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Abstract 
 
Post-disaster, city planners need to effectively plan 

response activities and assign rescue teams to specific 
disaster zones quickly. We address the problem of lack 
of accurate information of the disaster zones and 
existence of human survivors in debris using image 
analytics from smart city data. Innovative usage of 
smart city infrastructure is proposed as a potential 
solution to this issue. We collected images from 
earthquake-hit smart urban environments and 
implemented a CNN model for classification of these 
images to identify human body parts out of the debris. 
TensorFlow backend (using Keras) was utilized for this 
classification. We were able to achieve 83.2% accuracy 
from our model. The novel application of image data 
from smart city infrastructure and the resultant findings 
from our model has significant implications for effective 
disaster response operations, especially in smart cities. 
 
 
1. Introduction  
 

Smart cities are an attempt to improve the 
effectiveness of urban services and enhance the quality 
of life. They include smart buildings, smart healthcare, 
education, transportation and other services that 
leverage information and communication technologies 
(ICT) [1]. These urbanized areas are built upon vast 
networks of sensors, cameras, and other connected 
smart devices, capable of capturing rich, real-time 
information from every nook and corner of the city 
continuously. This, combined with the growing need to 
effectively manage and analyze such heterogeneous and 
unstructured data streams for help in decision-making, 
have prompted regulators and other stakeholders to 
build strategic partnerships with various private vendors 
as well as academicians to gain rich insights from the 
collected data. Of the various analytics techniques 
available, researchers have demonstrated effective 
usage of machine learning (ML) techniques for solving 
various developmental issues, in such smart city 
environments, like traffic management [2], healthcare 

[3], crime rates[4], and energy consumption [5]. 
However, an extensive review of the extant literature 
reveals that although there has been a focus on solutions 
for issues faced by traditional urban settlements, there 
exists an apparent lack of implementation of advanced 
data analytics capabilities from the massive amount of 
data generated from these cities for continuity planning 
activities like disaster management. 

The domain of disaster management is focused “to 
mitigate, prepare for, respond to and recover from 
disasters with the ultimate goal to save lives, property 
and the environment” [6]. To ensure effective 
management during disaster response stage, timeliness 
and participation of human hands from multiple, 
geographically distributed organizations and their 
communication are critical [7]. Hence, information 
management plays a crucial role in disaster response 
operations involving strategic planning to ensure timely 
and effective prioritization and allocation of resources 
amongst discrete response activities. A report by the 
US-based National Research Council (U.S.) has 
asserted that IT has unrealized potential to improve how 
communities, individuals handle disasters [8]. However, 
the existence of incompatible systems and technologies 
due to lack of universal protocols for data sharing and 
management in these cities creates issues for effective 
planning. The lack of an integrated and ubiquitous 
system compels decision makers during disasters to 
often choose a sub-optimal decision based primarily on 
heuristics [9]. Hristidis et al. [9] highlighted these 
concerns of decision makers, especially for disaster 
management. They have particularly asserted the need 
to integrate discrete data sources and resources in a 
collaborative and timely manner, and the need to collect 
updated information from these distributed sources 
through one integrated information system of the city 
[9]. This combined with the adoption of advanced data 
analytics will aid effective decision making in disaster 
situations.  
However, the limited amount of studies in this domain 
such as those by Asimakopoulou and Bessis [6] or 
Alazawi et al. [10] highlight the lack of focus on 
utilizing the capabilities of data analytics, holistically, 
for disaster management as a ‘smart service’ in a smart 
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city. In response to this gap in the extant literature, our 
current study attempts to examine the effectiveness of a 
specialized ML technique for disaster management in 
smart cities. We state our precise research question as: 

RQ: How can Image Analytics be used for disaster 
management in smart city context? 

The effectiveness of disaster response operations is 
primarily determined by the timeliness in identifying 
and prioritizing disaster zones. With existing 
infrastructure of cameras throughout smart cities, visual 
data is a rich source of information to aid such decisions. 
Lack of such infrastructure in conventional urban 
environments dissuades any possibility of capturing 
such data during disasters. Although many of these 
devices might be rendered ineffective during disasters 
even in smart cities, the limited ones that survive, 
provide a quick glimpse of the disaster situation and 
hence aid such decision making. Image analytics 
techniques based on ML can be utilized for such 
prioritization of rescue efforts. Inspired by this novel 
application of image analytics, our research utilizes 
convolutional neural networks for classification of huge 
amounts of image data with the help of Keras with 
TensorFlow as backend. Our model classifies images 
with a high degree of accuracy of the existence of human 
survivors in debris from photographs of disaster zones. 
Identification of survivors from partial body parts 
visible in images is challenging to decipher from a huge 
dataset of images provided by smart city 
infrastructure[11]. Hence, classification of these images 
through cloud-based ML techniques improves the 
efficiency of search operations for timely disaster 
response. 

This study makes several key contributions. By 
combining a relatively less used but powerful method 
on the less utilized visual content of big data of smart 
cities in a novel application and presenting a deep 
learning-based study, we illustrate the potential of ML 
techniques for such contexts. Apart from the novelty of 
application, this method also highlights a novel and 
efficient technique for ML classification by utilizing 
backend from Google which is a global market leader in 
ML. Further, our comprehensive review of image data 
analytics in the domain of disaster management with 
particular focus on smart cities serves as a compendium 
of knowledge on the topic for future studies. With a 
focus on generalizability, the insights from this study 
will aid practitioners (disaster managers and rescue 
teams) and simultaneously expand the knowledge base 
on image analytics of big data. 

 
 

2. Background 
 
2.1. Smart Cities 

 
The term ‘smart city’ has been used since 2005 by 

global technology firms to refer to use of complex 
information and communication technologies (ICT) to 
integrate the operation of urban infrastructure and 
services such as buildings, transportation, electrical and 
water distribution, and public safety [12]. This concept 
is seen as an opportunity for urban development and 
simultaneous improvement of both the city’s livability 
and its local economy. An example of a smart city would 
be Singapore, which was ranked as the top performer in 
a global smart city ranking by Juniper Research in 2018 
[13].  

However, owing to differences in working 
definitions due to varying perspectives and advances in 
technologies over time, a smart city has historical 
predecessors such as intelligent city [14], knowledge 
city [15], ubiquitous city [16] and digital city [17]. The 
significant difference between a smart city and its 
predecessors lies in the former's inclusion of human 
capital component as one of its three key elements. 
While the earlier versions emphasized the technological 
dimension only, a smart city focuses on the balanced 
combination of technological, institutional and human 
dimensions [18].  

2.1.1. Classification of smart city services. Smart 
cities enact distinct roles to positively impact diverse 
facets of citizens’ lives. The classification of these 
varied smart city services studied in literature is 
described in Table 1. The table also reveals a distinct 
lack of focus on utilizing the power of data analytics for 
disaster management as a ‘smart service’ in a smart city 
context. 
 
2.2. Disaster Management 
 

Disaster management is comprised of four major 
phases: mitigation and preparedness (pre-disaster), 
response (during a disaster), and recovery (post-
disaster) [19]. These phases are mutually exclusive and 
highly interconnected [19]. 

Extant literature has primarily focused on specific 
phases of disaster management. There has been limited 
research on pre-disaster phases including preparedness 
and mitigation. However, whatever little work has been 
done, the focus has been primarily on the development 
of extensive theoretical frameworks [20].  
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Table 1: Literature review for services in a smart city

Smart city services category [21] Author [Year] Summary of work 
Smart Urban Management - Anthopoulos et al. [22] 

 
- Rathore et al. [23] 

- Interrelation of physical and digital space 
of smart city with tangible measurement 

- combined Internet of Things-based system 
for smart city development and urban 
planning using Big Data analytics 

Smart Transportation  - Vlahogianni et al. [2] 
 

- Barba et al. [24] 

- Real-time parking prediction system for 
smart cities 

- Framework to transmit information about 
traffic conditions to help vehicles take 
adequate decisions 

Public Health, Medical Care & Welfare  - Hassan et al. [3] 
 
 
- Hossain et al. [25] 

- Cloud-Assisted Internet of Things (IoT) 
Framework for Pervasive Healthcare in 
Smart City Environment 

- Voice pathology detection paradigm 
Facilities & Environment  
(included waste management, energy, 
water, and sanitation management) 

- Kanchev et al. [5] 
 
- Srikantha et al. [26] 

- Energy management for smart grid 
applications 

- IoT-enabled waste management 
Culture Tourism & Sports - Gretzel et al. [27] 

- Brandt et al. [28] 
- Smart tourism ecosystem 
- Spatial and semantic analysis of social 

media messages for  smart tourism 
ecosystems 

Education  
(remote education service) 

- Hughes et al. [29] - Remote human surrogates and ‘avatars’ to 
teach in virtual environments 

Crime & Disaster Prevention  - Pan et al. [4] - Research issues in trace analysis for crime 

However, research on disaster response has been more 
diverse. Various studies have investigated past disasters 
and suggested effective solutions through the efficient 
use of technologies and social media [30], or crowd-
sourcing for updated geographic information [31]. Of 
the limited empirical studies on post-disaster phase, 
Kunreuther et al. [32] examined the financial allocation 
for disasters. Such empirical studies have the potential 
to extend the theoretical developments in this domain 
leading to the development of a robust knowledge base 
for future research. 

 
2.3. Disaster Management in Smart cities 
 

The data generated from continuous streams from 
sensors, cameras, and other smart city infrastructure 
have the potential to improve disaster management 
operations. There have been various studies aimed at 
utilizing the interconnected modules of various sensors 
and cameras of smart cities for disaster management and 
monitoring of response activities [33].  Asimakopoulou 
and Bessis discussed the role of crowdsourcing in the 
context of smart buildings to support effective disaster 
management [6]. Alazawi et al. discussed the importance 
of building frameworks for smart city-based disaster 
management context. Other notable studies in this 
domain have also proposed a framework for 
implementing intelligent transportation systems 
including vehicular ad hoc networks (VANETs) and 

cloud computing technologies [10], and smartphone-
based mobile disaster management system for optimal 
geographical routing for volunteers and resources under 
limitations of time [34]. However, to the best of the 
author's knowledge, quantitative studies utilizing 
machine learning to investigate the potential of the 
visual content of the captured big data in smart cities 
effective disaster search and response were lacking. We 
aim to position our study in response to this gap in the 
extant literature. 
 
3. Research Design 
 
3.1. Image Analytics with Deep Learning 
 

With most of the smart city data being unstructured 
in the form of sensor data and visuals (be it images or 
video), image classification and subsequent analysis 
have the potential to provide efficient solutions to 
accelerate decision-making processes. This has 
prompted research to use machine learning algorithms 
for text as well as image analytics. Image analytics not 
only finds application in creating product and marketing 
solutions for business; but also, in defense and security 
as well as healthcare. For example, defense agencies 
have been reported to have been extensively spending 
on storage and analysis of signal data, visuals, and full-
motion videos and having been using image and video 
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analytics successfully. They have been using drones to 
capture intelligence via video and image surveillance to 
mitigate risks of direct intervention both in urban and 
rural landscapes.  

In line with practical applications of image analytics, 
this article highlights usage of these techniques for 
disaster management. Image analysis is defined as the 
“algorithmic extraction and logical analysis of 
information found in image data using digital image 
processing” [35]. It is an extension of text analysis 
features used on visual content. Before analyzing 
images, the geometric encoding for each raster image 
(sequence of pixels with discrete numerical values for 
the color of an image) is transformed into constructs 
depicting physical features and objects. Though 
unsupervised machine learning algorithms have been 
traditionally used for image content analysis in areas 
such as bioinformatics, oceanography, computer vision; 
these methods suffer from poor performance. Thus, we 
use deep learning methods (a subfield of machine 
learning). Deep learning extracts hierarchical 
representations from large-scale data (e.g., images) with 
multiple layers of non-linear transformations. It extracts 
different levels of information ingrained in input data by 
designing the layer depth and width, and intricately 
selecting features that are useful for learning tasks.  
 
3.2. Convolutional Neural Networks 
 

There are several classes of deep learning models 
such as Deep Belief Networks (DBN) [36], 
Convolutional Neural Networks (CNN) [37], Deep 
Boltzmann Machines (DBM) [38], Stacked Denoising 
Auto-Encoders [39], etc. The widely used among these 
models is the Convolutional Neural Network which 
finds applications in image classification [40], object 
tracking [41], pedestrian detection [42], image labeling 
[43], and speech recognition [44] amongst others. Its 
huge adoption is primarily due to the ease of training of 
the model since it estimates fewer parameters as 
compared to the other deep learning models. This has 
been possible because the neurons of a CNN in one layer 
are not necessarily connected to all the neurons in the 
layer before it. For more details, refer [37]. Moreover, 
these layers are arranged in three dimensions, which 
allows images to be provided as inputs for advanced 
analytics.  
 
3.3. TensorFlow 
 

TensorFlow is an open source software library 
designed by researchers from Google Brain team for 
high-performance numerical computation. It is highly 
efficient in applications requiring the building of large 

and flexible deep learning models. Additionally, it 
offers: 

i. Threading and queueing for computing tensors 
asynchronously. It expedites computations by 
allowing parallel processing. 

ii. Greater control and easier operations on weights 
or gradients in the developed CNN model.  

iii. Faster compile time than other competing open 
source frameworks. 

TensorFlow has the highest adoption both in 
industry and academic research community primarily 
due to its efficient utilization of computing resources 
especially GPUs. These features improve the processing 
speed of image data for use in this study. As discussed 
earlier, timeliness and accuracy are very crucial for 
disaster response planning. That combined with the 
cloud-based infrastructure of TensorFlow, allows for 
resource offloading to offshore servers while 
simultaneously providing quicker processing. These 
capabilities have guided our choice of TensorFlow 
library through the R interface using the high-level 
Keras API. 

 
3.3.1. Keras It is a neural network API which 

interfaces with advanced deep learning and 
implementation frameworks like TensorFlow and 
Theano. It allows for rapid prototyping of deep learning 
models with minimal lines of code. To gain an 
understanding of its popularity backed by its rich feature 
set, we should identify its application in academic 
research. In that parameter, Keras is ranked second in 
terms of mentions in scientific papers uploaded to the 
preprint server at arXiv.org. 

Our adoption of Keras for this study is based on its 
ease of interfacing with TensorFlow, flexibility, and 
control over the proposed deep learning model. 
Specifically, we have used Keras built on TensorFlow 
for analysis because of its following features: 

i. It supports both convolutional networks and 
recurrent networks, as well as combinations of 
both. 

ii. It supports several network architectures such 
as the multi-input or multi-output models, layer 
sharing, model sharing. 

iii. It allows enhanced ease of use, modularity, 
extensibility and increased flexibility. 

 
4. Data Processing 
 
4.1. Data Collection 
 

With an explicit focus on proposing innovative 
solutions for effective decision making for disaster 
response using machine learning techniques, we adopt 
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an innovative application of images from disaster 
(specifically earthquake-hit) zones for this study. This 
was used as input to our proposed CNN model. Our 
initial image dataset was drawn from the National 
Hazards Image Database of the National Centers for 
Environmental Information (www.ngdc.noaa.gov/haz 
ardimages/). With focus on disasters in smart cities, we 
collected images of earthquake-hit regions of Tohoku, 
Japan (2011) and Bologna, Italy (2012) from that 
dataset. Both of these were smart cities when disaster 
struck, but the lack of application of image analytics for 
disaster management resulted in a small dataset. We 
then compared images of smart cities hit by earthquakes 
with those of conventional urban spaces affected by 
earthquakes. We also supplanted our initial dataset with 
other images from the Google Image database (Creative 
Common images were used). This approach was in line 
with similar studies which have used similar social 
media images for analytics in the domain of disaster 
management [46]. Images were collected using the filter 
‘Labeled for non-commercial reuse with modification.' 
The search was conducted using Google search, e.g., by 
searching for ‘people in debris earthquake Bologna 
2012'. We collected all images published within two 
months of each incident by restricting the timeline using 
the ‘custom time range' filter.  
 
4.2. Data Preparation 

 
The image dataset went through a simple annotation 

process to decide whether each image was related to the 
chosen incidents. For this, two external researchers, who 
were domain experts, independently evaluated all the 
images manually by checking their sources and 
appropriateness for our study. The researchers further 
pruned the dataset by removing images which had 
captured relief workers searching and rescuing trapped 
people. These images were not considered to be relevant 
for our analysis as our CNN model classifies images 
based on whether any human body part or whole, is 
found to be trapped under debris and needs to be 
rescued. The images would get classified based on 
whether such a victim is present under the debris or not, 
and presence of rescue workers would lead to a ‘false 
positive.' Hence, few images had to be removed, and the 
remaining dataset then underwent pre-analysis/pre-
processing. Following the image pre-processing steps as 
discussed in Caffe [47], all images were resized 
uniformly to ensure that they have identical size and 
aspect ratio. Following this, global zero-mean unit 
variance batch normalization was carried out to improve 
training stability and resistance to overfitting of image 
data. Additionally, common data augmentation 
parameters to further address the issue of overfitting of 
image data including rotation, translation, rescaling, 

flipping, shearing and stretching [37]. Hence, data 
augmentation was lastly performed on our dataset to add 
perturbed versions of the existing images to the existing 
dataset. At the end of data preparation stage, our final 
dataset comprised of 541 images. 

 
4.3. Data Analysis 

 
Image classification was performed by a 

convolutional neural network model. Since real-time 
classification is an important factor for effective disaster 
response, we avoided using pre-trained models, such as 
the VGGNet models [55], in this paper as they have 
been found to suffer from significantly higher training 
time and correspondingly higher computation time and 
resources [56]. Thus, we built our CNN model, and all 
computations were done using the software package R 
[48] and the R package KERAS (R interface to ‘Keras’) 
[49] with TENSORFLOW library (R interface to 
‘TensorFlow’) [50].  

Following standard practice in predictive research, 
we evaluated the model’s performance “out-of-sample” 
[51]. We used one set of data to train our model and 
another one to test it. For this, the original dataset was 
split by 80-20 for training and testing sets respectively. 
Further, since the aim of our model was to classify 
images based on the presence of humans trapped under 
debris, our dataset consisted of categorical/classifiable 
images. However, a CNN model is not capable of 
identifying classes directly which led us to the next step 
of modifying our classifiable dataset. We used One-Hot 
Encoding and assigned a new binary value for each 
unique class description [52]. Thus, “0” represented 
images without any human traces and “1” represented 
images with human body parts present. 

Finally, the model was built as a sequence of four 
types of layers: convolutional layer (conv), pooling 
layer (pool), rectified linear unit layer (reLU) and fully-
connected layer (fc).  
i. Input [128x128x3]: held the raw pixel values of 

each image; 
ii. conv layers: computed output of neurons 

connected to local regions of input; 
iii. reLU layers: applied elementary activation 

function; 
iv. pool layer: performed down-sampling along 

spatial dimensions; 
v. classifier layer: last layer of model (‘softmax’ 

function used under cross-entropy regime) [49]. 
The parameter description of the layers in our CNN 
model is as shown in Table 2.  
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Table 2: Parameter description of layer in CNN model 

Layer Type Memory (~ in 
Millions) 

Parameters 

Input 0.049 0 
conv3_64 1.05 1,728 
pool2 0.24 0 
conv3_128 0.52 73728 
conv3_128 0.52 147456 
pool2 0.14 0 
conv3_256 0.27 294912 
conv3_256 0.27 589824 
pool2 0.07 0 
conv3_512 0.13 1179648 
conv3_512 0.13 2359296 
pool2  0.03 0 
fc 0.005 102760448 
Total memory: 2.2M * 4 bytes ~ = 8.9 MB / image 
Total parameters: 107M parameters 

 
5. Results 
 

To study whether image classification and analysis 
method could help classify images of disaster-affected 
zones based on the presence of humans trapped under 
debris, we built our CNN model as described in the 
previous section. A summary of our results are 
presented in Figure1(a) and Figure 1(b). The horizontal 
axes represent the number of ‘epochs' of the model, 
where one epoch is equal to the number of images 
divided by the batch size. 

The model measures performance by evaluating loss 
and accuracy on the training and testing sets for each 
epoch, giving rise to four values: training loss, testing 
loss, training accuracy and testing accuracy. Accuracy 
lies in the range of [0,1] while the loss is not. This is so 

because loss is measured as a negative log-likelihood for 
errors made in training or testing sets for each image.  

The plots of both losses in Figure 1(a) show a 
decreasing nature with each epoch and those of 
accuracies in Figure 1(b) display an increasing nature 
as expected.  
 
6. Discussion 
 

To describe the performance of the classifier model 
on our image dataset, we created a 2 × 2 confusion 
matrix as shown in Table 3. The four quadrants 
(clockwise, starting from the first left corner) represent 
four cases of results from the classification model, 
which are as follows:  

i. 1st quadrant: TP (true positive) denotes the 
number of correctly detected images with 
human body parts present;  

ii. 2nd quadrant: FP (false positive) denotes the 
number of images without human body parts 
that are incorrectly detected as those with 
human body parts;  

iii. 3rd quadrant: FN (false negative) represents the 
number of images with human body parts 
present that are detected as those without human 
body parts; and  

iv. 4th quadrant: TN (true negative) represents the 
number of correctly classified images without 
any human traces.  

 
Hence, as shown in Table 3, for the final dataset of 

541 images, our proposed CNN model was able to 
accurately classify 450 images. These accurately 
classified images belong to either of TP or TN cases. 
Whereas, FP and FN are the cases where images were 
 

 
Figure 1: (a) Plot of training loss (loss) and testing loss (val_loss) (b) Plot of training accuracy (acc) and testing 

accuracy (val_acc) 
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incorrectly classified, which provide scope to 
enhance the performance of the model. Thus, one of 
these two false cases generally needs to be 
minimized depending on the problem situation and 
its context. Since the primary aim of disaster 
response management is to save lives, authorities 
can afford to have false positive situations, but not 
false negatives. While false positives will increase 
the resources needed for disaster response, false 
negative might lead to loss of lives due to 
misclassification. False positives, in this situation, 
are acceptable within a limited range too.  

Extending our discussion on performance, we 
should note that the confusion matrix is not a 
performance measure of a model in itself, rather 
performance metrics can be derived from it. Of all 
the available metrics to judge classification models, 
the performance of our image classification model 
was evaluated using the four commonly used 
metrics: precision (P), recall (R), F-measure (F), and 
accuracy (A) [53] (defined in Equations (1)–(4)).  

 

𝑃 =	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃………………………(1) 

𝑅 =	
𝑇𝑃

𝑇𝑃+ 𝐹𝑁………………………(2) 

𝐹 =	
2𝑃𝑅
𝑃 + 𝑅……………………………(3) 

𝐴 =	
𝑇𝑃+ 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁…………(4) 

 
where TP, TN, FP, and FN have meanings as 

discussed above.  
The overall accuracy of our model was found to 

be 83.18% which is an acceptable measure for such 
classification models, refer [54]. Table 4 shows the 
prediction accuracy scores for a sample of images 
obtained by our model. While our model accurately 
identifies the three images, it is unable to decisively 
predict the third image. Precision signifies the 
proportion of images that our model correctly 
identified as having human body parts out of all 
images that had human body parts present. The 
precision for our model stands at 85.87%. Another 
metric to measure the accuracy of CNN models is 
recall which signifies the proportion of images that 
actually had human body parts present and were also 
identified as having human body parts. The recall for 
our model was calculated as 82.6%. While precision 
reveals how our model performed with respect to 
FP, recall reveals its performance with respect to 
FN. Therefore, recall is slightly more important in 
this context where the aim is not to classify all 
images correctly, but to accurately classify images 
that have any human body part present. Since any 
mistake in identifying a human body part in debris 
can directly be fatal to human lives and hence will 
make this entire exercise irrelevant for disaster 
response. The F-measure of our model was found to 

be 83.89%. It is a combined metric of precision and 
recall.  

Our findings indicate that a multi-layer 
convolutional neural network is adept at obtaining 
significant results on a large challenging dataset 
with supervised learning. We found that our model’s 
performance kept on reducing by around 1.3% as we 
kept removing each convolutional layer. This 
indicated that depth was necessary for satisfactory 
results.  

 
Table 3: 2x2 Confusion matrix for the CNN model 

n= 541 Actual “1” Actual “0” RowTotal 
Predicted “1” 237* 39** 276 
Predicted “0” 52*** 213**** 265 

*True Positive **False Positive ***False Negative ****True 
Negative 
“0” refers to images without human traces 
“1” refers to images with human body parts present 

 
Also, we did not use unsupervised learning, but 

we expect that it will have a positive impact on 
results. However, usage of unsupervised learning for 
practical purposes has its own trade-offs. While it is 
expected to perform significantly well with the same 
amount of image data as has been used in this article, 
but it would be achievable at the cost of higher 
computational power to significantly increase the 
depth of the convolutional neural network. 

 
7. Implications 
 

Our findings have significant theoretical 
implications for usage of the huge visual smart city 
data for disaster management, and in particular for 
search and response tasks. Further, our extensive 
review of existing literature on the usage of 
unstructured smart city data (primarily textual and 
visual) serves as an easy reference to the various 
dimensions of research on this topic. We noted that 
this data had been analyzed primarily for 
developmental issues of smart cities like 
transportation, vehicle parking, waste, and energy 
management. Also, a review of applications of 
image classification reveals that it has mostly been 
studied for bioinformatics, medical imagery, drug 
compositions, while very few works exist for urban 
solutions. Hence, our innovative approach to the 
usage of advanced ML techniques for smart city 
disaster management provides new avenues for 
future research. Our novel application of existing 
visual data streams from smart city devices presents 
new opportunities for further research in smart city 
management domain. Although we have used 
images from earthquake-hit zones of smart urban 
environments, this analysis can be extended to other 
disasters like landslides, forest fires, etc. with some 
modification and further training of the CNN model. 

Our study has important practical implications 
for disaster management in general and smart cities 
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in particular. Our demonstration of the potential of 
image data analytics from existing data streams for 
disaster management provides a novel application of 
smart city infrastructure. The findings of the study 
will be useful for smart city planners and regulators. 
The benefits of more accurate information of the 
disaster situation will be especially helpful for 
disaster response planning. Improvements in 
efficiency and effectiveness of disaster response 
planning also ease the stress on limited resources 
available immediately after. Hence, the learnings 
from this approach will be extensible to 
conventional urban infrastructures later.  

Lastly, the proposed model is expected to 
witness a linear increase in computational time and 
resources required with an increase in number of 
layers (i.e., depth of the network) and an increase in 
number of input images. However, as timeliness is a 
major concern in disaster response activities, these 
challenges need to be addressed in real life situations 
to maintain the model’s efficiency. For example, this 
could be done by using pooling layers which are 
responsible for reducing input size at each 
convolutional layer of CNN model.  
 
8. Conclusion 
 

Our study proposes a novel approach to disaster 
response specifically for smart city environments 
while stressing the importance of the immediate life-
saving response to rescue trapped survivors in 
disaster zones. Initial stages of search and response 
necessitate proper planning to assign the limited 
resources, such as geographically distributed rescue 
and first aid teams along with their heavy technical 
equipment, to disaster locations. Moreover, the 
search and rescue work in some locations may be 
challenging depending on the extent of damage to 
the urban structures and public services in those 
areas. Thus, effective response post-disaster requires 
accurate and updated information of the types of 
structures affected, the extent of damage, layout of 
the affected areas, potential hazards and most 
importantly about the number of lives trapped. This 
assessment is especially crucial for disaster 
response.  

However, these disaster-hit zones are risky for 
rescue workers too. Hence, it is important to identify 
solutions to conduct search and rescue operations 
safely with accurate knowledge of the disaster zone. 
This study is an attempt to alleviate these concerns. 
Our focus was on requiring minimal changes to the 
existing smart city infrastructure by utilizing huge 
amounts of data already captured by the installed 
cameras to aid decision makers and rescue team 
workers. Though our proposed solution would be 
applicable for every disaster situation with the help 
of camera-equipped drones which are slowly 
becoming common in rescue teams. However, this 
technique will be difficult to implement in 

conventional urban environments as it would also 
add to the already skyrocketing costs due to damages 
from the disaster. As these techniques mature, 
conventional urban spaces might also consider 
equipping themselves with cameras and other 
appropriate infrastructure for disaster preparedness.  

Thus, deep learning on the unstructured visual 
data of a smart city holds promise for large-scale 
implementation. Our study is in progress and 
extension of the ongoing research would be 
necessary before being deployed in actual disaster 
situations. We will be expanding our image dataset 
to make our model richer and operationalizable. As 
social media images, taken on-the-ground during 
disaster situations, could also provide valuable 
information to further enhance disaster response 
activities, we will be incorporating them into our 
future study. We will also be extending our analysis 
using deep convolutional networks to analyze video 
data streams that have the potential to provide richer 
information than static images. 

 
Table 4: Sample input images and their classificat- 
ion by the proposed image analytics method 

Sample Input Images 
Dataset 1 
Prediction 
Accuracy 

Dataset 2 
Prediction 
Accuracy 

 

0.02527 0.97473 

 

0.66438 0.33562 

 

0.59311 0.40689 

 

0.93117 0.06883 

Description: While image 1 does not have any human 
bodies, images 2 and 3 have human body parts, and image 
4 prominently has whole human bodies. Dataset 1 denotes 
images with human bodies present 
Dataset 2 denotes images without human bodies present 
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