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Abstract—In this paper, criteria on uniform equi-boundedness used to drive the driven system. These samples are called the
and equi-Lagrange stability for impulsive systems are derived. synchronization impulses and are employed to impulsively
These criteria are used to synchronize two nonidentical chaotic control the error system between the drive and the driven
systems by impulsively controlling a nonautonomous second order t Th totic stability of th d S
system, which leads to the development of an induced-messageSys ems. € asymp otic stability O_ .e error dynamics Is
scheme for communication system security. With the scheme, €stablished, assuring the synchronization between the two
message signals are not transmitted across public channels, butsystems and an upper bound on the time interval between the
induced at the receiver end. The scheme overcomes the transmis-impulses is obtained. A generalization of this particular type
sion time-frame congestion in impulsive cryptosystems dlscussedof synchronization to time-varying impulse intervals has been
in the literature and improves system security. Simulation results further d I din 13 h | fi diti
are given to demonstrate the performance of the proposed scheme. urther developed in [ _]' WiETe es_s Con_serva Ve condl |on_s

on the Lyaponov function are obtained in the sense that it
is required to be nonincreasing along a subsequence of the
switching. Further detailed analysis of impulsive control and
impulsive synchronization of chaotic systems are presented in
[11], [12], [25], [26].
. INTRODUCTION A number of interesting chaotic spread spectrum commu-

MPULSIVE differential equations have gained consideflication security systems based on continuous and impulsive
I able attention in science and engineering [14], [15], [17§ynchronization have been proposed [2], [3], [], [10], [19],
[24], [31], [32] in recent years, since they provide a natur 7], [29]. In the systems, message signals are masked or
framework for mathematical modeling of many physica{podulated by chaotic spreading signals (encryption) and the
phenomena. Examples include population-growth models [lr,@]sulting signa!s are transmitted t_o the receivers across publlic
and maneuvers of spacecraft [17]. Impulsive control, Whicqhannels.. An identical _synchronlzano_n between lthe chaogc
is based on the theory of impulsive differential equation§yStéms in the transmitter and that in the receiver [20] is
has gained renewed interests recently for controlling chaofgquired for recovering the encrypted signal at the receiver end.
systems. It allows the stabilization of a chaotic system usirfy "umber of robust communication systems employing the
only small control impulses, even though the chaotic behaviyy© types of synchronization have been developed [9], [22],
may follow unpredictable patterns (in general, chaotic signd3l- It has been shown that impulsive synchronization systems
are broadband, noise like, and difficult to predict) [15], [24]MaY be combined with conventional cryptographic techniques
[32]. The impulsive control of nonautonomous chaotic sy$27]: [28] to achieve the two desired properties of increasing
tems, such as the Duffing’s oscillator, is investigated in [30{he complexity and reducing the redundancy of the transmitted
Instead of controlling the nonautonomous chaotic system to @ignals. It has been further established that impulsive synchro-
equilibrium position, the stabilization of the chaotic system {ization achieves efficient bandwidth utilization [20]. However,
achieved in a small region of the phase space using the notipg Proposed impulsive synchronization systems suffer from
of practical stability. the transmission time-frame congestion [4], [6], [8], [18].

The study of impulsive synchronization of two identical N impulsive synchronization systems rely on combining
chaotic systems is one of the most important applications € encrypted signal with the synchronization impulses in the
impulsive control. In [21], [27], and [28], two autonomoudorm of time.fr_ame.s each of .Iengtﬁ s and tran.smitting them
chaotic systems, the drive system and the driven system, h@¢g0Ss a unidirectional public channel. The impulses occupy
been considered for impulsive synchronization. Samples @fS Of the total length of the time framg, whereQ < T

the state variables of the drive system at discrete instances@pé the encrypted signal is carried on the remairfing @ s.
The accuracy of synchronization depends on both the pé&tiod

and the width of the impulse samplé€s where the minimum
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In this paper, a new cryptosystem is proposed to resolveDefinition 1: Let M > 0 andV € vy(M). Define the upper
the time-frame-congestion problem and to enhance the sight derivative ofl/ (¢, x) with respect to the continuous portion
curity of the transmission. First, impulsive synchronizatioof system (1), folt,x) € R, x S¢(M)? andt # t3, by
of second-order chaotic systems is studied. Conditions for 1
uniform equi-boundedness and equi-Lagrange stability afe"V(t,x) = Jm sup <[V(t+8,x + 6£(t,x)) = V(£ x)].
derived for a particular type of impulsive system. Second, (2)
an induced-message scheme based on these conditionsrégn Definition 1, ifV (¢, x) has continuous partial derivatives
developed for communications system security. It is shown thaith respect ta andx, then, by (2), we have
the induced-message scheme can improve the secure trans- ] vV (t,x) IV(L,x)
mission by reducing time-frame congestion described in [4], DTV (t,x) = V(t,x) = at7 (‘)x -f(t,x).
[6]-[8], [18] and by preventing the transmission of the key and , , ) i
encrypted signals across the public channels. The remaindeFHFthermore’ ite(t) is a solution 0]; (1) on some open interval
the paper is organized as follows. In Section I, several cond|-C R+ for (£.x(t)) € J x 5¢(M) andt # t;., we have
tions concerning uniform equi-boundedness and equi-Lagrange,V(t (1))
stability are stated and proved. In Section lll, these conditions ’

are applied to obtain sufficient conditions for impulsively Definition 2: Solutions of the impulsive system (1) are said
controlling a second order nonautonomous impulsive systefg.pe

In Section 1V, the induced-message cryptosystem is presented. (S1)equi-attractive in the large if for each> 0, & > 0
Simulation results are shown in Section V, followed by the andt, € R, there exists a numbF - T'(fo E.Q) 0

conclusions in Section V. such that|xo || < « implies||x(t)|| < ¢, fort > to + T;
(S2)uniformly equi-attractive in the large if’ in (S1) is
Il. PRELIMINARIES independent of,.

o , L , ) Definition 3: Solutions of the impulsive system (1) are said
To facilitate the discussion, it is convenient to introduce tl}g be

notations as shown at the bottom of the page wiidre 0.

Impulsive differential equations are usually defined as an or-
dinary differential equation coupled with a difference equation,
as expressed in the following system:

. 1
:511_>H&+SUP 3 [V(t+6,x(t+06))— V(t,x(1))].

(B1)equi-bounded if for each > 0, ¢ty € R4, there exists
a constanfs := f(tp, ) > 0 such thaf|x|| < « implies
that||x(t)|| < g, fort > to;

(B2) uniformly equi-bounded if3 in (B1) is independent

{X:f(tvx)-/ t#tk of to;

Ax=1(t,x), t=t (1) (B3) equi-Lagrange stable if (S1) and (B1) hold together;
T Pk (B4) unformly equi-Lagrange stable if (S2) and (B2) hold
_ . together.
here Ax(tx) = x(tf) — x(t7), x(tf) = 1 1),
wnere X(.k) x(t) — x(t), (%) o x( )_ We shall need the following result [1], [16].
x(t;) = lim x(t), and the moments of impulse satisfy

t—t,

0=1t <t < L < tp < ---andlimp_,o tr = oo. Let

f,I: R,y x R” — R™ be continuous ottt tx+1] x R” and .

f(t1,x), I(t], x) exist for eachk = 1,2, .... This guarantees (Tl'l.) V'€ (M), for someM > 0 and there exist
k k . ; functionsa,b € KR such thath(||x||) < V(t,x) <

that, for eaclito, x¢) € Ry xR", there exists a local solution of (I, (£.%) € Ry x SE(M);

(1) satisfying the initial conditios (¢ ) = xo [11]. Letx(t) := “ P A S = T :

x(t, t0, x0) be any solution of (1) satisfying(£]) — xo and (T1.2)there exist functionp € PC andc;, € K, such that

x(t) be left continuous at eadly > t, in its interval of exis- DTV (t,x) < p(t)ex(V(E, %)), (£,X) € (tr, try1) x S°(M)°

tence, i.e.x(t, ) = x(tx). We have the following definitions. (3)

Theorem 1: The solutions of (1) are uniformly equi-bounded

Ko:={g9 € C[R4+,R4]: g(s) > 0if s > 0andg(0) = 0}
K :={g € Ky : g(s) is strictly increasing irs}
KR := {g ek: Qlinolog(s) = oo}
PC:={p:Ry — Ry : p(t) € C((tr, te41]) andp () existsk =1,2,...}
S¢(M) :={xeR":|x]| > M}
S¢(M)? :={x e R" : ||x|| > M}
vo(M) ::{V 'Ry x S°(M) — Ry : V(£,x) € C ((t, trp1] x S°(M))

locally Lipschitz inx andV' (¢}, x) exists fork = 1,2,.. }
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fork =1,2,..; This means that the sequengeu(tx)}32, is nonincreasing.
(T1.3)there exists a constait > 0 such thatifx(¢x)|| < Furthermore, since the sequence is bounded from below, it
M, then||x + I(tg,x)|| < N, fork =1,2,..; follows that the sequence possesses a limit,5ay 0, ask
(T1l.4)there exist function® € KR and¥; € Kq such approaches infinity. We shall prové = 0. Let us assume
thatT(s) < ¥r(s) < s, s € Ry and L > 0 and try to reach a contradiction. Using the fact that
n ck € Ko, Cr € K, Cr(s) < c(s), forall s € Ry and
VAt x4 Tt %)) < Wi (V (1, %)) @ u(tr) > m(tes), forall k = 1,2, .. ., we obtain
wheneve(ty, x), (tx, x + I(tr, x)) € Ry x S¢(M)°, for ety
) CR(£)
k=1,2,.., ds > m(tgy1) — m(ty)
(T1.5)there exist constants > 0 andy; > 0 such that m)  Ck(9)
bt V) g forall k =1,2,.... Thus, forn > 1, we obtain
p(s)ds + / < Mk )
./tk Jy cr(s) m (tpy1) —m(t1)
wherey > A, k= 1,2,.... = (f) = m(f) 4 f) =22 4 f2) = m (1)
By strengthening the conditions of Theorem 1, we shall estab- < ) G ,C) ds+ -+ ™) ¢y (L) ds
lish a criterion for equi-Lagrange stability. m(tn en( m(ty)  c1(8)
Theorem 2: The solutions of (1) are equi-Lagrange stable if < _ ., ¢ (£) =, C, (L) =+ = 11C1(L)
(T2.1)(1) is equi-bounded; n
(T2.2) condition (T1.2) holds folV’ € 1,(0) with in- Z YeCr (L

equality (3) being true for allt, x) € R x R™;
(T2.3)there exist functiong’;, € K, such that inequality | g p = miniCy(L). This implies, by conditions (T2.4) and
(4) holds, forallix, x) € Ry xR™ andforallk = 1,2,...; (T2.5), that

(T2.4)there exists a constapt> 0 and functlonka € IC
such thatC(s) < c(s), forall s € Ry and for allk =
1,2,..

(T2.5)(5) holds, for ally > 0 and

m (tng1) < m(t1) vak—> —0

asn — oo, which is a contradiction. Therefore, we must have
i% _ L = 0, as we claimed. On the other hand(t) < m(¢), for
allt € (t,tr+1] and forallk = 1,2,.... Thus
Proof: To prove equi-Lagrange stability, we only need to t@g} m(t) = 0.
show that (1) is equi-attractive in the large in view of assumpthp follows that
(T2.1). For simplicity, we set(t) := V(¢,x(t)), wherex(t) =
x(t, 19, Xg) is any solution of (1) such that(ty) = x¢. Due to lim ||x(¢)]| = lm b(||x(¢)]]) = lim m(t) = 0.
the fact that system (1) is equi-bounded, the soluti¢f) = t—oo t—oo t—oo
x(t,t0,x0) Of (1) exists on[ty, o0), for all x, € R™. Since i.e., (1) is equi-attractive in the large and, hence, it is equi-

V € 19(0), we haveDTm(t) = DTV (t,x(t)). By inequalities Lagrange stable, as required. O
(3) and (4), we have In the following sections, theorems on equi-boundedness
X and equi-Lagrange stability are applied to a particular nonau-
D ”:ﬁ( ) < p(t)er(m(t), & # t (6) tonomous second order impulsive system. The system will be
m(tk)glllk( (ty)), k=1,2,.... \ o T
employed in designing a secure communication system.

Using (6), we obtain, for every = 1,2, ...
I1l. N ONAUTONOMOUS SECOND-ORDER IMPULSIVE SYSTEM

mt) g !
/ o 5l®) g/f p(s)ds Consider the following second-order impulsive system which
m(t)) Ck & depends ox andx, simultaneously

k

thg1
< s)ds, t € (tg,t 7 = ~i . ~ [
_/ plodds L€ etinl O (2 i aai+ (Ru0), (4n
/m(tb ds /Wm(t"” ds ®) AX = DiX, t = 1y, k=12,.. (10
< . _
() 6(8) Sy k(s) AX = Di, t = t, k=12...
Adding (7) and (8), we get, fdr = 1, 2, . . ., in view of condition WhereA is ann x n_constant matrixg and® are continuous
(T2.5) and inequality (5) nonlinear maps satisfying
m(t) than \I/;\,(m(t;\,)) T (. < ~12 .2
[ ot s | A X 8(%X) < L [IRI” + 1]
Iy k() = Jy, Jm(ty) cx(s)

9 and||¢v(x u(t))] < L2||§|| + Lg, for some constant, > 0
With (9), we conclude thatm(t) < m(ty), for all andLs > 0, u(t) is an arbitrary control function satisfying

) >
t € (te,tesa], £ = 1,2,..., ie, m(tgr1) < m(tg). |u@®)] < K, for someK > 0 andD;, andD;, aren x n
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constant matrices, forall= 1,2, .... Setx; = X, Xy = % and 80 — Ik
letx = (x1,x2)7 —, Lo
25 e y I b
(0 L —(Dr 0
4= (0 A) = ( 0 Dk) 20} // 1
be block matrices, wherkis the identity matrix - ,/'
5‘:15— /'
g(x) i= <~0 ) and®(x, u(t)) := <~ 0 ) 3
E(x) & (x7. u(t)) |
Then, (10) becomes el
x = Ax + g(X) + @(X, u(t)), t 7é tk (11) i ’¢" ............
AX:BkX,t:tk7 k:1727.... ,,’ .....................................................
We shall investigate the equi-boundedness and equi-Lagral % s 10 15 20 25 30

stability of solutions of (10) using (11).

Theorem 3: System (11) is uniformly equi-bounded if theFig. 1. Typical sketch of the mapping;.(s).

largest eigenvalue ¢f + BY)(I+ B.), denoted by, satisfies

A < exp (—2ax) (12)

forall k =1,2,...and for||x(¢x)||, ||x(tx) + Bex(tx)|| > M
for someM > 0, whereay, := (1/2)[vx + £Aky1] + 6, v >
0 are constants anfh }3>, has an upper bound, < ¢ <«
infk(’yk + gAk-H); Ap =t —tp_1 >r > 0,forallk =
2,3,...and

whered is the largest eigenvalue ¢f := A + AT. Moreover,

if v, = 1/k,forallk =1,2,...and for all||x(tz)|| > 0 and if

L3; = 0 then, (11) is uniformly equi-Lagrange stable.
Proof: Let B :=sup,(ay), M := (exp(B) — exp(6))/

(exp(6) — 1) > 0 andV(t,x) := V(x) = x'x = [|x]|°.

Chooseb(||x]|) = a(||x|]) = ||x||?. The upper-right derivative

of V is given by

=xTx +xTx

=xTQx + 2g(x)"x + 2®(x,u(t)) x

<d||x||* + 2Ly [|x[|* + 2L |x||* + 2Ls]|x]|

= (d +2L1 + 2L2) ||x]1* + 2Ls|1x]|

< (ld) + 2Ly +2Ls + 2Ly) (V(x) + V(x)"/?)

=p(t)e(V (%)) (13)

wherep(t) := |d| + 2L; + 2L, + 2Lz andc(s) := s + s'/2.

D1V (x)

inequality (12), fo|x(tx) + Bix(tx)|| > M, fork =1,2,...,
we have
V(x (te) + Bix (tr)) = (x (t) + Bix (tx)) "
- (x (tk) + Bix (tk))
=x(tx)" (I + BY) (I + By)x(t1)
<M (te) " x (tr)
< oxp (—2a) || (1) I
=0 (V (% (1)) -

This implies that condition (T1.4) is satisfied. In addition, it is
easy to check that
ds

/m:ﬂn(l—l—sl/z).

It follows that, fork = 1,2, ...

tpga T (y)
/ p(s)ds + /
ty Y

=lAps1 + 210

ds
s+ s1/2

1+, ()
1 + y1/2

1+ exp (—ay)

1+ y1/2

exp (o) + y*/
1 _|_ y1/2

1/2
=0Ap41 +21n [ L }

—’yk—25+21n[

Clearly,p € PC andc € K. Thus, conditions (T1.1) and (T1.2) Notice thatexp(az) < exp(B), for all k = 1,2,... and the

are satisfied oveRy x R™. If ||x(¢tx)|| < M, k = 1,2,...,
then, by inequality (12), we have

I (t) + Buox ()l 1T+ Ball Ix (t0)]
<exp(—ap) M < exp(—6)M := N

fork = 1,2,..
Define the mapping’(s), forallk = 1,2, ... as follows:

Up(s) :=exp (—2ag) s forall s > 0. (14)

Clearly, ¥r(s) < s, for all s > 0, and Ui(s) >
(1/2)exp(—2B)s =: ¥(s), forall s > 0. ie., ¥U(s) <
U (s) < s. Fig. 1 shows a typical sketch of the mappiig(s)

lying between the two lineg = s and¥(s). Furthermore, by

function

1+ y1/2

is a decreasing function af, for all y > 0. This implies, for

A(y) i=In [M}

., and thus, condition (T1.3) is also satisfiedy > A := M? andk = 1,2,.. ., that

tey1 U (y) ds
/tk P(s)d3+/y pepYo
< — vk — 26+ 2h (M?)
exp(8)(exp(B) — 1)
exp(B) — 1
— v — 20 + 26 = —.

—7k—25+2ln{
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Thus, condition (T1.5) is satisfied. We therefore conclude thiet the first driven Lorenz chaotic system be
(11) is uniformly equi-bounded as desired. It remains to show,
with the choice ofy, = 1/k, forallk = 1,2,... andL; = 0
0, that (11) is uniformly equi-Lagrange stable. This is done by W= Aut | —uw |, t#t
applying Theorem 2 as follows. We first consider the upper right w | 17
derivative ofV (x) Au=—Be, t=ty, k=1,2,...
DYV (x) < (|d| + 2Ly + 2L») ||x||* = p(t)&(V (%))

wherep(t) := |d| + 2L1 + 2L, and¢(s) := s. Thus, by em-
ploying the mappingly, defined by (14), foralk = 1,2,.. .,
we conclude that conditions (T2.1), (T2.2), (T2.3), and (T2.
are all satisfied. Moreover, fdr=1,2,...

where B, aren x n constant matrices, for alt = 1,2,...,

ande = x — u with ¢ = 0. The second driven system is the
erivative of the first driven system and is given by (18) shown

the bottom of the page, wheje= 0 or 1,6 = x — 1, =, v,

z, u, v andw are the chaotic signals. The above set up shown in

et V) g () Fig. 2 can be described as follows.y, andz, produced by the

/tk p(s)ds + /y s) < fApr+1n [ } < =7 Lorenz chaotic system (15), with= 1, are used to completely

for all y > 0. Therefore, condition (T2.5) is also satisfied, sincgEceer:aitri;:fsigzlr;vzgvagsﬁa(l_fs)'0S\)’viti?em({g)i’sh dor\i/\v/i\r/]er, 'S

Zk:l(l/k). — Th|s_means that, by Theorem 2.' solutions t?mpulsively by (16) and continuously by the chaotic signals

(11) are uniformly equi-Lagrange stable, as required. [ v andw from (17).

If we return now to (10), Theorem 3 implies that . . -
lim %(t) = lim i(t() ): 0. In other wordz if the With (15)—(18), the error dynamiesfor « = 0 ande can be
f—oo =00 : ’ %(pressed as

conditions of Theorem 3 are satisfied, then, the solutions
(10) are uniformly equi-Lagrange stable. This important result

will be applied considerably in the discussion of the next 0

two sections. For now, we shall illustrate the above corollary e=Ae+ | —zztuw |, t#1 (19)
by considering an example consisting of one pair of Lorenz TY —uv

chaotic systems and one pair of their derivatives. The uniform Ae = Bye, t = ty, k=1,2,...

equi-Lagrange stability of the two error dynamics associated
with those two pairs will be discussed and established layd in (20), shown at the bottom of the next page. Notice that

employing Theorem 3. the error dynamice is uniformly equi-Lagrange stable pro-
Let the first driving Lorenz chaotic systein= f(x,m(t),a) vided that the matrice8,, for all k = 1,2, ..., are chosen to

be satisfy the conditions of Theorem 3, whe®éx, u(t)) = 0,
0 i.e., lim; ., e(t) = 0. By using a fourth-order Runge—Kutta

method with step size 10, Fig. 3 shows the error dynamics

x = A — 1))z 15 ) ; ;
X X+ (2 + am(t))2 (15) e in terms of its three componends, e; andes converging to

Ty .
zero (for the rest of the paper, the first component of the error
where dynamics is represented by a solid curve, the second component
o o 0 is represented by a dashed curve and the third component is rep-
A=1 r =1 o |. oc.r.b>0 resented by a dashed-dotted curve). The values of parameters
o o0 —b/ o and initial conditions are chosen to be= 10, » = 28, b =

) o . 8/3, Ay = A = 0.002, (z0,50,20) = (1.12,—1,0.5) and
wherem(t) € C°([0, 00)) satisfiesim(t)| < Ky and[rin(t)| < (0 o o) = (2.7, —2.1,2.502). In fact, it was established in

K, for somek, K, > 0 anda = 0 or 1. We shall see, in the 19} hat impulsive synchronization of systemsandu is quite
next section, thata(t) will represent the information signal in .oy st even in the presence of relatively large parameter mis-

the induced-message model. The second driving system is th& o |n other words, (15) and (17) do not have to be identical
derivative of the Lorenz chaotic system given by (15)d6# 1 i orger to obtain good results for the uniform equi-Lagrange

and is expressed by stability of systeme, as illustrated in Fig. 4, where we have

0 0 1% parameter mismatch. This property is very important since
X=Ax+ | -2z —ax2 | + | —im(t) — zmn(t) (16) inaccuracy in designing identical chaotic systems is extremely
Ty + Ty 0 unavoidable.
.. . - 0 . . 0
u=Au+ | —uw—vw | +q | —um(t) —un(t) |, t#t
Pl (18)
uY + uv 0

Aﬁ:_Bké7t:tl¢7 k:1727...
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impulsively driving systems

T 0
-z — T2

Y —&m — x1mh
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E oo mmmmmmmm ey impulsive synchronization
1
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U e °|Ev + v — qum — th]‘
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impulsively driven systems

Impulsive synchronization of two Lorenz chaotic systems.

Laet

Fig. 3. Error dynamicse with 0% parameter mismatch

0.04 0.06
time (sec)

—diag(0.02,0.06,0.01).
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Y=, 0.02}

(eT, e,e,
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—0.06

-0.08

-0.1

Fig. 4. Error dynamicse with 1% parameter mismatch ang,

O _0.02F i

5
time (sec)

—diag0.5,0.33,0.2).

We shall now prove that systemis equi-Lagrange stable,
which is to prove that (20) satisfies all the conditions described
by Theorem 3. Le€ = (e,€)T and choosé’ (€) := e€T¢, then

D*V(8) =6 6+ 76

=(e7.8") (e.8)" + (78" (e.9)"
=Tet+s c+ele+e &
<2L|le|> +& (AT +A)&
-2 [(J:z — ﬂw) + (J:z — u@)] éZ
+2 [(xy — ﬁv) + (zy — uﬁ)] €3
—2[(& — qu) m + (z — qu)m] &

whereé’e < Lle|?, for someL > 0, which follows from
(19). Note thaé’ (AT + A)é < d & &, whered is the largest
eigenvalue ofA” + A, as shown in the equations at the bottom
of the next page. Thus, we may conclude that

DYV (&) <[2L + d + 2|z| + 2|i| + |v]
+ |w] + [v] + [w]][[&]|*
+ [2K1|i — qii| + 2Kz — qul] |8
<{2L + d + 2|z] + 2[&] + |v]
+ w| + [v] + [w]
+ 2K, |i — qul + 2Ko|e — qul|}
. [V(é) + V(E)l/z} .

Thus, if the impulses of (20) are chosen to satisfy (12), then,
for ¢ = 0 and 1, it can be concluded that (20) is uniformly
equi-bounded. Furthermore, if we lgt= 1, then, the upper
right derivative ofV (e) will satisfy

DYV (€) < [2L + d + 2|x| + 2|2| + [v| + |w]|
+[v] + [w] + 2K + 2K5] V (8).

This implies, by choosing,, = 1/k, forallk = 1,2,..., and
applying Theorem 3, that solutions to system (20) are also equi-
Lagrange stable, as desired. It should be further mentioned that
if m(t) exponentially decays in time, then, due to the properties
of exponential functions, the convergencédb zero becomes
faster.

The following numerical examples are used to explain
how uniform equi-Lagrange stability may be achieved by
applying Theorem 3 and by employing the system de-
scribed in Fig. 2. The parameters in the examples are
B, = B = —diag(0.5,0.6,0.2), the period of the impulses
A, = A = 0.002, the initial conditions(zg,yo,20) =
(3.07,-2.37,0.88), (ug,vo,wo) = (1.46,—1.87,0.5) and

€= Aée+ —w'z+.ﬁw—xé+u.ﬁ
TY — uv + Ty — uv

A€ = Big, t = ty,

(& — qu)ym + (x — qu)tn |, t#tg

0

' (20)
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Fig. 6. Uniform equi-Lagrange stability of system (20), for(t)
Fig. 5. Uniform equi-Lagrange stability of system (20), for(t) = 20exp(—10%)sin(30t).
2 exp(—10t) sin(4¢).

IV. INDUCED-MESSAGE CRYPTOSYSTEM FOR

(o, Do, W) = (3.9, 0.74,—1.62). In the following two SECURE COMMUNICATION

examples a fourth-order Runge—Kutta method with step sizeln the previous section, it has been demonstrated that the
1077 is used. In the first exampley(t) has small upper bound error dynamicse ande, given by systems (19) and (20), are
and small frequency, whereas in the second examp(€) has both uniformly equi-Lagrange stable, for= 1 provided that
large upper bound and large frequency. They are considethd conditions of Theorem 3 are satisfied. In other words,
in order to show the performance of the system describedlim;_... e(t) = limt_,ooé(t) = 0, a property which is
Fig. 2. For the first example, let(t) = 2exp(—10¢)sin(4t). considered to be the cornerstone of several chaos-based secure
As shown in Fig. 5, the system converges to zero in 1.35@mmunication schemes. We are interested in exploring the
Note that the largest eigenvalue Bfis 0.6 and it possessesapplications of this property in transmitting secret information
all the required properties given in Theorem 3. For the secohdtween different parties. Fig. 7 shows a proposed cryptosystem
example, letn(t) = 20exp(—10t) sin(50t), which possesses consisting of a transmitter, a receiver and a public channel
a relatively large amplitude and high frequency for short timer communication. The transmitter and the receiver each
t. Fig. 6 shows that the uniform equi-Lagrange stability is stifontains a chaotic systemg, and u, respectively, to generate
achieved and the performance of the model is as desired. The encrypting key signals and to drive their derivative systems
conditions of Theorem 3 are satisfied by both the maltiand % and 1@, installed at the transmitter and the receiver ends,
system(20). respectively. The system is used as the encryption block to

[(d2 — uw) + (27 — vw)]er <|(22 — Tw) + (22 — i) ||e)2
=li(z — w) + w(i — W) + x(2 — W) + W(x — u)]| ||
=|ies + we, + xé3 + Weq| [és]
<|#| |esea| + |w| [e12| + |z| [€5€2] + 0] |e1eo]

<l llell llell + 5wl 118ll* + 5 1= [16l)* + ] [lel| [}e]

1, . e~
<]+ fw] + [2] + [w])[e]]?
[(dy — uw) + (zg — w)]es <|(dy — uv) + (x5 — wv)]| [es]
=|i(y — v) + v(@ — ) + 2(§ — V) + (z — u)] [e3]
:|i}€2 + ’Uél + :17?2 + §€1| |€3|
<|&| |exes| + [v| [eres| + |z| [e2Es] + [v] |eres]
. i 1 i 1 - - -
<l&| llefl llell + 5lv] lell” + 5l [ell” + o] [le]l Ilel|
1, . i~
<5 (E][ 4 o] + |=] + EDIEE
(& — qu)m + (z — qu)m]es <|(# — qu)m + (z — qu)m]|€||
< [Kild — qul + K|z — qul] ||e]|
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wansmitter end order for both to impulsively synchronize. By Theorem 3, the
error dynamicse, given by system (20), is uniformly equi-La-
s;;zf;“x l;yxl“s’e"sl — grange stable. It should be noted that impulsive synchronization
still works for an arbitrary mappinh # f and, thus, the com-
composition = plexity of the encryption process of the information signal can
information encryption ‘synchro. I be increased by increasing the complexity and the nonlinearity
signal m £(x, m) impulses II of h. However, by choosing # f, the transmission of the in-
formation signal to the receiver end requires two sequences of
@E‘ synchronizing impulses in addition to the sequence of impulses
needed to recover the key signals (i.e., a total of three sequences
for a complete recovery). This is unlike whén = f, which
decryption chaotic synchro. requires only one sequence to induce the encrypted signal. In
block yeen e mpulses! ad?jition, up?)ln choos?ng # £, we need to consﬁ/jrér the ?otal
decomp. [« derivative ofh with respect ta when formulating the system
information | revack| = synchro. In other words, the encryption block at the transmitter end will
signal m u system impulses 11 involve the system
receiver end ] oh
X = E(x,m(t)).

Fig. 7. Induced-message cryptosystem. .
It can be seen that the keys and the encrypted signal are

not sent across the public channel. They are embedded inside

encrypt the information signaf(?) at the transmitter end. In the impulses and then induced at the receiver end using the
addition, the transmitter and the receiver each contains N¥Rpulses. The new system is also called the induced-message
synchronization impulses blocks. The first block is used @ryptosystem.
synchronizeu with x and the other is used to synchroni@e  one advantage of the induced-message cryptosystem is that it
with x. The transmitter contains a composition block Wh'CFhay overcome the problem arising from the time-frame conges-
combines the synchronization impulses from the two synchrggp in impulsive cryptosystems presented in [4], [6], [8], and
nization impulses blocks. This combining _is done through tin‘[gg]_ In those impulsive cryptosystems, the transmitted signal
frames each of which has lengt)s. The firstQ s are loaded ¢onsists of a sequence of time frames, each of which has a length
with the impulses_ to syn_chronizeandu, whereas the s_econdof T s and is made up of two regions. The first region is the
@ s are loaded with the impulses needed to synchrabiaed  synchronization region of lengt® s. It consists of the syn-
u. These time frames are sent across the public channel hgonization impulses needed to impulsively synchronize the
are decomposed at the decomposition block at the receiver @fg chaotic systems in both the transmitter and receiver. The
into two @ s. The firstQ s are fed into the system, to recover gecond region contains the encrypted message signal and has
the key signals and the secofys are fed into the system, 5 jength of 7’ — @ s. Since( is taken to be small compared
to induce the encrypted signal. At the decryption block, thg 7 the loss of time in packing message signals is negligible
recovered key signals are used to decrypt the induced encrypigs| The first experimental results on impulsive synchroniza-
information signal by applying the inverse &iff . Then, the tjon were presented in [18]. In the experiment, two Chua’s oscil-
decrypted signain(t) is fed back into the blocka for better |at0rs were effectively synchronized by using narrow impulses
and faster recovery. (Q/T = 0.16%, 1/T = 18 kHz). It was found in [4], [6], and

Impulsive synchronization can be achieved for the systef®)] that the minimum length of the intervé) increases in pro-
in Fig. 7 even in the presence of parameter mismatch betwgmnrtion to the frame length as it increases. In fact, it was experi-
chaotic systems involved, i.e., impulsive synchronization is vengentally established that férx 107> s < T < 5 x 1073 s, the
robust. Therefore, the two chaotic systexrsndu can be taken ratioQ /T > 50% can achieve almost-identical synchronization
to be nonidentical, and still obtain very good synchronizaticend thus the lost time in packing the message signals is no more
results. Furthermore, the encryption—decryption process of thegligible. It was further realized that the situation becomes
above model may be described as follows. The encryption bloskrse when implementing hyperchaotic systems where two im-
at the transmitter end applies conventional cryptographic tegulsive synchronization regions (each of which is of len@hh
niques to the information signdl¢) to formulate the encrypted are required for almost-identical synchronization (e.g.1f3x
signalf(x,m(t), 1), wherem(t) = f(t)exp(—0t), for some 107°s < T < 2 x 107° s, 2Q/T = 100%). Therefore, it
choserd > 0, as described in (16). Thus, the complexity of thes more desirable to eliminate this problem by not transmitting
encryption is increased. However, at the receiver end the chadiie encrypted signal in the first place. We have shown that, in
systemu is installed to synchronize with the systemhrough the induced-message cryptosystem proposed above, we are able
applying impulses generated by the systenMeanwhile, the to accomplish this property of not transmitting the encrypted
systemt is self-generated and driven by the componenta ofsignal. Instead, two sequences of synchronizing impulses are
and the decrypted signal(t), by applying message feedbacktransmitted only. One sequence is needed to recover the key sig-
so that it will have a formulation identical to the syste&min  nals and the other sequence is required to induce the encrypted
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amplitude

%1 2 8 4 5 & 7 8 S5 5 4 5 & 7 s
time (sec) time (sec)
Fig. 8. Original messagg(t) = 2 sin(4t) before encryption. Fig. 9. Decrypted messagét) = 2sin(4t).

0.03

signal. Thus, we reach the objective of increasing the security
the impulsive cryptosystem and prevent the frames from bei

0.0k oo h
congested by the synchronization region. | '

0.01
V. SIMULATION RESULTS AND DISCUSSIONS

litude

In the following simulations, a fourth-order Runge—Kuttzg °

method with step size 10 is used. The system parameters ar _g o,
o =10, r =28,b=8/3, B, = B = —diag0.5,0.6,0.2), the :
period of the impulses id; = A = 0.002 and the initial con-  —o.0zf It
ditions are(zo, yo,20) = (3.07,—2.37,0.88), (ug,vg,wp) = g : - ‘ :
(1.46, —1.87,0.5) and (7, v, W) = (3.9, 0.74,—1.62). In  -093; 1 2 3 7 5 6 7 8
the first example, the information signgl(t) = 2sin(4t), e (see)

which has large amplitude and low frequency, as shown @y, 10. Original messagg(t) = 0.02 sin(t) sin(100t) before encryption.
Fig. 8, is considered. In this case(t) = 2sin(4t) exp(—6t),
wheref is taken to be 1. The encryption process is identical 1
the one described in Fig. 2. i.e.,

0.03

0.02

h(x,m(t)) = f(x,m(¢),1)

0.01

given by (15). With the arguments in the previous section arg o
in this section, we know that — x andu — x. Therefore, &

the key signalse, y and z can be recovered by obtaining the
signalsu, v andw. Moreover, with the process of feeding back
the decrypted message(t) into the syster, the state variable  —o.o2}-
7 — 1§ = rz —y — (z + m(t))z, which will allow m(t) to be : : . v
recovered by simply using the following operation: -0.03; 1 > 3 2 5 6 7 8

-0.01f -

time (sec)
T—ru+uv . . .
m(t) ~ — |w+ — | Fig. 11. Decrypted messagét) = 0.02 sin(#) sin(100¢).

Then, f(¢) can be obtained by (t) = m(t)exp(6t). Fig. 9

shows the result of the decryption process of the induced me¢
sagef(t) = 2sin(4t) and Fig. 12 shows the error betweer
the original message and the decrypted message decaying
ponentially with time. Now, considering another type of infor-§ sor|
mation signal with low amplitude and very high frequency, sucs 40
as f(t) = 0.02sin(t) sin(100t), similar results are obtained as sof- |-
shown in Figs. 10 and 11. 20} -

It should be mentioned that the paraméteas a very signifi-
cantrole in the dynamics of the induced-message cryptosyste | =\ : : : : : :
Increasing the value of this parameter will increase the acC 5567 ooz o003 o064 005 006 007 008 065 01
racy of the decryption process and decrease the error betwee time (sec)
the real information signal and the induced one. In other Worqfl’g. 12. Exponential decay of the error between original and decrypted
the larger the values df, the faster the convergence and theessages.




350

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 3, MARCH 2003

amplitude

-3

4
time (sec)

Fig. 13. Accurate decryption of the messgde) = 2 sin(4¢) for 6 = 0.
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