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A paper presented at the Annual Meeting of the
American Institute of KElectrical Engineers,
New York, May 18th, 1897. President Duncan
in the Chair.

APPLICATION OF HYPERBOLIC ANALYSIS TO
THE DISCHARGE OF A CONDENSER.

BY ALEXANDER MACFARLANE.

In recent years the theory of the discharge of an electric con-
denser has played a very important part in the advance of
electrical science; for it served as the starting point of the
experiments of Feddersen, Paalzow, Helmholz, Lodge, IHertz
and many others, which culminated in the demonstration of the
existence and properties of electromagnetic waves. The theory
of the discharge was first given by Lord Kelvin, then Professor
William Thomson, in a paper on “Transient Electric Currents”
published in the June number of the Philosophical Magazine
for 1853. The application to the phenomenon of the principle
of the conservation of energy leads to the differential equation

déq | R dyg 1
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where & denotes the resistance and L the inductance of the cir-
cuit, and € the capacity of the condenser which is practically the
capacity of the whole circuit. If ¢ = A ¢™ be assumed as the
solution of the equation, then s must be such that

mt 2 If 1 )._
A e (m—}—fm—kl‘(] =0

which reduces to
m+2am-4+b=0 (2)
where for brevity « is written for E and b for X1

2 L Lo

According to the theory of the quadratic equation, there are
163
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two general cases separated by a transition case. If o is greater
than b there are two real values of m, namely
— o+ V& —b and —a — ¥V & —b.

If @ is less than b, there are two imaginary values of m,
namely,

—o+ yTivE—@ amd —a— ¢y Y i—a

The transition or separating case is where ¢® = b then there
is only one value for m, namely, what is common to the two
general values.

The following are the solutions which are usunally given of the
differential equation. In the case of real roots

9= ¢ —(a— Var —b)t + e —(a+ Val—b)t, (3)
in the case of imaginary roots,
g =¢ e la— Y—1 Vb—a®)t + g ot V-1 Vb—az)t; 4
and in the transition case
qg = 6_at(01—-|—02 t). (5)
In the imaginary case, the apparently impossible solution is re-
duced to the form

g=Aesin [ Vb—a?)t+ ¢] (6)

which shows that the change in the condenser at any time is given

——V-;j = and of amplitude which
diminishes geometrically at the rate a.

As the limiting case separates the two complementary regions
of the real and the imaginary, we expect that the real solution is
also capable of reduction to a form analogous to (6) and exhibi-
ting the function with equal clearness. We also expect the
transition solution to be evident from the two general golutions;
but when they are in the above forms, the transition is not evident.
‘We observe that in the former general case the roots are treated
as simple algebraic quantities, while in the latter general case
they are treated as complex quantities. A complex quantity con-
gists of two components, one of which is real and the other
imaginary. If there is any thorough going analogy, it must be
possible to treat the real roots also as a species of complex
quantity.

A complex quantity @ + 3 ¥ — 1 can be reduced to the form

by a sine wave of period
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r (cos § + ¥ — 1 sin 0); for »r = ¥ &>+ B*, cos 0 =
a b

Vo + 5 Va5

metrical meaning of the 4+ — 1 here appearing, we shall find

that it means a quadrant of turning round the axis perpendicular

to the plane of reference. Let 3 denote that axis, then 3 de-

notes an angle of # radians round the axis 8, and

I

B% = cos 8 + sin 6 3.
Hence the ordinary complex quantities can be expressed in
the form

, sin § = If we enquire into the geo-

rg :7‘(cosﬁ—|—sinﬁﬂl’}),

and they are eimply coaxial quaternions, the axis being commonly
left unspecitied, as it is the same for all.

Let s 3 denote another complex quantity,than » #% X s 82 =
rs 00 :

=78 [cos 0 cos ¢ — sin f sin ¢ -} (cos ¢ sin § - cos @ sin ¢) /3%)

Here the product is formed according to the theorem for the
cosine and the sine of the sum of two circular angles. Now the
circular trigonometry has its complete counterpart in the hyper-
bolic trigonometry; consequently we expect to find a hyperbolic
complex number. This subject was investigated at length in
“Papers on Space Analysis,”* which I published 1891 to 1894.
In this paper I propose to show that by treating the real root as
a hyperbolic complex quantity, equation (3) can be reduced in
precisely the same way as equation (4).

The exponential expression for a circular angle # is e V12,

T

which expressed definitely is ¢*#°, By applying the exponential
theorem, we obtain a series which breaks up into two parts,
namely,

o2t b
etnah
and S— 2 |
V_l[w_?:""s—!_]’

of which the former is the series for cos « and the latter the series
for sin . Now because the terms of the sine series are all
affected by the sign 4/ — 1,they do not add directly to the other

1. “Tbe Imaginary of Algebra.” Proc. A. A, A, S. vol. —, p. 50. Funda-
mental Theorems of Analysis, p.23. Definitions of the Trigonometric Functions,
p. 30. Principles of Elliptic and Hyperbolic Analysis, p. 17.
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terms, but are geometrically compounded as forming a perpen-
dicular component to the terms of the cosine series. We enquire
for the analogous exponential expression for a hyperbolic angle
#. Algebra furnishes none. It is not %, for

a;ﬂ x3 w4
f=1+e+g+5+o+

and here there is no ground for breaking up the series into two
components ; all the terms are real, and so add direetly. For
the same reason, it cannot be ¢~ *. But we know that

w? 4 6
coshxz =1 +‘Q"{+%+§T+’

3
and sinh # = —I—%—l— d

5
3

51
there must therefore be some proper way of expressing the sun:
by an exponential function.

B
P B
P
A 0 WA
A 0 A M
BI
BI
Fia. 1. F1e. 2.

Before proceeding further, let us consider what is meant by a
hyperbolic angle.

In Fig. 2, let A be an arc of an equilatoral hyperbola, o o and
o B the equal semiaxes. The radius o » is derived from the
semi-axis o A by a hyperbolic versor which has a magnitude «
and an axis through o perpendicular to the plane. Now  is not
the ratio of the are A p to either the radius vector o p or the
semi-axis o A but the ratio of twice the area of the sector Ao »
to the square on o a. In the cirele, Fig. 1, the ratio of twice the
area of the sector A o P to the square on o A is equal to that of
the arc a » to the semi-axis o 4; the symbol # may denote either.
But in the hyperbolic counterpart it is the ratio of the areas
which must be taken. If @ denotes the ratio of twice the area
of the hyperbolic sector A o ® to the square on o a, then as a
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matter of truth, not mere definition, eosh #, by which is meant
the ratio of o M to o 4, is equal to

L+ 2+ 2+
and sinh o, by which is meant the ratlo of M P to o 4, is equal to
o+ T+ Y+

‘We observe that o M and 0A have the same direction, while m »
s at right angles to o A; hence we conclude that the second
series is really at right angles to the first. But instead if cos?
+ sin? @ = 1, we have cosh? # — sinh? # = 1; the fact that it
is the difference not the sum of the squares which is equal to 1
attaches a scalar 4 — 1 before the sinh series. We conclude that
the proper expression for the hyperbolic versor is

cosh # + 4 — 1 sinh m,@!‘};

N _ 1L
and that the exponential expression is ¢ V=120  For brevity

we will donate ﬂ%{ by 4. Thus ¢?® denotes & circular angle, and
e Y—liz 4 hyperbolic angle.

The process by which equation (4) is usually reduced to equa-
tion (6) is highly obscure to the student. We shall state it in
a form, such that it will apply to the analogous hyperbolic case.
For brevity let #» denote the square root of the difference of «*
and &; in the hyperbolic case » is less than a. Equation (4) may
then be written

g = o (01 eint _l_ e e—z’nt),

The arbitrary constants ¢, and ¢ are circular complex quan-
tities ; they are not perfectly arbitrary, but are connected in such
a way that they involve only two independent quantities. Their
magnitudes are equal and their angles supplementary. Hence
we can write :

¢ = ¢ (cos ¢ + @ sin @),
6 = ¢ (— cos ¢ - 4 sin ¢);
then:

tnt ___ ,—1tnt et nt —tnt
(i_.___;;__—{—@smgp ___%____ )

g=2ce— % (cossa
—=4Q¢ce— (cosgpsin nt 4 sin ¢ cosnt)

=14 92¢esin (nt + o)
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The 7 is dropped, 2¢ is written 4, and thus equation (6) is
obtained.

The assumptions usually made in reduneing are

6 = c¢(cos ¢ + ¢sin¢) and ¢, = ¢ (cos ¢ — ¢ 8in @)
which is equivalent to making the angles conjugate. The solution
then is
g=2ce " cos (nt -+ ¢)

which is the horizontal instead of the vertical projection. The
analogous investigation shows that the former is the correct as-
sumption for the initial conditions of the discharge.

In the case of the hyperbolic roots

g = e (6‘1 ¢ Y—lint e V1 @'nt)_

Let
¢, = ¢ (coshg -+ ¥ — 14 sinh ¢),
and
¢, = c¢(—cosh ¢ + ¢ — 1 ¢sinh ¢);
then
VZlint — g—¥V—14¢
g= V¥ —1dice ™ (00511506 Lot 23 Lomt
Vid —V—1¢
+ sinh ¢ e lznt_gg v lznt)

= ¥ 142 ¢cesinh (nt -+ o),
and by dropping 4 — 1 ¢ and writing 4 for 2 ¢,
q= A ¢ sinh (nt+ ¢).

Were conjugate hyperbolic angles taken for the arbitrary con-

stants, the horizontal projection would be obtained, involving
cosh (nt - ¢) in which case the initial current could not be

zero.  Either projection satisfies the differential equation, but it
is only the former which satisfies the initial condition that there
is no current at the beginning.

The meaning of these solutions is illustrated by Figs. 3 and 4.

Fig. 3 represents the circular case. o p multiplied by ¢ repre-
sents ¢;, and o »' multiplied by ¢ represents ¢;; o @ multiplied
by ¢ ¢ % represents the first circular solution and o @' multi-
plied by the same quantity represents the supplementary circular
solution. The multiples of 0 @ and o Q' are compounded,-their
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resultant being 2 ¢ ¢ —® of o m which represents sin (n¢ 4 ¢).

In the hyperbolic case (Fig. 4), o p multiplied by ¢ represents
¢, and o p' multiplied by ¢ represents ¢,; o @ multiplied by
¢ ¢~ represents the first hyperbolic solution, and o q! multiplied
Ly the same ratio represents the supplementary hyperbolie solution.
The multiples of o @ and o Q' are compounded, their resultant
being 2 ¢ e of o m, which represents the sine of the hyper-
bolie angle nt¢ -+ ¢.

By differentiation we deduce the solution for the current; let

it be denoted by 7. As I = dq

dt
I = — A4 ¢ [asinh (nt + ¢) — n cosh (nt + ¢) ]
= — 4 VF =t | D sinh (nt - g)

— V;a_n_—nz_ cosh (nt + gp):]

=— A4 Vo —»? ¢~ sinh (nt + ¢ — tanh—1 %)

N v g

’ 7 Q Q
P P P P
Af -~ [e] A A’ [e) A
Fre. 3. Fie. 4.

Thus the charge is in advance of the current by the hyperbolic

angle whose tangent is %’ which is the hyperbolic angle at which

both ¢ and 7 have their maximum value. The same proposition
applies, mutatis mutandis, to the oscillating discharge.

‘Writers on this subject call 1 the time constant for an expo-
a

1 d 1
—a+ Va—b" Za_—va—1
the time constants for the non-oscillating discharge. But from
the above presentation of the subject it is evident that ¢ &* — %
is the analogue of 4 b — a? in the circular case. There it means
the angular velocity of the auxiliary circular motion; so here it

nential discharge, and
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means the angular velocity of the auxiliary equilateral-hyperbolic
2

motion. In the oscillating case —=——— gives the period; in

Vb—at

—:w;_ 7 gives the hyperbolic period.
By the hyperbolic period is meant the time occupied by the
radius-vector of the equilateral hyperbola of unit semi-axis to
sweep out twice the area of the circle of unit radius. This defi-
nition of period applies to the circular case also.

The function A4 sin (n¢ -} ¢) represents the vertical projection
of a uniform circular motion of amplitude A4, angular velocity »,
and epoch ¢. Similarly the function A ¢ sin (n¢ 4+ ¢) re-
presents (Fig. 5) the vertical projection of the circular spiral motion
of the point  having angular velocity #, epoch ¢ and logarithni-

cally deereasing amplitude 4 ¢, In the same manner the

the non-oscillating case

B_ R

)
°

B, O A
Fie. 5. Fie. 6.

funetion A ¢=% sinh (n¢ - ¢) represents (Fig. 6,) the vertical
projection of the hyperbolic spiral motion of the point p having
hyperbolic angular velocity n, epoch the hyperbolic angle ¢, and
amplitude 4 ¢~. 1t will be observed that this spiral is conver-
gent, for 7 is less than «.

By putting in the conditions that 7 = 0 and ¢ = ¢ when
t = 0, we obtain

. 1 ﬁ . V a2 . 77/2
¢ = tanh™" -, and A4 = ¢ e
consequently
q = 1/,.“ gl ¢inh (nt -+ tanh—1 —4)
n
and
a@* — n?
I=—¢ ¢~ sinh n t.
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These curves have a maximum value when the angle is

7% 1
tanh™! —; hence when ¢ = 0 and ¢ = — tanh—1 z respectively.
@ n @

They have a point of contrary flexure, when the angle is
n
@
respectively. The properties of either curve are given by the
general equation
am q

am = =" e

2 tanh—1 ™ ; hence when ¢ = 1 tanh—! Zand ¢ = 2 anh—t
@ n @ 2

Vi@ —atm 1 —at

sinh [nzﬁ — (m — 1) tanh™* %:'
corresponding to

m o VIZE A —ar
'Eﬁ‘g:(“l). Q (an—l-n) P

mn
sin [nt———(m—— 1) tan—l—a]

in the oscillating case.

The nature of the curves for the charge and the current in the
non-oscillating ease has not been plain to some electricians of high
authority. In the first volume of his work, “Alternating Current
Transformer,” page 379, Professor Fleming represents the cur-
rent graphically by an exponential curve, which is far from
representing the current correctly. In the first volume of his
“Lecons sur I’Electricité,” page 256, Professor Gerard represents
the charge by an exponential curve which has no maximum at
the beginning ; and the same representation is given by Professors
Jackson in appendix C of their * Alternating Currents.” The
curves are correctly represented graphically by Doctors Bedell
and Crehore in their “Alternating Currents,” and by Professor
‘Webster in his “ Theory of Electricity and Magnetism.”

We deduce the solution for the transition case hy means of the
principle that in form it must agree with what is common to the -
two general solutions. Now for the hyperbolic case

nt ¥
wEg )

g=Ae " [nt+s0+
and for the circular case

= A it [MJF p— LNy s
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hence for the transition case

qg=A e (o nt).

As A ¢ is represented by a length, and 4 n by a linear velocity,
let them be denoted by the constants 2 ¢ and 2». Then ¢ =
2% (¢ wi).

In the case of the horizontal projections the only common
part is the first term of the series, namely 1; hence & denoting
an arbitrary length, we have 2 ¢~% p for that projection. Hence
the primary form of the solution of the differential equation in
the transition case is

g = {[b4i(o+vt)] + [—b+i(c+ovt)]h.

This is represented in Fig. 7, which is the transition between
Figs. 3 and 4. o7 represents b 4+ ¢¢, and o P' represents
— b4 4e; oq represents b+ 4 (¢ + v¢) and o Q' represents
— b+ 2 (¢ + wf); owm represents half of the vesultant of o q
and o ql.

By putting in the conditions that 7= 0 and ¢ = ¢ when
t = 0, we obtain

g=Q ¢ (at 1)
and /= — Q ¢ a*t.
The general differential co-efficient is

T = m Qe om [at—(m—1))

Hence ¢ is a maximum when ¢ = o, and has a point of contrary

flexure when ¢ = 1 ; and / has a maximum when ¢ = 1 and a
@ a

<
point of contrary flexure when ¢ = 2 | Thus we see that 1
@

takes the place of tan™ % or tanh~' ” , and that o takes the
. a a

place of n.

Fig. 8 is the transition between Figs. 5 and 6. The point r
describes a uniform motion along the straight line; op is o r
diminished at a uniform geometrical rate, o ¢ is the vertical pro-
jection of o . The path of P is perpendicular to o A at the
point o, whereas in the hyperbolic case it makes an angle of 45°,

If attention is restricted to real roots, it is difficult to see why
the transition solution is not of the form ¢ = A ¢, nor is the
matter made very clear in treatises on Differential Equations.
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The preceding investigation throws new light on the theory
of the quadratic equation. The current theory may be stated as
follows: A quadratic equation has either two real roots, or two
imaginary roots, the separating case being when the roots are
equal. According to the results of the preceding investigation,
the theory should be stated as follows: So far as real roots are
concerned, a quadratic equation has either two such roots, or else
none, the separating case being where they are eqnal. The two
general cases are the real and the impossible. As regards com-
plex roots, a quadratic equation has either two conjugate hyper-
bolie roots, or else, two conjugate circular roots, the separating
case being where they are straight-line. Consider the quadratic
equation & + 2 ew - b = 0. If ¢® is greater than b, the roots
are hyperbolic, and

=—a+ ¥V —17 V¥V a*—0b
ty=—a— ¥ —14 ¥a*—b
B
o M Q
F P R
Q 3
7|
Fia. 7. Fie. 8.

If we substitute either root in the equation, we shall find, just
as in the case of the circular roots, that the terms which do not
involve ¢ cancel one another, and likewise the terms which do
involve 7. The equation is doubly satisfied by the independent
vanishing of the two parts.

The preceding investigation has an important bearing on the
theory of the complex guantity, a theory which lies at the
foundation of algebraic analysis. The eminent mathematician
Cayley maintained that the complex quantity ¢ - 4b is the most
general magnitude considered by algebra, and that were it fully
investigated the science would become fotus teres atque rotun-
dus. The current doctrine among mathematicians is thus stated
in a recent able work on alternating currents, where from the
nature of the subject the circular complex quantity is a funda-
mental idea :
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“Within the range of algebra no further extension of the
gystem of numbers is necessary or possible, and the most general
number is @ + ¢b, where @ and b can be integers or fractions,
positive or negative, rational or irrational.” 'Letthe question be
limited to the algebra of the plane although that is in truth an
arbitrary restriction, for spherical trigonometrical analysis iz as
much algebra asis plane trigonometrical analysis. The preceding
investigation shows that the ordinary complex quantity is only
one-half of the whole subject of plane algebra; for parallel with
the circular complex quantity we have a hyperbolic complex
quantity, and for every theorem about the former there is an
analogous theorem about the latter. 1f the one is within the
domain of algebra, so is the other. Iere we have another in-
stance of the danger involved in predicating dmpossible.

1. Steinmetz, ‘*Alternating Current Phenomena,” p. 405.





