
����������	
�����

��
����	 ��	 �������

���	�������������

Joarder Kamruzzaman

Monash University, Australia

Rezaul K. Begg

Victoria University, Australia

Ruhul A. Sarker

University of New South Wales, Australia

Hershey • London • Melbourne • Singapore

����	 �����	 ����� !�
�

Acquisitions Editor: Michelle Potter

Development Editor: Kristin Roth

Senior Managing Editor: Amanda Appicello

Managing Editor: Jennifer Neidig

Copy Editor: Chuck Pizar

Typesetter: Cindy Consonery

Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by

Idea Group Publishing (an imprint of Idea Group Inc.)

701 E. Chocolate Avenue

Hershey PA 17033

Tel: 717-533-8845

Fax: 717-533-8661

E-mail: cust@idea-group.com

Web site: http://www.idea-group.com

and in the United Kingdom by

Idea Group Publishing (an imprint of Idea Group Inc.)

3 Henrietta Street

Covent Garden

London WC2E 8LU

Tel: 44 20 7240 0856

Fax: 44 20 7379 0609

Web site: http://www.eurospanonline.com

Copyright © 2006 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,

stored or distributed in any form or by any means, electronic or mechanical, including photocopying,

without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the

names of the products or companies does not indicate a claim of ownership by IGI of the trademark

or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Artificial neural networks in finance and manufacturing / Joarder Kamruzzaman, Rezaul Begg and Ruhul

Sarker, editors.

 p. cm.

 Summary: "This book presents a variety of practical applications of neural networks in two important

domains of economic activity: finance and manufacturing"--Provided by publisher.

 Includes bibliographical references and index.

 ISBN 1-59140-670-6 (hardcover) -- ISBN 1-59140-671-4 (softcover) -- ISBN 1-59140-672-2

(ebook)

 1. Neural networks (Computer science)--Economic aspects. 2. Neural networks (Computer science)--

Industrial applications. 3. Finance--Computer simulation. 4. Manufacturing processes--Computer

simulation. I. Kamruzzaman, Joarder. II. Begg, Rezaul. III. Sarker, Ruhul A.

 HD30.2.N48 2006

 332.0285'632--dc22

 2006003560

British Cataloguing in Publication Data

A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this

book are those of the authors, but not necessarily of the publisher.

80 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Chapter V

Application of

Higher-Order Neural

Networks to Financial

Time-Series Prediction

John Fulcher, University of Wollongong, Australia

Ming Zhang, Christopher Newport University, USA

Shuxiang Xu, University of Tasmania, Australia

Abstract

Financial time-series data is characterized by nonlinearities, discontinuities, and

high-frequency multipolynomial components. Not surprisingly, conventional artificial

neural networks (ANNs) have difficulty in modeling such complex data. A more

appropriate approach is to apply higher-order ANNs, which are capable of extracting

higher-order polynomial coefficients in the data. Moreover, since there is a one-to-one

correspondence between network weights and polynomial coefficients, higher-order

neural networks (HONNs) — unlike ANNs generally — can be considered open-, rather

than “closed-box” solutions, and thus hold more appeal to the financial community.

After developing polynomial and trigonometric HONNs (P[T]HONNs), we introduce

the concept of HONN groups. The latter incorporate piecewise continuous-activation

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 81

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

functions and thresholds, and as a result are capable of modeling discontinuous (or

piecewise-continuous) data, and what is more to any degree of accuracy. Several other

PHONN variants are also described. The performance of P(T)HONN and HONN groups

on representative financial time series is described (i.e., credit ratings and exchange

rates). In short, HONNs offer roughly twice the performance of MLP/BP on financial

time-series prediction, and HONN groups around 10% further improvement.

Financial Time Series Prediction

It is clear that there are pattern(s) underlying some time series. For example, the 11-year

cycle observed in sunspot data (University of California, Irvine, 2005). Whether this is

the case with financial time-series data is debatable. For instance, do underlying “forces”

actually drive financial markets, and if so can their existence be deduced by observations

of stock price and volume movements (Back, 2004)?

Alternatively, do so-called “market inefficiencies” exist, whereby it is possible to devise

strategies to consistently “beat the market” in terms of return-on-investment (Edelman

& Davy, 2004)? If this is in fact the case, then it runs counter to the so-called Efficient

Markets Hypothesis, namely that the present pricing of a financial asset is a reflection

of all the available information about that asset, whether this be private (insider), public,

or previous pricing (if based solely on the latter, then this is referred to as the “weak form”

of the EMH).

Market traders, by contrast, tend to base their decisions not only on the previous

considerations, but also on many other factors, including hunches (intuition). Quanti-

fying these often complex decision-making processes (expertise) is a difficult, if not

impossible, task akin to the fundamental problem inherent in designing any Expert

System. An overriding consideration is that any model (system) tends to break down in

the face of singularities, such as stock market crashes (e.g., “Black Tuesday”, October

1987), war, political upheaval, business scandals, rumor, panic buying, and so on.

“Steady-state” markets, on the other hand, tend to exhibit some predictability, albeit

minor — for example, so-called “calendar effects”: lower returns on Mondays, higher

returns on the last day of the month and just prior to public holidays, higher returns in

January, and so on (Kingdon, 1997).

Now, while it is possible that financial time-series data on occasion can be described by

a linear function, most often it is characterized by nonlinearities, discontinuities, and

high-frequency multipolynomial components.

If there is an underlying market model, then it has remained largely impervious to

statistical (and other forms of) modeling. We can take a lead here from adaptive control

systems and/or machine learning; in other words, if a system is too complex to model, try

learning it. This is where techniques such as ANNs can play a role.

Many different techniques have been applied to financial time-series forecasting over

the years, ranging from conventional, model-based, statistical approaches to more

esoteric, data-driven, experimental ones (Harris & Sollis, 2003; Mills, 1993; Reinsel, 1997).

82 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Some examples of the former are Auto Regression (AR), ARCH, Box-Jenkins (Box &

Jenkins, 1976), and Kalman Filter (Harvey, 1989). Some examples of the latter are ANNs

(Zhang, Patuwo, & Hu, 1998), Fuzzy Logic and variants (Sisman-Yilmaz, Alpaslan, & Jain,

2004), Evolutionary Algorithms (Allen & Karjalainen, 1999; Chen, 2002), Genetic Pro-

gramming (Chen, 2002; Iba & Sasaki, 1999), Support Vector Machines (Edelman & Davy,

2004; Tay & Cao, 2001), Independent Component Analysis (Back, 2004), and other so-

called (often biologically inspired) “soft computing” techniques (Kingdon, 1997). We

focus on ANNs in this chapter, more specifically on higher-order neural networks, for

reasons that we shall elaborate upon shortly.

Artificial Neural Networks (ANNs)

When people speak of ANNs, they are most likely referring to feed-forward Multilayer

Perceptrons (MLPs), which employ the backpropagation (BP) training algorithm (e.g.,

Lapedes & Farber, 1987; Refenes, 1994; Schoneberg, 1990). Following the lead of the M-

competition for different forecasting techniques (Makridakis, Andersoen, Carbone,

Fildes, Hibon, Lewandowski, et al., 1982), in which such ANNs compared favorably with

the Box-Jenkins method, Weigand and Gershenfeld (1993) compared nonlinear forecast-

ing techniques on a number of different time series, one of which being currency

exchange rate. ANNs, along with state-space reconstruction techniques, fared well in

this more recent comparative study.

At first sight, it would appear that MLP/BPs should perform reasonably well at financial

time-series forecasting, since they are known to excel at (static) pattern recognition and/

or classification; in this particular case, the patterns of interest are simply different time-

shifted samples taken from the same data series.

Now Hornik (1991) has shown that an MLP with an arbitrary bounded nonconstant

activation is capable of universal approximation. More specifically, a single hidden layer

MLP/BP can approximate arbitrarily closely any suitably smooth function (Hecht-

Nielsen, 1987; Hornik, Stinchcombe, & White, 1989). Furthermore, this approximation

improves as the number of nodes in the hidden layer increases. In other words, a suitable

network can always be found.

A similar but more extended result for learning conditional probability distributions was

found by Allen and Taylor (1994). Here, two network layers are required in order to

produce a smooth limit when the stochastic series (such as financial data) being modeled

becomes noise free.

During learning, the outputs of a supervised neural network come to approximate the

target values given the inputs in the training set. This ability may be useful in itself, but

more often the purpose of using a neural net is to generalize — in other words, to have

the network outputs approximate target values given inputs that are not in the training

set.

Generally speaking, there are three conditions that are typically necessary — although

not sufficient — for good generalization.

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 83

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The first necessary condition is that the network inputs contain sufficient information

pertaining to the target, so that there exists a mathematical function relating correct

outputs to inputs with the desired degree of accuracy (Caudill & Butler, 1990).

The second necessary condition is that the function we are attempting to learn (relating

inputs to desired outputs) be, in some sense, smooth (Devroye, Gyorfi, & Lugosi, 1996;

Plotkin, 1993). In other words, small changes in inputs should produce small changes in

outputs, at least most of the time. For continuous inputs and targets, function smooth-

ness implies continuity and restrictions on the first derivative over most of the input

space. Now some neural networks — including the present authors’ HONN models —

are able to learn discontinuities, provided the function consists of a finite number of

continuous pieces. Conversely, very nonsmooth functions (such as those produced by

pseudorandom number generators and encryption algorithms) are not able to be gener-

alized by standard neural networks.

The third necessary condition for good generalization is that the training exemplars

constitute a sufficiently large and representative subset (“sample” in statistics terminol-

ogy) of the set of all cases we want to generalize to (the “population” in statistics

terminology) (Wolpert, 1996a, 1996b). The importance of this condition is related to the

fact that there are, generally speaking, two different types of generalization: interpolation

and extrapolation. Interpolation applies to cases that are more or less surrounded by

nearby training cases; everything else is extrapolation. In particular, cases that are

outside the range of the training data require extrapolation. Cases inside large “holes”

in the training data may also effectively require extrapolation. Interpolation can often be

performed reliably, but extrapolation is notoriously unreliable. Hence, it is important to

have sufficient training data to avoid the need for extrapolation. Methods for selecting

good training sets are discussed in numerous statistical textbooks on sample surveys

and experimental design (e.g., Diamond & Jeffries, 2001).

Despite the universal approximation capability of MLP/BP networks, their performance

is limited when applied to financial time-series modeling and/or prediction (forecasting).

This is due in part to two limitations of feed-forward ANNs, namely (Zhang, Xu, &

Fulcher, 2002):

1. Their activation functions have fixed parameters only (e.g., sigmoid, radial-basis

function, and so on), and

2. They are capable of continuous function approximation only; MLPs are unable to

handle discontinuous and/or piecewise-continuous (economic) time-series data.

Networks with adaptive activation functions seem to provide better fitting properties

than classical architectures with fixed activation-function neurons. Vecci, Piazza, and

Uncini (1998) studied the properties of a feed-forward neural network (FNN) which was

able to adapt its activation function by varying the control points of a Catmull-Rom cubic

spline. Their simulations confirmed that the special learning mechanism allows us to use

the network’s free parameters in a very effective way. In Chen and Chang (1996), real

variables a (gain) and b (slope) in the generalized sigmoid activation function were

adjusted during the learning process. They showed that from the perspective of static

84 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

and dynamical system modeling, use of adaptive sigmoids (in other words, sigmoids with

free parameters) leads to improved data modeling compared with classical FNNs.

Campolucci, Capparelli, Guarnieri, Piazza, and Uncini (1996) built an adaptive activation

function as a piecewise approximation with suitable cubic splines. This function had

arbitrary shape and allowed the overall size of the neural network to be reduced, trading

connection complexity against activation function complexity. Several other authors (Hu

& Shao, 1992; Yamada & Yabuta, 1992) have also studied the properties of neural

networks that utilize adaptive activation functions.

In short, some researchers have devoted their attention to more sophisticated, alterna-

tive ANN models. One natural extension is to incorporate unit time delays (memory

elements) to turn the MLP/BP into a recurrent network, in order to recognize (classify)

dynamic rather than static input patterns. Alternatively, replication of network nodes and

weights across time leads to time-delay neural networks, in which the layer inputs are

time-shifted versions from the same time-series data. Such attempts to incorporate

temporal units into an ANN have not usually led to significant improvements in financial

time-series modeling/predicting performance though.

Higher-Order Neural Networks (HONNs)

Traditional areas in which ANNs are known to excel are pattern recognition, pattern

matching, and mathematical function approximation (nonlinear regression). However,

they suffer from several well-known limitations. They can often become stuck in local,

rather than global minima, as well as taking unacceptably long times to converge in

practice. Of particular concern, especially from the perspective of financial time-series

prediction, is their inability to handle nonsmooth, discontinuous training data and

complex mappings (associations). Another limitation of ANNs is their “black box” nature

— meaning that explanations (reasons) for their decisions are not immediately obvious,

unlike some other techniques, such as decision trees.

This then is the motivation for developing higher-order neural networks (HONNs).

Background on HONNs

The term “higher-order” neural network can mean different things to different people,

ranging from a description of the neuron activation function to preprocessing of the

neuron inputs, signifying connections to more than one layer or just ANN functionality

(in other words, their ability to extract higher-order correlations from the training data).

In this chapter, we use “HONN” to refer to the incorporation of a range of neuron types:

linear, power, multiplicative, sigmoid, and logarithmic (see Figure 3).

HONNs have traditionally been characterized as those in which the input to a computa-

tional neuron is a weighted sum of the products of its inputs (Lee et al., 1986). Such

neurons are sometimes called higher-order processing units (HPUs) (Lippmann, 1989).

It has been established that HONNs can successfully perform invariant pattern recog-

nition (Psaltis, Park, & Hong, 1988; Reid, Spirkovska, & Ochoa, 1989; Wood & Shawe-

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 85

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Taylor, 1996). Giles and Maxwell (1987) showed that HONNs have impressive computa-

tional, storage, and learning capabilities. Redding, Kowalski and Downs (1993) proved

that HONNs were at least as powerful as any other (similar order) FNN. Kosmatopoulos,

Polycarpou, Christodoulou, & Ioannou (1995) studied the approximation and learning

properties of one class of recurrent HONNs and applied these architectures to the

identification of dynamical systems. Thimm and Fiesler (1997) proposed a suitable

initialization method for HONNs and compared this with FNN-weight initialization.

First-order neural networks can be formulated as follows, assuming simple McCullough-

and-Pitts-type neurons (Giles & Maxwell, 1987):









= ∑

N

j

i jxjiWfxy)(),()((1)

where {x(j)} = an N-element input vector, W(i,j) = adaptable weights from all other

neurons to neuron-i, and f = neuron threshold function (e.g., sigmoid). Such neurons are

said to be linear, since they are only capable of capturing first-order correlations in the

training data. In this sense, they can be likened to Least Mean Squared or Delta learning,

as used in ADALINE. It is well known that Rosenblatt’s original (two-layer) perceptron

was only capable of classifying linearly separable training data. It was not until the

emergence of Multilayer Perceptrons (which incorporated nonlinear activation func-

tions, such as sigmoid) that more complex (nonlinear) data could be discriminated.

Higher-order correlations in the training data require more complex neuron activation

functions, characterized as follows (Barron, Gilstrap, & Shrier, 1987; Giles & Maxwell,

1987; Psaltis, Park, & Hong, 1988):









++= ∑∑∑

M

k

i

N

j

N

j

ii kxjxkjiWjxjiWiWfxy ...)()(),,()(),()()(0 (2)

 y0 yi yl

Output

1 x(j)

Input

x(k)

Wi(i,j) Wi(i,k) W0(i) Wi(i,j,k)

Figure 1. Higher-order neural network architecture-I

W
0
(i) W

i
(i , j) W

i
(i ,k) W

i
(i , j ,k)

86 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Neurons that include terms up to and including degree-k are referred to as kth-order

neurons (nodes). Figure 1 further explains the subscripts i, j, and k used in Equation 2.

The following alternative, simpler formulation is due to Lisboa and Perantonis (1991):









+= ∑∑∑ p

p

kijpik

ki

ij xxxwWfxy ...,...)(,...

0

 (3)

where a single weight is applied to all n-tuples x
i
… x

p
 in order to generate output-y

i
 from

that particular neuron.

This is reminiscent of Rumelhart, Hinton, and Williams (1986) formulation of their so-

called “sigma-pi” neurons (∑ ∏ kij xixixiw ...21), for which they show that the generalized

Delta Rule (standard backpropagation) can be applied as readily as for simple additive

neurons (∑ iij xw). Moreover, the increased computational load resulting from the large

increase in network weights means that the complex input-output mappings, normally

only achievable in multilayered networks, can now be realized in a single HONN layer

(Zhang & Fulcher, 2004).

In summary, HONN activation functions incorporate multiplicative terms.

Now the output of a kth-order single-layer HONN neuron will be a nonlinear function

comprising polynomials of up to kth-order. Moreover, since no hidden layers are

involved, both Hebbian and perceptron learning rules can be employed (Shin & Ghosh,

1991).

Multiplicative interconnections within ANNs have been applied to many different

problems, including invariant pattern recognition (Giles, Griffin, & Maxwell, 1988; 1991;

Goggin, Johnson, & Gustafson, 1993; Lisboa & Pentonis, 1991), however their complexity

usually limits their usefulness.

Figure 2. Higher-order neural network architecture-II

 y0(x)

Output

1 xi

Input

xk

Wi
 0 Wik…p.j

yj(x) yl(x)

xp

W
i
0 W

ik . . .p . j

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 87

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Karayiannis and Venetsanopoulos (1993) make the observation that the performance of

first-order ANNs can be improved, within bounds, by utilizing sophisticated learning

algorithms. By contrast, HONNs can achieve superior performance even if the learning

algorithm is based on the simpler outer-product rule.

A different approach was taken by Redding, Kowalczy, and Downs (1993) and involved

the development of a constructive HONN architecture that solved the binary mapping

in polynomial time. Central to this process was the selection of the multiplicative

nonlinearities as hidden nodes within the HONN, depending on their relevance to the

pattern data of interest.

Polynomial HONNs

The authors have developed several different HONN models during the past decade or

so. We now present a brief background on the development of polynomial, trigonometric,

and similar HONN models. A more comprehensive coverage, including derivations of

weight-update equations, is presented in Zhang and Fulcher (2004).

Firstly, all PHONNs described in this section utilize various combinations of linear,

power, and multiplicative (and sometimes other) neuron types and are trained using

standard backpropagation. The generic HONN architecture is shown in Figure 3, where

there are two network inputs (independent variables) x and y, and a single network output

(dependent variable) z.

In the first hidden layer, the white neurons are either cos(x) or sin(y), and the grey neurons

either cos2(x) or sin2(y). All (black) neurons in the second hidden layer are multiplicative,

and the (hashed) output neurons either linear (PHONN#1) or a sigmoid-logarithmic pair

(PHONN#2), as described later. Some of the intermediate weights are fixed and some

variable, according to the formulation of the polynomial being synthesized. All of the

weights connecting the second hidden layer to the output layer are adaptable

(PHONN#1,2). By contrast, only the latter are adjustable in PHONN#0; the first two-layer

weights are fixed (=1).

1 (bias)

x

y

z

Figure 3. Polynomial higher-order neural network (PHONN)

88 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The first model (PHONN#0) facilitates extraction of the linear coefficients a
k1k2

 from the

general nth-order polynomial:

 ∑=
21

21

21),(
kk

k

i

k

ikki yxayxz (4)

Now, since variable weights are present in only one layer here, PHONN#0 can be

compared with Rosenblatt’s (two-layer) perceptron, which is well-known to be limited to

solving linearly separable problems.

In PHONN#1, the general nth-order polynomial of Equation 4 is expanded as follows:

 ∑
=

=
n

kk

ky

kk

kx

kkkki yaxaayxz
021

2

21

1

21

0

21][])[(),((5)

Each coefficient from Equation 4 has now been replaced by three terms in Equation 5.

Moreover, we now have two adjustable layers at our disposal, such that PHONN#1 has

similar discrimination capability to an MLP.

The linear output neuron of PHONN#1 is replaced by a sigmoid-logarithmic neuron pair

in PHONN#2, which leads to faster network convergence. Model PHONN#3 comprises

groups of PHONN#2 neurons (ANN groups are discussed in the following section).

If we use a PHONN to simulate the training data, the model will “learn” the coefficients

and order of the polynomial function. If we use adaptive HONN models to simulate the

data, the models will not only “learn” the coefficients and order, but also the different

Date Exchange
Rate

Input#1
(X)

Input#2
(Y)

Desired
Output (Z)

1 0.7847 0.093 0.000 0.057

2 0.7834 0.000 0.057 0.607

3 0.7842 0.057 0.607 0.650

4 0.7919 0.607 0.650 1.000

7 0.7925 0.650 1.000 0.686

8 0.7974 1.000 0.686 0.479

9 0.7930 0.686 0.479 0.729

10 0.7901 0.479 0.729 0.229

11 0.7936 0.729 0.229 0.429

14 0.7866 0.229 0.429 0.800

15 0.7894 0.429 0.800 0.714

16 0.7946 0.800 0.714 0.736

17 0.7935 0.714 0.736

18 0.7937 0.736

Table 1. $A-$US exchange rate (March 2005)

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 89

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

functions. In other words, the model “learns” the polynomial function if the data is in fact

a polynomial function.

Now, instead of employing a polynomial series expansion, we could alternatively use a

trigonometric one, as indicated in Equation 6.

Z = a
00

 + a
01

sin(y) a
02

sin2(y) + a
10

cos(x) + a
11

cos(x)sin(y) + a
12

cos(x)sin2(y) +

a
20

cos2(y) + a
21

cos2(x)sin(y) + a
22

cos2(x)sin2(y) + … (6)

This naturally leads to the development of THONN models (and likewise THONN groups

— see subsequent paragraphs).

One significant feature of models P(T)HONN#1 and higher is that we have opened up the

“black box” or closed architecture normally associated with ANNs. In other words, we

are able to associate individual network weights with polynomial coefficients and vice

versa. This is a significant finding, since users — especially those in the financial sector

— invariably prefer explanations (justifications) for the decisions made by their predic-

tors, regardless of the nature of the underlying decision engine.

We now proceed to illustrate the use of PHONNs by way of a simple example, namely

exchange-rate prediction. Table 1 shows how the Australian-US dollar exchange rate

varied during March 2005 (Federal Reserve Board, 2005).

The following formula was used to scale the data to within the range 0 to 1, in order to

meet constraints:

)}_()_{(
)}_()_{(

ratelowestratehighest
ratelowestrateindividual

−
−

(7)

Figure 4. PHONN Simulator main window

90 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Equation 7 was applied to each separate entry of a given set of simulation data — in other

words, the individual_rate. The smallest entry in the data set serves as the lowest_rate,

and the largest entry ss the highest_rate. After applying Equation 7, the data have been

converted into the Input#1 column of Table 1.

We use previous day and current-day exchange rates to predict the next day’s rate.

Accordingly, we copy the data from 3/2/2005 to 3/18/2005 to the Input#2 column of Table

1 — this being the second input to the PHONN — and copy the data from 3/3/2005 to 3/

18/2005 to the Output column of Table 1 (in other words, the desired PHONN output).

The PHONN simulation system was written in the C language, and runs under X-

Windows on a SUN workstation. It incorporates a user-friendly graphical user interface

(GUI), which enables any step, data, or calculation to be reviewed and modified

dynamically in different windows. At the top of the PHONN simulator main window are

three pull-down menus: Data, Translators, and Neural Network, as illustrated in Figure

4 (which, by the way, shows the result of network training using the data of Table 1).

Each of these offers several options, and selecting a particular option creates another

window for further processing. For instance, once we have selected a data set via the Data

menu, two options are presented for data loading and graphical display.

Data is automatically loaded when the Load option is selected. Alternatively, the Display

option displays data not only in graphical form, but also translated, if so desired (e.g.,

rotation, elevation, grids, smooth, influence, etc.). The Translators menu is used to

convert the selected raw data into network form, while the Neural Network menu is used

to convert the data into a nominated model (an example of which appears in Figure 5).

These two menus allow the user to select different models and data, in order to generate

Figure 5. “PHONN Network Model” subwindow

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 91

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

and compare results. Figure 5 shows the network weights resulting from training using

the data of Table 1.

All of the previous steps can be simply performed using a mouse. Hence, changing data

or network model and comparing results can all be achieved easily and efficiently.

There are more than twelve windows and subwindows in the PHONN Simulator system;

both the system mode and its operation can be viewed dynamically, in terms of:

• Input/output data,

• Neural network models,

• Coefficients/parameters, and so on.

Figure 7. “Generate Definition File” subwindow

Figure 6. “Load Network Model File” subwindow

92 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The simulator operates as a general neural network system and includes the following

functions:

• Load a data file,

• Load a neural network model (Figure 6) for Table 1 data,

• Generate a definition file (Figure 7) for Table 1 data,

• Write a definition file,

• Save report,

• Save coefficients (Figure 8) for Table 1 data, and so on.

The “System mode” windows allow the user to view, in real time, how the neural network

model learns from the input training data (in other words, how it extracts the weight

values).

Figure 9. “Graph” subwindow

Figure 8. “Coefficients” subwindow

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 93

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

When the system is running, the following system-mode windows can be opened

simultaneously from within the main window:

• “Display Data (Training, Evolved, Superimposed, and Difference),”

• “Show/Set Parameters,”

• “Network Model (including all weights),” and

• “Coefficients.”

Thus, every aspect of the system’s operation can be viewed graphically.

A particularly useful feature of this system is that one is able to view the mode, modify

it, or alternatively change other parameters in real time. For example, when the user

chooses the “Display Data” window to view the input-training data file, they can change

the graph format for the most appropriate type of display (in other words, modify the

graph’s rotation, elevation, grids, smoothing, and influence).

During data processing, the “Display Data” window offers four different models to

display the results, which can be changed in real time, namely: “Training,” “Evolution,”

“Superimposed,” and “Difference (using the same format selected for the input data),”

as indicated in Figure 9 for Table 1 data.

• “Training” displays the data set used to train the network,

• “Evolved” displays the data set produced by the network (and is unavailable if a

network definition file has not been loaded),

• “Superimposed” displays both the training and the evolved data sets together (so

they can be directly compared in the one graph), and

• “Difference” displays the difference between the “Training” and the “Evolved”

data sets.

Figure 10. Report generation within PHONN Simulator

94 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The “Rotation” command changes the angle of rotation at which the wire-frame mesh is

projected onto the screen. This allows the user to “fly” around the wire-frame surface.

The default value is 30º, but is adjustable from 0º to 355º in increments of 5º, with

wraparound from 360º to 0º (this value can be simply adjusted with either the “up/down”

buttons or by entering a number directly).

“Elevation” changes the angle of elevation at which the wire-frame mesh is projected

onto the screen. This allows the user to “fly” either above or below the wire-frame surface

(usage is similar to Rotation).

The “Grids” command changes the number of wires used in the wire-frame mesh. It is

adjustable between 6 and 30, using either the “up/down” buttons or by directly entering

a number. Low grid numbers allow fast display, but with decreased resolution; high

numbers provide a more accurate rendition of the surface, but at the cost of increased

display time.

If the user is not satisfied with the results and wants a better outcome (a higher degree

of model accuracy), they can stop the processing and set new values for the model

parameters, such as learning rate, momentum, error threshold, and random seed. The

neural network model can be easily changed as well.

As usual with neural network software, the operating procedure is as follows:

Step 1: Data pre-processing (encoding),

Step 2: Load and view data,

Step 3: Choose and load neural network model,

Step 4: Show/Set the network parameters,

Step 5: Run the program,

Step 6: Check the results:

 If satisfactory, then go to Step 7, otherwise go to Step 3,

Step 7: Save and export the results,

Step 8: Data decoding (postprocessing).

There are two basic requirements that must be satisfied before the PHONN simulator is

able to start running: One is input training data and the other is input the network. The

users must also have loaded some training data and loaded a network.

Figure 10 shows the running report for Table 1 data, from which we see the average error

is 17.4011%. Returning to Figure 8, we see that the following formula can be used to

represent the data of interest (exchange rate), thereby relating network weights to

polynomial coefficients:

Z = 0.3990-0.0031X-0.0123X*X+0.4663Y-0.0834X*Y-0.0274X*X*Y

 -0.0027Y*Y-0.0310X*Y*Y-0.1446X*X*Y*Y (8)

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 95

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

HONN Groups

Prior to our development of ANN groups, we were aware of earlier work on groups of

individual neurons (Hu & Pan, 1992; Willcox, 1991). What motivated our development

of firstly ANN groups and thenceforth P(T)HONN groups was the poor performance of

ANNs on human-face recognition, which we investigated in the context of airport

security (Zhang & Fulcher, 1996).

It is possible to define a neural network group in the usual set theory terms, as follows:

...SVMARTRBFSOMMLPANN ∪∪∪∪= (9)

MLP is thus a subset of the set ANN; likewise a particular instance of MLP (say

MLP100:70:20) is a subset of MLP. Moreover, providing either the sum and/or product

can be defined for every two elements in a nonempty set N ⊂ ANN (Inui, Tanabe &

Onodera, 1978; Naimark & Stern, 1982), and then we refer to this set as a neural network

group.

ANN groups are particularly useful in situations involving discontinuous data, since we

can define piecewise function groups, as follows:

O
i
 + O

j
= O

i
(A < I < B)

= O
j

(B < I < C) (10)

where I = ANN input, O = ANN output, and for every two elements Nnn ji ∋, , the sum

n
i
 + n

j
 is a piecewise function.

Now in the same vein as Hornik (1991) and Leshno (1993), it is possible to show that

piecewise function groups (of MLPs employing locally bounded, piecewise continuous

activation functions and thresholds) are capable of approximating any piecewise con-

tinuous function, to any degree of accuracy (Zhang, Fulcher, & Scofield, 1997).

Not surprisingly, such ANN groups offer superior performance compared with ANNs

when dealing with discontinuous, nonsmooth, complex training data, which is often the

case with financial time series.

HONN Applications

The three application areas in which we have focused our endeavors to date are (1)

human-face recognition (Zhang & Fulcher, 1996), (2) satellite weather forecasting

(Zhang, Fulcher, & Scofield, 1997; Zhang & Fulcher, 2004), and (3) financial time-series

prediction (Zhang, Xu, & Fulcher, 2002; Zhang, Zhang, & Fulcher, 2000). In each case,

we are typically dealing with discontinuous, nonsmooth, complex training data, and thus

HONN (and HONN groups) come into their own.

96 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Automatic Face Recognition

Automatic (1-of-n) facial recognition is a complex pattern recognition task, especially for

real-time operation under variable lighting conditions, where faces are tilted or rotated,

and where n is large. There can also be significant repercussions for false positives, and

more especially false negatives (that is, failure to detect a “wanted person”). The

advantage of using ANN groups in such an application is that if one particular ANN

model cannot perform the desired recognition, then perhaps another model belonging to

the ANN set (group) can do better.

Using ANN group trees can extend this approach further. Nodes and interconnecting

weights in such trees grow adaptively during the training process, according to both the

desired number of “wanted” leaf-node faces and the variability contained within the

training exemplars. As a result, such a network is capable of recognizing tilted or rotated

facial images as being the same person; in other words, it can handle topological

deformations and/or 3D translations. Zhang and Fulcher (1996) describe such ANN

group trees in terms of Tolerance Space Theory (Chen, 1981; Zeeman, 1962).

Group-based adaptive-tolerance (GAT) trees have been successfully applied to auto-

matic face recognition (Zhang & Fulcher, 1996). For this study, ten (28*28 pixel, 256-level

gray scale) images of 78 different faces (front, tilted, rotated, smiling, glasses, beard, etc.)

were used for both training (87) and testing (693) purposes. For front-face recognition,

the error rate was 0.15% (1 face); for tilted and rotated faces (of up to15%), the error rates

were 0.16% and 0.31%, respectively. Thus GAT trees were more “tolerant” in their

classification.

Rainfall Estimation

Global weather prediction is acknowledged as one of computing’s “grand challenges”

(Computing Research Associates, 2005). The world’s fastest (parallel vector)

0

5

10

15

20

25

30

35

40

N
o
v-

9
6

F
e
b
-9

7

M
a
y-

9
7

A
u
g
-9

7

N
o
v-

9
7

F
e
b
-9

8

M
a
y-

9
8

A
u
g
-9

8

N
o
v-

9
8

F
e
b
-9

9

M
a
y-

9
9

A
u
g
-9

9

N
o
v-

9
9

F
e
b
-0

0

M
a
y-

0
0

A
u
g
-0

0

N
o
v-

0
0

F
e
b
-0

1

M
a
y-

0
1

A
u
g
-0

1

N
o
v-

0
1

A$

Figure 11. Commonwealth Bank of Australia share prices (November 1996-November

2001)

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 97

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

supercomputer — at least up until 2004 (Meuer, Stronmaier, Dongarra, & Simon, 2005)

— was devoted to simulation of the earth for purposes of global weather forecasting.

Rainfall estimation is a complicated, nonlinear, discontinuous process. Single ANNs are

unable to deal with discontinuous, nonsmooth input training data; ANN groups, on the

other hand, are well-suited to such problems.

ANNs and ANN groups both outperform conventional rainfall estimation, yielding error

rates of around 17% and 3.9%, respectively (compared with ~30.4% with the latter)

(Zhang & Fulcher, 2004; Zhang, Fulcher, & Scofield, 1997). ANN groups were subse-

quently used as the reasoning engine within the ANSER Expert System developed for

satellite-derived rainfall estimation.

In Zhang and Fulcher (2004), PHONN variants (PT-, A- and M-) are applied to half-hourly

rainfall prediction. Another model — the Neuron-Adaptive HONN (described in the next

section) — led to a marginal error reduction (3.75%).

Another variant — the Sigmoid PHONN — has been shown to offer marginal performance

improvement over both PHONN and M-PHONN when applied to rainfall estimation (more

specifically, 5.263% average error compared with 6.36% and 5.42%, respectively) (Zhang,

Crane, & Bailey, 2003).

Application of HONNs to

Financial Time Series Data

Both polynomial and trigonometric HONNs have been used to both simulate and predict

financial time-series data (Reserve Bank of Australia Bulletin, 2005), to around 90%

accuracy (Zhang, Murugesan, & Sadeghi, 1995; Zhang, Zhang, & Keen, 1999).

In the former study, all the available data was used during training. In the latter, the data

was split in two — one half being used for training and the other half for testing (and where

data from the previous 2 months was used to predict the next month’s data). More

0

5

10

15

20

25

30

35

40

original data simulated data

A$

Figure 12. Simulation of Commonwealth Bank of Australia share prices (November

2000-November 2001) using NAHONN

98 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

recently, the polynomial/trigonometric HONN (Lu & Zhang, 2000) and Multiple-PHONN

(Zhang & Lu, 2001) models have been shown to offer improved performance, compared

with P(T)HONNs.

It was mentioned previously that PHONN Model#3 comprises groups of PHONN#2

neurons. When applied to financial time-series prediction, PHONN groups produce up

to an order of magnitude performance improvement over PHONNs — more specifically

around 1.2% error for simulation (compared with 11%) and 5.6% error for prediction

(compared with 12.7%) (Zhang, Zhang, & Fulcher, 2000). Similar improvements in

performance are observed with THONN groups (Zhang, Zhang, & Fulcher, 1996, 1997).

The neuron-adaptive HONN (and NAHONN group) leads to faster convergence, much

reduced network size and more accurate curve fitting, compared with P(T)HONNs

(Zhang, Xu, & Fulcher, 2002). Each element of the NAHONN group is a standard

multilayer HONN comprising adaptive neurons, but which employs locally bounded,

piecewise continuous (rather than polynomial) activation functions and thresholds.

The (1-Dimensional) neuron activation function is defined as follows:

Month

Raw

Exchange

Rate Input 1#1 Input#2 Desired Output

January 0.7576 0.95 0.93 1.00

February 0.7566 0.93 1.00 0.96

March 0.761 1.00 0.96 0.37

April 0.7584 0.96 0.37 0.03

May 0.7198 0.37 0.03 0.26

June 0.697 0.03 0.26 0.14

July 0.7125 0.26 0.14 0.00

August 0.7042 0.14 0.00 0.43

September 0.6952 0.00 0.43 0.75

October 0.7232 0.43 0.75

November 0.7447 0.75

Australian Dollar/U.S. Dollar Exchange Rate (2004)

Figure 13. Input data for Sigmoid PHONN simulation (prediction)

Table 2. $A-$US exchange rate (2004)

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 99

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

 ∑
=

==
s

h

kihkikikikiki netfnetonet
1

,,,,,,,)()()(ψ (11)

where net
i,k

 is the input (internal state) of the ith neuron in the kth layer, and w
i,j,k

 is the

weight connecting the jth neuron in layer-(k-1) with the ith neuron in layer-k. This

formulation, along with nD and multi n-Dimensional NAHONNs, incorporate free

parameters which can be adjusted, along with the weights, during training (unlike

conventional feed-forward ANNs). The NAHONN learning algorithm is based on

steepest descent, but since the hidden-layer variables are adjustable, NAHONN offers

more flexibility and more accurate approximation capability compared with (fixed activa-

tion function) MLP/BPs (Zhang, Xu, & Fulcher, 2002).

In one comparative experiment, a NAHONN with nonlinear neuron activation function

led to around half the RMS error compared with PHONN, and a NAHONN which utilized

piecewise NAFs required less than half the number of hidden-layer neurons, converged

in less than a third of the time and led to an RMS output error two orders of magnitude

lower than PHONN (Zhang, Xu, & Fulcher, 2002; Figure 12).

Now as with the earlier P(T)HONN groups, it is possible to prove a similar general result

to that found previously by Hornik (1991) for ANNs, namely that NAHONN groups are

capable of approximating any kind of piecewise-continuous function to any degree of

accuracy (a proof is provided in Zhang, Xu, & Fulcher, 2002). Moreover, these models

are capable of automatically selecting not only the optimum model for a particular time

series, but also the appropriate model order.

Returning to the Sigmoid PHONN (Zhang, Crane, & Bailey, 2003), the $Australian-$US

exchange rate data of Table 2 was used to predict the following month’s rate — in other

words, based on the previous two months rates, as follows:

imumimum

imummonthcurrent
input

minmax

min_
1#

−
−

= (12)

Figure 14. Sigmoid PHONN training (convergence)

100 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Figure 16. Sigmoid PHONN network performance

Figure 15. Sigmoid PHONN network weights

imumimum

imummonthnext
input

minmax

min_
2#

-

-

= (13)

imumimum

imumnextaftermonth
outputdesired

minmax

min__
_

-

-

= (14)

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 101

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Thus, only the data within the box was used for this exercise.

This input training data is plotted in Figure 13 (X = input#1, Y = input#2, and Z = desired

output, respectively).

Convergence of the Sigmoid PHONN is shown in Figure 14 and the final network weights

in Figure 15. In this example, convergence occurs after roughly 700 epochs, despite

Figure 14 showing 10,000 epochs total (and to an error of around 7%).

In Figure 15, the third (uppermost, lefthand side) network input is the bias term, the

remaining ones being input#1 (based on the current monthly rate) and input#2 (based

Figure 17. HONN performance comparison (Reserve Bank of Australia: Credit-card

lending, August 1996-June 1997)

Figure 18. HONN performance comparison (Reserve Bank of Australia: Dollar-yen

exchange rate (August 1996-June 1997)

0

0.5

1

1.5

2

2.5

3

Aug-96 Sep-96 Oct-96 Nov-96 Dec-96 Jan-97 Feb-97 Mar -97 Apr -97 May-97 Jun-97

THONN

PT-HONN

M-PHONN

PL-HONN

0

1

2

3

4

5

6

Aug-96 Sep-96 Oct -96 Nov-96 Dec-96 Jan-97 Feb-97 Mar -97 Apr -97 May-97 Jun-97

THONN

PT-HONN

M-PHONN

PL-HONN

102 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

on the next month’s exchange rate); the network output is the desired (month after next)

currency exchange rate, as previously explained. The grey neurons are sigmoid types,

the white neurons linear, and the black ones multiplicative.

The performance of this Sigmoid PHONN (actual vs. desired outputs) is summarized in

Figure 16.

More recently, Zhang (2003) has developed a multiPHONN, which employs a logarithmic

activation function, and as its name suggests, is capable of simulating not only

polynomial and/or trigonometric functions, but also combinations of these, as well as

sigmoid and/or logarithmic functions. As a result, they are better able to approximate real

world economic time series data. It can be seen in Figures 17 and 18 that PL-HONN offers

significant performance improvement over THONNs, and marginal improvement over

both PT- and M-PHONNs, when applied to typical financial time series data (Reserve

Bank of Australia Bulletin: www.abs.gov.au/ausstats/abs@.nsf/w2.3).

The main finding from these experiments is that the more sophisticated PHONN variants

significantly outperform THONN on typical financial time-series data, however all yield

significantly lower errors compared with conventional feed-forward ANNs (not shown

in this chapter’s figures).

Conclusion

We have introduced the concepts of higher-order artificial neural networks and ANN

groups. Such models offer significant advantages over classical feed-forward ANN

models such as MLP/BP, due to their ability to better approximate complex, nonsmooth,

often discontinuous training data. Important findings about the general approximation

ability of such HONNs (and HONN groups) have been presented, which extend the earlier

findings of Hecht-Nielsen (1987), Hornik (1991), and Leshno, Lin, Pinkus, and Schoken

(1993).

Acknowledgments

We would like to acknowledge the financial assistance of the following organizations in

our development of higher-order neural networks: Societe International de Telecommu-

nications Aeronautique, Fujitsu Research Laboratories, Japan, the U.S. National Re-

search Council, and the Australian Research Council.

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 103

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

References

Allen, D. W., & Taylor, J. G. (1994). Learning time series by neural networks. In M.

Marinaro & P. Morasso (Eds.), Proceedings of the International Conference on

Neural Networks, Sorrento, Italy (pp. 529-532). Berlin: Springer.

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading

rules. J. Financial Economics, 51(2), 245-271.

Azema-Barac, M. E., & Refenes, A. N. (1997). Neural networks for financial applications.

In E. Fiesler, & R. Beale (Eds.), Handbook of neural computation (G6.3; pp. 1-7).

Oxford, UK: Oxford University Press.

Azoff, E. (1994). Neural network time series forecasting of financial markets. New York:

Wiley.

Back, A. (2004). Independent component analysis. In J. Fulcher, & L. C. Jain (Eds.),

Applied intelligent systems: New directions (pp. 59-95). Berlin: Springer.

Barron, R., Gilstrap, L., & Shrier, S. (1987). Polynomial and neural networks: Analogies

and engineering applications. In Proceedings of the International Conference on

Neural Networks, New York, Vol. 2 (pp. 431-439).

Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (rev.

ed.). San Francisco: Holden Day.

Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New

York: Springer.

Campolucci, P., Capparelli, F., Guarnieri, S., Piazza, F., & Uncini, A. (1996). Neural

networks with adaptive spline activation function. In Proceedings of the IEEE

MELECON’96 Conference, Bari, Italy (pp. 1442-1445).

Caudill, M., & Butler, C. (1990). Naturally intelligent systems. Cambridge, MA: MIT

Press.

Chakraborty, K., Mehrotra, K., Mohan, C., & Ranka, S. (1992). Forecasting the behaviour

of multivariate time series using neural networks. Neural Networks, 5, 961-970.

Chang, P. T. (1997). Fuzzy seasonality forecasting. Fuzzy Sets and Systems, 112, 381-394.

Chatfield, C. (1996). The analysis of time series: An introduction. London: Chapman &

Hall.

Chen, C. T., & Chang, W. D. (1996). A feedforward neural network with function shape

autotuning. Neural Networks, 9(4), 627-641.

Chen, L. (1981). Topological structure in visual perception. Science, 218, 699.

Chen, S.-H. (Ed.). (2002). Genetic algorithms and genetic programming in computa-

tional finance. Boston: Kluwer.

Computing Research Associates, 2005). Retrieved April 2005, from www.cra.org

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recogni-

tion. New York: Springer.

104 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Diamond, I., & Jeffries, J. (2001). Beginning statistics: An introduction for social

sciences. London: Sage Publications.

Edelman, D., & Davy, P. (2004). Adaptive technical analysis in the financial markets using

machine learning: A statistical view. In J. Fulcher, & L. C. Jain (Eds.), Applied

intelligent systems: New directions (pp. 1-16). Berlin: Springer.

Federal Reserve Board. (2005). Retrieved April 2005, from http://www.federalreserve.gov/

releases/

Giles, L., Griffin, R., & Maxwell, T. (1988). Encoding geometric invariances in high-order

neural networks. In D. Anderson (Ed.), Proceedings Neural Information Process-

ing Systems (pp. 301-309).

Giles, L., & Maxwell, T. (1987). Learning, invariance and generalisation in high-order

neural networks. Applied Optics, 26(23), 4972-4978.

Goggin, S., Johnson, K., & Gustafson, K. (1993). A second-order translation, rotation and

scale invariant neural network. In R. Lippmann, J. E. Moody, & D. S. Touretzky

(Eds.), Advances in neural information processing systems 3. San Mateo, CA:

Morgan Kauffman.

Gorr, W. L. (1994). Research perspective on neural network forecasting. International

Journal of Forecasting, 10(1), 1-4.

Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. Chichester,

UK: Wiley.

Harvey, A. C. (1989). Forecasting, structural times series models and the kalman filter.

Cambridge, UK: Cambridge University Press.

Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In

Proceedings of the International Conference on Neural Networks, Vol. 3 (pp. 11-

13). New York: IEEE Press.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neu-

ral Networks, 4, 251-257.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are

universal approximators. Neural Networks, 2, 359-366.

Hu, S., & Yan, P. (1992). Level-by-level learning for artificial neural groups. Electronica

Sinica, 20, 10, 39-43.

Hu, Z., & Shao, H. (1992). The study of neural network adaptive control systems. Control

and Decision, 7, 361-366.

Iba, H., & Sasaki, T. (1999). Using genetic programming to predict financial data. In

Proceedings of the 1999 Congress on Evolutionary Computation — CEC99, Vol.

1 (pp. 244-251). New Jersey: IEEE Press.

Inui, T., Tanabe, Y., & Onodera, Y. (1978). Group theory and its application in physics.

Berlin: Springer.

Karayiannis, N., & Venetsanopoulos, A. (1993). Artificial neural networks: Learning

algorithms, performance evaluation and applications. Boston: Kluwer.

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 105

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Kingdon, J. (1997). Intelligent systems and financial forecasting. Berlin: Springer.

Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou, M. A., & Ioannou, P. A. (1995).

High-order neural network structures for identification of dynamical systems. IEEE

Transactions on Neural Networks, 6(2), 422-431.

Lapedes, A. S., & Farber, R. (1987). Non-linear signal processing using neural networks:

Prediction and system modelling. Los Alamos National Laboratory (Technical

Report LA-UR-87).

Lee, Y. C., Doolen, G., Chen, H., Sun, G., Maxwell, T., Lee, H., et al. (1986). Machine

learning using a higher order correlation network. Physica D: Nonlinear Phenom-

ena, 22, 276-306.

Leshno, M., Lin, V., Pinkus, A., & Schoken, S. (1993). Multi-layer feedforward networks

with a non-polynomial activation can approximate any function. Neural Networks,

6, 861-867.

Lippmann, R. P. (1989). Pattern classification using neural networks. IEEE Communica-

tions Magazine, 27, 47-64.

Lisboa, P., & Perantonis, S. (1991, November 18-21). Invariant pattern recognition using

third-order networks and zernlike moments. In Proceedings of the IEEE Interna-

tional Joint Conference on Neural Networks, Singapore, Vol. II (pp. 1421-1425).

Lu, B., & Zhang, M. (2000, May 15-17). Using PT-HONN models for multi-polynomial

function simulation. In Proceedings of IASTED International Conference on

Neural Networks, Pittsburgh, PA.

Makridakis, S., Andersoen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., et

al. (1982). The accuracy of extrapolation methods: Results of a forecasting compe-

tition. Journal of Forecasting, 1(2), 111-153.

Meuer, H., Stronmaier, E., Dongarra, J., & Simon, H. D. (2005). Retrieved April 2005, from

http://www.top500.org

Mills, T. C. (1993). The econometric modelling of financial time series. Cambridge, UK:

Cambridge University Press.

Naimark, M., & Stern, A. (1982). Theory of group representation. Berlin: Springer.

Plotkin, H. (1993). Darwin machines and the nature of knowledge. Cambridge, MA:

Harvard University Press.

Psaltis, D., Park, C., & Hong, J. (1988). Higher order associative memories and their optical

implementations. Neural Networks, 1, 149-163.

Redding, N., Kowalczyk, A., & Downs, T. (1993). Constructive higher-order network

algorithm that is polynomial time. Neural Networks, 6, 997-1010.

Refenes, A. N. (Ed.). (1994). Neural networks in the capital markets. Chichester, UK:

Wiley.

Reid, M. B., Spirkovska, L., & Ochoa, E. (1989). Simultaneous position, scale, rotation

invariant pattern classification using third-order neural networks. International

Journal of Neural Networks, 1, 154-159.

106 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Reinsel, G. C. (1997). Elements of multivariate time series analysis. New York: Springer.

Reserve Bank of Australia Bulletin. (2005). Retrieved April 2005, from http://abs.gov.au/

ausstats/

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by

error propagation. In D. Rumelhart, & J. McClelland (Eds.), Parallel distributed

processing: Explorations in the microstructure of cognition, Volume 1 — Foun-

dations. Cambridge, MA: MIT Press.

Schoneburg, E. (1990). Stock market prediction using neural networks: A project report.

Neurocomputing, 2, 17-27.

Shin, Y., & Ghosh, J. (1991, July). The Pi-Sigma Network: An efficient higher-order neural

network for pattern classification and function approximation. In Proceedings of

the International Joint Conference on Neural Networks, Seattle, WA (pp. I: 13-

18).

Sisman-Yilmaz, N. A., Alpaslan, F. N., & Jain, L. C. (2004). Fuzzy mulivariate auto-

regression method and its application. In J. Fulcher, & L. C. Jain (Eds.), Applied

intelligent systems: New directions (pp. 281-300). Berlin: Springer.

Tay, E. H., & Cao, L. J. (2001). Application of support vector machines in financial time

series forecasting. Omega, 29, 309-317.

Thimm, G., & Fiesler, E. (1997). High-order and multilayer perceptron initialization. IEEE

Transactions on Neural Networks, 8(2), 349-359.

Trippi, R. R., & Turban, E. (Eds.). (1993). Neural networks in finance and investing.

Chicago: Probus.

Tseng, F. M., Tzeng, G. H., Yu, H. C., & Yuan, B. J. C. (2001). Fuzzy ARIMA model for

forecasting the foreign exchange market. Fuzzy Sets and Systems, 118, 9-19.

University of California, Irvine. (2005). Retrieved April 2005, from http://www.ics.uci.edu/

~mlearn/MLrepository.html

Vecci, L., Piazza, F., & Uncini, A. (1998). Learning and approximation capabilities of

adaptive spline activation function neural networks. Neural Networks, 11, 259-

270.

Vemuri, V., & Rogers, R. (1994). Artificial neural networks: Forecasting time series.

Piscataway, NJ: IEEE Computer Society Press.

Watada, J. (1992). Fuzzy time series analysis and forecasting of sales volume. In J.

Kacprzyk, & M. Fedrizzi (Eds.), Studies in fuzziness Vol.1: Fuzzy regression

analysis. Berlin: Springer.

Weigend, A. S., & Gershenfeld, N. A. (Eds.). (1993). Time series prediction: Forecasting

the future and understanding the past. Reading, MA: Addison Wesley.

Welstead, S. T. (1994). Neural networks and fuzzy logic applications in C/C++. New

York: Wiley.

Wilcox, C. (1991). Understanding hierarchical neural network behaviour: A renormalization

group approach. Journal of Physics A, 24, 2644-2655.

Wolpert, D. H. (1996a). The existence of a priori distinctions between learning algorithms.

Neural Computation, 8, 1391-1420.

Application of Higher-Order Neural Networks to Financial Time-Series Prediction 107

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Wolpert, D. H. (1996b). The lack of a priori distinctions between learning algorithms.

Neural Computation, 8, 1341-1390.

Wood, J., & Shawe-Taylor, J. (1996). A unifying framework for invariant pattern recog-

nition. Pattern Recognition Letters, 17, 1415-1422.

Yamada, T., & Yabuta, T. (1992). Remarks on a neural network controller which uses an

auto-tuning method for nonlinear functions. In Proceedings of the International

Joint Conference on Neural Networks, Vol. 2 (pp. 775-780).

Zeeman, E. (1962). The topology of the brain and visual perception. In M. Fork, Jr. (Ed.),

Topology of 3-manifolds and related topics. Englewood Cliffs, NJ: Prentice Hall.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:

The state of the art. International Journal of Forecasting, 14, 35-62.

Zhang, M. (2003, May 13-15). Financial data simulation using PL-HONN Model. In

Proceedings IASTED International Conference on Modelling and Simulation,

Marina del Rey, CA (pp. 229-233).

Zhang, M., Crane, J., & Bailey, J. (2003, June 21-24). Rainfall estimation using SPHONN

model. In Proceedings of the International Conference on Artificial Intelligence,

Las Vegas, NV (pp. 695-701).

Zhang, M., & Fulcher, J. (1996). Face recognition using artificial neural network group-

based adaptive tolerance (GAT) trees. IEEE Transactions on Neural Networks,

7(3), 555-567.

Zhang, M., & Fulcher, J. (2004). Higher order neural networks for satellite weather

prediction. In J. Fulcher, & L. C. Jain (Eds.), Applied intelligent systems: New

directions (pp. 17-57). Berlin: Springer.

Zhang, M., Fulcher, J., & Scofield, R. (1997). Rainfall estimation using artificial neural

network group. Neurocomputing, 16(2), 97-115.

Zhang, M., & Lu, B. (2001, July). Financial data simulation using M-PHONN model. In

Proceedings of the International Joint Conference on Neural Networks, Wash-

ington, DC (pp. 1828-1832).

Zhang, M., Murugesan, S., & Sadeghi, M. (1995, October 30-November 3). Polynomial

higher order neural network for economic data simulation. In Proceedings of the

International Conference on Neural Information Processing, Beijing, China (pp.

493-496).

Zhang, M., Zhang, J. C., & Fulcher, J. (1996, March 23-25). Financial simulation system

using higher order trigonometric polynomial neural network group model. In

Proceedings of the IEEE/IAFE Conference on Computational Intelligence for

Financial Engineering, New York, NY (pp. 189-194).

Zhang, M., Zhang, J. C., & Fulcher, J. (1997, June 8-12). Financial prediction system using

higher order trigonometric polynomial neural network group model. In Proceed-

ings of the IEEE International Conference on Neural Networks, Houston, TX (pp.

2231-2234).

Zhang, M., Zhang, J. C., & Fulcher, J. (2000). Higher-order neural network group models

for data approximation. International Journal of Neural Systems, 10(2), 123-142.

108 Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Zhang, M., Zhang, J. C., & Keen, S. (1999, August 9-12). Using THONN system for higher

frequency non-linear data simulation and prediction. In Proceedings of the IASTED

International Conference on Artificial Intelligence & Soft Computing, Honolulu,

HI (pp. 320-323).

Zhang, M., Xu, S., & Fulcher, J. (2002). Neuron-adaptive higher-order neural network

models for automated financial data modelling. IEEE Transactions on Neural

Networks, 13(1), 188-204.

Additional Sources

Machine Learning Databases: http://www.ics.uci.edu/~mlearn/MLrepository.html

Australian Bureau of Statistics, 19. Free sample data: http://www.abs.gov.au/ausstats/

abs@.nsf/w2.3

National Library of Australia. Financial indicators: http://www.nla.gov.au/oz/stats.html

