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Application of Impulsive Synchronization to
Communication Security

Anmar Khadra, Xinzhi Liu, and Xuemin Shen, Senior Member, IEEE

Abstract—In this paper, criteria on uniform equi-boundedness
and equi-Lagrange stability for impulsive systems are derived.
These criteria are used to synchronize two nonidentical chaotic
systems by impulsively controlling a nonautonomous second order
system, which leads to the development of an induced-message
scheme for communication system security. With the scheme,
message signals are not transmitted across public channels, but
induced at the receiver end. The scheme overcomes the transmis-
sion time-frame congestion in impulsive cryptosystems discussed
in the literature and improves system security. Simulation results
are given to demonstrate the performance of the proposed scheme.

Index Terms—Equi-boundedness, equi-Lagrange stability,
impulsive synchronization, impulsive systems, induced-message
cryptosystem, robustness.

I. INTRODUCTION

I MPULSIVE differential equations have gained consider-
able attention in science and engineering [14], [15], [17],

[24], [31], [32] in recent years, since they provide a natural
framework for mathematical modeling of many physical
phenomena. Examples include population-growth models [14]
and maneuvers of spacecraft [17]. Impulsive control, which
is based on the theory of impulsive differential equations,
has gained renewed interests recently for controlling chaotic
systems. It allows the stabilization of a chaotic system using
only small control impulses, even though the chaotic behavior
may follow unpredictable patterns (in general, chaotic signals
are broadband, noise like, and difficult to predict) [15], [24],
[32]. The impulsive control of nonautonomous chaotic sys-
tems, such as the Duffing’s oscillator, is investigated in [30].
Instead of controlling the nonautonomous chaotic system to an
equilibrium position, the stabilization of the chaotic system is
achieved in a small region of the phase space using the notion
of practical stability.

The study of impulsive synchronization of two identical
chaotic systems is one of the most important applications of
impulsive control. In [21], [27], and [28], two autonomous
chaotic systems, the drive system and the driven system, have
been considered for impulsive synchronization. Samples of
the state variables of the drive system at discrete instances are
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used to drive the driven system. These samples are called the
synchronization impulses and are employed to impulsively
control the error system between the drive and the driven
systems. The asymptotic stability of the error dynamics is
established, assuring the synchronization between the two
systems and an upper bound on the time interval between the
impulses is obtained. A generalization of this particular type
of synchronization to time-varying impulse intervals has been
further developed in [13], where less conservative conditions
on the Lyaponov function are obtained in the sense that it
is required to be nonincreasing along a subsequence of the
switching. Further detailed analysis of impulsive control and
impulsive synchronization of chaotic systems are presented in
[11], [12], [25], [26].

A number of interesting chaotic spread spectrum commu-
nication security systems based on continuous and impulsive
synchronization have been proposed [2], [3], [5], [10], [19],
[27], [29]. In the systems, message signals are masked or
modulated by chaotic spreading signals (encryption) and the
resulting signals are transmitted to the receivers across public
channels. An identical synchronization between the chaotic
systems in the transmitter and that in the receiver [20] is
required for recovering the encrypted signal at the receiver end.
A number of robust communication systems employing the
two types of synchronization have been developed [9], [22],
[23]. It has been shown that impulsive synchronization systems
may be combined with conventional cryptographic techniques
[27], [28] to achieve the two desired properties of increasing
the complexity and reducing the redundancy of the transmitted
signals. It has been further established that impulsive synchro-
nization achieves efficient bandwidth utilization [20]. However,
the proposed impulsive synchronization systems suffer from
the transmission time-frame congestion [4], [6], [8], [18].
The impulsive synchronization systems rely on combining
the encrypted signal with the synchronization impulses in the
form of time frames each of length s and transmitting them
across a unidirectional public channel. The impulses occupy

s of the total length of the time frame, where
and the encrypted signal is carried on the remaining s.
The accuracy of synchronization depends on both the period
and the width of the impulse samples, where the minimum
impulse width for synchronization increases as the impulse
period increases [7]. This indicates that if the transmitted
encrypted signal in each time frame becomes larger than a
certain limit, the impulse width will occupy the whole time
frame , and becomes absolutely not negligible, causing the
time-frame-congestion problem.
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In this paper, a new cryptosystem is proposed to resolve
the time-frame-congestion problem and to enhance the se-
curity of the transmission. First, impulsive synchronization
of second-order chaotic systems is studied. Conditions for
uniform equi-boundedness and equi-Lagrange stability are
derived for a particular type of impulsive system. Second,
an induced-message scheme based on these conditions is
developed for communications system security. It is shown that
the induced-message scheme can improve the secure trans-
mission by reducing time-frame congestion described in [4],
[6]–[8], [18] and by preventing the transmission of the key and
encrypted signals across the public channels. The remainder of
the paper is organized as follows. In Section II, several condi-
tions concerning uniform equi-boundedness and equi-Lagrange
stability are stated and proved. In Section III, these conditions
are applied to obtain sufficient conditions for impulsively
controlling a second order nonautonomous impulsive system.
In Section IV, the induced-message cryptosystem is presented.
Simulation results are shown in Section V, followed by the
conclusions in Section VI.

II. PRELIMINARIES

To facilitate the discussion, it is convenient to introduce the
notations as shown at the bottom of the page where .

Impulsive differential equations are usually defined as an or-
dinary differential equation coupled with a difference equation,
as expressed in the following system:

(1)

where , ,

, and the moments of impulse satisfy
and . Let

be continuous on and
exist for each . This guarantees

that, for each there exists a local solution of
(1) satisfying the initial condition [11]. Let

be any solution of (1) satisfying and
be left continuous at each in its interval of exis-

tence, i.e., . We have the following definitions.

Definition 1: Let and . Define the upper
right derivative of with respect to the continuous portion
of system (1), for and , by

(2)
From Definition 1, if has continuous partial derivatives
with respect to and , then, by (2), we have

Furthermore, if is a solution of (1) on some open interval
, for and , we have

Definition 2: Solutions of the impulsive system (1) are said
to be

(S1)equi-attractive in the large if for each ,
and , there exists a number
such that implies , for ;
(S2)uniformly equi-attractive in the large if in (S1) is
independent of .

Definition 3: Solutions of the impulsive system (1) are said
to be

(B1)equi-bounded if for each , there exists
a constant such that implies
that , for ;
(B2) uniformly equi-bounded if in (B1) is independent
of ;
(B3) equi-Lagrange stable if (S1) and (B1) hold together;
(B4) unformly equi-Lagrange stable if (S2) and (B2) hold
together.

We shall need the following result [1], [16].
Theorem 1: The solutions of (1) are uniformly equi-bounded

if

(T1.1) , for some and there exist
functions such that

;
(T1.2)there exist functions and such that

(3)

if and

is strictly increasing in

and exists

locally Lipschitz in and exists for
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for ;
(T1.3)there exists a constant such that if

then , for ;
(T1.4) there exist functions and such
that and

(4)

whenever , for
;

(T1.5)there exist constants and such that

(5)

where .
By strengthening the conditions of Theorem 1, we shall estab-
lish a criterion for equi-Lagrange stability.

Theorem 2: The solutions of (1) are equi-Lagrange stable if

(T2.1)(1) is equi-bounded;
(T2.2) condition (T1.2) holds for with in-
equality (3) being true for all ;
(T2.3) there exist functions such that inequality
(4) holds, for all and for all ;
(T2.4)there exists a constant and functions
such that , for all and for all

;
(T2.5)(5) holds, for all and

Proof: To prove equi-Lagrange stability, we only need to
show that (1) is equi-attractive in the large in view of assumption
(T2.1). For simplicity, we set , where

is any solution of (1) such that . Due to
the fact that system (1) is equi-bounded, the solution

of (1) exists on for all . Since
, we have . By inequalities

(3) and (4), we have

(6)

Using (6), we obtain, for every

(7)

(8)

Adding (7) and (8), we get, for , in view of condition
(T2.5) and inequality (5)

(9)
With (9), we conclude that , for all

, i.e., .

This means that the sequence is nonincreasing.
Furthermore, since the sequence is bounded from below, it
follows that the sequence possesses a limit, say , as
approaches infinity. We shall prove . Let us assume

and try to reach a contradiction. Using the fact that
, , , for all and

, for all , we obtain

for all . Thus, for , we obtain

Let . This implies, by conditions (T2.4) and
(T2.5), that

as , which is a contradiction. Therefore, we must have
as we claimed. On the other hand, , for

all and for all . Thus

It follows that

i.e., (1) is equi-attractive in the large and, hence, it is equi-
Lagrange stable, as required.

In the following sections, theorems on equi-boundedness
and equi-Lagrange stability are applied to a particular nonau-
tonomous second order impulsive system. The system will be
employed in designing a secure communication system.

III. N ONAUTONOMOUSSECOND-ORDERIMPULSIVE SYSTEM

Consider the following second-order impulsive system which
depends on and , simultaneously

(10)

where is an constant matrix, and are continuous
nonlinear maps satisfying

and , for some constant
and is an arbitrary control function satisfying

, for some and and are
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constant matrices, for all . Set , and
let

be block matrices, whereis the identity matrix

and

Then, (10) becomes

.
(11)

We shall investigate the equi-boundedness and equi-Lagrange
stability of solutions of (10) using (11).

Theorem 3: System (11) is uniformly equi-bounded if the
largest eigenvalue of denoted by , satisfies

(12)

for all and for
for some , where

are constants and has an upper bound,
, for all

and

where is the largest eigenvalue of . Moreover,
if , for all and for all and if

then, (11) is uniformly equi-Lagrange stable.
Proof: Let ,

and .
Choose . The upper-right derivative
of is given by

(13)

where and .
Clearly, and . Thus, conditions (T1.1) and (T1.2)
are satisfied over . If ,
then, by inequality (12), we have

for , and thus, condition (T1.3) is also satisfied.
Define the mapping , for all as follows:

for all (14)

Clearly, , for all , and
, for all . i.e.,

. Fig. 1 shows a typical sketch of the mapping
lying between the two lines and . Furthermore, by

Fig. 1. Typical sketch of the mapping	 (s).

inequality (12), for , for ,
we have

This implies that condition (T1.4) is satisfied. In addition, it is
easy to check that

It follows that, for

Notice that , for all and the
function

is a decreasing function of, for all . This implies, for
and , that
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Thus, condition (T1.5) is satisfied. We therefore conclude that
(11) is uniformly equi-bounded as desired. It remains to show,
with the choice of , for all and
, that (11) is uniformly equi-Lagrange stable. This is done by

applying Theorem 2 as follows. We first consider the upper right
derivative of

where and . Thus, by em-
ploying the mapping , defined by (14), for all ,
we conclude that conditions (T2.1), (T2.2), (T2.3), and (T2.4)
are all satisfied. Moreover, for

for all . Therefore, condition (T2.5) is also satisfied, since
. This means that, by Theorem 2, solutions to

(11) are uniformly equi-Lagrange stable, as required.
If we return now to (10), Theorem 3 implies that

. In other words, if the
conditions of Theorem 3 are satisfied, then, the solutions to
(10) are uniformly equi-Lagrange stable. This important result
will be applied considerably in the discussion of the next
two sections. For now, we shall illustrate the above corollary
by considering an example consisting of one pair of Lorenz
chaotic systems and one pair of their derivatives. The uniform
equi-Lagrange stability of the two error dynamics associated
with those two pairs will be discussed and established by
employing Theorem 3.

Let the first driving Lorenz chaotic system
be

(15)

where

where satisfies and
, for some and or 1. We shall see, in the

next section, that will represent the information signal in
the induced-message model. The second driving system is the
derivative of the Lorenz chaotic system given by (15), for
and is expressed by

(16)

Let the first driven Lorenz chaotic system be

(17)

where are constant matrices, for all
and with The second driven system is the
derivative of the first driven system and is given by (18) shown
at the bottom of the page, where or 1, , , ,
, , and are the chaotic signals. The above set up shown in

Fig. 2 can be described as follows., , and , produced by the
Lorenz chaotic system (15), with , are used to completely
generate the derivative system (16). System (17), however, is
driven impulsively by (15), with , while (18) is driven
impulsively by (16) and continuously by the chaotic signals,

and from (17).
With (15)–(18), the error dynamicsfor and can be

expressed as

(19)

and in (20), shown at the bottom of the next page. Notice that
the error dynamics is uniformly equi-Lagrange stable pro-
vided that the matrices , for all , are chosen to
satisfy the conditions of Theorem 3, where ,
i.e., . By using a fourth-order Runge–Kutta
method with step size 10 , Fig. 3 shows the error dynamics

in terms of its three components, and converging to
zero (for the rest of the paper, the first component of the error
dynamics is represented by a solid curve, the second component
is represented by a dashed curve and the third component is rep-
resented by a dashed-dotted curve). The values of parameters
and initial conditions are chosen to be

, , and
. In fact, it was established in

[9] that impulsive synchronization of systemsand is quite
robust even in the presence of relatively large parameter mis-
match. In other words, (15) and (17) do not have to be identical
in order to obtain good results for the uniform equi-Lagrange
stability of system , as illustrated in Fig. 4, where we have
1% parameter mismatch. This property is very important since
inaccuracy in designing identical chaotic systems is extremely
unavoidable.

(18)
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Fig. 2. Impulsive synchronization of two Lorenz chaotic systems.

Fig. 3. Error dynamicse with 0% parameter mismatch andB =

�diag(0:02; 0:06; 0:01).

Fig. 4. Error dynamicse with 1% parameter mismatch andB =
�diag(0:5; 0:33;0:2).

We shall now prove that systemis equi-Lagrange stable,
which is to prove that (20) satisfies all the conditions described
by Theorem 3. Let and choose , then

where , for some , which follows from
(19). Note that , where is the largest
eigenvalue of , as shown in the equations at the bottom
of the next page. Thus, we may conclude that

Thus, if the impulses of (20) are chosen to satisfy (12), then,
for and 1, it can be concluded that (20) is uniformly
equi-bounded. Furthermore, if we let , then, the upper
right derivative of will satisfy

This implies, by choosing , for all and
applying Theorem 3, that solutions to system (20) are also equi-
Lagrange stable, as desired. It should be further mentioned that
if exponentially decays in time, then, due to the properties
of exponential functions, the convergence ofto zero becomes
faster.

The following numerical examples are used to explain
how uniform equi-Lagrange stability may be achieved by
applying Theorem 3 and by employing the system de-
scribed in Fig. 2. The parameters in the examples are

diag , the period of the impulses
, the initial conditions

, and

(20)
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Fig. 5. Uniform equi-Lagrange stability of system (20), form(t) =
2 exp(�10t) sin(4t).

In the following two
examples a fourth-order Runge–Kutta method with step size
10 is used. In the first example, has small upper bound
and small frequency, whereas in the second example, has
large upper bound and large frequency. They are considered
in order to show the performance of the system described in
Fig. 2. For the first example, let .
As shown in Fig. 5, the system converges to zero in 1.35 s.
Note that the largest eigenvalue of is 0.6 and it possesses
all the required properties given in Theorem 3. For the second
example, let , which possesses
a relatively large amplitude and high frequency for short time
. Fig. 6 shows that the uniform equi-Lagrange stability is still

achieved and the performance of the model is as desired. The
conditions of Theorem 3 are satisfied by both the matrixand
system(20).

Fig. 6. Uniform equi-Lagrange stability of system (20), form(t) =
20exp(�10t)sin(50t).

IV. I NDUCED-MESSAGECRYPTOSYSTEM FOR

SECURECOMMUNICATION

In the previous section, it has been demonstrated that the
error dynamics and , given by systems (19) and (20), are
both uniformly equi-Lagrange stable, for provided that
the conditions of Theorem 3 are satisfied. In other words,

a property which is
considered to be the cornerstone of several chaos-based secure
communication schemes. We are interested in exploring the
applications of this property in transmitting secret information
between different parties. Fig. 7 shows a proposed cryptosystem
consisting of a transmitter, a receiver and a public channel
for communication. The transmitter and the receiver each
contains a chaotic system, and , respectively, to generate
the encrypting key signals and to drive their derivative systems

and , installed at the transmitter and the receiver ends,
respectively. The system is used as the encryption block to
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Fig. 7. Induced-message cryptosystem.

encrypt the information signal at the transmitter end. In
addition, the transmitter and the receiver each contains two
synchronization impulses blocks. The first block is used to
synchronize with and the other is used to synchronize
with . The transmitter contains a composition block which
combines the synchronization impulses from the two synchro-
nization impulses blocks. This combining is done through time
frames each of which has length 2s. The first s are loaded
with the impulses to synchronizeand , whereas the second

s are loaded with the impulses needed to synchronizeand
. These time frames are sent across the public channel and

are decomposed at the decomposition block at the receiver end
into two s. The first s are fed into the system, to recover
the key signals and the seconds are fed into the system,
to induce the encrypted signal. At the decryption block, the
recovered key signals are used to decrypt the induced encrypted
information signal by applying the inverse of, . Then, the
decrypted signal is fed back into the block for better
and faster recovery.

Impulsive synchronization can be achieved for the system
in Fig. 7 even in the presence of parameter mismatch between
chaotic systems involved, i.e., impulsive synchronization is very
robust. Therefore, the two chaotic systemsand can be taken
to be nonidentical, and still obtain very good synchronization
results. Furthermore, the encryption–decryption process of the
above model may be described as follows. The encryption block
at the transmitter end applies conventional cryptographic tech-
niques to the information signal to formulate the encrypted
signal , where , for some
chosen , as described in (16). Thus, the complexity of the
encryption is increased. However, at the receiver end the chaotic
system is installed to synchronize with the systemthrough
applying impulses generated by the system. Meanwhile, the
system is self-generated and driven by the components of
and the decrypted signal , by applying message feedback,
so that it will have a formulation identical to the systemin

order for both to impulsively synchronize. By Theorem 3, the
error dynamics , given by system (20), is uniformly equi-La-
grange stable. It should be noted that impulsive synchronization
still works for an arbitrary mapping and, thus, the com-
plexity of the encryption process of the information signal can
be increased by increasing the complexity and the nonlinearity
of . However, by choosing , the transmission of the in-
formation signal to the receiver end requires two sequences of
synchronizing impulses in addition to the sequence of impulses
needed to recover the key signals (i.e., a total of three sequences
for a complete recovery). This is unlike when , which
requires only one sequence to induce the encrypted signal. In
addition, upon choosing , we need to consider the total
derivative of with respect to when formulating the system.
In other words, the encryption block at the transmitter end will
involve the system

It can be seen that the keys and the encrypted signal are
not sent across the public channel. They are embedded inside
the impulses and then induced at the receiver end using the
impulses. The new system is also called the induced-message
cryptosystem.

One advantage of the induced-message cryptosystem is that it
may overcome the problem arising from the time-frame conges-
tion in impulsive cryptosystems presented in [4], [6], [8], and
[18]. In those impulsive cryptosystems, the transmitted signal
consists of a sequence of time frames, each of which has a length
of s and is made up of two regions. The first region is the
synchronization region of length s. It consists of the syn-
chronization impulses needed to impulsively synchronize the
two chaotic systems in both the transmitter and receiver. The
second region contains the encrypted message signal and has
a length of s. Since is taken to be small compared
to , the loss of time in packing message signals is negligible
[28]. The first experimental results on impulsive synchroniza-
tion were presented in [18]. In the experiment, two Chua’s oscil-
lators were effectively synchronized by using narrow impulses
( kHz). It was found in [4], [6], and
[8] that the minimum length of the interval increases in pro-
portion to the frame length as it increases. In fact, it was experi-
mentally established that for s s, the
ratio can achieve almost-identical synchronization
and thus the lost time in packing the message signals is no more
negligible. It was further realized that the situation becomes
worse when implementing hyperchaotic systems where two im-
pulsive synchronization regions (each of which is of length)
are required for almost-identical synchronization (e.g., for

s s ). Therefore, it
is more desirable to eliminate this problem by not transmitting
the encrypted signal in the first place. We have shown that, in
the induced-message cryptosystem proposed above, we are able
to accomplish this property of not transmitting the encrypted
signal. Instead, two sequences of synchronizing impulses are
transmitted only. One sequence is needed to recover the key sig-
nals and the other sequence is required to induce the encrypted
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Fig. 8. Original messagef(t) = 2 sin(4t) before encryption.

signal. Thus, we reach the objective of increasing the security of
the impulsive cryptosystem and prevent the frames from being
congested by the synchronization region.

V. SIMULATION RESULTS AND DISCUSSIONS

In the following simulations, a fourth-order Runge–Kutta
method with step size 10 is used. The system parameters are

, , diag , the
period of the impulses is and the initial con-
ditions are ,

and . In
the first example, the information signal ,
which has large amplitude and low frequency, as shown in
Fig. 8, is considered. In this case
where is taken to be 1. The encryption process is identical to
the one described in Fig. 2. i.e.,

given by (15). With the arguments in the previous section and
in this section, we know that and Therefore,
the key signals and can be recovered by obtaining the
signals and . Moreover, with the process of feeding back
the decrypted message into the system , the state variable

, which will allow to be
recovered by simply using the following operation:

Then, can be obtained by . Fig. 9
shows the result of the decryption process of the induced mes-
sage and Fig. 12 shows the error between
the original message and the decrypted message decaying ex-
ponentially with time. Now, considering another type of infor-
mation signal with low amplitude and very high frequency, such
as , similar results are obtained as
shown in Figs. 10 and 11.

It should be mentioned that the parameterhas a very signifi-
cant role in the dynamics of the induced-message cryptosystem.
Increasing the value of this parameter will increase the accu-
racy of the decryption process and decrease the error between
the real information signal and the induced one. In other words,
the larger the values of, the faster the convergence and the

Fig. 9. Decrypted messagef(t) = 2 sin(4t).

Fig. 10. Original messagef(t) = 0:02 sin(t) sin(100t) before encryption.

Fig. 11. Decrypted messagef(t) = 0:02 sin(t) sin(100t).

Fig. 12. Exponential decay of the error between original and decrypted
messages.
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Fig. 13. Accurate decryption of the messagef(t) = 2 sin(4t) for � = 0.

smaller the error. However, due to the software numerical in-
tegration errors, the decryption of the information signals may
not be successful. This is due to that, for large, is
driven to zero very fast with time and the information signal
may be lost. Therefore, the parameterhas been chosen to be
relatively small in the numerical integration process to recover
the information signal. Fig. 13 shows that even with and
without message feedback, the message signal
can still be accurately recovered. This also indicates that the in-
duced-message cryptosystem is very robust.

VI. CONCLUSION

We have developed an induced-message cryptosystem for se-
cure communication. The cryptosystem induces the key signals
and the encrypted information signal at the receiver end without
transmitting them across public channels. Therefore, the system
increases the security of information signals. In addition, the
system also overcomes the time-frame-congestion problem de-
scribed in several existing impulsive cryptosystems.
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