of the indispensable parts of the human
microbiome habitat. The oral bacterial community dynamics is
complicated and still far way to full understand. In this paper,
we reviewed the human oral microbiome composite and its
shifting which related with health and disease by application of
high-throughput sequencing.

THE CONCEPT OF HUMAN ORAL MICROBIOME
Oral microbiome, which is referred to as the oral microflora or
oral microbiota, is defined as all the microorganisms residing in
the human oral cavity and their collective genome. It was firstly
coined by Lederberg and Mccray (2001) “to signify the ecological
community of commensal, symbiotic, and pathogenic microor-
ganisms that literally share our body space and have been all but
ignored as determinants of health and disease.” The oral cavity
harbors one of the most diverse microbiomes in the human body.
And bacteria predominated in the oral cavity, while others are in
relatively low proportions in the most circumstance.

Oral microbiome harbors on teeth, gingival sulcus, tongue,
cheeks, hard and soft palates, and tonsils and it is a critical
component of oral health and disease.

THE DIVERSITY AND COMPOSITION OF ORAL MICROBIOME
Oral cavity, which is one of the largest and most complex human-
associated microbial habitats, harbors large numbers of bacteria
that can have important effects on health. During the past 40 years,
a wealth of knowledge has been gathered about these bacteria:
over 250 oral species have been isolated and characterized by
cultivation, and over 450 species have been identified by culture-
independent molecular approaches (Paster et al., 2006). By 454
pyrosequencing, we studied in 120 children at age 6 and found that
there were about 2,000 phylotypes by clustering at 3% dissimilar-
ity level in each sample of caries-active and caries-free children;
and there were more phylotypes in saliva than in dental plaque
samples from the same groups. At the genus level, sequences
from saliva and plaque represented 203 different genera, while 153
different genera were found in dental plaque (120 genera in caries-
active samples and 116 genera in caries-free samples) and 156
different genera were found in saliva (132 genera in caries-active
samples and 115 genera in caries-free samples; Ling et al., 2010).
No gender differences in oral microbiome diversity were detected.
By using whole-metagenome sequencing approaches, Firmicutes,
Actinobacteria, Bacteroidetes, Fusobacteria, and Proteobacteria
were found account for 80–95% of the entire oral microbiome.
At the genus level, a total of 58 distinct genera are present at an
0.1% abundance. The most abundant genera comprise previously
characterized oral bacteria: Actinomyces, Prevotella, Streptococcus,
Fusobacterium, Leptotrichia, Corynebacterium, Veillonella, Rothia,
Capnocytophaga, Selenomonas, Treponema, and TM7 genera 1 and
5 (Liu et al., 2012).

THE COMPOSITION OF ORAL MICROBIOTA IN HEALTH
Oral microbiome in 60 caries free children were analyzed with
454 pryosequencing in one of our studies (Ling et al., 2010). The

result agreed with the other studies more and less, found that
more than fourteen phyla, including Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, Spirochaetes, and Fusobacte-
ria, Euryarchaeota, Chlamydia, Chloroflexi, SR1, Synergistetes,
Tenericutes, Cyanobacteria, OD2, and TM7 in healthy sub-
jects (Zaura et al., 2009; Bik et al., 2010; Griffen et al., 2011).
Among them, the vast majority (containing more than 80% of
the taxa) of oral bacteria belong to Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, Spirochaetes, and Fusobacteria
(Ling et al., 2010). At genus level, over 200 genera were found
in the oral microbiota. The most abundant genera include
Streptococcus, Prevotella, Neisseria, Haemophilus, Porphyromonas,
Gemella, Rothia, Granulicatella, Fusobacterium, Actinomyces, and
Veillonella. At species level, it had been estimated that the num-
ber of species–level phylotypes were between 500 and 10000
(Keijser et al., 2008; Lazarevic et al., 2009), and each oral niches
harbored 266 “species-level” phylotypes on average (Zaura et al.,
2009). It is higher than the previously reported 10–81 species
per site by using a 16S rRNA gene-based microarray (Preza
et al., 2009). In Hasan et al.’s (2014) study, the microbiota of
human saliva was analyzed by using the Illumina GAIIx and
HiSeq 2000 instrument, and more than 175 bacterial species
were found at >90% accuracy, including bacteria Haemophilus
influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and
Gammaproteobacteria.

THE CORE MICROBIOME IN HEALTH
In our study, there were 3530 OTUs (operational taxonomic unit)
shared with the oral microbiota in each of the intact enamel
surfaces of 60 children. Five phyla including Proteobacteria, Firmi-
cutes, Actinobacteria, Fusobacteria, and Bacteroidetes were found
in healthy individuals, while nine genera were common in all sub-
jects, including Actinomyces, Capnocytophaga, Corynebacterium,
Derxia, Leptotrichia, Neisseria, Prevotella, Streptococcaceae Strepto-
coccus, and Veillonella. Thus, in agreement with other studies it was
proposed that there might be a core microbiome in the oral envi-
ronment (Shade and Handelsman, 2012; Jiang et al., 2014; Xu et al.,
2014). The core microbiome is shared with most of individuals
and comprised of the predominant species in healthy conditions
of oral cavity (Zarco et al., 2012).

In Zaura’s study, 26% of the unique sequences, 47% of the
OTUs were shared with oral microbiome in each sample of three
healthy subjects. At the higher taxonomic levels, 72% of all taxa
(genus level or above) were common to the oral microbiome
of three adults, contributing to 99.8% of all reads. The result
also suggested the existence of a core microbiome (Zaura et al.,
2009). Moreover, Lazarevic et al. (2010) found salivary micro-
bial community appeared to be stable at different time points
(from 5 to 29 days), supported the concept of a core micro-
biome in health state. However, It is just the beginning of the
understanding whether there is the core microbiome in differ-
ent oral niches and needed more researches to keep verifying this
concept.

THE SITE-SPECIFICITY MICROBIOME
According to the Huse’ research, oral bacterial microbiota might
be site-specificity and showed the different richness. Hard palate
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showed the lowest estimate of total richness, while the gingival
plaque showed the highest estimate of total richness. The genus
Corynebacterium had at least eight OTUs with five different profiles
and colonized in different niches. For instance, Corynebacterium
matruchotii was present almost exclusively in the supragingival
plaque, while Corynebacterium argentoratense mostly in saliva and
to a lesser extent on the hard palate (Huse et al., 2012). Further
study also found similar result. It may due to the shedding of the
epithelial cells and the shear forces from chewing in the buccal fold
and the hard palate. Genera Eubacterium and Prevotella showed
a significant association with the tongue dorsum. The papillary
structure and the low redox potential of its surface might explain
its significant site-specific bacterial association. Lautropia mirabilis
was the only species significantly associated with the supragingival
plaque, while Treponema socranskii was found only in the sub-
gingival plaque (Preza et al., 2009). The anaerobic environment
of subgingival plaque may explain their significant site-specific
association. In the oropharynx, the distribution of Firmicutes,
Proteobacteria, and Bacteroidetes was similar to that of saliva,
and more Proteobacteria than that in the mouth (Lemon et al.,
2010).

THE MICROBIOME VARYING DURING DIFFERENT PERIODS OF AGE
The oral microbiota is various during different periods of age,
which colonizes in the oral cavity and changes with the develop-
mental status such as primary and permanent tooth. Veillonella,
Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Lep-
totrichia, and Fusobacterium were predominant genera in infant
samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium,
Oribacterium, Rothia, Treponema, and Actinomyces were present
at higher levels in their parents. Saliva bacterial microbiome in
adults had greater bacteria diversity than that in infants (Cephas
et al., 2011). Crielaard et al. (2011) found a higher proportion of
Proteobacteria (Gammaproteobacteria, Moraxellaceae) than that
of Bacteroidetes in the deciduous dentition and Bacteroidetes
(mainly genus Prevotella), Veillonellaceae family, Spirochaetes, and
candidate division TM7 increased with increasing age. It may
reflect variation of oral microbiome driven by biological changes
with age (Crielaard et al., 2011). And by comparing salivary micro-
biota from healthy children and adults, it was found that the mean
level of seven genera including Moraxella, Leptotrichia, Peptostrep-
tococcus, Eubacterium, Neisseriaceae, Flavobacteriaceae, and SR1
were significant differences between children and adults in another
research, implying the microbiome shifts during different ages
(Ling et al., 2013).

ORAL MICROBIOTA IN DENTAL CARIES
THE ORAL MICROBIOTA IN CARIES
Dental caries is one of the most prevalent worldwide chronic infec-
tious diseases (Petersen et al., 2005). The desire of a core theme
in studying the characterization of the oral microbiota has being
pursued to understanding the particular organisms with tooth
decay in a way that implies causation. Most researches have sug-
gested that Streptococcus mutans is the major pathogen of dental
caries, for it is the most frequently detected bacteria in the caries
lesions (Hamada and Slade, 1980; Loesche, 1986; Matee et al.,
1992).

However, some recent studies indicate that the relationship
between MS and caries is not absolute: high proportions of MS
may persist on tooth surfaces without lesion development, and
caries can develop in the absence of Streptococcus mutans (Bowden,
1997). And very recently, researches found that acidogenic and
aciduric bacteria other than MS, are responsible for the initiation
of caries (Kashket et al., 1996). As new pyosequencing technique
applied in the oral microbiology, ever greater numbers of bac-
teria have been identified as being associated with caries. In our
recent study, applying high-throughput barcoded pyrosequenc-
ing combined with PCR-denaturing gradient gel electrophoresis,
around 120 genera were found in the oral microbiota of saliva
and supragingival plaques from children aged 3–6 years old with
and without dental caries. Our study showed that oral microbiota
in children was far more diverse than previous studies reported
and more than 200 genera belonging to 10 phyla were found in
the oral cavity. Six genera (Streptococcus, Veillonella, Actinomyces,
Granulicatella, Leptotrichia, and Thiomonas) were significantly
different between caries-active and caries-free samples in plaque
(Ling et al., 2010). Further research also found that three genera
including Streptococcus, Granulicatella, and Actinomyces exhibited
a relative higher abundance in severe early children caries subjects,
whereas caries free subjects exhibited a relative higher abundance
of Aestuariimicrobium, indicating that there might be no specific
pathogens but rather pathogenic populations structure shafting
would lead to the occurrence of dental caries (Jiang et al., 2013).
Yang et al. (2012) found that caries microbiomes were significantly
more variable. And 147 OTUs were associated with adults dental
caries (Yang et al., 2012).

THE MICROBIOTA SHIFTING IN THE DIFFERENT STAGE OF CARIES
Our further research also found that oral microbiota was spe-
cific at different stages of caries progression. Gomar-Vercher
et al. (2014) collected 110 saliva samples from 12-year-old chil-
dren and divided into six groups according to the International
Caries Detection and Assessment System II criteria. They found
that Porphyromonas and Prevotella showed an increasing per-
centage compared to healthy individuals and bacterial diversity
diminished as the severity of the disease increased (Gomar-
Vercher et al., 2014). We also studied microbiome of plaque
from caries-active subjects in different caries stages including
intact enamel, white spot lesions and carious dentin lesions
by pyrosequencing technique. And the result showed that the
diversity of the total plaque bacterial community in the health
subjects were more complex than caries subjects, which is in
accordance with Gomar-Vercher’s study. Moreover thirteen gen-
era (including Capnocytophaga, Fusobacterium, Porphyromonas,
Abiotrophia, Comamonas, Tannerella, Eikenella, Paludibacter, Tre-
ponema, Actinobaculum, Stenotrophomonas, Aestuariimicrobium,
and Peptococcus) were associated with dental health, eight genera
(including Cryptobacterium, Lactobacillus, Megasphaera, Olsenella,
Scardovia, Shuttleworthia, Cryptobacterium, and Streptococcus)
increased significantly in cavitated dentin lesions, and Actino-
myces and Corynebacterium were present at significant high levels
in white spot lesions, while Flavobacterium, Neisseria, Bergeyella,
and Derxia were enriched in the intact surfaces of caries individ-
uals (Jiang et al., 2014). Relatively high proportions of Atopobium,
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Prevotella, or Propionibacterium with Streptococcus or Actinomyces
dominated in carious dentin lesions in Obata’s study (Obata et al.,
2014).

ORAL MICROBIOTA OF APICAL PERIODONTITIS
Apical periodontitis develops around the apex of the dental root
and is caused primarily by root canal infection (Siqueira, 2001).
Bacterial biofilm communities established in the apical part of
infected root canals are conceivably of the most importance in the
pathogenesis of apical periodontitis (Siqueira, 2002). For there
was no strong evidence of the specific involvement of a single
species with any particular sign or symptom of apical periodonti-
tis been found with advancing technique. By using massive parallel
pyrosequencing analysis, 187 bacterial species-level phylotypes, 84
genera and 10 phyla were found in the apical part of root canals of
teeth with apical periodontitis. The most abundant and prevalent
phyla were Proteobacteria, Firmicutes, Bacteroidetes, Fusobacte-
ria, and Actinobacteria. And the mean number of species-level
phylotypes per sample was 37. These results indicate that bacte-
rial communities in apical periodontitis are more diverse than
previously demonstrated (Siqueira et al., 2011). Another study
investigated the microbial diversity in symptomatic and asymp-
tomatic canals with primary endodontic infections by using GS
FLX Titanium pyrosequencing. The result showed that the vast
majority of sequences belonged to seven phyla including Acti-
nobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria,
Spirochetes, and Synergistetes. And Pyramidobacter, Streptococcus,
Leptotrichia constituted nearly 50% of microbial community in
asymptomatic teeth, whereas Neisseria, Propionibacterium, and
Tessaracoccus were frequently found in symptomatic teeth (Lim
et al., 2011). Santos et al. (2011) performed barcoded multiplex
pyrosequencing to compare the microbiota of dental root canal
infections associated with acute or chronic apical periodontitis.
They found that the most abundant phyla in acute infections
were Firmicutes, Fusobacteria, and Bacteroidetes, while in chronic
infections, the dominants were Firmicutes, Bacteroidetes, and Acti-
nobacteria. And the most prevalent genera in acute infections were
Fusobacterium and Parvimonas (Santos et al., 2011). In Hong’s
report, the diversity of bacterial community profile of intracanal
microbiota in primary and persistent endodontic infections asso-
ciated with asymptomatic chronic apical periodontitis showed
no significantly different. And Bacteroidetes was the most abun-
dant phylum in both primary and persistent infections. Other
reports also found Bacteroidetes was the most abundant phylum
in both primary and persistent infections by using pyrosequenc-
ing (Hong et al., 2013). And in symptomatic periapical lesions, the
most abundant phyla were Proteobacteria and Firmicutes, while
the predominated genera were Fusobacterium, Streptococcus, Pre-
votella, Corynebacterium, Porphyromonas, and Actinomyces (Saber
et al., 2012). Another research analyzed endodontic infections by
deep coverage pyrosequencing and found that 179 bacterial genera
in 13 phyla. Among them, Bacteroidetes was the most prevalent
bacterial phylum (Li et al., 2010).

ORAL MICROBIOTA IN PERIODONTITIS
Periodontitis is an inflammatory disease in which oral bacteria
play an important role in the progress of disease. It is thought

to be concerned to a polymicrobial etiology, and comprehensive
studies were performed to elucidate differences of the com-
plex communities between health and disease (Ashimoto et al.,
1996). By comparing the periodontally healthy controls and
subjects with chronic periodontitis, Griffen found that commu-
nity diversity was higher than that in disease. 123 species were
identified which were significantly more abundant in individ-
uals with chronic periodontitis and 53 species were identified
in health controls. Among them, Spirochaetes, Synergistetes,
and Bacteroidetes were health-associated, whereas Proteobacte-
ria, Clostridia, Negativicutes and Erysipelotrichia were associated
with disease (Griffen et al., 2012). There are significantly different
in abundance comparing the oral microbiome in deep (diseased)
and shallow (healthy) sites by sequencing 16S rRNA genes. In
the deep sites, 14 genus-level OTUs, including Streptococcus, Acti-
nomyces, and Veillonella, were decreased, whereas 37 genus-level
OTUs were present in increased abundance compared to shallow
sites such as Prevotella, Porphyromonas, Treponema, and Fusobac-
terium (Ge et al., 2013). By utilizing pyrosequencing technique, the
gram-negative genera Selenomonas, Prevotella, Treponema, Tan-
nerella, Haemophilus, and Catonella are significantly enriched in
periodontal disease, whereas a set of gram-positive genera are
significantly enriched in healthy samples (Streptococcus, Actino-
myces, and Granulicatella; Liu et al., 2012). Bacteroidetes was the
most abundant phylum in samples of periodontal disease, whereas
Actinobacteria and Proteobacteria were significantly increased in
plaque of periodontal health in another metagenomic sequenc-
ing analysis. At genus level, microbial community of periodontal
health were dominated by Streptococcus, Haemophilus, Rothia,
and Capnocytophaga, while microbiota in periodontal disease
exhibited high level of Prevotella (Wang et al., 2013). Another
16S rRNA gene sequencing analysis found that Fusobacterium,
Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella,
Hallella, Parvimonas, Peptostreptococcus, and Catonella showed
higher relative abundances in the periodontitis group (Li et al.,
2014).

By using an Ion Torrent Personal Genome Machine, the diver-
sity of bacterial community increased after scaling and root
planning therapy (SPR). The most striking difference was that
periodontal pathogenic species including the genera Porphy-
romonas, Tannerella, Treponema, and Filifactor were removed only
in the group treated with SPR and antibiotics (Jünemann et al.,
2012). And the post-treatment plaque samples retained the high-
est similarity to pre-treatment samples of the same individual
(Schwarzberg et al., 2014).

CONCLUSION
The high through-put technique has largely expended our
knowledge regarding the composition of the bacterial com-
munities associated with healthy and disease. The oral micro-
biota is far more diverse than previous thought. And as
a number of uncultivated organisms discovery, it has being
shed light on the relationship between oral microbiota and
the caries process and periodontitis developing and other oral
disease. The new high-throughput methodologies are likely
to approach our understanding of bacterial ecology in oral
disease.
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