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Abstract: In this paper, the couette flow of fluid with variable viscosity is studied analytically by using Homotopy Pertubation Method 
(HPM). At first the basic idea of Homotopy Pertubation Method (HPM) is presented. The mathematical formulation and application of HPM 
to nonlinear problem are presented in section three. In order to check the validity of solution the analytical results are compared with exact 
ones for various numerical cases. The good agreement between exact method and Homotopy Pertubation Method has been assures 
us about the solution accuracy. 
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1. INTRODUCTION 

Modelling of natural phenomena such as coquette flow and 
other fluid problems mostly leads to solving nonlinear equations. 
Except a limited number of these problems, most of them do not 
have analytical solution. So, the study on the various methods 
used for solving the nonlinear differential equations is a significant 
topic for the analysis of engineering problems. In recent years 
many powerful methods have been presented to construct solu-
tions of Nonlinear Differential Equations such as Variational Itera-
tion Method (VIM) (He, 1999), Homotopy Analysis Method (HAM) 
(Abasbandy, 2006), Homotopy Perturbation Method (Ghotbi et al., 
2011; Jalal et al., 2011; Moghimi et al., 2011; Rashidi et al., 2012;  
Sharma and Methi, 2010) and Adomian Decomposition Method 
(Alan and Alkhaled, 2006; Ghosh, 2007; Lesnic, 2005; Pamuk, 
2005). 

The purpose of this present work is to present approximate 
analytical solution to a couette flow problem (Aziz and Na, 1984) 
with variable viscosity by Homotopy perturbation method. In order 
to investigate the validity and accuracy of results, the obtained 
results are compared with the exact solution. 

2. BASIC IDEA OF HPM 

The homotopy perturbation method (HPM) was first proposed 
by He. The HPM does not depend upon a small parameter in the 
equation. By the homotopy technique in topology, a homotopy 

is constructed with an imbedding parameter 𝑝 ∈ [0,1], which 
is considered as a “small parameter”. 

The HPM was successfully applied to the nonlinear oscillators 
with discontinuities (He, 2004b) bifurcation of nonlinear problems 

(He, 2004a), nonlinear wave equations (He, 2005). In (He, 2004a) 
comparison of HPM and homotopy analysis method was made, 
revealing that the former is more powerful than the later. 

To illustrate the basic ideas of this method, we consider the 
following nonlinear differential equation (He, 2004a): 
𝐴(𝑢) − 𝑔(𝑟) = 0, 𝑟 ∈ Ω                                            (1) 

with boundary conditions: 

𝐵(𝑢, ∂𝑢 ∂𝑛⁄ ) = 0, 𝑟 ∈ Γ                                              (2) 

where: 𝐴, 𝐵, 𝑔(𝑟) and 𝛤 are a general differential operator, 
a boundary operator, a known analytical function, and the bounda-
ry of domain Ω. 

Generally speaking the operator 𝐴can be divided into a linear 

part 𝐿 and a nonlinear part 𝑁(𝑢). Equation (1), therefore, can be 
rewritten as follows: 

𝐿(𝑢) + 𝑁(𝑢) − 𝑔(𝑟) = 0                            (3) 

By the homotopy technique, we construct a homotopy 
𝑓(𝑟, 𝑝): Ω × [0,1] → 𝑅 which satisfies: 

𝐻(𝑓, 𝑝) = (1 − 𝑝)[𝐿(𝑓) − 𝐿(𝑢0)] +
𝑝[𝐴(𝑓) − 𝑔(𝑟)] = 0,  𝑝 ∈ [0,1], 𝑟 ∈ Ω   

(4) 

or  

𝐻(𝑓, 𝑝) = 𝐿(𝑓) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) +
𝑝[𝑁(𝑓) − 𝑔(𝑟)] = 0  

(5) 

where 𝑝 ∈ [0,1] is an imbedding parameter, 𝑢0 is an initial ap-
proximation of Equation (1), which satisfies the boundary condi-
tions. Obviously, from Equations (4) and (5) we have: 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0         (6) 

𝐻(𝑣, 1) = 𝐴(𝑢) − 𝑓(𝑟) = 0         (7) 
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the changing process of 𝑝 from zero to unity is just that of 

𝑣(𝑟, 𝑝)from 𝑢0(𝑟)to 𝑢(𝑟). In topology, this is called deformation, 

and 𝐿(𝑣) − 𝐿(𝑢0)and𝐴(𝑢) − 𝑓(𝑟) are called homotopy. 
According to the HPM, we can first use the imbedding param-

eter 𝑝 as a “small parameter”, and assumed that the solution 

of Equations (4) and (5) can be written as a power series in 𝑝: 

𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝
2𝑓2 + 𝑝

3𝑓3 +⋅⋅⋅           (8) 

Setting 𝑝 = 1 results in the approximate solution of Equation 
(3): 

𝑓 = lim
𝑝→1

𝑓 = 𝑓0 + 𝑓1 + 𝑓2 +⋅⋅⋅                          (9) 

The coupling of the perturbation method and the homotopy 
method is called the homotopy perturbation method (HPM), which 
has eliminated limitations of the traditional perturbation methods. 
In the other hand, this technique can take full advantage of the 
traditional perturbation techniques. 

The series (8, 9) are convergent for most cases, however, 
the convergent rate depends upon the nonlinear operator 𝑁(𝑣). 
The following opinions are suggested by He (He, 2004a): 

1. The second derivative of 𝑁(𝑣) with respect to 𝑣 must be 
small, because the parameter 𝑝may be relatively large, i.e. 

𝑝 → 1. 

2. The norm of 𝐿−1(∂𝑁/ ∂𝑣) must be smaller than one, 
in order that the series converges. 

3. SOLUTION PROCEDURE 

Consider the steady flow of an incompressible Newtonian fluid 

between two infinite, parallel plates separated by a distance 𝑎 as 
shown in Fig. 1. Each plate is maintained at temperature 𝑇0. The 
lower plate is stationary while the upper plate moves with a uni-

form velocity 𝑉. The thermal conductivity of the fluid is assumed 
to be constant, but the viscosity is allowed to vary. The pertinent 
momentum and energy equations are(Aziz and Na, 1984): 

𝑑

𝑑𝑦
(𝜇

𝑑𝑢

𝑑𝑦
) = 0                         (10) 

𝑑2𝑇

𝑑𝑦2
+

𝜇

𝑘
(
𝑑𝑢

𝑑𝑦
)2 = 0          (11) 

𝑦 = 0,      𝑢 = 0,      𝑇 = 𝑇0         (12) 

𝑦 = 𝑎,      𝑢 = 𝑉,      𝑇 = 𝑇0         (13) 

where: 𝑢 – axial velocity, 𝑇 – temperature, 𝜇 – viscosity  
and 𝑘 – thermal conductivity. 

 
Fig. 1. Plane Coette Flow 

Let the viscosity vary exponentially with temperature accord-
ing to: 

𝜇 = 𝜇0𝑒
−𝛼(𝑇−𝑇0)                          (14) 

where: 𝜇0 is the viscosity at 𝑇0 and 𝑎 is a constant.  
Introduce Equation (14) and the following dimensionless 

quantities into Equations (10)-(13): 

𝜃 =
𝑇−𝑇0

𝑇0
,      𝑌 =

𝑦

𝑎
,      𝑈 =

𝑢

𝑉
 

         𝛽 = 𝛼𝑇0,      𝜀 =
𝜇0𝑉

2

𝑘𝑇0
 

                       (15) 

to give: 

{

𝑑

𝑑𝑌
(𝑒−𝛽𝜃

𝑑𝑈

𝑑𝑌
) = 0

𝑑2𝜃

𝑑𝑥
+ 𝜀𝑒−𝛽𝜃(

𝑑𝑈

𝑑𝑌
)2 = 0,

          (16) 

{
𝑌 = 0,      𝑈 = 0,      𝜃 = 0
𝑌 = 1,      𝑈 = 1,      𝜃 = 0

         (17) 

In this case, the parameter μ0𝑉
2/𝑘𝑇0 is identified as the per-

turbation quantity ε. In viscous flow terminology, it is called 
the Brinkman number, and represents the ratio of viscous heating 
due to conduction. Thus, if the effect of viscous heating is weak, 
one may treat 𝜀 as small and carry out a perturbation analysis. 
As shown by Turian and Bird (1963), such an analysis is applica-
ble to flow in a cone-and-plate viscometer. 

In order to solve this system with homotopy perturbation 
method (HPM), we consider: 

𝑈(𝑌) = 𝑣1(𝑌),      𝜃(𝑌) = 𝑣2(𝑌)

𝑣1,0(𝑌) = 𝑈0(𝑌),      𝑣2,0(𝑌) = 𝜃0(𝑌)
        (18) 

𝑣1(𝑌) = 𝑣1,0(𝑌) + 𝑝𝑣1,1(𝑌) + 𝑝
2𝑣1,2(𝑌)

𝑣2(𝑌) = 𝑣2,0(𝑌) + 𝑝𝑣2,1(𝑌) + 𝑝
2𝑣2,2(𝑌)

        (19) 

the term 𝑒−𝛽 𝑖 𝜃(𝑌) must be expanded as follows: 

𝑒−𝛽𝜃(𝑌) = 1 − 𝛽𝜃(𝑌) +
1

2
𝛽2𝜃2(𝑌)         (20) 

The substitution of Equation (20) into Equation (16) yields: 

{
(1 − 𝛽𝜃 +

1

2
𝛽2𝜃2)

𝑑2𝑈

𝑑𝑌2
+ 𝛽 (𝛽𝜃 −

1

2
𝛽2𝜃2 − 1)

𝑑𝑈

𝑑𝑌

𝑑𝜃

𝑑𝑌
= 0

𝑑2𝜃

𝑑𝑌2
+ 𝜀 (1 − 𝛽𝜃 +

1

2
𝛽2𝜃2) (

𝑑𝑈

𝑑𝑌
)
2

= 0                        
        

According to the HPM, we must firstly determine the initial  
approximations for 𝑣1(𝑌)and𝑣2(𝑌). So we construct following 
system for linear parts: 

{

𝑑2𝑈0

𝑑𝑌2
= 0

𝑑2𝜃0

𝑑𝑌2
= 0

          (22) 

with following conditions: 

{
𝑌 = 0,      𝑈0(𝑌) = 0,      𝜃0(𝑌) = 0 
𝑌 = 1,      𝑈0(𝑌) = 1,      𝜃0(𝑌) = 0 

        (23) 

The solution of Equation (45) is as follows: 

{
𝑈0(𝑌) = 𝑣1,0(𝑌) = 𝑌

𝜃0(𝑌) = 𝑣2,0(𝑌) = 0 
          (24) 

A homotopy for the system of Equation (21) can be construct-
ed as follows: 
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(25) 

{
 
 
 
 

 
 
 
 (1 − 𝑝) (

𝑑2𝑣1

𝑑𝑌2
−
𝑑2𝑣1,0

𝑑𝑌2
) +

𝑝 ((1 − β𝑣2 +
1

2
β2𝑣2

2)
𝑑2𝑣1

𝑑𝑌2
) + β (β𝑣2 −

1

2
β2𝑣2

2 − 1)
𝑑𝑣1

𝑑𝑌

𝑑𝑣2

𝑑𝑌
= 0

(1 − 𝑝) (
𝑑2𝑣2

𝑑𝑌2
−
𝑑2𝑣2,0

𝑑𝑌2
) +

𝑝 (
𝑑2𝑣2

𝑑𝑌2
+ (1 − β𝑣2 +

1

2
β2𝑣2

2) ε (
𝑑𝑣1

𝑑𝑌
)) = 0

    

The substitution of Equation (24) into Equation (25) yields: 

{
 
 
 
 

 
 
 
 (1 − 𝑝) (

𝑑2𝑣1

𝑑𝑌2
) +

𝑝 ((1 − β𝑣2 +
1

2
β2𝑣2

2)
𝑑2𝑣1

𝑑𝑌2
+ β(β𝑣2 −

1

2
β2𝑣2

2 − 1)
𝑑𝑣1

𝑑𝑌

𝑑𝑣2

𝑑𝑌
) = 0

(1 − 𝑝) (
𝑑2𝑣2

𝑑𝑌2
) +

𝑝 (
𝑑2𝑣2

𝑑𝑌2
+ (1 − β𝑣2 +

1

2
β2𝑣2

2) ε (
𝑑𝑣1

𝑑𝑌
)) = 0

  

The substitution of Equation (19) into Equation (26) and col-

lect the result up to 𝑝2 yields: 

{
(−𝛽

𝑑𝑣2,1

𝑑𝑌
+

𝑑2𝑣1,2

𝑑𝑌2
) 𝑝2 +

𝑑2𝑣1,1

𝑑𝑌2
𝑝 = 0

(
𝑑2𝑣2,2

𝑑𝑌2
− 𝜀𝛽𝑣2,1) 𝑝

2 + (
𝑑2𝑣2,1

𝑑𝑌2
+ 𝜀)𝑝 = 0

        (27) 

then we must equalize the coefficients of 𝑝 and 𝑝2 in Equation 
(27) with zero: 

{
  
 

  
 
𝑑2𝑣1,1

𝑑𝑌2
= 0

𝑑2𝑣2,1

𝑑𝑌2
+ 𝜀 = 0

−𝛽
𝑑𝑣2,1

𝑑𝑌
+

𝑑2𝑣1,2

𝑑𝑌2
= 0

𝑑2𝑣2,2

𝑑𝑌2
− 𝜀𝛽𝑣2,1 = 0

          (28) 

with following conditions: 

𝑣𝑖,𝑗(0) = 𝑣𝑖,𝑗(1) = 0,      𝑖, 𝑗 = 1, 2          (29) 

therefore the results are as follows: 

{
 
 

 
 
𝑣1,1(𝑌) = 0

𝑣1,2(𝑌) = −
1

6
𝛽𝜀𝑌3 +

1

4
𝛽𝜀𝑌2 −

1

12
𝛽𝜀𝑌

𝑣2,1(𝑌) = −
1

2
𝜀𝑌2 +

1

2
𝜀𝑌

𝑣2,2(𝑌) = −
1

24
𝛽𝜀2𝑌4 +

1

12
𝛽𝜀2𝑌3 −

1

24
𝛽𝜀2𝑌

                (30) 

According to the HPM, we can conclude: 

𝑈(𝑌) = lim
𝑝 → 1

(𝑣1,0(𝑌) + 𝑝𝑣1,1(𝑌) + 𝑝
2𝑣1,2(𝑌)) 

𝜃(𝑌) = lim
𝑝 → 1

(𝑣2,0(𝑌) + 𝑝𝑣2,1(𝑌) + 𝑝
2𝑣2,2(𝑌)) 

              (31) 

The substitution of Equations (24) and (30) into Equation (31) 
yields: 

𝑈(𝑌) = 𝑌 −
1

2
𝛽𝜀 (

1

3
𝑌3 −

1

2
𝑌2) −

1

12
𝛽𝜀𝑌                      (32) 

𝜃(𝑌) = −
1

2
𝜀𝑌2 +

1

2
𝜀𝑌 −

1

2
𝛽𝜀2 (

1

12
𝑌4 −

1

6
𝑌3)

−
1

24
𝜀2𝛽𝑌 

(33) 

We avoid listing the other components. The forgoing ho-
motopy perturbation solution may be compared with the exact 

solution (Turian and Bird, 1963) which is given by: 

𝑒𝛽𝜃 = (1 +
𝜀𝛽

8
) secℎ2 [(2𝑌 − 1)sinh−1 (

𝜀𝛽

8
)
1  2⁄

]            (34) 

𝑈 =
1

2
{(1 +

8

𝜀𝛽
)
1  2⁄

tanh [(2𝑌 − 1)sinh−1 (
𝜀𝛽

8
)
1  2⁄

] + 1}

                                                    (35) 

4. RESULTS AND DISCUSSIONS 

In previous section, analytical investigation of plane couette 
flow with variable viscosity is presented. In this section, we will 
present the obtained results. As it can be illustrated in Fig. 2 
the comparison is made between HPM solution and exact ones 

for 𝛽 = 1 and a range of values of 𝜀. In Fig. 3.the deviations 

with the exact solutions have been plotted for 𝛽 = 1 and a range 
of values of 𝜀. 

According to Fig. 3 effect of the Brinkman number on tem-
perature profile is considerable. The increasing of Brinkman num-
ber cause higher peak in temperature profile.  

 

Fig. 2. Temperature distribution in plane couette flow, 𝛽 = 1 

 

Fig. 3. Deviations of the HPM (2-term expansion) results with exact  
            solution,with fixed value 𝛽 = 1 
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Tab. 1 shows the effect of increasing the number of HPM 

terms on obtained temperature values for a range of values of 𝜀 

when 𝑌 = 0.5, 𝛽 = 1. 

 Tab. 1. Comparison between Exact solutions and Analytical results  
             for various term expansions of HPM and different value  
             of 𝜀 in case 𝑌 = 0.5, 𝛽 = 1 

  HPM  
(3-term expansion) 

HPM  
(4-term expansion) 

Exact 

0.05 0.0061514 0.0062104 0.0062305 

0.5 0.0604317 0.0606101 0.0606246 

1 0.1176017 0.117721 0.1177831 

1.5 0.1717675 0.1718101 0.1718502 

2 0.2210188 0.2230992 0.2231435 

Good agreement between analytical approximate solution and 
numerical method assure us about validity and accuracy of solu-
tion. 

5. CONCLUSIONS 

In this paper, the homotopy perturbation method (HPM) has 
been successfully applied to finding the solutions of plane couette 
flow with variable viscosity. The HPM does not require small 
parameters in the equations, so that the limitations of the tradi-
tional perturbation methods can be eliminated and the calculations 
in HPM is simple and straightforward. In HPM, the approximations 
obtained are valid, not only for small parameters, but also for 
larger ones. The results show that the HPM is a powerful mathe-
matical tool for solving differential system, it is also a promising 
method to solve other nonlinear ordinary and partial differential 
systems. The solutions obtained are shown graphically and com-
pared with the exact solution. 
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