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Abstract 
 
An improved neuro-fuzzy based group method of data handling using the particle swarm 

optimization (NF-GMDH-PSO) is developed as an adaptive learning network to predict the 

localized scour downstream of a sluice gate with an apron. The input characteristic 

parameters affecting the scour depth are the sediment size and its gradation, apron length, 

sluice gate opening, and the flow conditions upstream and downstream of the sluice gate. Six 

non-dimensional parameters were yielded to define a functional relationship between the 

input and output variables. The training and testing of the NF-GMDH network are performed 

using published scour data from the literature. The efficiency of the training stages for the 

NF-GMDH-PSO is investigated. The testing results for the NF-GMDH network are 

compared with the traditional approaches based on regression method. A sensitivity analysis 

is carried out to assign the most significant parameter for the scour prediction. The results 

showed that the NF-GMDH-PSO network produced lower error in scour prediction than all 

other models.  
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1. Introduction 
   
A sluice gate is a hydraulic structure commonly used to control flow and as a discharge 

measurement device in irrigation channels or rivers, and often applied in water treatment 

plants, mining, dams, rice fields, and cranberry bogs. The gates may be typically made of 

wood and metal. In addition, slide vertically on a frame to open or close, allowing water to 

flow out of a space or to be contained in it. Hence, these machines are called as a sluice gate 

valve. Sluice gate design is usually in the form of a vertical sliding system, but can also 

operate like a flap system and even in cylindrical shape. 

It is a common practice to install an apron to protect and prevent the erosive effects of the 

flow downstream of a sluice gate. The localized scour hole can be expected to decrease 

considerably with a launching apron.  The design and projection of an apron is based mostly 

on laboratory works due to the complexity of the flow conditions and the associated scour 

phenomena below the hydraulic structure.  

Over the past few decades, many experimental investigations on scour downstream of an 

apron have been carried out (Breusers, 1965; Chatterjee and Ghosh, 1980; Hassan and 

Narayanan, 1985; Chatterjee et al., 1994; Balachandar and Kells, 1997; Balachandar et al., 

2000; Kells et al., 2001; Lim and Yu, 2002; Dey and Westrich, 2003; Dey and Sarkar, 2006; 

Hamidifar et al., 2011).  

In spite of the reported experimental datasets, it is difficult to comprehensively capture the 

influences of the various relevant parameters on the scour produced because of inherent 

limitations in the lab facilities and range of experiments that can be conducted. Hence, 

conventional approaches using regression-based techniques to predict the scour depth are 

common.  The empirical equations proposed by these techniques are necessarily restricted to 

the range of the database used in their derivation.  One noticeable fault in empirical formulas 

is the difficulty to quantify and validate the effects of dynamic and kinematic scaling laws on 
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the scour profiles (Lim and Yu, 2002; Dey and Sarkar, 2006).  Recently, artificial 

intelligence approaches have been increasingly used to solve complex problems in different 

fields of water, geotechnical and transportation engineering (Gandomi et al., 2013; Gandomi 

et al., 2013; Alavi and Gandomi, 2011; Gandomi and Alavi, 2011).  

In  hydraulic engineering,  predictions of scour  downstream of hydraulic structures have 

been conducted Azmathullah et al. (2005), and Azamathulla and Guven (2012b) reported 

works on  scour  downstream of ski-jump bucket spillway using the artificial neural networks 

(ANNs), Gene-expression programming (GEP), and non-linear regression analysis.  

Azamathulla et al. (2008a&b) also use the adaptive neuro-fuzzy inference systems (ANFIS) 

and genetic programming (GP) to predict scour downstream of ski-jump bucket based on 

field data. Guven and Gunal (2008a&b) proposed ANNs, GP, and GEP techniques to predict 

scour at grade-control structures. The general conclusion of these studies is that the artificial 

intelligences approaches are better in scour predictions than the traditional methods. These 

applications show the superiority of predictive methods based on iterative and evolutionary 

algorithms 

Amongst the various artificial intelligence methods, the group method of data handling 

(GMDH) network is known for its self-organizing approach to solve complex problems in 

non-linear systems (Hwang, 2006; Amanifard et al., 2008). Recently, alternative GMDH 

networks were utilized to predict scour around hydraulic structures. Najafzadeh et al. (2012) 

developed the GMDH model by the back propagation algorithm to predict scour below 

pipelines. An improved GMDH network by the back propagation algorithm, genetic 

programming, and levenberg-marquardt was developed to predict  scour around bridge piers 

(Najafzadeh and Barani, 2011; Najafzadeh and Azamathulla, 2013; Najafzadeh et al., 2013a; 

Najafzadeh et al., 2013b; Najafzadeh et al., 2013c; Najafzadeh et al., 2013d).  The GMDH 

approach has been used to identify behavior of non-linear systems such as forecasting of 
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mobile communication, explosive cutting process, tool life testing in gun drilling, 

construction of optimal educational test, control engineering, marketing, economics and 

engineering geology (Astakhov and Galitsky, 2005; Hwang, 2006; Witczak et al., 2006; 

Amanifard et al., 2008; Srinivasan, 2008; Jamali et al., 2009; Abdel-Aal and El-Alfy, 2009; 

Mehrara et al., 2009; Kalantary et al., 2009). Nagasaka et al. (1995) used a multi-stage fuzzy 

decision rule as neuro-fuzzy (NF) GMDH to model grinding characteristics, and Takashi et 

al. (1998) proposed the orthogonal and successive projection approach for the learning of 

NF-GMDH. Hwang (2006) applied the NF-GMDH model to forecast the unreliable mobile 

communication, configured through the least square training method. He found it to be 

excellent for forecasting problems with very high complexity. The NF-GMDH has higher 

flexibility and lower complexity compared to the GMDH network. The latter is a nonlinear 

model using a combination of quadratic polynomial of two parameters with multi-layer 

procedure. However, the NF-GMDH, as a multi-stage fuzzy decision networks, is more 

useful in nonlinear systems to identify a fuzzy feature. Moreover, the volume of calculations 

for NF-GMDH networks is lower compared to the GMDH, artificial neural networks (ANN), 

and adaptive neuro-fuzzy inference system (ANFIS). One useful feature of the NF-GMDH 

networks is the resulting analytical equations which can be obtained using partial 

descriptions based on multi-stage fuzzy rule decision (Hwang, 2006).  

In this study, a computer program has been coded for modeling the Neuro-Fuzzy GMDH 

network, and the particle swarm optimization (PSO) algorithm is applied to improve the 

topology design of the NF-GMDH for scour prediction downstream of a sluice gate with an 

apron protection. The performance of the proposed NF-GMDH model is compared to 

existing empirical equations based on regression method.  
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2.  Previous Scour Studies Downstream of Sluice Gates  
 
Many experimental studies have been conducted to determine the scour depth downstream of 

a sluice gate with and without an apron. For example, Breusers (1965) studied the scour time 

variations and presented a power function for predicting the scour time variation. Chatterjee 

and Ghosh (1980) proposed empirical equations to calculate the bed shear stress in the 

equilibrium scour hole downstream of a sluice gate. Hassan and Narayanan (1985) proposed 

a semi-empirical approach to predict the rate of scour below a sluice gate.  Chatterjee et al. 

(1994) proposed a scour time relationship based on their experiments for submerged jet 

issuing from a sluice opening.  

Balachandar and Kells (1997 and 1998) used video recording to analyze the instantaneous 

variations of water surface and scour profile development for scour downstream of sluice 

gate. Balachandar et al. (2000) studied the effects of tail water depth on the scour depth, and 

Kells et al. (2001) investigated the effects of bed sediment gradations on the scour depth. 

Lim and Yu (2002) carried out an extensive experimental study of scouring downstream of 

sluice gates, with particular focus on the effects of the apron length on scour depth. They 

observed a cyclical jet-flipping phenomenon in the local scour under certain hydraulics 

conditions. Dey and Westrich (2003) presented an equation for the bed shear stress in local 

scour by solving the von Karman momentum integral equation. A comprehensive study by 

Dey and Sarkar (2006) investigated the effects of various parameters on the scour depth and 

proposed equation for its prediction. Hamidifar et al. (2011) found that a minimum reduction 

of 60% in scour can be obtained for a rough apron compared with the smooth apron. In this 

study, a comprehensive scour database has been compiled from these past studies and used to 

train and test the proposed NF-GMDH-PSO networks for scour downstream of a sluice gate 

with an apron. 
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3. Scour Modeling 
 
Fig. 1 shows a typical definition sketch of local scour caused by a submerged jet issuing from 

a sluice gate with an apron. The main parameters affecting the scouring process are the 

characteristics of the bed sediments, apron length, sluice gate opening size, and the flow 

conditions upstream and downstream of sluice gate (e.g., Hassan and Narayanan, 1985; 

Chatterjee et al., 1994; Balachandar and Kells, 1997; Kells et al., 2001; Lim and Yu, 2002, 

Dey and Westrich, 2003; Dey and Sarkar, 2006). A functional relationship between the scour 

depth and the effective parameters can be expressed as follows:  

),,,,,,,,,( 50 gdhlbUfd sgs ρρµσ=                                                                 (1) 

where sd ,U , , l , h , 50d , ,µ , ρ , , and g  are the scour depth, issuing jet velocity, sluice 

gate opening, apron length, tail water depth, median sediment size, geometric standard 

deviation, dynamic viscosity of water, mass density of water, mass density of bed material, 

acceleration due to gravity, respectively.  

Using dimensional analysis, the following function is obtained: 

),,/,/,/(Re,/ 050 gs Frbdblbhfbd σ=                                                                           (2) 

where Re  and 0Fr  are the Reynolds number and densimetric Froude number, respectively. 

The Re  and 0Fr non-dimensional parameters are defined as follows: 

  (3) 

500 ).1.(/ dSgUFr −=                                                                                                     (4)                                

where S  is the relative density of sediments defined as ρρs . In most cases, the jet velocity 

is relatively high and Re is in the fully turbulent range. Hence, the influence of the viscosity 

on the jet hydraulics and scouring may be eliminated (Lim and Yu, 2002; Dey and Sarkar, 

2006).  Eq. (2) can be reduced to the following function:  

 

b gσ sρ

µρ /Re Ub=
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),,/,/,/(/ 050 gs Frbdblbhfbd σ=                                                                                (5) 

In the application of artificial intelligence methods for scour modeling, it has been found that 

modeling using dimensionless parameters produced better scour predictions than that using 

dimensional parameters (Guven and Gunal, 2008a; Najafzadeh and Barani, 2011; Azamatulla 

and Ghani, 2011 Azamathulla, 2012).  

In this study, Eq.(5) issued to develop the NF-GMDH-PSO model for scour prediction. The 

scour database consists of 228 datasets collected from Hamidifar et al. (2011), Dey and 

Sarkar (2006). Table 1 presents the ranges of datasets. We select randomly about 75% (171 

datasets) and 25% (57 datasets) to perform the training and testing stages, respectively. Two 

empirical equations proposed by Dey and Sarkar (2006) and Lim and Yu (2002) are also 

selected (Table 2) to predict the scour depth based on the testing conditions in the database. 

 

4.1. Framework of Neuro-Fuzzy GMDH 
 

The GMDH network is a learning machine based on the principle of heuristic self-

organizing, proposed by Ivakhnenko in the 1960s. It consists of a series of operations of 

seeding, rearing, crossbreeding, selection and rejection of seeds which correspond to the 

determination of the input variables, structure and parameters of the model, and the selection 

of model by the principle of termination (Malada and Ivahknenko, 1994). The other 

descriptions of GMDH network can be found in the literatures, such as Iba and de Garis, 

1996; Amanifard et al., 2008; and Onwubolu, 2008. In this study, a neuro-fuzzy GMDH 

model based PSO algorithm has been proposed for scour depth prediction. The structure of 

the neuro-fuzzy GMDH is constructed automatically using heuristic self-organized algorithm 

(Hwang, 2006). This is a very flexible algorithm and can be easily hybridized by other 

iterative and evolutionary algorithms. 
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Furthermore, a simplified fuzzy reasoning rule is utilized to improve the GMDH network as 

follows (Takashi et al., 1998): 

If 1x is 1kF  and 2x  is 2kF , then, output y  is kw . 
 
 Gaussian membership function is used in term of kjF which is related to the kth fuzzy rules  
 
in the domain of the jth input values jx .  
 

                                                                      (8) 

 
which kja  and kjb  are constant values for each rules. Also, y  parameter is defined as output  
 
that has been expressed as follows: 

 (9) 

 (10) 

                                                                                                                 
where kw  is real value for kth fuzzy rules (Takashi et al., 1998; Hwang, 2006). 
 
The neuro-fuzzy GMDH model is one of the adaptive learning network that has hierarchical 

structure. In this model, each neuron has two input variables and one output. A general 

configuration of the model is shown in Fig. 2. In this figure, the output of each neuron in a 

layer is considered as the input variable for the next layer. The final output is calculated 

using the average of the outputs from the last layer. From Fig.2, it can be said that the inputs 

from the mth model and pth layer are the output variables of the (m-1)th and mth model in 

the (p-1)th layer.  The mathematical function for calculating the pmy  is , 
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where pm
kµ  and pm

kw are the kth Gaussian function and its corresponding weight parameter, 

which are related to the mth model in the pth layer, respectively. In addition, the pm
ka and pm

kb

are the Gaussian parameters for the ith input variable from the mth model and pth layer, 

respectively. The final output is expressed using the following function: 

 

The learning process of feed forward neuro-fuzzy GMDH is known as an iterative method to 

solve complicated systems. In each iteration, the error parameter for the network can be 

obtained as follows: 

 
 (14) 

 
where ∗y is the predicted value. 
 
 
4.2. Development of Neuro-Fuzzy GMDH Using PSO Algorithm 
 
In this study, the neuro-fuzzy (NF) GMDH model is developed using the PSO algorithm. The 

basic structure of the NF-GMDH consists of partial descriptions (neurons). As mentioned in 

the previous section, the grouped parameters in the form of Gaussian variables and weights 

related to the fuzzy rule are unknown in each partial description (PD). The PSO algorithm 

has been applied to optimize the grouped-unknown parameters in PDs. Performing the NF 

and PSO is a parallel action in each PD. Also, two fuzzy rules were used to model the neuro-

fuzzy in each PD. The NF-GMDH-PSO has five input variables and one output. Through 

modeling the NF-GMDH-PSO, 10 PDs were produced in the first layer. The second layer 

was generated using 10 PDs from the first layer. This process could be continued until a 

minimum error of training network is obtained. The NF-GMDH-PSO model with three layers 
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was generated through an optimization process. The training error of the optimization 

process was 1.024. Table 3 shows the values of the PSO properties for predicting the scour 

depth downstream of sluice gates. 

The error values related to the PDs for each layer are shown in Fig.3. From performing the 

training stage, many PDs for the first layer are given as follows: 

 

 (15) 
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The superscript and subscript of each parameter represent the number of pertaining layer and 

partial description, respectively. Fig. 4 shows the proposed structure of the NF-GMDH-PSO 

for scour depth modeling downstream of a sluice gate. 

To reduce the volume of calculations, only three layers for the NF-GMDH-PSO model has 

been considered. The number of fuzzy rules in each neuron corresponds to the assumptions 
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of the NF-GMDH-PSO model. The number of layers and properties of the PSO algorithm are 

also related to the limitations of the proposed model. 

 

5. Results and Discussion 
 
 
The results of scour predictions using the proposed NF-GMDH-PSO model and the 2 

empirical equations are presented in this section. The correlation coefficient (R), root mean 

square error (RMSE), scatter index (SI), BIAS, and mean absolute percentage of error 

(MAPE) can be defined to evaluate the error indicators in the training and testing stages 

(Azmathullah et al., 2005; Najafzadeh et al., 2013b), as follows: 

 

 (18) 
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where )(modeliY  is the predicted values (network output), )( ActualiY is the observed values 

(target), and M  is the total number of events. 

The proposed NF-GMDH-PSO model and traditional methods should be compared using a 

suitable criterion and not just using R or error functions only. For this reason, R will not 

change significantly by shifting the output values of a model equally, and the error functions 

in terms of RMSE and MAPE only indicate the error and not the correlation. In this way, the 

suitable criteria parameter should be a combination of R and error functions. A recent study 

by Gandomi and Roke (2013) suggested using ρ as a statistical parameter,  to replace SI and 

it is defined as follows: 

 

                                                                                                        (23) 

 

The statistical results of the NF-GMDH-PSO network for the training and testing stages are 

presented in Table 4. In the training stage, it can be seen that the NF-GMDH-PSO network 

predicted the scour depth with higher performance. The proposed model have 31 partial 

descriptions (PDs), consisting of 10 PDs for the first layer, 20 PDs for the middle layer, and 

one PD for the output of the network. The training result of the NF-GMDH-PSO has low 

error parameters (R=0.9, RMSE=1.05, and MAPE=0.129). The BIAS and ρ values for the 

training stage were -0.154 and 14.45, respectively.  

In the testing stage, it can be said that the NF-GMDH-PSO network predicted the scour depth 

with low error (RMSE = 1.12 and MAPE = 0.455) and high accuracy (R=0.94, BIAS=0.454, 

and ρ=16.7). Fig. 5 shows the scatter plots between the predicted and observed scour depths 

for the training and testing of the NF-GMDH-PSO model. 

In Fig. 5, the scour predictions using Eqs. (6) and (7) proposed by Dey and Sarkar (2006), 

and Lim and Yu (2002) are also shown. The results show that Eq. (6) produced lower error 
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(RMSE=10.12 and MAPE=2.25) but lower accuracy (R=-0.68), compared to the NF-

GMDH- PSO model. From Table 4, it can be seen that the BIAS and ρ parameters obtained 

from Eq. (6) (3.95, 1271.8) has higher error than NF-GMDH-PSO. It should be pointed out 

that Eq. (6) was proposed for a restricted range of datasets, whilst wider ranges of input and 

output parameters were used in the NF-GMDH-PSO model. 

The statistical results using Eq. (7) are given in Table 5. The table show that Eq. (7) 

predicted the scour depth with lower error (RMSE=6.16 and MAPE=1.45) and higher 

accuracy (BIAS=2.45 and ρ=354) than Eq. (6). It should be noted that Lim and Yu’s (2002) 

Eq (7) also included the five non-dimensional variables that were used in the present scour 

model. For the empirical equations, the availability of experimental datasets and the 

mathematical feature of the empirical equations are  the most significant factors to give 

accurate scour depth predictions. Practically speaking, it is evident that the lack of validation 

for the traditional empirical methods is related to the limitations of the effective parameters 

tested in a lab set-up and therefore not all  the physical behavior of scour process can be 

captured accurately (Guven and Gunal, 2008a&b; Najafzadeh et al., 2012; Najafzadeh et al., 

2013a,b,c). Fig. 6 shows the scatter plots between the predicted and observed scour depths 

for the NF-GMDH based models and the empirical equations.  

 
 
6. Sensitivity Analysis 
 
A sensitivity analysis is carried out for the NF-GMDH-PSO network in order to assign the 

most effective parameters for the model. The analysis is conducted such that one parameter 

from Eq.(5) is eliminated each time to evaluate the effect of that input on the output. The 

results indicated that the parameter, bl /  (R=0.53, RMSE=1.45, MAPE=1.82, BIAS=1.105, 

and ρ=32.67) is the most effective parameter on the scour depth, and bd /50  (R=0.9, 

RMSE=0.87, MAPE=0.33, BIAS=0.04, and ρ=12.52) has the least influence. The other 
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effective parameters are the 0Fr , gσ , and bh / , which are ranked from high to low values, 

respectively. The statistical error parameters obtained from the sensitivity analysis are given 

in Table 6. The table shows the outcomes of the sensitivity analysis are in agreements with 

previous investigations. For instance, the experimental observations reported by Dey and 

Sarkar (2006), Lim and Yu (2002) also found that bl / and 0Fr are the two main effective 

parameters for scour downstream of sluice gate.  

 

7. Conclusion 

 
In this study, the structure of a neuro-fuzzy GMDH network is developed as a self-organized 

method to predict the scour depth downstream of a sluice gate with an apron. An 

evolutionary algorithm of PSO is developed with the NF-GMDH network for the training 

stage. In order to avoid a network with lower complexity, the NF-GMDH-PSO model is 

designed using three layers with each layer having 10 partial descriptions. The  empirical 

equations proposed by Dey and Sarkar (2006), and Lim and Yu (2002) are used to compare 

with the predictions using the NF-GMDH-PSO model using datasets collected from 

literatures for the training and testing of the networks. Five inputs and one output parameters 

are derived based on dimensional analysis of the most effective parameters affecting the 

scour processes. The performing of the NF-GMDH network for the training stage indicated 

that the proposed NF-GMDH-PSO network provided accurate predictions (RMSE=1.05 and 

MAPE=0.129). In the testing stage, the NF-GMDH-PSO network yielded better scour  

predictions with relatively lower error (RMSE=1.12, MAPE=0.455, and ρ=16.7) than those 

calculated  using  the empirical equations. For the latter, Eq.(6) proposed  by Dey and Sarkar 

(2006) provided  higher error (RMSE=10.12 and MAPE=2.25) and lower accuracy (R=-0.68) 

than the other models. The results of the sensitivity analysis indicated that bl /  and 0Fr  are 
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the most important parameters in the scour model of the NF-GMDH-PSO network. The 

application of the PSO algorithm as an evolutionary approach to improve the NF-GMDH 

network has been proven and this method can be used as a new soft computing tool for scour 

prediction downstream of a sluice gate with an apron. 
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Table 1. Ranges of input-output parameters for the scour depth prediction 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Empirical equations for the scour depth prediction at sluice gates 

 
 
 
 
Table 3.Values of the PSO properties for predicting the scour depth at downstream of sluice 

gate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Range 
)(mh  0.103-0.986 
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)(mb  2-20 

)(50 md  0.00026-0.00556 

sec)/(mU  0.89-2.21 
).( sPaµ  0.001 

sG  2.65 

gσ  1.06-3.92 

)(mds  0-0.11 

Empirical Equations Authors Eq.no 
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Lim and Yu(2002) (7) 

Parameter Range 
Omega 0.04-0.09 

Number of Particles 30 
Number of Variables 6 
Maximum Iteration 50 

error 0.00001 
C1 and C2 2.5 

x 0.1-1.5 
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Table 4. Results of Performances for training and testing stages of NF-GMDH-PSO 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Table 5. Resuls of Performances for NF-GMDH-PSO and empirical equations 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Stage R RMSE MAPE BIAS ρ 
Training 0.91 1.05 0.129 -0.154 14.45 
Testing 0.94 1.12 0.455 0.454 16.7 

Methods R RMSE MAPE BIAS ρ 
NF-GMDH-PSO 0.94 1.12 0.129 -0.154 16.7 

Eq.(6) -0.68 10.12 2.25 3.95 1271.8 
Eq.(7) -0.5 6.16 1.45 2.45 354 
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Table 6. Results of sensitivity analysis for NF-GMDH-PSO model  

 
Functions R RMSE MAPE BIAS ρ 

),/,/,/(/ 050 Frbdbhblfbds =  0.85 1.1 0.44 3.05 16.92 

),/,/,/(/ 50 gs bdbhblfbd σ=  0.77 1.57 0.65 -0.989 24.97 

),,/,/(/ 0Frbhblfbd gs σ=  0.9 0.87 0.33 0.04 12.52 

),,/,/(/ 050 Frbdblfbd gs σ=  0.89 1.26 0.42 0.7 17.99 

),,,/(/ 050 Frdbhfbd gs σ=  0.53 1.45 1.82 1.105 32.67 
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Fig. 1. Schematic sketch for scour process of an apron downstream of sluice gate (Dey and 
Sarkar, 2006). 
 
 
 
  
 
 

 
 
 
                               Fig.2 . A case for structure of the neuro-fuzzy GMDH 
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Fig.3. Values of training error for three layers of proposed NF-GMDH-PSO. 
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Fig. 5. Scatter plot of observed and predicted scour depth for training and testing stage of 
NF-GMDH-PSO 
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Fig. 6. Scatter plot of observed and predicted scour depth for testing stages of NF-GMDH-
PSO and empirical equations. 
 
 
 


