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Abstract: On the basis of the inductive QSAR descriptors we have created a neural 
network-based solution enabling quantification of antibacterial activity in the series of 
101 synthetic cationic polypeptides (CAMEL-s). The developed QSAR model allowed 
80% correct categorical classification of antibacterial potencies of the CAMEL-s both in 
the training and the validation sets. The accuracy of the activity predictions demonstrates 
that a narrow set of 3D sensitive ‘inductive’ descriptors can adequately describe the 
aspects of intra- and intermolecular interactions that are relevant for antibacterial activity 
of the cationic polypeptides. The developed approach can be further expanded for the 
larger sets of biologically active peptides and can serve as a useful quantitative tool for 
rational antibiotic design and discovery.  

 
Keywords: QSAR, inductive descriptors, antibacterial peptides, antibiotics. 
 

 
Introduction 
 
QSAR models for antibiotic activity  
 

QSAR studies of antibiotic activity represent an emerging and exceptionally important topic in the 
area of computed-aided drug design. Although the demand for ‘in silico’ discovery is clear in all areas 
of human therapeutics, the field of anti-infective drugs has a particular need for computational 
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solutions enabling rapid identification of novel therapeutic leads. As a result, there is an urge for new 
antibiotics and antivirals driven by critical situations, such as the increased prevalence of multi-drug 
resistant bacteria and HIV/AIDS, and the emergence or re-emergence of deadly infectious diseases 
such as Lyme disease, West Nile virus, Hantavirus pulmonary syndrome, Norwalk-like virus, Avian 
influenza virus, SARS, and novel forms of Cryptococcal infection. On another hand, historically, ‘Big 
Pharma’ have withdrawn from the field of antimicrobial drug development in favour of more 
profitable areas. Consequently, very few novel antibacterial therapeutics have emerged over the last 
decade. At this moment, QSAR studies can help solving this problem by providing the means of rapid 
design and virtual screening of combinatorial anti-infective libraries, as well as for rational data 
mining for novel antibiotic candidates. 

Few antibacterial QSAR studies have been reported up to date, which could either distinguish 
compounds possessing antibacterial activity from all other chemicals, or numerically reproduce 
antibacterial potencies in the series of closely related chemical analogues. These QSAR approaches 
process a variety of structure-dependent descriptors with machine learning and statistical techniques 
such as Artificial Neural Networks [1-3], Linear Discriminant Analysis, [4-6] Binary Logistic 
Regression [5], Principal Component Analysis and k-means Cluster method [7]. In some cases the 
results allowed the authors to introduce novel anti-infective leads, however, all of the reported QSAR 
solutions have been built upon already well - studied classes of traditional antibiotics. In the current 
work, we apply the QSAR methodology to the newest class of antibacterial therapeutics – the cationic 
polypeptides, which represent the latest hope in the combat against multi-drug resistant pathogens. 
 
Cationic polypeptides as a novel class of antibacterial therapeutics 
 

A diverse population of antimicrobial peptides (AMP-s) can be found in nature, as they are an 
essential component of anti-infective defence mechanisms in mammals, amphibians, insects and plants 
[8-11]. The majority of AMP-s share several key structural features such as short length (typically 10 
to 40 amino acids), amphipathicity (i.e., a molecule has distinct cationic and hydrophobic faces), and 
helical or cyclic structure. In the recent years, AMP-s have drawn much attention as a potentially 
effective class of anti-infectious therapeutics. Considering the facts that bacterial resistance to 
antimicrobial peptides is infrequent [12, 13, 8], they are non-toxic and non-immunogenic (according to 
numerous reports, such as [14]), extensive research programs have been established with the aim to 
exploit the AMP-s as a novel stand-alone class of antibiotics.  

Substantial experimental efforts have been invested into discovery and investigation of natural and 
synthetic cationic polypeptides possessing antibacterial, antiviral, antifungal and/or anti-tumour 
activities. Nevertheless, only a few very simple structure-activity studies have been reported in the 
literature, with the results not leading to validated QSAR models. In the current work, we have 
attempted to fill this gap by creating a QSAR model quantifying antibacterial activity of a broad range 
of rigorously investigated cationic peptides through the recently developed ‘inductive’ QSAR 
descriptors. 
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‘Inductive’ descriptors overview 
 

The ‘inductive’ descriptors have been previously introduced, and are based on the models of 
inductive and steric effects, inductive electronegativity and molecular capacitance, developed in a 
series of papers by Cherkasov and co-authors [15-19]. These molecular parameters can be easily 
accessed from fundamental parameters of bound atoms, such as absolute electronegativities (χ), 
covalent radii (R) and intramolecular distances (r). The steric Rs and inductive σ* influence of n - 
atomic group G on a single atom j is: 
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In those cases when the inductive and steric interactions occur between a given atom j and the rest 
of N-atomic molecule (as sub-substituent), the summation in (1) and (2) is taken over N-1 terms. Thus, 
the group electronegativity of (N-1)-atomic substituent around atom j is expressed as the following: 
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Similarly, steric and inductive effects of a singe atom onto a group of atoms (the rest of the 
molecule) are defined as: 
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In the work [18] an iterative procedure for calculating a partial charge on j-th atom in a molecule 
was developed, and it is: 
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(where Qj reflects the formal charge of an toms j). 
Initially, the parameter χ in (6) corresponds to χ0 - an absolute, unchanged electronegativity of an 

atom As the iterative calculation progresses, the equalized electronegativity χ’ gets updated according 
to (7):  

N∆+≈ 00' ηχχ            (7) 

where the local chemical hardness η0 reflects the “resistance” of electronegativity to a change of the 
atomic charge. The ‘inductive’ hardness ηi and softness si of a bound atom i are represented in the 
following manner: 
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The corresponding group parameters are therefore expressed as: 
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The interpretation of the physical meaning of the ‘inductive’ descriptors was developed by 
considering a neutral molecule as an electrical capacitor formed by charged atomic spheres [18]. This 
approximation relates chemical softness-hardness of bound atom(s) with the areas of the facings of an 
electrical capacitor radically formed by the atom(s) in a molecule (Figure 1), and correlates electronic 
density with capacitor-accumulated electricity.   

 
Figure 1. Radial shielding on spherical surface of atom A by the neighbouring atom B 

 
The validation of Cherkasov’s ‘inductive’ parameters, developed to date, has been rigorously 

conducted on extensive experimental datasets [15-24]. Table 1 features 50 ‘inductive’ QSAR 
descriptors that can be calculated in the framework of equations (1)-(11). It should be noted that in a 
previous study [25], these molecular parameters allowed creation of the QSAR model enabling 93% 
correct recognition of low-molecular weight antibacterial compounds.  
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Table 1. Inductive QSAR descriptors introduced on the basis of equations (1)-(11). 
 
Descriptor Characterization Parental formula(s) 
χ (electronegativity) – based 

EO_Equalized* 
Iteratively equalized electronegativity 
of a molecule 

Calculated iteratively by (7) where 
charges get updated according to (6); an 
atomic hardness in (7) is expressed 
through (8) 

Average_EO_Pos* 
Arithmetic mean of 
electronegativities of atoms with 
positive partial charge 

+

∑
+

n

n

i
i
0χ

where +n  is the number of 

atoms i in a molecule with positive 
partial charge 

Average_EO_Neg* 
Arithmetic mean of 
electronegativities of atoms with 
negative partial charge 

−

∑
−

n

n

i
i
0χ

where −n  is the number of 

atoms i in a molecule with negative 
partial charge 

η (hardness) – based 

Global_Hardness 
Molecular hardness - reversed 
softness of a molecule 

(10) 

Sum_Hardness* 
Sum of hardnesses of atoms of a 
molecule 

Calculated as a sum of inversed atomic 
softnesses in turn computed within (9) 

Sum_Pos_Hardness 
Sum of hardnesses of atoms with 
positive partial charge 

Obtained by summing up the 
contributions from atoms with positive 
charge computed by (8)  

Sum_Neg_Hardness 
Sum of hardnesses of atoms with 
negative partial charge 

Obtained by summing up the 
contributions from atoms with negative 
charge computed by (8) 

Average_Hardness* 
Arithmetic mean of hardnesses of all 
atoms of a molecule 

Estimated by dividing quantity (10) by 
the number of atoms in a molecule 

Average_Pos_Hardness* 
Arithmetic mean of hardnesses of 
atoms with positive partial charge +

∑
+

n

n

i
iη

 where +n  is the number of 

atoms i with positive partial charge. 

Average_Neg_Hardness* 
Arithmetic mean of hardnesses of 
atoms with negative partial charge −

∑
−

n

n

i
iη

 where −n  is the number of 

atoms i with negative partial charge. 

Smallest_Pos_Hardness 
Smallest atomic hardness among 
values for positively charged atoms 

(8) 

Smallest_Neg_Hardness 
Smallest atomic hardness among 
values for negatively charged atoms. 

(8) 

Largest_Pos_Hardness* 
Largest atomic hardness among 
values for positively charged atoms 

(8) 
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Table 1. Cont. 
 

Descriptor Characterization Parental formula(s) 

Largest_Neg_Hardness* 
Largest atomic hardness among 
values for negatively charged atoms 

(8) 

Hardness_of_Most_Pos* 
Atomic hardness of an atom with the 
most positive charge 

(8) 

Hardness_of_Most_Neg 
Atomic hardness of an atom with the 
most negative charge 

(8) 

s (softness) – based 

Global_Softness 
Molecular softness – sum of 
constituent atomic softnesses 

(11) 

Total_Pos_Softness 
Sum of softnesses of atoms with 
positive partial charge 

Obtained by summing up the 
contributions from atoms with positive 
charge computed by (9)  

Total_Neg_Softness* 
Sum of softnesses of atoms with 
negative partial charge 

Obtained by summing up the 
contributions from atoms with negative 
charge computed by (9) 

Average_Softness 
Arithmetic mean of softnesses of all 
atoms of a molecule 

(11) divided by the number of atoms in 
molecule 

Average_Pos_Softness 
Arithmetic mean of softnesses of 
atoms with positive partial charge +

∑
+

n

s
n

i
i

 where +n  is the number of atoms 

i with positive partial charge. 

Average_Neg_Softness 
Arithmetic mean of softnesses of 
atoms with negative partial charge −

∑
−

n

s
n

i
i

 where −n  is the number of atoms 

i with negative partial charge. 

Smallest_Pos_Softness 
Smallest atomic softness among 
values for positively charged atoms 

(9) 

Smallest_Neg_Softness 
Smallest atomic softness among 
values for negatively charged atoms 

(9) 

Largest_Pos_Softness 
Largest atomic softness among values 
for positively charged atoms 

(9) 

Largest_Neg_Softness 
Largest atomic softness among values 
for positively charged atoms 

(9) 

Softness_of_Most_Pos 
Atomic softness of an atom with the 
most positive charge 

(9) 

Softness_of_Most_Neg 
Atomic softness of an atom with the 
most negative charge 

(9) 

q (charge)- based   

Total_Charge 
Sum of absolute values of partial 
charges on all atoms of a molecule ∑∆

N

i
iN where all the contributions 

iN∆ derived within (6) 

Total_Charge_Formal* 
Sum of charges on all atoms of a 
molecule (formal charge of a 
molecule) 

Sum of all contributions (6) 
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Table 1. Cont. 
 

Descriptor Characterization Parental formula(s) 

Average_Pos_Charge* 
Arithmetic mean of positive partial 
charges on atoms of a molecule +

∑
+

∆

n

N
n

i
i

 where +n  is the number of 

atoms i with positive partial charge 

Average_Neg_Charge* 
Arithmetic mean of negative partial 
charges on atoms of a molecule −

∑
−

∆

n

N
n

i
i

 where −n  is the number of 

atoms i with negative partial charge 

Most_Pos_Charge* 
Largest partial charge among values 
for positively charged atoms 

(6) 

Most_Neg_Charge 
Largest partial charge among values 
for negatively charged atoms 

(6) 

σ* (inductive parameter) – based 

Total_Sigma_mol_i 
Sum of inductive parameters 
σ*(molecule→atom) for all atoms 
within a molecule 

∑ →

N

i
iG

*σ  where contributions *
iG→σ  are 

computed by equation (2) with n=N-1 – 
i.e. each atom j is considered against the 
rest of the molecule G 

Total_Abs_Sigma_mol_i 

Sum of absolute values of group 
inductive parameters 
σ*(molecule→atom) for all atoms 
within a molecule 

∑ →

N

i
iG

*σ  

Most_Pos_Sigma_mol_i* 
Largest positive group inductive 
parameter σ*(molecule→atom) for 
atoms in a molecule 

(2) 

Most_Neg_Sigma_mol_i 

Largest (by absolute value) negative 
group inductive parameter 
σ*(molecule→atom) for atoms in a 
molecule 

(2) 

Most_Pos_Sigma_i_mol 
Largest positive atomic inductive 
parameter σ*(atom→molecule) for 
atoms in a molecule 

(5) 

Most_Neg_Sigma_i_mol* 
Largest negative atomic inductive 
parameter σ*(atom→molecule) for 
atoms in a molecule 

(5) 

Sum_Pos_Sigma_mol_i 
Sum of all positive group inductive 
parameters σ*( molecule →atom) 
within a molecule 

∑
+

→

n

i
iG

*σ  where *
iG→σ >0 and +n  is the 

number of N-1 atomic substituents in a 
molecule with positive inductive effect 
(electron acceptors) 

Sum_Neg_Sigma_mol_i* 
Sum of all negative group inductive 
parameters σ*( molecule →atom) 
within a molecule 

∑
−

→

n

i
iG

*σ  where *
iG→σ <0 and −n  is the 

number of N-1 atomic substituents in a 
molecule with negative inductive effect 
(electron donors) 
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Table 1. Cont. 
 

Descriptor Characterization Parental formula(s) 
Rs (steric parameter) – based 

Largest_Rs_mol_i 
Largest value of steric influence 
Rs(molecule→atom) in a molecule 

(1) where n=N-1 - each atom j is 
considered against the rest of the 
molecule G 

Smallest_Rs_mol_i* 
Smallest value of group steric 
influence Rs(molecule→atom) in a 
molecule 

(1) where n=N-1 - each atom j is 
considered against the rest of the 
molecule G 

Largest_Rs_i_mol 
Largest value of atomic steric 
influence Rs(atom→molecule) in a 
molecule 

(4) 

Smallest_Rs_i_mol 
Smallest value of atomic steric 
influence Rs(atom→molecule) in a 
molecule 

(4) 

Most_Pos_Rs_mol_i 
Steric influence Rs(molecule→atom) 
ON the most positively charged atom 
in a molecule 

(1) 

Most_Neg_Rs_mol_i* 
Steric influence Rs(molecule→atom) 
ON the most negatively charged atom 
in a molecule 

(1) 

Most_Pos_Rs_i_mol 
Steric influence Rs(atom→molecule) 
OF the most positively charged atom 
to the rest of a molecule 

(4) 

Most_Neg_Rs_i_mol 
Steric influence Rs(atom→molecule) 
OF the most negatively charged atom 
to the rest of a molecule 

(4) 

* – descriptors selected for building the antibiotic peptide QSAR model. 
 
Results and Discussion  
 
Experimental data 
 

In the current work, we have used the ‘inductive’ descriptors to investigate structure-activity 
relationships in a series of antibiotic peptides called CAMEL-s. These compounds represent 
derivatives from the hybrid polypeptide CAMEL0 previously created by the respective fusion of the C- 
and N-terminus sequences of natural peptides Cecropin and Melittin. Despite the rather limited 
variability in amino acid sequences among these leucine-rich peptides, their antibacterial activity 
ranges over several orders of magnitude. It has been experimentally demonstrated that the CAMEL-s 
exhibit high activity against various strains (including the drug-resistant ones) of Gram-positive and 
Gram-negative bacteria, including Bacteroides, Bordetella, Campylobacter, Corynebacterium, 
Klebsiella, Listeria, Moraxella, Pastuerella, Taylorella, Yersinia, Rhodococcus, Staphylococcus and 
Streptococcus [26-28]. The minimal inhibitory concentrations for the series of 101 CAMEL-s against 
the listed microorganisms have been previously averaged to produce the mean antibiotic potency 
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parameters [26-28]. These values extracted from the SAPD database [29] have been collected into 
Table 2 and subjected to QSAR analysis with the ‘inductive’ descriptors. 
 
Factors governing bioactivity of CAMEL-s 
 

The common mode of action of antimicrobial peptides is disruption of bacterial cell membranes via 
electrostatic and hydrophobic interactions [1,3,4,12,14,29-36]. It is believed that amphipatic peptides 
can penetrate or form pores in the cell membranes through the insertion into the lipid bilayer mediated 
by hydrophobic forces, while their electrostatic interaction with phospholipid headgroups leads to 
membrane disruption. Cationic peptides exhibit high affinity only toward negatively charged surfaces 
of bacterial cells while they do not tend to interact with eukaryotic cells surfaces composed mostly of 
zwitterionic phospholipids. It has been demonstrated that antimicrobial activity of polypeptides can be 
influenced by their helicity, hydrophobicity and amphipathicity [5, 37-44]. Nonetheless, the exact 
nature of this correlation is still unclear and the understanding of the factors influencing the AMP 
activity is incomplete. We postulate that a set of the developed ‘inductive’ descriptors can adequately 
reflect those structure-dependent properties of CAMEL-s pertaining to their antibacterial activity. The 
reasoning for this stems from the fact that the parameters calculated within (1)–(11) cover a very broad 
range of proprieties of bound atoms and molecules related to their size, polarizability, 
electronegativity, compactness, mutual inductive and steric influence and distribution of electronic 
density, etc. 
 
Descriptors calculation and selection  
 

All 50 inductive QSAR descriptors (presented in detail in Table 1) have been calculated for all 101 
CAMEL molecules under study. To compute the ‘inductive’ descriptors we have used the custom 
SVL-scripts implemented in the MOE package [45]. It should be noted that all of the produced 
parameters are 3D-sensitive and depend on the structure of polypeptides. The CAMEL-s were initially 
built in the alpha-helical conformations (the helicity was confirmed by a number of secondary 
structure predictors) which were further optimized by the MMFF9f molecular mechanic simulations.  

It should be mentioned here, that some inductive descriptors may reflect related or similar 
molecular/atomic properties and can be correlated in certain cases (even though the analytical 
representation of those descriptors does not directly imply their co-linearity). Moreover, most of the 
CAMEL-s have very similar three-dimensional structures and, therefore, special precautions were 
taken in selecting the appropriate ‘inductive’ descriptors for the QSAR model. Hence, to eliminate the 
cross-correlation among the independent variables, we pre-computed pairwise regressions between all 
pairs of the 50 QSAR parameters for CAMEL-s. We subsequently removed those descriptors that 
linearly correlated with R≥0.9. As a result of this procedure, only 20 parameters were selected for 
further simulation (for more information refer to the Legend of Table 1). The descriptors are: Average 
Electronegativities of the Negatively/Positively Charged Atoms, Molecular (equalized) 
Electronegativity, Total Formal Charge, Average Atomic Hardness, Sum of Atomic Hardnesses, 
Average Negative/Positive Charges, Largest Positive Charge, Average Atomic Hardnesses of 
Negatively/Positively Charged Atoms, Hardness of the Most Positively Charged Atom, Largest 
Hardness among the Negatively/Positively Charged Atoms, Sum of Softnesses of Negatively Charged 
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Atoms, Steric Effect on the Most Negatively Charged Atom, Most Negative Inductive Constant of an 
Atom in Molecule, Largest Positive Inductive Effect on an Atom in Molecule, The Smallest Steric 
Effect on a Atom in Molecule, Sum of all Negative Inductive Effects on Atoms in Molecule.  

The averaged values of these 20 indices were also separately calculated for antibacterial CAMEL-s 
conventionally sub-divided into three activity groups: very active (with the mean potency above 4), 
mild (potency between 2 and 4) and moderate antibacterials (potency < 2). The ‘inductive’ descriptors 
averaged within these three groups are plotted in Figure 2. Although the curves for moderate and very 
active peptides are very close for the most part, all three categories of CAMEL-s can be clearly 
distinguished by the selected QSAR parameters.  
 

Figure 2. Distribution of the averaged values of the ‘inductive’ indices 
among ‘Very active’, ‘Moderately active’ and ‘Mild’ CAMEL 
polypeptides under investigation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore, it is reasonable to assume that the ‘inductive’ QSAR descriptors can effectively be used 
for the numerical quantification of the average potency of the CAMEL-s. 
 
Composition of the training and the testing (validation) sets 
 

In order to relate the ‘inductive’ descriptors to the experimental mean potencies of the peptides, we 
have employed the method of Artificial Neural Networks (ANN). Machine-learning approaches, 
particularly ANN, represent one of the essential parts of the modern QSAR, and the detailed 
description of the corresponding methodologies can be found elsewhere [e.g., in 46].  

For this study, we chose the standard back-propagation configuration for the ANN and we used the 
Stuttgart Neural Network Simulator package [47] to implement the model. For effective training of the 
network (primarily to avoid overfitting), we used the training sets of 91 compounds randomly selected 
as 90 percent of the available CAMEL-s. Such random sampling has been performed 20 times and, 
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thus, 20 independent QSAR models have been created in order to evaluate the average predictive 
ability of the method. One of the training sets with 91 CAMEL peptides is presented in Table 2.  
 

Table 2. Training Set of Camels in the 90/10 Split: the Mean 
Experimental Potencies vs. Predicted Potencies Using a Neural 
Network with Eight Hidden Nodes. The experimental potencies 
are average potencies against 24 Gram-positive and Gram-
negative bacterial strains. The Camels are sorted according to 
ascending experimental potencies. 

 

Identity 
Peptide sequence (NH2 corresponds 

to the amidated C-terminus group) 

Experimental 

Potency 

Predicted 

Potency 
CAMEL118 KWKLFLGILAVLKVL-NH2 0.159 0.335 
CAMEL17 KWNLNGNINAVLKVL-NH2 0.209 0.176 
CAMEL38 KWKGELEIEAELKVL-NH2 0.376 0.172 
CAMEL107 GWKLGLKILNVLKVL-NH2 0.496 1.216 
CAMEL20 KWKLFKKNNNNNKHN-NH2 0.498 1.490 
CAMEL116 KWHLFLLILAVLKVL-NH2 0.514 0.405 
CAMEL34 KRGLFKKGGAVLKGL-NH2 0.528 1.227 
CAMEL18 KWHLRNKIGAVRNNL-NH2 0.537 1.183 
CAMEL16 KHKLFKKIGAHRKRN-NH2 0.553 1.445 
CAMEL39 HWHLHKHRGARHKVL-NH2 0.677 1.184 
CAMEL134 GWELGEEILNVLKVL-NH2 0.708 0.160 
CAMEL115 KWHLFLKILAVLKVL-NH2 0.741 1.646 
CAMEL50 KWKLFKKHGNVRKVL-NH2 0.771 1.747 
CAMEL10 KNKRNKKIGAVLKVL-NH2 0.848 1.216 
CAMEL14 KHNLFKGIGAVLLVL-NH2 0.922 1.121 
CAMEL51 KWKLFKKIGNRNKVL-NH2 0.947 1.631 
CAMEL113 LWKLFLHILAVLKVL-NH2 0.962 0.162 
CAMEL26 KNKLEKKIGAVLKVL-NH2 1.027 1.339 
CAMEL52 KWKLGKGIGAVGKVL-NH2 1.033 1.080 
CAMEL58 KWKLFNRIGHNRKVN-NH2 1.049 1.739 
CAMEL137 GWRLFRGIRAVLNVL-NH2 1.074 0.296 
CAMEL54 KWGLFKNIGAVLHVN-NH2 1.156 0.223 
CAMEL57 RWKLNNNIGARLKVL-NH2 1.206 0.977 
CAMEL33 HWKLFKKIGHVNKRL-NH2 1.34 1.937 
CAMEL60 HWKRFLRIGHNLNVN-NH2 1.495 1.385 
CAMEL11 KWKLFKKIGGVGGVL-NH2 1.593 2.133 
CAMEL120 GWKLFLKILAVLKVL-NH2 1.598 0.785 
CAMEL13 GWKLFKNRGAVLKHL-NH2 1.605 2.444 
CAMEL8 KWKLFNKRGAVLKVL-NH2 1.605 2.404 
CAMEL19 RWKNFKNIRANLRVL-NH2 1.742 2.017 
CAMEL56 KWKLFGKNGRNLLVL-NH2 1.814 0.826 
CAMEL138 GWRLFKGIRAVLNVL-NH2 1.826 1.157 
CAMEL41 KWKLFKKGAVLKVLT-NH2 1.891 3.518 
CAMEL47 KWKLFKKRNAVLKVL-NH2 1.964 2.497 
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Table 2.  Cont. 
 

Identity 
Peptide sequence (NH2 corresponds 

to the amidated C-terminus group) 

Experimental 

Potency 

Predicted 

Potency 
CAMEL44 KWKLFKKIGANLKVL-NH2 2.07 3.032 
CAMEL12 KWKLFKRIGAVHKRL-NH2 2.242 1.675 
CAMEL53 HWKLFKKIHAVRKHL-NH2 2.244 1.495 
CAMEL112 KWKLFLHILAVLKVL-NH2 2.245 1.178 
CAMEL32 KWKLFRKIGAVHRVL-NH2 2.306 2.906 
CAMEL29 LWKLFKKHGAVLKVL-NH2 2.422 4.740 
CAMEL36 KWHLNKRIHAVLKRL-NH2 2.587 2.129 
CAMEL1 KWKLFKKGIGAVLKV-NH2 2.649 1.830 
CAMEL35 KWKLFRRIGAVLKHR-NH2 2.706 1.816 
CAMEL30 KRKRFRKIGAVLKVL-NH2 2.747 1.849 
CAMEL15 KWKLFKLRGRVRKVL-NH2 2.879 3.728 
CAMEL31 KWKLFKKIGLGLGVL-NH2 3.148 2.325 
CAMEL2 KWKLFKKLKVLTTGL-NH2 3.246 3.974 
CAMEL126 LWRLLKHILRVLKVL-NH2 3.259 3.974 
CAMEL55 KWLLFKKIGAVLLNH-NH2 3.425 3.229 
CAMEL37 LRKLFKKIRAVLLVR-NH2 3.617 3.407 
CAMEL125 LWRLLKKILRVLKVL-NH2 3.822 4.820 
CAMEL119 GWKLFKLIGAVLKVL-NH2 3.86 3.429 
CAMEL28 KWKLGKKIGAVLGVL-NH2 3.946 3.055 
CAMEL114 KWKLFHKILAVLKVL-NH2 4.105 4.843 
CAMEL61 KWKLFKKAVLKVLTT-NH2 4.105 3.995 
CAMEL111 KWKLFHLIGAVLKVL-NH2 4.165 3.484 
CAMEL49 NWKLFHKIGAVLKVL-NH2 4.187 4.819 
CAMEL25 KWKLRKKIGAVLKVL-NH2 4.262 3.762 
CAMEL43 KWKGFKKIGAVLKVL-NH2 4.319 4.359 
CAMEL105 GWKLGKKIGRVLKVL-NH2 4.336 5.555 
CAMEL124 KWKLFKLIRAVLKVL-NH2 4.533 5.078 
CAMEL7 KWKLFKKIGAVLHNL-NH2 4.534 3.614 
CAMEL121 GWKGFKKIGRVLKVL-NH2 4.759 5.465 
CAMEL27 KWKLFKKIGAVLNRL-NH2 4.869 4.987 
CAMEL3 KWGLFKKIGAVLKVL-NH2 4.989 3.870 
CAMEL81 KWKLFKKVLKVLTTG-NH2 5.297 4.455 
CAMEL106 GWKLFKKIGRVLKVL-NH2 5.318 5.577 
CAMEL127 GWKLFKKIGRVLRVL-NH2 5.47 5.130 
CAMEL130 LWKLFKKIRRLLKVL-NH2 5.49 4.547 
CAMEL128 LWKLFKKIGRVLKVL-NH2 5.493 5.375 
CAMEL131 LWKLFRKIRRLLRVL-NH2 5.504 5.682 
CAMEL104 GWKLGKKILRVLRVL-NH2 5.562 5.771 
CAMEL108 KWKLGKKILNVLKVL-NH2 5.566 4.905 
CAMEL109 GWRLGKKILRVLKVL-NH2 5.572 5.700 
CAMEL123 LWKLFKKIRRVLRVL-NH2 5.614 5.656 
CAMEL0 KWKLFKKIGAVLKVL-NH2 5.712 5.140 
CAMEL42 HWKLFKKIGAVLKVL-NH2 5.712 4.706 
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Table 2.  Cont. 
 

Identity 
Peptide sequence (NH2 corresponds 

to the amidated C-terminus group) 

Experimental 

Potency 

Predicted 

Potency 
CAMEL102 GWKLGKKILRVLKVL-NH2 5.725 5.674 
CAMEL6 NWKLFKKIGAVLKVL-NH2 5.803 5.205 
CAMEL23 KWHLFKKIGAVLKVL-NH2 5.81 4.700 
CAMEL101 KWKLGKKILRVLKVL-NH2 5.845 5.465 
CAMEL103 GWKLGLKILRVLKVL-NH2 5.879 5.238 
CAMEL22 GWKLFKKIGAVLKVL-NH2 5.946 5.363 
CAMEL110 GWKLGKKILNVLKVL-NH2 6.043 5.637 
CAMEL129 LWKLFKKINRVLKVL-NH2 6.045 5.212 
CAMEL4 KWKLFHKIGAVLKVL-NH2 6.072 4.877 
CAMEL24 KWKLFKHIGAVLKVL-NH2 6.167 4.880 
CAMEL132 GWKLGKHILNVLKVL-NH2 6.182 5.035 
CAMEL48 KWKLGKKIGAVLKVL-NH2 6.323 5.026 
CAMEL136 VWRLIKKILRVFKGL-NH2 6.613 5.374 
CAMEL135 GWRLIKKILRVFKGL-NH2 6.665 5.559 

 
The remaining 10 polypeptides, featured in Table 3, were used as the corresponding testing group 

to access the method’s predictive ability. For each polypeptide in the training and testing sets, we have 
transformed 20 network input descriptors into the normalized values varying from 0 to 1. Similarly, 
the output parameters from the ANN (mean antibacterial potencies) were normalized to [0:1] range.  

 
Table 3.  Validation (testing) Set of Camels in the 90/10 Split: 

Experimental Mean Potencies vs. Predicted Potencies by a 
Neural Network with Eight Hidden Nodes. 

 

Identity A.A. Sequence 
Experimental 

Potency 
Predicted 
Potency 

CAMEL59 KGKGGKKGGRGGKVL-NH2 1.077 1.030 

CAMEL40 GWLLHRNIGNVLHRL-NH2 1.387 1.167 

CAMEL5 KWKLFKKNGAVLKVL-NH2 1.408 2.076 

CAMEL139 GWKLFKGIRAVLNVL-NH2 1.497 1.524 

CAMEL117 LWHLFLKILAVLKVL-NH2 1.515 0.194 

CAMEL140 GWRLLKKILEVLKVL-NH2 4.136 1.203 

CAMEL45 KWKNFKKIGAVLKVL-NH2 4.249 4.149 

CAMEL122 LWKLFKKIRRVLKVL-NH2 6.142 5.593 

CAMEL9 KWRLFKNIGAVLKVL-NH2 6.292 2.917 

CAMEL46 KWKLFKGIRAVLKVL-NH2 6.45 4.825 
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QSAR model for CAMEL-s antibiotic potency 
 

To quantify the antibacterial potencies of the CAMEL-s from the training sets, for each of them we 
built ANN consisting of 20 input, 8 hidden and 1 output nodes (as indicated on Figure 3).  
 

Figure 3.  Configuration of the Artificial Neural Network with 20 input, 8 hidden and 1 
output nodes used in the study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

During the learning phase, the normalized values of the selected 20 ‘inductive’ descriptors for each 
training peptide are fed to the ANN along with the experimental potencies. The relationship between 
the 20 input parameters and potency is established by recursively correcting the weights attributed to 
each parameter in such a way that the training potencies converge to the experimental potencies. The 
training was conducted with the learning rate of 0.8 and the learning update threshold of 0.2, while the 
input patterns were shuffled, and the initial weights were randomly assigned between 0 and 1. Random 
noise ranging from -0.002 to 0.002 was added to the ANN inputs to avoid the entrapment of the 
learning function in a local minimum. The theoretical antibacterial activities of 91 CAMEL-s from the 
representative training sample estimated during the learning phase are shown in Table 2 and plotted 
against the experimental numbers in Figure 4.  
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Figure 4.  Predicted Potencies vs. Experimental Mean Potencies in the Training Set. 
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As it can be seen from the data, the ‘inductive’ descriptors allowed reproducing the average 
antibacterial activity of 91 CAMEL-s in the presented set of the training compounds with rather good 
accuracy. Considering that the examined potencies represent some averaged, not well standardized 
properties, the resulting QSAR predictions can be viewed as very adequate. To investigate the 
predictive power of the developed ANN-based solution, and to ensure that no overtraining occurred, 
we examined the network’s performance on the testing compounds from Table 3. The normalized 
patterns of the independent variables for 10 CAMEL-s not used for the learning phase were passed 
through the trained ANN. The pre-estimated node–associated weights of the networks were used to 
compute the theoretical potencies of the validation compounds. The resulting output parameters 
collected in Table 3 demonstrate that with the exception of two peptides (CAMEL-s 9 and 140), the 
predicted CAMEL potencies accurately reproduce the experimental data, thereby validating the QSAR 
model generated here. It should be noted that similar ANN performance has been observed on all 20 
training/testing random pairs of peptide datasets (the results for compounds from Tables 2 and 3 are 
actually one of the least accurate among the studied). 

To assess the predictive ability of the developed approach in the categorical context (which is more 
appropriate for such non-standardized data with considerable uncertainty), we have also transformed 
the continuous outputs from the training and testing procedures into the discrete categorical format. 
Using the previously outlined conditional classification of the studied polypeptides, the performance of 
the neural network was assessed by comparing the categorical classification of the outputs from the 
neural network with the categories corresponding to the experimental potencies. For the cases in which 
the experimental potency and the predicted potency correspond to the same activity category the 
prediction of activity was considered to be correct. 

Based on this simple assessment, the correct predictions by the developed QSAR model can be 
considered as 79% accurate for the presented training set (72 out of 91 CAMEL-s were correctly 
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assigned) and 80% accurate for the testing set in Table 3 (8 correct predictions out of 10). The 
significant deviations of the predicted potencies from the experimental potencies for two validation 
peptides – CAMEL 9 and CAMEL 140, indicate that the ANN-based approach underestimated the 
potency of these compounds.  

Thus, the computed mean potency of CAMEL9 (2.917) is much lower than the corresponding 
experimental activity (6.292). This can, perhaps, be attributed to the non-exact character of the potency 
parameters and the model’s discrepancies. Similarly, for CAMEL140, we predicted its potency to be 
1.203 rather than 4.136. In this case, the error could be attributed to the very uncharacteristic 
composition of this peptide. It contains the negatively charged glutamic acid (E) residue which could 
not be adequately captured by the neural network which is trained on the set of peptides not containing 
this structural feature (only one peptide from the training set has E in the sequence). Despite the 
occasional misclassification, the developed ANN predictor has not missed by more than one class of 
antibacterial activity or, in other words, it did not place any peptides with high activity to the class of 
mild therapeutics and vice versa.  

The accuracy of the created QSAR model can, possibly, be further improved by pre-processing the 
data for most adequate training and testing sets selection [48] or by using more powerful machine 
learning techniques. To summarize the section, it is possible to conclude, that the developed QSAR 
model operating by the ‘inductive’ descriptors and utilizing the ANN algorithm can accurately 
quantify the antibacterial potency of the studies synthetic cationic polypeptides and can effectively 
place them into groups of active, moderate and mild anti-infective compounds. 
 
Conclusions and Further Directions 
 

The evolution of bacterial strains into multi-drug resistant organisms progresses at an alarming 
rate. For this reason, it is crucial to discover novel non-specific antibiotics (such as cationic 
polypeptides) that are active against a number of different strains of microbes, including the resistant 
ones. The role of QSAR models for the antimicrobial polypeptides cannot be overestimated as such 
predictive solutions can significantly rationalize the selection, design and refinement efforts for these 
drugs. The developed QSAR approach utilizing the ‘inductive’ descriptors and based on the Artificial 
Neural Network algorithm can be used for these purposes and can be further expanded to cover a 
wider range of cationic peptides active against pathogens.  

The approach can also be enhanced by utilizing purely statistical techniques in conjunction with 
the inductive QSAR descriptors which allows interpreting contributions from individual structural 
factors to the potency of the AMP-s. Despite the fact that the developed ANN-based method does not 
currently allow us to exactly evaluate the contributions of the individual QSAR descriptors, it is clear 
that the employed ‘inductive’ parameters adequately reflect those aspects of intra- and intermolecular 
interactions which govern antibacterial activity of the cationic polypeptides.  

Hence, the developed methodology can further be applied to other important classes of cationic 
peptides, such as those active against viruses, fungi or tumours, and can provide excellent 
computational guidance for discovery of novel and potent therapeutic leads. 
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