

APPLICATION OF INFORMATION THEORY CONCEPTS IN THE INVESTIGATION OF THE GROWTH PATTERN OF PRODUCTION, DISTRIBUTION, AND VELOCITY OF INFORMATION.

DISSERTATION

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

by

Abdel-Hameed M. Attia, B.B.A., M.A., M.B.A., Denton, Texas August, 1987 Attia, Abdel-Hameed M., <u>Application of Information</u> <u>Theory Concepts in the Investigation of the Growth Pattern</u> <u>of Production, Distribution, and Velocity of Information.</u> Doctor of Philosophy (Business Computer Information Systems), August, 1987, 243 pp., 29 tables, 10 illustrations, bibliography, 32 titles.

The objective of this research is the investigation of the patterns of information growth to test whether there has been an "information explosion." To tackle the main problem, there are three issues which need to be addressed: (1) the concept of information dimensionality; (2) determination of common parameters to measure the amount of information within each dimension; and (3) a working definition of "explosiveness."

The independent variable is time. The dependent variables are: (1) information production--operationalized by the yearly growth of copyrights, inventions, designs, Doctorates, and Library of Congress holdings; (2) information distribution--operationalized by the yearly growth of telephones, miles of telephone wire, radio and television stations, and post offices; (3) information flow--operationalized by the yearly growth of average daily telephone conversations, pieces of matter handled in post offices, number of periodicals, number of radio and television sets, and number of books.

200

Preliminary analysis of the findings reveals that there has not been an explosive increase in the information production area. The criterion of the whole period to be explosive has not been met by any of the information production variables.

Contrary to the findings in the information production, there has been an explosive growth in the information distribution. Most of the variables have met the criterion of explosiveness for the whole curve covering the span of this study.

As for the information flow, the findings reveal that there have been explosive and unexplosive increases as well as unexplosive decreases at different points for most of the variables. Only one variable has met the criterion of explosiveness for the whole curve, signifying that the overall degree of explosiveness for the information flow falls between information distribution and information production. The general conclusion is that for the last one hundred and twenty-five years, the American society has witnessed an explosive growth in the distribution of information, a lesser degree in the velocity of information, and none in the real generation of information.

200

TABLE OF CONTENTS

	Page
LIST OF	TABLES
LIST OF	ILLUSTRATIONSvii
Chapter	-
I.	INTRODUCTION1
	<pre>1.1 Introduction 1.2 Research Problem 1.3 Objective of Research 1.4 Significance of Research 1.5 Plan of Research Chapter Bibliography</pre>
II.	INFORMATION EXPLOSION: DEFINITIONS, SCOPE, AND PREVIOUS RESEARCH
	 2.1 Information: An Elusive Term 2.2 Information Definition: Literature Review 2.3 Working Definitions and Study Framework 2.4 Measurement of Information: Previous Research Chapter Bibliography
III.	THE COMMUNICATION THEORY AND THE INFORMATION GROWTH
	3.1 An Overview of Basic Concepts of Information Theory
	3.2 Information Growth as a Communication Process 3.3 Entropy as a Basic Measure of the Amount of Information Chapter Bibliography
IV.	RESEARCH METHODOLOGY
	 4.1 Research Variables 4.2 Metrics of Information 4.3 Hypotheses 4.4 Data Collection and Analysis Procedure 4.4.1 Data Collection and Presentation 4.4.2 Data Computation Process

	4.4.3 Results Interpretation and Frequency Computations	
	4.5 Basic Assumptions 4.6 Limitations of the Study	
	Chapter Bibliography	
۷.	RESULTS AND ANALYSIS 112	
	5.1 Test of the Information Production Hypotheses 5.2 Test of the Information Distribution Hypotheses	
	5.3 Test of the Information Flow Hypotheses	
VI.	CONCLUSIONS	
	 6.1 Review 6.2 Discussion of Results 6.3 Implications of the Study and Future Research Chapter Bibliography 	
APPENDICES		
	Appendix A	
	Appendix B	
	Appendix C	
	Appendix D 216	
	Appendix E 222	
	Appendix F	
BIBLIOGRAPHY 234		

.

LIST OF TABLES

Table

Page	le
ble List	I.
ency Data of First and Second Derivatives: ification of COPYRIGHTS	II.
ency Data of First and Second Derivatives: ification of INVENTIONS	III.
ency Data of First and Second Derivatives: ification of DESIGNS	IV.
ency Data of First and Second Derivatives: ification of DOCTORATES	۷.
ency Data of First and Second Derivatives: ification of L.C. HOLDINGS	VI.
ency Data of First and Second Derivatives: ification of AM RADIO STATIONS	VII.
ency Data of First and Second Derivatives: ification of COMMERCIAL FM STATIONS118	VIII.
ency Data of First and Second Derivatives: ification of NON-COMMERCIAL FM STATIONS118	IX.
ency Data of First and Second Derivatives: ification of COMMERCIAL TV STATIONS119	Χ.
ency Data of First and Second Derivatives: ification of NON COMMERCIAL TV STATIONS119	XI.
ency Data of First and Second Derivatives: ification of CABLE TV SYSTEMS	XII.
ency Data of First and Second Derivatives: ification of TELEPHONES	XIII.
ency Data of First and Second Derivatives: ification of MILES OF WIRE	XIV.

XV.	Frequency Data of First and Second Derivatives: Classification of POST OFFICES
XVI.	Frequency Data of First and Second Derivatives: Classification of MATTER HANDLED IN POST OFFICES
XVII.	Frequency Data of First and Second Derivatives: Classification of BOOKS128
XVIII.	Frequency Data of First and Second Derivatives: Classification of PERIODICALS
XIX.	Frequency Data of First and Second Derivatives: Classification of NEWSPAPERS
XX.	Frequency Data of First and Second Derivatives: Classification of NEWSPAPERS CIRCULATIONS 129
XXI.	Frequency Data of First and Second Derivatives: Classification of AVERAGE DAILY CONVERSATIONS 130
XXII.	Frequency Data of First and Second Derivatives: Classification of RADIO SETS
XXIII.	Frequency Data of First and Second Derivatives: Classification of TV SETS
XXIV.	Summary of Information Production Hypotheses Test
XXV.	Summary of Information Distribution Hypotheses Test
XXVI.	Summary of Information Flow Hypotheses Test 139
XXVII.	Ranking of Information Distribution Variables. 143
XXVIII.	Ranking of Information Flow Variables 144
XXIX.	Ranking of Information Production Variables145

e

.

٠

vì

• .

LIST OF ILLUSTRATIONS

Figure:	Page
1.	Dimensions of Information
2.	General Form of the Logistic Curve
3.	Logistic Growth Reactions to Ceiling Conditions
4.	The Process of Information Growth Compared to the Growth of Higher Animals41
5.	Schematic Diagram of a General Communication System
6.	General Framework of Communication Process54
7.	General Model of Information Transfer
8.	Model of Scientific and Technical Information Transfer
9.	Information Growth as a Communication Process64
1Ø.	General Form of Function Behavior

.

.

CHAPTER I

INTRODUCTION

1.1 <u>Introduction</u>

The study investigates quantitatively the pattern of information growth from 1860 to 1984 in the USA. In particular, it evaluates whether there has been an information explosion in three dimensional contexts: information production, information distribution, and information flow.

There is a common assumption that there has been an explosive increase in the amount of information (e.g., 9, 16, 31). This belief has been coined "Information Explosion"--a notion that receives particular attention concerning its impact on industry and society. Examples of such attention are the numerous studies (e.g., 10, 11) on how the information age will affect educational institutions and how the flow of information across international boundaries necessitates the creation of international information control mechanisms.

Despite great attention devoted to the study of the implications of the information explosion, there have been very few quantitative studies investigating the nature of this growth (e.g., 22, 24). The importance of such work

stems from the fact that understanding and measuring the behavior of any phenomenon is necessary to predict its behavior and impact.

The objective of this research is to investigate the pattern of information growth in order to test whether there really has been an "information explosion." As a part of this study, the concept of information dimensionality is addressed. Although it is established that information dimensionality is not limited to a specific number of dimensions, only three dimensions are chosen for investigation.

As stated by Hammer (12), the lack of well established definitions of basic terms has led researchers to develop "working definitions" of the terms used in the information field. In the introduction to his edited book, Hammer (12) notes that "since we do not sanctify these definitions with consistent usage, the terms under present circumstances are very ambiguous" (12, p. viii). Nevertheless, considering the disagreement or non-existence of common definitions for these terms in the literature, this study must adapt working definitions of information, information production, information distribution, information flow, and information explosion.

In order to achieve the major objective, several metrics are used to quantify the amount of information in its three dimensional contexts: production, distribution,

and flow. These metrics constitute the basic forms of communications in the USA since the later half of the nineteenth century (the starting point for the study).

Hammer (12) believes that the lack of common definitions stems from the absence of a strong philosophical foundation for the field, that is, "a theory that would define the properties of information as a discernible precept and would identify its functions and roles in human affairs" (12, p. viii). The study will introduce the mathematical theory of communication developed by Shannon and Weaver (25) as the needed theoretical base for understanding the nature and structure of the information explosion. So, Shannon's information theory, which concerns the measurement of information contained in a transmitted message, is applied along with its logarithmic transformation to the production and flow metrics.

Although several published studies (e.g., 21, 22, 24, 3Ø) have examined the growth pattern of information, no published research investigates the information growth in its multi-dimensional context. Also there is no published research associating the concept of an information theory with the metrics of information production and information flow. This study explores the application of some concepts of information theory to establish an objective measurement for testing if there has been information explosion and, if so, how it might be described.

1.2 The Research Problem

There are many demands today for more information, not only by organizations, but by society. These needs are aggravated by the technological complexity of modern society and the rate of technical and environmental changes. Simon (26) refers to this explosion of information demands as the third revolution following the emergence of written English and the invention of the printed books (26, p. 1185). Zmud (32) points out that while other concerns predominated in earlier decades, the information function is likely to become a critical corporate function, as well as a major competitive tool, in the 1980s and beyond (32, p. 5).

Although this apparent growth phenomenon has triggered many researchers to examine its impact on society (e.g., 8, 14, 17), there have been very few studies investigating the measurement and characterization of the growth pattern. The reason may be due, in part, to the wide range of definitions and interpretations of the terms information, information generation, distribution, and flow.

Machlup (22) observes that studying the creation and distribution of knowledge involves a cluster of disciplines (e.g., computer science and information systems) he calls "the sciences of information" (22, p. 5). It is not surprising then that each discipline could have a different meaning for the term "information." Other problems facing the measurement of information are (1) the lack of a working definition for information growth; and (2) the lack of quantitative metrics to measure this growth. Given the importance of investigating information explosion, there are many research questions that can be directed at investigating different dimensions of this problem.

For the purpose of this study, the research question is to test whether there has been an information explosion and, if so, how it might be described. This general statement can be restated as the following questions:

- 1. How is the amount of information defined?
- 2. How are the dimensions of information (e.g., production, distribution, and flow) measured?
- 3. What surrogates can be used to measure each dimension?
- 4. What quantitative metrics should be applied for each dimension?

1.3 Objective of Research

The objective of this research is to investigate the growth pattern of information. This general goal can be operationally achieved by formulating

- an operational definition of the amount of information in its three dimensional context (production, distribution, and flow);
- an operational definition of the concept "information explosion"; and
- quantitative metrics to measure the amount of information.

Definitions of the terms "information" and "explosion," as well as working definitions of information production, i.e., the creation of new ideas, distribution, the geographical dispersion and flow, the rate of distribution, will be provided in sections 2.1 and 2.2.

The "mathematical theory of communication" introduced by Shannon and Weaver (25) was fully developed for use in the field of electrical engineering to define and measure the amount of information contained in a message. Among the major objectives of the theory are

 to measure the amount of information transmitted through communication systems in order to analyze the capacity of transmission channels;

- 2. to measure the amount of "noise," i.e., the effect of distortion in a specific channel, in order to minimize its undesirable effect; and
- 3. to measure the amount of "redundancy," i.e., repeated signals, in order to economize its size.

Lev (18) points out that since these objectives are also shared by the social sciences, Shannon's informational concepts can be applied to psychology, sociology, and linguistics (18, p. 1). The idea of extending the application of information theory to the natural and behavioral sciences has also been supported (e.g., 3, 13, 19, 23). One major argument for this extension is the generality of information theory concepts. "This is a theory so general that one does not need to say what kinds of symbols are being considered--whether written letters or words, or musical notes, or spoken words, or symphonic music, or pictures" (25, p. 114). The level of information expression is ignored by Shannon's theory. In other words, all symbols are considered equivalent in terms of information content.

So, to achieve the main objective of this research, the logarithmic transformation of information theory is applied to the production and flow metrics. Distribution of information, though intuitive, is not a commonplace in information theory. Metrics for distribution are, however, defined and used as necessary and are important factors for

the use of information. Discussions of the basic concepts of information theory, as well as the rationale for using specific metrics in the context of viewing information growth as a communication process, will be provided in Chapter III.

1.4 Significance of Research

A major challenge facing information systems and information science research communities is the definition of a theory of information growth. Such a theory would have to rely on contributions from different disciplines. An important part of such a theory would be development of quantitative metrics to measure the amount of information within its different dimensions.

It is surprising that, despite the importance of such a topic, there have been very few studies dealing with the dimensions of information growth (e.g., 22, 24). The reason may be the common notion that "information" is an unmeasurable product. It is not consumed by use like other products. Bell (6) states that "Information, or knowledge, even when it is sold, remains with the producer. It is a "collective good" in that once it has been created, it is by its nature available to all" (6, p. 412).

One significance of the present study is the use of information theory concepts to measure the amount of information in society. Since the inception of the information theory in 1948, there have been many attempts to apply it to different disciplines in social sciences (e.g., 1, 3, 29). This study stands on that side which tries to expand the application of information theory in social sciences into the information growth area.

Another significance of this study is the investigation of different dimensions of information. There is a view supporting single dimensionality of information by combining the processes of production, distribution, and flow into one dimension and arguing that once information is generated it is already available to users. This idea has the convenience of dealing only with one dimension. Machlup (22) supports this single dimensionality and considers distribution of knowledge as a part of its production function (22, p. 7). This study, however, will move away from this direction by delineating three dimensions of information growth: production, distribution, and flow.

It is hypothesized that the outcome of the study will reveal different growth patterns for each dimension of information growth. One important reason for this expectation is that advancements in communications technology should lead to a substantial increase in distribution channels or better information flow within the existing channels. So, the information explosion might really be a distribution or a flow explosion instead of an explosion of production.

1.5 <u>Plan of Research</u>

Information explosion is discussed in Chapter II. This chapter will present several views for the definition of data, information, and knowledge and develop working definitions of the terms used in the research as well as the concept of information dimensionality. In addition, a framework of dimensions of information used in the research will be presented. An overview of the measurement of information growth as well as the results of previous research will be addressed.

Chapter III will complete the literature review by addressing the basic concepts of information theory delineating the metrics that will be used in the research. The discussion will not only be restricted to review the literature but it will be extended to develop a model viewing the information growth in its three dimensional contexts as a communication process.

Chapter IV is fully devoted to the description of research variables, metrics used to measure the variables, and research hypotheses. The methodology to collect the data as well as the statistical procedures to test the hypotheses will also be discussed. The basic assumptions as well as the basic limitations of the study will be addressed.

1Ø

In Chapter V, the statistical analysis of the data and the results of testing the hypotheses will be presented. In Chapter VI, the interpretations of the hypotheses test results and the conclusions based on the interpretations will be presented. Implications of the study as well as future research will be addressed in the light of the findings of the study.

CHAPTER BIBLIOGRAPHY

- Abdel-Khalik, A. R., "The Entropy Law, Accounting Data, and Relevance to Decision-Making," <u>The Accounting</u> <u>Review</u>, (April, 1974), pp. 271-283.
- Barnes, B., <u>Interests and the Growth of Knowledge</u>, London, England, Routledge & Kegan Paul Ltd., 1977.
- Bedford, N. and L. Lee, "An Information Theory Analysis of the Accounting Process," <u>The Accounting Review</u>, (April, 1969), pp. 256-275.
- Bedford, N. and M. Onsi, "Measuring the Value of Information--An Information Theory Approach," <u>Management Science</u>, (January, 1966), pp. 15-22.
- Bedford, N. and V. Baladouni, "A Communication Theory Approach to Accounting," <u>The Accounting Review</u>, (October, 1962), pp. 650-659.
- Bell, D., <u>The Coming of Post-Industrial Society</u>, New York, Basic Books Inc., 1973.
- Bell, D., "The Social Framework of the Information Society," <u>The Microelectronics Revolution</u>, edited by T. Forester, Cambridge, Mass., The MIT Press, 1981.
- Boatwright, B., "The Employment Consequences of Rapid Technological Change," <u>Information, Computer and</u> <u>Communications Policies for the 80's</u>, edited by H. P. Gassman, Amsterdam, Holland, North-Holland Publishing Co., 1981, pp. 91-106.
- Fallwell, W., editor, "Information Explosion Closer to Control," <u>Chemical</u> & <u>Engineering News</u>, (December 20, 1971), pp. 28-36.
- 10. Gassmann, H. P., editor, <u>Information, Computer and</u> <u>Communications Policies for the 80's</u>, Amsterdam, Holland, North-Holland Publishing Co., 1981.

- 11. Guile, B., editor, <u>Information Technologies and Social</u> <u>Transformation</u>, Washington, D.C., National Academy Press, 1985.
- 12. Hammer, D. P., editor, <u>The Information Age: Its</u> <u>Development, Its Impact</u>, Metuchen, New York, The Scarecrow Press, Inc., 1976.
- Hopkins, C., "Possible Applications for Information Theory to Management Control," <u>IRE</u> <u>Transactions</u> <u>Engineering Management</u>, EM-8, No. 1 (March, 1961), 40-48.
- 14. Karlsruhe, "Repercussions on the Economy and the Labour Market," <u>Information, Computer and Communications</u> <u>Policies for the 80's</u>, edited by H. P. Gassman, Amsterdam, Holland, North-Holland Publishing Co., 1981.
- 15. Kochen, M., editor, <u>The Growth of Knowledge: Readings</u> on <u>Organization and Retrieval of Information</u>, New York, New York, John Wiley & Sons Inc., 1967.
- Krupp, H., "Economic and Societal Consequences of Information," <u>Information and Innovation</u>, edited by B. T. Stern, Amsterdam, Holland, North-Holland Publishing Co., 1982, pp. 27-47.
- 17. Lemoine, P., "Information and Economic Development," <u>Information, Computer and Communications Policies for</u> <u>the 80's</u>, edited by H. P. Gassman, Amsterdam, Holland, North-Holland Publishing Co., 1981, pp. 91-106.
- 18. Lev, B., <u>Accounting and Information Theory</u>, Evanston, Illinois, American Accounting Association, 1969.
- 19. Li, D., "The Semantic Aspect of Communication Theory and Accounting," <u>Journal of Accounting Research</u>, (Autumn, 1968), pp. 102-107.
- 20. Machlup, F., <u>Knowledge: Its Creation, Distribution, and</u> <u>Economic Significance</u>, Vol. III, Princeton, N.J., Princeton University Press, 1984.
- 21. Machlup, F., <u>Knowledge: Its Creation, Distribution, and</u> <u>Economic Significance</u>, Vol. II, Princeton, N.J., Princeton University Press, 1982.

- 22. Machlup, F., <u>The Production and Distribution of Knowledge</u> <u>in the United States</u>, Princeton, N.J., Princeton University Press, 1962.
- 23. Nokana, I., "Noise and Redundancy in Accountancy Communications," <u>The Accounting Review</u>, (October, 1972), pp. 693-708.
- 24. Price, D. D., <u>Little Science</u>, <u>Big Science</u>, New York, Cambridge University Press, 1963.
- 25. Shannon C. E. and W. Weaver, <u>The Mathematical Theory of</u> <u>Communication</u>, Urbana, Illinois, The University of Illinois Press, 1949.
- 26. Simon, H., "What Computers Mean for Man and Society," <u>Science</u>, Vol. 195, 1977, pp. 1186-1191.
- 27. Stern, B. T., editor, <u>Information and Innovation</u>, Amsterdam, Holland, North-Holland Publishing Co., 1982.
- Theil, H., <u>Economics and Information Theory</u>, Chicago, Illinois, Rand McNally and North Holland Publishing Co., 1967.
- 29. Theil, H., "On the Use of Information Theory: Concepts in the Analysis of Financial Statements," <u>Management Science</u>, XV, No. 9, (May, 1969), 459-480.
- 30. Weiss, P., "Knowledge: A Growth Process," <u>The Growth of Knowledge: Readings on Organization and Retrieval of Information</u>, edited by M. Kochen, New York, New York, John Wiley & Sons, Inc., 1967, pp. 209-215.
- 31. Wright, K., "Trends in Modern Subject Analysis with Reference to Text Derivative Indexing and Abstracting Methods: The State of The Art," <u>Information PART2</u>, 1, No. 5, (September-October, 1972), 1-18.
- Zmud, R. W., <u>Information Systems in Organizations</u>, Glenview, Illinois, Scott, Foresman and Co., 1984.

CHAPTER II

INFORMATION EXPLOSION: DEFINITIONS, SCOPE, AND PREVIOUS RESEARCH

2.1 Information: An Elusive Term

As stated by Fox (20), Stern (46), Hammer (23), and Saracevic (42), there have been many attempts to provide a definition of information that is generally accepted by the researchers in all fields of information. But all the attempts ended up with definitions that lack an accepted characterization of the nature of information. Consequently, the literature of all fields of information is full of divergent definitions. The reason may be that the term "information" has a wide range of meanings because of its interdisciplinary nature. Reviewing the literature reveals not only such diversity of opinions regarding the notion of information but also the difficulty of drawing a clear-cut boundary between information and other terms such as knowledge and data.

Wellish (49) reviews the literature to find out what Information Science is. With respect to information, he comments that the concept of information is highly ambiguous and mostly ill-defined. He also states that all the researchers do not succeed to arrive at an agreed-upon definition, nor do their definitions have any common elements (49, p. 11).

Another review of the definitions of information is conducted by Wersing and Neveling (52). They state that they have used a semantic analysis to characterize and group the definitions reviewed. The semantic analysis used showed that there are at least six different approaches to the use and understanding of the term information in the field of discipline (52, p. 129). Fox (20), in his efforts to describe the divergence of opinions about information, comments that even within these six categories mentioned by Wersing and Neveling, the definitions are typically very different from one another (20, p.41).

Belkin (2) questions whether the myriad one-line information definitions can really be plausibly classified into categories characterized by having a well developed approach. Belkin surveyed representatives of the wide diversities of the views in the field. He distinguishes eleven approaches to an information concept and examines sixteen definitions of information, grouping them into eleven schools of thought which clearly reflects a wide diversity of opinions about the nature of information.

These three major reviews of information definitions show enough evidence that the information disciplines clearly lack an accepted characterization of the nature of information, and that the literature of the fields is full

of divergent proposals on the concept, none receiving support from more than a few investigators. There is also a difficulty of drawing a clear-cut boundary between information and knowledge which adds more divergence of opinions about information.

Machlup (32) states that the terms "information" and "knowledge" are synonymous and suggests to get rid of the duplication that only one term "knowledge" should be used. He defines knowledge as "an interrelated system . . . which illuminates the basic causal structure of some field of operations" (p. 8). He, however, in his book <u>Knowledge: its</u> <u>Creation, Distribution, and Economic Significance</u> (30), presents a different opinion by stating that the terms "information" and "knowledge" have different meanings. "To inform and to know have different meanings: informing is a process or activity, whereas knowing is a state of mind (30, p. 8).

In his discussion of the manufacture of knowledge, Knorr-Cetina (29) emphasizes an epistemological attitude when he states that the objectivism school of epistemology (as described by Bhasker (6), and Fraasen (21)) views the world as composed of facts and sees the goal of knowledge as providing a literal account of what the world is like. The constructivism school, however, regards scientific inquiry as a process of production: "Rather than considering scientific products as somehow capturing what is, we will

consider them as selectively carved out, transformed and constructed from whatever is" (29, p. 3).

Hammer (23) defines and describes the relationships of the three terms, data-information-knowledge, as "data is the raw unprocessed, usually unorganized elements of which "information" is composed. The latter, it follows, is the used, and later stored, becomes knowledge" (23, p. viii). He points out that these terms are very ambiguous because of the lack of consistency in defining these terms.

Saracevic (42) addresses the same data-informationknowledge triangle in the context of communication process as described by Goffman (22) and Shannon and Weaver (45). Communication is a process where information is transmitted from one object to another. He suggests that the connotations of communication and information can be extended to data and knowledge as used in the theory of knowledge (42, p. 88). The point that Saracevic tries to make is that in communication systems knowledge is communicated from a source to a destination through transmitting information. "Communication of knowledge is effective when and if information transmitted from one file results in changes in another" (42, p. 88).

Farradane (18) has a similar definition to the previous one regarding information as "any physical form or representation, or surrogates, of knowledge, or of a particular thought, used for communication (18, p. 13).

Contrary to what Machlup (30, p. 15) concludes, that all information is knowledge but not all knowledge may be called information, Libbey (28) considers anything that is communicated falls within the broad concept of information. Furthermore, Saracevic points out that even though he uses the term "communication of knowledge," strictly speaking it is not knowledge but data (42, p. 88).

Another example of the controversy over definitions is Bell's definition of the term knowledge. Bell (cited in 48, pp. 554, 555) defines knowledge as

an organized set of statements of facts or ideas, presenting a reasoned judgement or an experiment result, which is transmitted to others through some communication medium in some systematic form. Thus, I distinguish knowledge from news or entertainment. Knowledge consists of new judgements (research and scholarship) or presentations of older judgements (textbooks, teaching, and library and archive materials).

While Weizenbaum (48) criticizes this definition as being circular and incomplete because it systematically excludes almost everything called knowledge in everyday life (48, p. 555), Saracevic (42) considers the definition appropriate for delineating the concept of knowledge (42, p. 88).

The above discussions seem sufficient to conclude that there is no agreement on the definition of information nor on the boundaries between information and related terms such as knowledge and data. This conclusion justifies the adoption of "working definitions" of information and other

terms in the contexts of the related studies. These working definitions include the characteristics needed for the purpose of the study. Fox $(2\emptyset)$ refers implicitly to these definitions as discipline-specific characterizations of information which exclude from considerations various features of information not needed for a specific purpose $(2\emptyset, p. 4)$.

The realization of this fact is mainly behind developing working definitions of information, information production, information distribution, and information flow in the context of the study framework. These working definitions as well as the study framework are presented in Section 2.3. But for the purpose of completing the discussion, common definitions of the term "information" are presented in the next section.

2.2 Information Definition: Literature Review

The review of information definition is not exhaustive due to the numerous definitions proposed in the literature. For example, Wersing and Neveling (52) review seventeen definitions of information while Belkin (2) reviews sixteen definitions, and their work is still considered as only a representative portion of the literature on the topic.

As stated by Fox (20), the following are the major approaches to define information:

1) the spatio-temporal entity based approach;

2) the information theory based approach.

A brief discussion of each of selected definitions representing the two approaches is in order.

It is frequently proposed that information is some sort of spatio-temporal entity such as tokens and process or event (Fox 20, p. 43). Fitting into that concept, Farradane (17) defines information as "any physical form or representation, or surrogate, of knowledge, or of a particular thought, used for communication" (17, p. 13). Although Farradane does not use the word "tokens," his definition implicitly describes information as tokens used in communication to express or transfer someone's knowledge or beliefs.

Viewing information as a process is implicitly expressed by Otten (35) and Dow (13) but clearly stated by Debons in (10). Debons' position is based on a distinction between two senses of information: information as a commodity and information as a process.

Regarding information as a commodity (tokens), Debons has a definition similar to Farradane's. "In this sense, information is the physical representation of events and states in the environment, structured so as to be intelligible to a user or group of users" (19, p. 2).

Regarding the information as a process, Debons describes it as a mental process carried out by a sender and a receiver communicating with each other. "Information is a process whereby data are received and interpreted by an intelligent being, which transforms the data in light of its existing view of the world, thus leading to change in state of receiver, who is then informed" (10, p. 2).

According to Debons' view, the process of information encompasses the entire procedure of gathering, arranging, and disseminating data to users in such a way to change their state of knowledge about the environment.

Information, then, is viewed as a process through which data from the environment are captured, and processed to facilitate interpretation by a user (the commodity of information); and then transformed by a user in such a way as to change his state of knowledge about the environment (the process of information) (10, p. 2).

Pratt's position regarding information is slightly different than Debons' view even though both positions consider information as a communication process. Pratt's view is based on a model of communication which in turn is based on a model of human understanding and cognition presented by Kenneth Boulding (7).

The central notion of Pratt's model, as described in (38), is the "image." An image is an individual's view of looking at and thinking about the world phenomena. Everyone's image is different from everyone else's because of the unique experiences everyone has. Pratt continues to further explain his concept of communication by describing some constraints that might exist. An example of such constraints is having certain congruence between the images of senders and receivers; otherwise people involved in communication will not understand or believe each other.

By exploring such constraints on the communication process, Pratt establishes his model of communication as the factors involved in the process of a person's succeeding in altering the image of another. Once the model is constructed, Pratt considers information as the consequences of the communication process in the light of his concept of communication.

Information is the alteration of the image which occurs when it receives a message. Information is thus an event; an event which occurs at some unique point in time and space, to some particular individual. More precisely, "information" is the same of a class of events, like the word "explosion" (38, p. 215).

The other major class of defining information is the information theoretic approach based on the mathematical theory of communication developed by Shannon and Weaver (45). Since the theory was introduced in 1948, there has been a lot of excitement over the importance of applying the theory to myriad problems in human communications, ranging from physiology of perception to the semantics of natural language (20, p. 51).

Rapoport (41) best describes that attitude when he points out how information theory can be applied in the seemingly different contexts by stating that:

It may be true that the technical problems of long range communication (radio, television, etc.) can be

treated independently of the semantic content of the messages or the semantic reactions of the audience. But it may also be true that the methods involved in treating these problems (for example, the mathematical theory of information) can be applied in the seemingly different contexts of the events which interest general semantics, psychologists, and others (41, p. 9).

Shannon and Weaver (45) provide their definition of information as that "Information is a measure of your freedom of choice when you select a message...Thus greater uncertainty and greater information will go hand in hand" (pp. 100, 104). This definition has been presented in different expressions by many researchers who take that approach to define information (e.g., Faibisoff and Ely (14), Saracevic (42), Murdock and Liston (34).

There is a lot of controversy in the literature regarding the suitability of extending the information theory and its mathematical formation to the communication models in the social sciences. But even with this divergence of opinions, the influence of the information theory on defining the concept of information in social sciences is dominant. An evidence supporting this claim is stating quite a number of information definitions which reveal that the basic features of information theory have been taken as the basis for these definitions. Examples of such information theory based definitions are Wersing and Neveling's (52) and Whittemore and Yovits's (51).

Wersing and Neveling's definition of information is basically based on the notion of "reduction of uncertainty" taken from Shannon and Weaver's work. They, however, do not adopt the whole concept of information theory but they define the information in the context of historical evolution, the development of specific social needs, and the development of new methodologies and techniques. In other words, they base their definition of information in the light of its social contexts.

The basic term "information" can be understood only if it is defined in relation to these information needs(i.e., the information needs of people involved in social labour). Either as reduction of uncertainty caused by communicated data or as data used for reducing uncertainty (51, p. 138).

Another definition of the term information is also based on the notion of reducing uncertainty but in the context of decision-making. Whittemore and Yovits state that the information theory approach is inadequate to be used in social sciences because it is "too restrictive to be of wide interest" (51, p. 222). They also state that treating information to be synonymous with knowledge is too broad to lead to principles and relationships that are meaningful and useful (51, p. 222).

Consequently, their definition of information is based on a model of decision-making process which considers constraints such as measurability and the need for a feedback about decisions made. In the light of Whittemore and Yovits' model, information is defined as any data which alters a decision maker's uncertainty. In general,

information is defined in terms of its value to a decision maker and it could be measured by measuring the uncertainty of the decision maker before and after the receipt of some data (51, p. 222).

On his comments on the confusion of defining information, Fairthorne points out that the term is overused and ill-used, promoting sloppiness and confusion. He recommends that there ought to be a moratorium as a first step in clearing up terminology and clarifying concepts (16, p. 11).

The sloppiness and confusion of defining information may be partially behind the idea presented by Belkin and Robertson (3) that there is not and cannot be a definition of information in general sense.

Information is that which is capable of transforming structure. This definition, however, is clearly far too broad (particularly in view of the categorical nature of structure), and encompasses many notions for which the term information is never used. So we leave information (in its general sense) undefined; but we discuss the various uses of the term with the idea of transforming of structure in mind (3, p. 198).

The above review of information definition which covers the last three decades reveals that there is no an accepted view of information definition. So, the approach of developing working definitions which encompass the characteristics of information required for the purpose of the study is taken. The working definitions as well as the study' framework of information dimensions is presented in the next section.

2.3 <u>Working Definitions and Study Framework</u>

Accepting the viewpoint, as illustrated by the previous discussion, that information has different meanings in different contexts, it is vital to have a working definition as well as a taxonomic scheme of "information" for the context of the present study.

Information consists of symbolic fact(s). relationship(s). or theory(ies) which reduce(s) the uncertainty about a given phenomenon.

The greater the uncertainty about a specific phenomenon, the greater is the value assigned to information conveyed in a message about this phenomenon. A taxonomy of three distinct dimensions of information is delineated and defined. These basic dimensions, which are the subject of investigation, are production, distribution, and flow of information.

Information production is defined as the process of generating new fact(s), relationship(s), or theory(ies) which build upon and may change existing fact(s), relationship(s), and/or theory(ies).

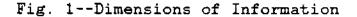
The process of information production can be subdivided into generation and evaluation. Any piece of generated information is usually evaluated by a group authorized for judgments within a specific field. For the purpose of this study, however, the process of evaluation is ignored. Information distribution is a measure of the geographic dispersion of information. In other words, it is a reflection of the number of distribution points within a geographic region.

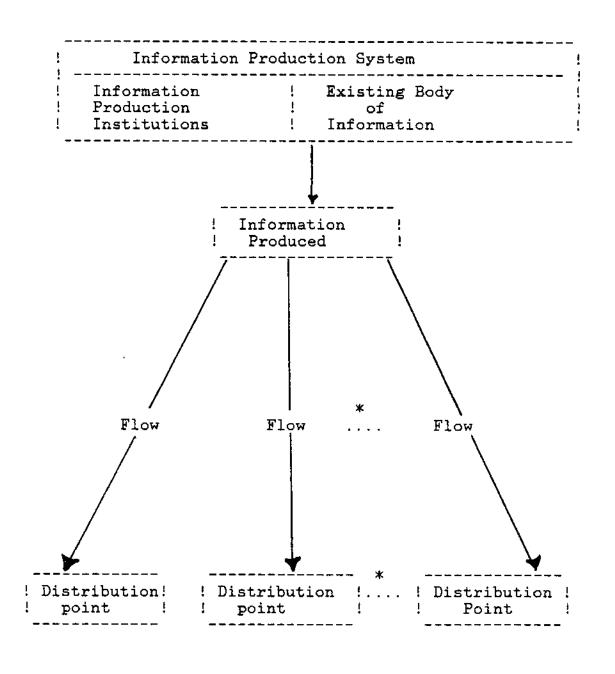
The flow component is defined as the velocity of information in a given channel. In other words, it is measured by the frequency of using the distribution points within a given system, or the bandwidth of the channel.

The basic justification behind this taxonomy of information is to separate the dimension of production, which means a real increase in the amount of information from other dimensions which basically relate to the degree of use of the amount of information created during the production process. The impact of information depends not only on production but also on the capabilities of distribution channels to disperse information and on the degree of velocity within these channels. The following example helps clarify this point.

Paper production was discovered in China about AD 105 (25, p. 3). Due to the lack of distribution channels, this information was confined to China until 751, when Arab armies overran Samarkand and captured a paper-making team sent there by the Chinese emperor. The information of paper-making spread to Iraq during the eighth century, to Egypt during the ninth century, and then to Morocco about AD 1120 (25, p. 4). From there, the pace of information flow to Europe quickened due to the increase of distribution channels (trade routes and the crusades) through the

Mediterranean. The Byzantine Empire was importing Arab paper at the same time (1150) that Moslem Spain constructed its first paper mill. The Italians were making paper by 1280 (9, p. 100). This example demonstrates that the . distribution of a new idea might be very slow due to the lack of adequate distribution channels.


These three noted dimensions are the primary concern of this study, but it must be pointed out that the concept of information dimensionality is not limited to just three dimensions. For example, information utility is another dimension which refers to the degree of utilization of received information (thus reflecting its perceived importance). This perceived importance usually affects the degree of utilization by the information recipient in two ways: (1) the frequency of information utilization within a certain period of time; and (2) the length of time period in which the information is utilized.


Regarding these two directions, one of the following information utilization conditions is possible:

- information might be frequently utilized for a long period of time, suggesting a permanent importance of its value;
- information might be frequently utilized for only a short period of time, suggesting a temporary importance of its value; or
- 3) information might be less frequently utilized for

long and short periods of time, suggesting a trivial value.

As mentioned, this research will limit its attention to the production, distribution, and flow dimensions. Figure 1 represents these three basic dimensions within a general information production system.

* The dotted line means that a typical system can have more or less than three distribution points.

The working definition of "explosion" applied in this study is mathematical.

Information growth is considered explosive only if the first and second derivatives of the growth curve are positive.

Applying this operational definition of information explosion, the amount of information will be measured and plotted against time to draw the pattern of information growth. Curve fitting techniques will be applied to determine the growth function.

2.3 Measurement of Information: Previous Research

Contrary to the voluminous literature debating a definition of information, there is little literature about quantitative measurements for information. Two major efforts are Machlup's work, as presented in (30, 31, 32), and Price's work, as presented in (39, 40). Each work has a completely different approach. Machlup's approach is essentially economic while Price's is basically statistical.

Machlup (32) made the first attempt to measure the production and distribution of information based on the national accounts of the USA (4, p. 517). Machlup grouped thirty industries into five major classes of information production and distribution: education, research and development, media of communications, information machines,

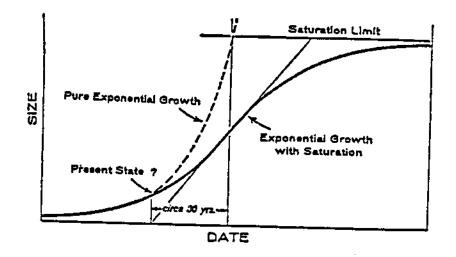
and information services. Bell (4) criticizes this classification scheme as being too broad and including nonhomogeneous entities in a given class (4, p. 517).

Machlup's main objective was to compute the portion of Gross National Product (GNP) produced by these thirty industries as well as the portion of the labour force they engaged. These two metrics were used to characterize the information growth in the USA from 1900 to 1958.

This early work (32) has been praised for laying "the foundations for a theory of growth of knowledge" (44, p. 841). It was also replicated (e.g., 8, 33, 37) in different time frames to compute the growth rate of knowledge industries and the added values as a percentage of GNP. Despite all this attention, Bell (4) protests that "if one wanted to measure the actual economic magnitudes of the information economy, the difficulty is that there is no comprehension conceptual scheme that can divide the sector logically into neatly distinct units" (4, p. 517).

The other major work in the measurement of information growth is Price's study. Price (39) introduces a growth model applied to a class of information called "scientific information." Bell (4) provides his own interpretations to restricting Price's model to only scientific information by pointing out that "given this huge explosion in news, statistical data, and information, it is almost impossible to provide any set of measurements to chart its growth. Yet

there is one area - the growth of scientific information where some reconstruction of historical trends has been carried out" (4, p. 526).

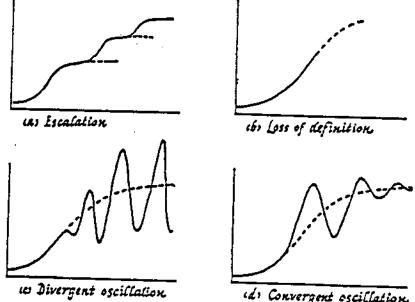

Price (39) emphasizes that, with impressive consistency and regularity, the mode of growth of scientific information from 1665 to 1958 was exponential. He explains his findings thus: "the law of exponential growth follows from the simple condition that at any time the rate of growth is proportional to the size of the population or to total magnitude already achieved - the bigger a thing is, the faster it grows" (39, p. 5). He notes that the order of magnitudes of information growth vary from one area to another even the same pattern of exponential growth was maintained. According to Price, the order of magnitude is measured by the time required for doubling the amount of information.

Significantly, Price (39) cautions that this normal exponential growth of information describes, in fact, a most abnormal state of events. Things do not grow and grow until they reach infinity. Rather, exponential growth eventually reaches some limit (39, p. 20).

Based on the above conclusion, Price discusses the logistic (S-shaped) curve as a function which governs the general trend of information growth. The logistic function is used as a mathematical model to describe limited population growth such as spread of disease in isolated environment (53, p. 459). The general model of the logistic function is generally expressed as follows:

where a, b, and k are positive constants.

Certain characteristics govern the behavior of the logistic curve. It is limited by a floor and a ceiling. The floor reflects the base value of growth, usually zero, while the ceiling reflects the ultimate value of the growth beyond which it can not go in its normal behavior. Figure 2 reflects the typical pattern of the logistic curve.


Following the logistic function, the growth starts exponentially and maintains this pace to a point almost halfway between floor and ceiling, where it has an inflection. After the inflection, the pace of growth declines so that the curve moves toward the ceiling in a manner symmetrical with the way in which it moved from the floor to the inflection point. According to Price's analysis, this normal form of logistic curve behavior is not the most common behavior of the curve. Before they reach a midpoint, logistic curves begin to twist and turn on the way to the ceiling according to one of the following patterns:

- (1) Escalation---the behavior of the curve will change to begin another cycle of S-shaped curve. In other words, new logistic curves are born as the old ones die.
- (2) Loss of definition---the behavior of the curve will become so violent as to make impossible further measurement of the variable in the same way or in the same units.
- (3) Oscillation (divergent or convergent)---as the curves begin to escalate widely, the newly felt construction produces restorative reaction using cybernetic forces (39, p. 24).

A graphical representation of the way in which logistic growth may react to ceiling conditions is presented in Figure 3.

38

Fig. 3--Logistic Growth Reactions to Ceiling Conditions

eds Convergent oscillation

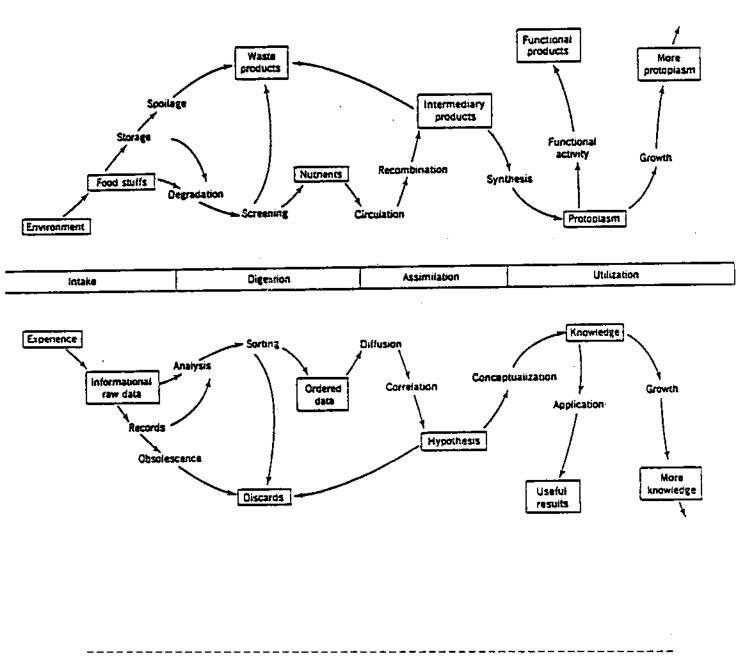
* Source: Price (39), p. 24.

Price (39) presents empirical evidence to support his hypothesis that the growth of scientific information has been steadly following the logistic curve for three centuries. He concludes that escalated curves are the most common explaining the growth of scientific information.

Observing historical events, one can conclude that once the growth slowed down another major advance was needed to produce another step in the escalation (39, p. 30).

Weiss (47) presents another model of scientific information growth different from the logistic model presented by Price. In his article, <u>Knowledge: a Growth</u> <u>Process</u>, Weiss states that "scientific knowledge grows like an organic tree, not as a compilation of collector's items" (47, p. 209). So, the model of a higher animal growth is introduced as a model of information growth.

Making an analogy between the growth process of a higher animal and the growth process of information, Weiss states that


an organism never adopts foreign matter outright, but reorganizes and assimilates it to fit its own peculiar pattern. Even a leech must first dissolve the hemoglobin of its meal of blood and then compose its own brand from the fragments. Organic growth is by assimilation, not accretion. (47, p. 210).

Weiss continues his analysis to make the analogy between the mentioned process and the process of information growth by stating that the process starts with data either stored or processed. The products of processing the data are then stored according to relevance. As a result of this, an ordered system of identifiable items is created which is similar to the Linnean system of species prior to the theory of evolution. Circulating items of ordered systems leads in critical correlation with other sources which results in emerging hypotheses which upon further testing turn into integral parts of the body of knowledge.

At this stage, data have become assimilated, have lost their individual identities in merging with that higher entity-the body of organized knowledge. ... A patchwork of unrelated facts has been transformed into a rationally connected thought structure of inner consistency, viable and durable, subject to the tests of survival and the adaptive improvements of evolutiona veritable model of organism. (47, p. 210).

Figure 4 represents the process of information growth (lower half) as compared to the process of higher animals growth (higher half).

Fig. 4--The Process of Information Growth

* Source: Weiss (47), p. 211.

41

*

There have not been reported studies to test empirically Weiss's model of information growth. It seems that the model lacks practicality because there is no quantitative metrics provided to measure the amount of growth within the model.

Neither the logistic model nor the higher animal model is used in this study. The objective of the study is not to test a specific model of growth. The empirical evidence derived from the study will be used to interpret the theoretical foundation which may exist behind the growth of information. So, the study concentrates on the theory which is suited to measure the amount of information which is discussed in the next chapter.

CHAPTER BIBLIOGRAPHY

- 1. Barnes, B., <u>Interests</u> and the <u>Growth</u> of <u>Knowledge</u>, London, England, Routledge & Kegan Paul Ltd., 1977.
- Belkin, J., "Information Concepts for Information Science," <u>Journal</u> of <u>Documentation</u>, 34, (1978), 55-85.
- Belkin, J. and S. Robertson, "Information Science and the Phenomenon of Information," <u>Journal of the ASIS</u>, 27, (1977), 197-210.
- Bell, D., <u>The Coming of Post-Industrial Society</u>, New York, Basic Books Inc., 1973.
- Bell, D., "The Social Framework of the Information Society," <u>The Microelectronics Revolution</u>, edited by T. Forester, Cambridge, Mass., The MIT Press, 1981.
- Bhasker, R., <u>A Realist</u> <u>Theory of Science</u>, Sussex, England, Harvester Press, 1978.
- 7. Boulding, K., <u>The Image: Knowledge in Life and Society</u>, Ann Arbor, Michigan, University Press, 1956.
- 8. Burk, G., "Knowledge, the Biggest Growth Industry of Them All," <u>Fortune</u>, (November, 1964), pp. 1-9.
- 9. Burke, J., <u>Connections</u>, Boston, Mass., Little, Brown and Co., 1978.
- Debons, A., <u>Determining Information Functions</u>, Discussion Paper, NSF Manpower Survey Project DS1-7727115, November, 1978.
- 11. Debons, A. and J. Cameron, editors, <u>Perspectives</u> in <u>Information Science</u>, Leyden, Noordhof, 1975.
- 12. Debons, A., <u>Information Science: Search for Identity</u>, New York, New York, Marcel Dekker, 1974.
- Dow, J. T., "A Metatheory for the Development of a Science of Information," <u>Journal of the ASIS</u>, 28, (1977), 323-331.

- 14. Faibisoff, S. and D. Ely, "Information and Information Needs," <u>Key Papers in the Design and Evaluation of</u> <u>Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 270-287.
- Fairthorne, R. A., "Information: One Label, Several Bottles," <u>Perspective in Information Science</u>, edited by A. Debons and J. Cameron, Leyden, Noordhof, 1975, pp. 65-73.
- 16. ______, "'Use' and 'Mention' in the Information Sciences," <u>Proceedings of the Symposium on Education</u> <u>for Information Science</u>, edited by L. Heilprin, Washington, Spartan Books, 1965.
- 17. Farradane, J., "The Nature of Information," <u>The Journal of</u> <u>Information Science and Practices</u>, 1, (1979), 13-18.
- 18. _____, "Towards a True Information Science," <u>The</u> <u>Information Scientist</u>, 10, (1976), 91-101.
- 19. Forester, T., <u>The Microelectronics Revolution</u>, Cambridge, Mass., The MIT Press, 1981.
- 20. Fox, C., <u>Information and Misinformation:</u> an <u>Investigation</u> of the <u>Notions</u> of <u>Information</u>, <u>Misinformation</u>, <u>Informing</u>, and <u>Misinforming</u>, Westport, Connecticut, Greenwood Press, 1983.
- Fraasen, V., <u>The Argument Concerning Scientific Realism</u>, LA, California, University of Southern California Press, 1977.
- 22. Goffman, W., "A General Theory of Communication," <u>Introduction to Information Science</u>, edited by T. Saracevic, New York, New York: Bowker Publishing Co., 1970, pp. 762-747.
- Hammer, D., <u>The Information Age:</u> <u>Its Development</u>, <u>Its</u> <u>Impact</u>, Metuchen, New Jersy, The Scarecrow Press Inc., 1976.
- Heilprin, L., editor, <u>Proceedings of the Symposium of</u> <u>Education for Information Science</u>, Washington, Spartan Books, 1975.
- 25. Haylock, E. W., editor, <u>Paper:</u> <u>Its Making, Merchanting,</u> <u>and Usage</u>, England, London, The National Association of Paper Merchants, 1974.

- 26. King, D., editor, <u>Key Papers in the Design and Evaluation</u> of <u>Information Systems</u>, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 84-106.
- 27. Kochen, M., editor, <u>The Growth of Knowledge: Readings</u> on <u>Organization</u> and <u>Retrieval</u> of <u>Information</u>, New York, New York, John Wiley & Sons, Inc., 1967.
- 28. Libbey, M. A., "Types, Kinds, Levels of Information," <u>Information Choices and Policies---Proceedings of the</u> <u>ASIS Annual Meeting</u>, edited by R. Tally and R Deultgen, White Plains, New York, Knowledge Industry Publication, Inc., 1979, pp. 325-326.
- 29. Knorr-Cetina, K., <u>The Manufacture of Knowledge</u>, Oxford, England, Pergamon Press, 1981.
- 30. Machlup, F., <u>Knowledge: Its Creation, Distribution, and</u> <u>Economic Significance</u>, III, Princeton, N.J., Princeton University Press, 1984.
- 31. Machlup, F., <u>Knowledge: Its</u> <u>Creation, Distribution, and</u> <u>Economic Significance</u>, II, Princeton, N.J., Princeton University Press, 1982.
- 32. Machlup, F., <u>The Production and Distribution of</u> <u>Knowledge in the United States</u>, Princeton, N.J., Princeton University Press, 1962.
- 33. Marshak, J., "Economics of Inquiring, Communicating, Deciding," <u>American Economic Review</u>, 58, No. 2, (1968), 1-8.
- 34. Murdock, J. and D. Listen, "A General Model of Information Transfer," <u>Key Papers in the Design and</u> <u>Evaluation of Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 287-298.
- 35. Otten, K., "Basis for a Science of Information," <u>Information Science: Search for Identity</u>, New York, New York, Marcel Dekker, 1974, pp. 91-106.
- 36. Phillip, R., editor, <u>Funk & Wagnalls New Encyclopedia</u>, R. R. Donnelley & Son Co., 1983.
- 37. Porat, M., <u>The Information Economy</u>, Unpublished Ph.D. Dissertation, Stanford University, 1976.

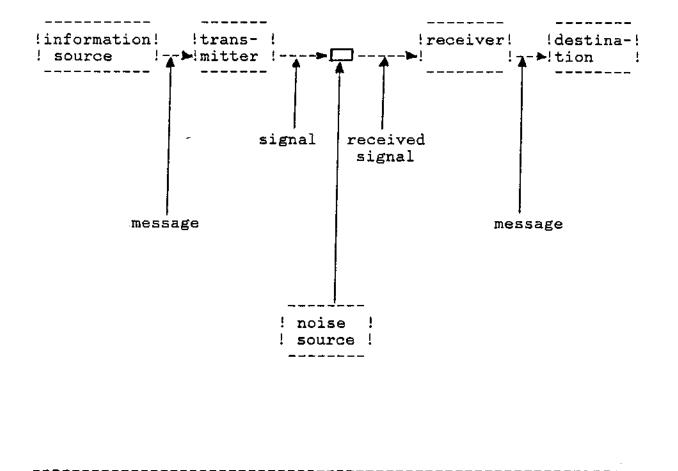
- Pratt, A. D., "The Information of the Image," <u>Libri</u>, 27, (1977), 204-220.
- 39. Price, D. D., <u>Little Science</u>, <u>Big Science</u>, New York, Cambridge University Press, 1963.
- 4Ø. Price, D. D., <u>Science Since Babylon</u>, Binghamton, New York, Vail-Ballou Press, 1961.
- 41. Rapoport, A., "What is Information?," <u>Introduction to</u> <u>Information Science</u>, edited by T. Saracevic, New York, New York, Bowker Publishing Co., 1970, pp. 5-12.
- 42. Saracevic, T., "Relevance: A Review and a Framework for the Thinking on the Notion in Information Science," <u>Key Papers in the Design and Evaluation of</u> <u>Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 84-106.
- Saracevic, T., editor, <u>Introduction</u> to <u>Information</u> <u>Science</u>, New York, New York, Bowker Publishing Co., 1970.
- 44. Sarrel, M., "Book Review," <u>American Sociological Review</u>, 28, (October, 1963), 841-849.
- 45. Shannon C. E. and W. Weaver, <u>The Mathematical Theory of</u> <u>Communication</u>, Urbana, Illinois, The University of Illinois Press, 1949.
- 46. Stern, B., editor, <u>Information and Innovation</u>, Amsterdam, Holland, North-Holland Publishing Co., 1982.
- 47. Weiss, P., "Knowledge: A Growth Process," <u>The Growth of Knowledge: Readings on Organization and Retrieval of Information</u>, New York, New York, John Wiley & Sons, 1967, pp. 210-215.
- 48. Weizenbaum, J., "Once More, the Computer Revolution," <u>The Microelectronics Revolution</u>, edited by T. Forester, Cambridge, Mass., The MIT Press, 1981.
- 49. Wellish, H., "From Informational Science to Informatics: A Terminological Investigation," <u>Journal of</u> <u>Librarianship</u>, 4, (1972), 157-187.

- 50. Whittemore, B. and M. Yovits, "A Generalized Concept for the Analysis of Information," <u>Information Science:</u> <u>Search for Identity</u>, New York, New York, Marcel Dekker, 1974, pp. 29-45.
- 51. _____, "A Generalized Conceptual Development of the Analysis and Flow of Information," <u>Journal of the</u> <u>ASIS</u>, 24, (1973), 221-231.
- 52. Wersing, G. and U. Neveling, "The Phenomena Interest to Information Science," <u>The Information Scientist</u>, 9, (1975), 127-14Ø.
- 53. Zill, D., E. Beckanbach, W. Wooton, I. Drooyan, <u>College</u> <u>Mathematics</u>, Belmont, California, Wadsworth Publishing Co., 1982.

CHAPTER III

THE COMMUNICATION THEORY AND THE INFORMATION GROWTH

3.1 An Overview of Basic Concepts of Information Theory


Shannon's theory of communication (introduced in 1948) is a widely accepted model of communication. The model contains five basic elements:

- 1. information source;
- 2. transmitter;
- 3. channel;
- 4. receiver; and
- 5. destination.

These five basic elements are represented by Shannon and Weaver (44) in a schematic diagram of a general communication system.

As shown in Figure 5, the model explains the technical aspects of the communication process with which information theory is concerned. The information source provides messages which are to be transmitted to a destination. The model includes a transmitter and a receiver, with the receiver connected to the destination. Transmission and receiver represent the encoding and decoding process. Finally, the model includes the noise source, which interferes with information flow between the transmitter and the receiver.

Fig. 5-- Schematic Diagram of a General Communication System

* Source: Shannon and Weaver (44), p. 5

49

*

Information theory relies heavily on notions drawn from the mathematical science of probability such as finite and discrete probability, conditional probability, and the law of large numbers (28, p. 1). The application of the basic concepts of probability to the generalized communication systems (illustrated in Figure 5) has led to the development of mathematical formulas to compute the amount of information (information content) of a transmitted message, the average amount of information, and the total amount of information transmitted through discrete, continuous, or mixed communication systems.

In all cases, the logarithmic measure is essentially used. Shannon and Weaver (44) state the following reasons behind the convenience of choosing the logarithmic function as a measure of information content:

- it is practically more useful because of the tendency of many parameters to vary linearly with the logarithm of the number of possibilities;
- it is nearer to an intuitive feeling as to the proper measure since the tendency to measure entities is by linear comparison with common standards;

3. it is mathematically more suitable (44, pp. 3,4).

The mathematical formulas are presented in detail in Shannon and Weaver (44). The formulas applied in the study are, however, discussed in section 3.3. But the question of

5Ø

applying the information theory formulas in social sciences has been frequently raised. So, before discussing the formulas applied in the study, the question of extending the general model of communication theory to the social science in general and information growth in particular is presented in Section 3.2.

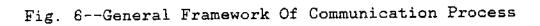
3.2 Information Growth as a Communication Process

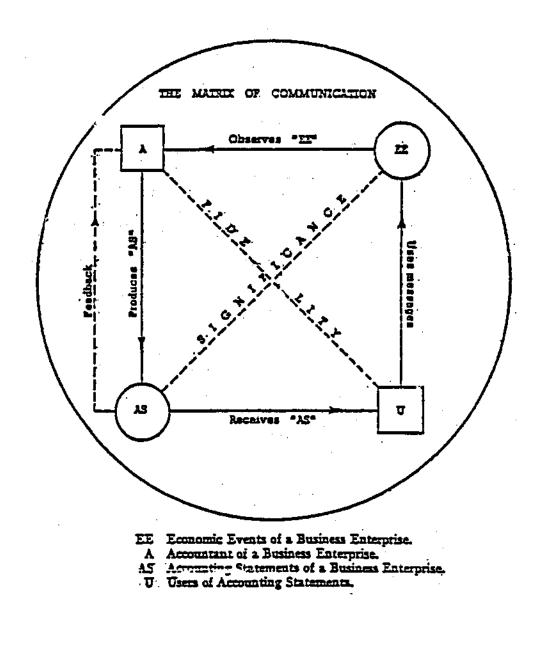
Applying the basic structure of communication theory developed by Shannon and Weaver to the social sciences in different contexts requires delineation of those elements which are useful for describing the respective fields. It is also necessary to make the analogy between the process of communication at a given level and Shannon and Weaver's model.

Inspite of the controversy over the propriety of extending information theory to the social sciences, there has been much interest in applying the theory to a wide range of fields such as accounting, economics, and linguistics. The main concern here is to discuss studies whose concerns are with the development of broad conceptual frameworks of the communication process appropriate for the study of respective disciplines in social sciences. Three studies seem appropriate for discussion. They are Bedford and Baladouni (11), Murdock and Liston (37), and King et al.

(29). A brief discussion of each is in order followed by a model of information growth as a communication process in the context of the study.

Bedford and Baladouni (11) examine information theory in accounting. But their model is broad and explores general factors which could be applied to any conceptual framework of communication process. They describe three general factors that they believe are necessary for any communication process: (1) the concept of process, (2) the elements of communication, and (3) the dimensions of communication.

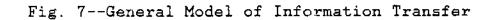

The concept of process, as Bedford and Baladouni see it, is any phenomenon which shows a continuous change of events and relationships in social as well as physical sciences. The elements of communication model as described by Shannon and Weaver are (1) Source; (2) Transmitter; (3) Channel; (4) Receiver; and (5) Destination. But according to Bedford and Baladouni there are no hard and fast rules regarding the number of elements that can be selected. The selection of the elements depends solely upon the usefulness which such elements present in discussing and analyzing the respective field as a communication process on a given level (11, p. 651).

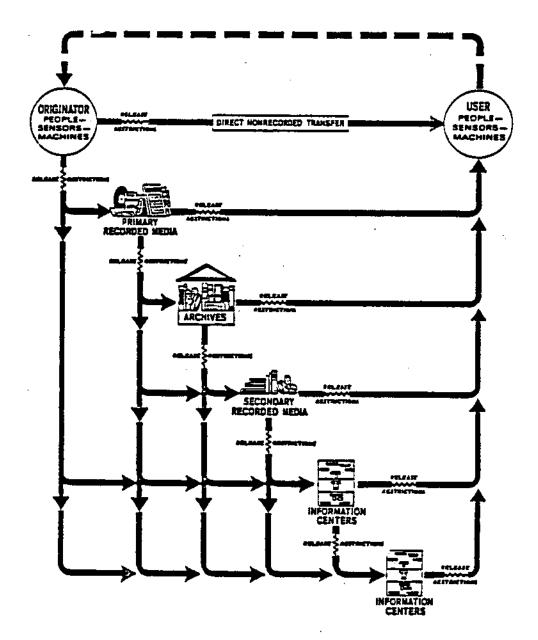

Regarding the dimensions of communication Bedford and Baladouni (11) describe two basic dimensions: (1) observation and (2) production.

Given a purpose of communicating, the communicator faces two major problems: content and media of communication. In other words, he has to determine what and how to communicate in order to express his purpose adequately. To achieve the what -content- the communicator must select his material from what is available for observation. To achieve the how -mediathe communicator has to choose some technical means of producing his message. All this is to say that communication is at once concerned with observational and productional dimensions (p. 652).

Figure 6 represents the general framework of

communication process as it is applied to accounting.




* Source: Bedford and Baladouni (11), p. 653.

*

According to the model, there are four basic elements of the communication system represented by circles and four relationships among the elements represented by arrows. Bedford and Baladouni point out that the process starts with the accountant (source) observes the economic events of a business enterprise and then produces accounting statements which carry messages of significance and high fidelity to users (destination).

Murdock and Liston (37) present a general model of information transfer which is basically based on the basic structure of Shannon and Weaver model (sender/channel/receiver). Murdock and Liston (37) point out that "Communication between sender and receiver can occur at a number of levels along what is referred to as the "communication continuum" (37, p. 289). Figure 7 presents a graphical representation of the model showing a variety of channels used to transfer information.

ж

According to the graphical model presented in Figure 7, the process of transferring information starts with an individual writing himself a note. The note becomes primary recorded medium and his files of notes on a desk top become the archives.

He [the individual] becomes the user when he wishes to retrieve the note. Sophistication is added when several people prepare reports or write memos and the archives become a central file. Further, complexity is added when the media include reports from outside the organization such as published literature. The archives now comprise a library or its equivalent (37, p. 288).

Along the communication continuum, there are varieties of communication channels: direct, primary recorded, archival, secondary recorded, and information center channels. One extreme on the communication continuum is the direct and nonrecorded channel. This is called face-to-face communication which is characterized by being very direct, very dynamic, and very rapid with no delay time (37, p. 288).

Moving along the communication continuum toward situations involving less directness, less dynamic transfer, and more time delay, other communication channels are used such as phone conversation, television and radio broadcasting which are considered different forms of direct communication channels (37, p. 288).

Murdock and Liston continue to explain the process of information transfer by moving along the communication continuum to the point that the originator might feel that

what he has to say should be recorded as a part of the body of knowledge of his discipline. So, non-direct channels such as publications in the forms of letters, newspapers, conference notes, technical reports, handbooks, monographs, texts, patents, and tapes are used. All these forms of communication are called primary recorded media channel (37, p. 288).

The next channel on the continuum is the archival channel where the user is not sensitized to the flow of messages through the current channels. The archival channel is used to store information for subsequent usage when it is The secondary recorded media channel feeds from both needed. the primary recorded media channel and the archival channel. The purpose of this channel is to assist in searching more easily for information of interest stored in the primary and the archival channels. Examples are abstract journals, indexes, and bibliographies. Finally, at the other end of the continuum is the information centers channel whose function is to provide a service to a known group of users upon demand. Murdock and Liston cogently explain the role of information centers in their model of information transfer as follows:

The information analysis center, in particular, attempts to utilize all information transfer channels to provide technical answers to technical questions posed by users. Thinking in terms of an electrical analogy to the model, information centers act as "switching centers" utilizing combination of series and parallel arrangements (37, p. 290).

There are two observations concerning Murdock and Liston's model. The first is that the entire model is cyclic. This means that users (as a group) are the originators (as a group) of information. It is represented in the model by the dotted line. The second is the role of the term "release restriction" which means loss of some transferred information during the transfer process. Murdock and Liston make the following analogy between the release restriction and the resistance in the electrical channels:

Regardless of the type of channel utilized in transferring a message, there are certain release restrictions which will impede the "free" transfer of information from originator to user. Returning to our electrical analogy, these release restrictions would be much like resistances or impudences in the circuits concerning the originators to the users. Furthermore, the total resistance to flow would probably vary according to whether the resistance in the channels were applied in series or in parallel or in combination of both (37, p. 290).

Another model of information transfer is introduced by King et al. (29). Although the model is only designed for scientific information transfer based on published documents, some of the functions are applicable to other forms of information transfer as well (29, p. 300). The model and its functions are depicted in in Figure 8.

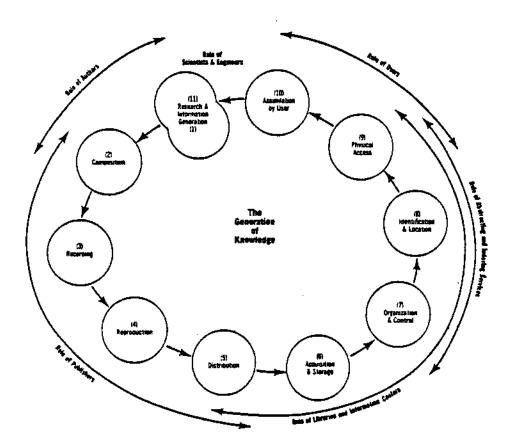


Fig. 8--Model of Scientific and Technical Information Transfer *

* Source: King et al. (29), p. 300.

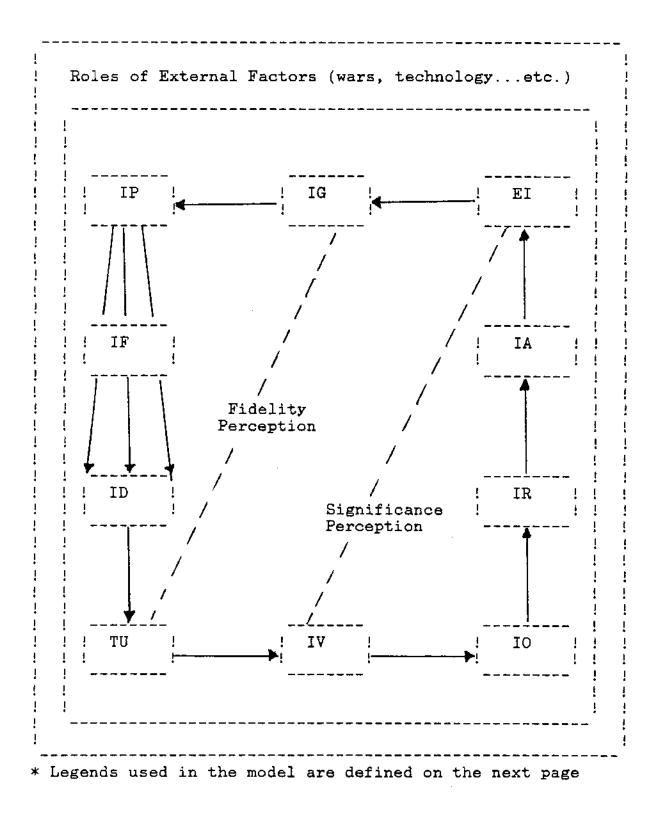
The diagram represents an information transfer spiral based on published documents. According to King et al. (29), the spiral includes ten functions which were chosen because they appeared to be unique in their representation of the communication process. The beginning of the spiral is generation of information function which is the result of research efforts. The last function is information assimilation which means that the user may gain information to be used in other cycle of generating and transferring information. So, the model is cyclic which means that the process is continuous and regenerative.

King et al. (29) explain how the process of their model takes place by pointing out that the next function after information generation is the composition function which refers to formal writing, editing, and reviewing of manuscripts. Recording function refers to the process of publishing the approved manuscripts in journals, texts, proceedings...etc. Acquisition and storage function refers to the acquisition and storage by libraries and information centers. The next two functions in the spiral (organization & control and identification & location) refer to the roles of libraries and information centers in cataloging, classifying, indexing, and abstracting what is acquired in the previous function. The physical access function includes direct distribution from publishers to users as well as indirect distribution through libraries and information centers.

There are models of scientific communication (22), organizational aspects of information flow (3), patterns of information flow during the innovation process (41), and professional organizations as a means of information transfer (43). They are excluded from discussion because of the specificity of their presentations to some aspect of information growth as related to specific environment.

The above three models are important for the present study because the broadness of their presentation of the communication process supplies common factors which can be included in a general model of information growth for any discipline or society. On the other hand, not one model recognizes the dimensions of information; there is no distinction made between production, flow, and distribution of information. Furthere, each model stresses the generality as it is applied to a respective discipline. This necessitates the adoption of some common factors to construct a general model of information growth independent of information type and of any respective field.

The suggested model depicted in Figure 9 is based on the following features:


- the classical communication system which at least includes a sender, message to be transmitted, channel, and receiver used;
- 2. the dimensionality of information which at least includes production, flow, distribution, value,

organization & storage, retrieval, and assimilation of information is represented. Note that the cited dimensions do not constitute an exhaustive list; rather they are chosen because they appear to represent distinguishable functions within the model,

- the model is cyclic and regenerative in nature, with each step in the process feeding from the previous one;
- 4. the model is not only influenced by its components but also by other external factors in all or in part of the whole process of information growth.

Figure 9 presents a model of information growth.

Fig. 9--Information Growth as a Communication Process

- EI = Existing information in a specific field
- IG = Information generation institutions in a specific field
- IP = Information produced in a specific field
- IF = Information flow in a specific field
- ID = Information distributed in a specific field
- TS = Target users of information
- IV = Information value as perceived by users
- IO = Information organization and storage after receipt
- IR = Information retrieval after storage for subsequent usage
- IA = Information assimilation by users so that the state of knowledge is altered
- Fidelity = The degree of understanding a message by intended users compared to what is intended by the information generators
- Significance = The degree of relevance perceived in relation tp the existing body of information

Although the model is cyclic, it is convenient to start describing the process of information growth by generation of information. The information production usually begins with observing the **existing body of information**. The **observational function** includes initial steps to select facts, theories, and relationships related to a given level of interest. The existing body of knowledge constitutes a resource supplying the tools, methods, and interpretations to the information producers.

The production dimension uses what has been selected to produce new information which reduces the uncertainty about the phenomenon under investigation. Knorr-Cetina (31) describes the process of producing knowledge as making several orders or levels of "selectivity."

The selection of previous investigations also affect subsequent selections by modalising the conditions of further decision-making. Thus, the products of science are not only decision-impregnated, they are also decision-impregnating, in the sense that they point to new problems and predispose their solutions" (p. 6).

Once the new information is produced, it is transmitted to the target users through appropriate media, such as books, articles, and oral presentations or demonstrations. It should be kept in mind that this process is not only confined to the production and distribution of scientific information but can also be applied to all kinds of information. During that transmission, there are two distinguished functions involved. **Information distribution** refers to the geographic dispersion within a specific region, and **information flow** refers to the frequency of using the distribution channels within a given system.

In order for target users to value the information received, it must be significant and have high fidelity. Fidelity is defined as the probability of errors in transmitting information from its source to destination. In the information growth context, fidelity is related to what is understood by intended users and what the information is intended to be as expressed by the information generators. Significance refers to the degree of relevance and adequacy which the new information is perceived to have in relation to the existing body of knowledge.

Information value refers to the perceived importance of the information received by its recipient. This importance is usually reflected in the frequency of utilizing this information and the duration of this utilization. Information organization refers to the function of cataloging, classifying, indexing, and storage of the information received in such a way as to be more easily available for later use when needed. Information retrieval refers to the techniques and methods available to access the stored information for later use. This function is closely related to the previous function. The access methods depend primarily on the way information is organized and stored.

Information assimilation refers to the impact of the information received, valued, stored, and retrieved by users on their state of knowledge regarding a specific topic. If the information received is regarded as of significance and high fidelity, it may be assimilated by users changing their state of knowledge which triggers new conceptualization and new research efforts. So, as a result of information assimilation, a new cycle begins leading to the generation of new information and so the process continues.

Viewing this process of information growth as a dynamic one, on-going and ever-changing phenomenon of events and relationships should prevail. But the factors impacting this process are not limited to its components. There are external factors which play roles in the information growth at different levels.

King et al. (29) include the following factors in their model of information transfer:

- the role of scientists and engineers in the information generation function;
- the role of authors in the generation and the composition of information;
- the role of publishers in composing, recording, reproducing, and distributing information;
- the role of libraries and information centers in distributing, storing, controlling, identifying and locating, and accessing information;

5. the role of users in accessing and assimilating information (29, p. 300).

Generally these factors are expected to play roles affecting partially or totally the process of information growth. But these factors vary from a specific environment to another leaving room for investigators to delineate factors which are believed to be of significance for specific investigation.

The proposed model is suitable for describing the process of information growth in society. External factors which might impact the information growth at that level are technological, social, and economic situations. Some of these forces such as wars and economic depressions constitute crisis-inducing situations which escalate the efforts of research institutions to begin the cycle of generating more information to meet these crises.

Other factors such as technology might have varying effects on all or some of the components of the information growth process. Technological factors play important roles in the flow, distribution, collection, storage, and retrieval of information. It is obvious that the technological advancements in computer and communications are the major forces driving the whole process of information growth in modern societies.

Detailed discussions of these external forces whether they trigger the cycle generating new information or impact

the whole process of information growth are beyond the scope of the study. The main concern of the study is to delineate metrics to only measure three dimensions of information (production, flow, distribution) and to use these measures to test if there has been an information explosion in these dimensions. A discussion of Shannon and Weaver's metrics applied in the study as well as justification for using these metrics is provided in the next section.

3.3 Entropy as a Basic Measure of the Amount of Information

According to Shannon and Weaver, the amount of information in a specific event is essentially the base 2 logarithm of the number of probabilities (40, P. 7). Mathematically, the information content in a particular event is:

$$H = -\log P$$

where

- H = the amount of information associated with event(i) measured in bits.
- P = the probability that event i will occur in a given
 i
 situation.

The average information content is referred to as "entropy" and formulated as follows:

7Ø

$$H = -K \sum_{i=1}^{i=n} P \cdot \log P_{i}$$

where

H = the average information content of messages transmitted through discrete system

K = a positive constant to determine the units of (H); H is measured in bits when K = 1/Ln. So, a modified Formula is:

$$H = - \sum_{i=1}^{n} P \log P$$

The term "entropy", which represents a measure of the removal of doubt and ambiguity from the system (13, p. 15), has been adapted and extended by Shannon and Weaver for measurement of information because the above information formula is quite similar (except with negative sign) to the Boltzman formula for entropy in thermodynamics (6, p. 3). Shannon and Weaver (44) comment on the negative sign in the formula by pointing out that "any probability is a number less than or equal to one, and the logarithms of numbers less than one are themselves negative. Thus the minus sign is necessary in order that H be in fact positive" (44, p. 105).

Shannon and Weaver justify their use of entropy as a measure of information by pointing out that it uniquely meets the following natural requirements for the measurement of information:

- the system generating information should be governed by probabilities especially a special class of Markoff chain called ergodic process;
- the estimation of the properties of the system generating information should depend on the properties of the whole system and still reflect statistical regularity;
- 3. the probability of choice of the various symbols at one stage of the process is dependent on the previous choices (44, pp. 101-103).

The concept of entropy originated in physical sciences to measure the degree of randomness. It means the tendency of physical systems to become less organized (i.e., more disordered). So, in thermodynamics and other physical sciences, if the entropy of a specific system is low, it means the system is highly organized while in information theory it means less information transmitted by the system

because it is characterized by high degree of probability that specific events occur.

The computation of the total amount of information within a system depends basically on the properties of entropy, the channel type, and the degree of noise in the transmission system. The above mentioned formula of entropy is only applicable to discrete channels where a finite set of elementary symbols is transmitted from one point to another. In case of situations where the transmission is in the form of varying continuous signals such as television or radio, the transmission media is continuous rather than discrete. The entropy of a continuous channel is different from the entropy of a discrete channel. A number of communication systems might utilize a continuous source and thus continuous use of the channel.

To compute the entropy for a continuous channel, the probability density function is used instead of the distribution function which makes the entropy of the continuous channel a relative measure rather than an absolute measure as the entropy of discrete channel. Using the probability density function p(x) associated with the signal x(t), the general formula of entropy for a continuous channel is:

$$H(x) = - \int_{-\infty}^{\infty} p(x) \log p(x) dx$$

As stated by Shannon and Weaver (44), even though the entropies of continuous distribution have most of the properties of the discrete case, there are still some differences which should be considered when applying the entropy of continuous channels (44, pp. 55,56). In the study, however, all the channels under investigation are considered discrete which limit the discussion to the discrete case. But before delineating the metrics applied in the study, the question of the adequacy of applying the information theory in social sciences is addressed.

There are two divergent views concerning the relevance of applying the information theory in social sciences. The first rejects the extension of the theory outside its technical aspects in electrical engineering. The second considers the theory very valuable in measuring the amount of information in social communication systems as well as physical systems. A brief discussion of each view is in order.

Bandyobadhyay (3) questions the applicability of information theory into open and real-life systems pointing out that the information theory concepts have been used losely in social sciences (3, p. 3). Hopkins (26) and others (e.g., 7, 36, 52) have demonstrated the limited practicality of information theory in social sciences. The proponents of this view base their position on the following:

- the theory and its mathematical formulas are based on the assumptions that the communication system is closed and it is stationary which are not met in social systems (3, p. 3);
- 2. the theory ignores questions having to do with what specific information is transmitted in order to describe how much information is transmitted (20, p. 41);
- 3. the theory neglects questions having to do with the beliefs, intentions, reliability, and other features of the informant and informee (21, p. 56);
- the amount of information computed is independent from its value which is very important to decision makers (51, p. 222).

These are the main constraints supporting the idea of limiting the applicability of information theory in social sciences. Nevertheless, there are proponents (e.g., 27, 32, 33, 34, 39, 49) who consider information theory very valuable for measuring and analyzing the amount of information in social systems as well as technical systems.

As stated by Shannon and Weaver (44), the word "information" must not be confused with the word "meaning." "In fact two messages, one of which is heavily loaded with meaning and the other of which is pure nonsense, can be exactly equivalent, from the present view, as regards information" (44, p. 99). This means that the theory is designed to provide an objective measure to quantify the amount of information independent from any value assigned to it as perceived by the recipient. For example, the value of the message "it is raining today" might be greater to a farmer than to a student but the amount of information of the message is the same.

In the social systems, there are situations where an objective measure of the amount of information separate from its value, importance, and informant and informee beliefs is critically needed. For such situations, the information theory and its mathematical formulas can play an important role. Examples of applying the information theory in social sciences are Lev (32, 33, 34) and Abdel-Khalik (1) in accounting, Attneave (5) in psychology, Soest (46) in sociology, Schwarts (42) in linguistics, Theil (50, 51) in economics, and Shaw (45) in library science.

The objective of the study is to measure the amount of information separate from its perceived value or importance to test if there has been an information explosion. So, the application of information theory is appropriate within the context of the study.

But applying the basic concepts of information theory in social systems will lead to different interpretations in different contexts. In the present context, for example, the effect of an "error" in producing or transmitting information in social systems can be viewed as noise in the system. Examples in the area of information growth would be reporting conflicted findings in scientific papers. One important difference between noise in social systems and in technical systems is that the noise in social systems may not be treated as purely disruptive as the noise in technical systems which prevents correct transmission of signals.

Knor-Cetina (31) argues that for the optimum amount of information in the whole system, it might be best to have some errors in the transmission of information between the subsystems. He explains this conclusion by drawing the following example:

As a simple example, consider the leak in the communicative network of the Nixon administration with regard to the bombing of Cambodia (kept secret by the administration). While the leak was without doubt disruptive for some core members of the administration, it may well have benefited the more global system of American democracy. The implication is that we have to take into account different levels of organization in order to distinguish between the disruptive and integrative (or organising) effects of noise (p. 29).

Viewing information growth as a product of a communications system necessitates extension of this view to regard society as a collection of communication subsystems. Examples of information growth subsystems are the various discipline communities. Each discipline has its own information generating institutions to select from the existing body of information. There is a complete cycle of generating, confirming, and distributing the new

information. The amount of information in the whole system is simply the addition of the amount of information generated by the subsystems assuming that redundancy and noise are at the optimal level.

Generally, there are different versions of writing the total amount of information within a system. One applies in a variety of situations in which no information is available about the probability distribution. The mathematical formula is:

$$H = \log N$$

2

where

N = the number of possible messages in the system (31, p.29).

H = the total amount of information generated.

Within the context of the study, the above formula is used with the information production metrics used in the study. Information flow is related to the capacity of a specific channel used to transmit certain information. According to Shannon and Weaver's information theory, the capacity (C) of a discrete channel is defined as

where

N(T) = the number of allowed signals in a duration (T). C = the channel capacity

The relationship between (H) and (C) is expressed by Shannon and Weaver (44) stating that number of bits transmitted per second (C) needs only to be equal to the average entropy of the source (H) which yields an average rate of transmition (H/C) = 1. Hancock (24) points out that in the case of perfect match, the entropy of the source (H) is equal to the channel capacity (C) (p. 161).

Within the context of the study and in the absence of any information about the flow of messages through the selected channels, noiseless flow is assumed which means the most efficient flow of information through the channels. The channel capacity (C) is replaced by $H = \log N$ metric to be 2 used with the information flow metrics used in the study.

In the next chapter, the research variables as well as the stated hypotheses for production, flow, and distribution of information are presented. The data collection and analysis procedure and the basic assumptions are also discussed.

CHAPTER BIBLIOGRAPHY

- Abdel-Khalik, A. R., "The Entropy Law, Accounting Data, and Relevance to Decision-Making," <u>The Accounting</u> <u>Review</u>, (April, 1974), pp. 271-283.
- Abramson, N., <u>Information Theory and Coding</u>, New York, McGraw-Hill Book Co., 1963.
- Allen, T., "Organizational Aspects of Information Flow in Technology," <u>Key Papers in Information Science</u>, edited by B. Griffith, White Plains, New York, Knowledge Industry Publications, Inc., 1980, pp. 74-95.
- Ash, R., <u>Information Theory</u>, New York, John Wiley & Sons Inc., 1965.
- 5. Attneave, F., <u>Application of Information Theory to</u> <u>Psychology</u>, New York, Henry Holt, 1959.
- Bandyopadhyay, R., "Information for Organizational Decisionmaking--A Literature Review," <u>IEEE</u> <u>Transactions on Systems, Man. and Cybernetics</u>, SMC-7, No. 1, (January, 1977), 1-15.
- 7. Bar-Hillel, Y., <u>Language and Information</u>, Cambridge, Mass., Addison-Wesley, 1964.
- 8. Barnes, B., <u>Interests and the Growth of Knowledge</u>, London, England, Routledge & Kegan Paul Ltd., 1977.
- 9. Bedford, N. and L. Lee, "An Information Theory Analysis of the Accounting Process," <u>The Accounting Review</u>, (April, 1969), pp. 256-275.
- 10. Bedford, N. and M. Onsi, "Measuring the Value of Information--An Information Theory Approach," <u>Management Science</u>, (January, 1966), pp. 15-22.
- Bedford, N. and V. Baladouni, "A Communication Theory Approach to Accounting," <u>The Accounting Review</u>, (October, 1962), pp. 650-659.

- Bostwick, C. L., "The Use of Information Theory in Accounting," <u>Management Accounting</u>, XLIX, (June, 1968), 11-17.
- 13. Brillouin, L., <u>Science</u> and <u>Information</u> <u>Theory</u>, New York, Academic Press, 1962.
- Caspari, J. A., "Fundamental Concepts of Information Theory," <u>Management Accounting</u>, XLIX, (June, 1968), 8-10.
- 15. Debons, A., <u>Information Science:</u> <u>Search for Identity</u>, New York, New York, Marcel Decker, 1974.
- 20. Dretske, F., <u>Knowledge and the Flow of Information</u>, Cambridge, Mass., The MIT Press, 1981.
- Fox, C. J., <u>Information and Misinformation: An</u> <u>Investigation of the Notions of Information</u>, <u>Misinformation</u>, <u>Informing</u>, <u>and Misinforming</u>, Westport, Connecticut, Greenwood Press, 1983.
- 22. Garvey, W. and B. Griffith, "Scientific Communication: its Role in the Conduct of Research and Creation of Knowledge," <u>Key Papers in Information Science</u>, edited by B. Griffith, White Plains, New York, Knowledge Industry Publications, Inc., 1980, pp. 38-57.
- 23. Griffith, B., editor, <u>Key Papers in Information Science</u>, White Plains, New York, Knowledge Industry Publications, Inc., 1980.
- 24. Hancock, J., <u>An Introduction to The Principles of</u> <u>Communication Theory</u>, New York, McGraw-Hill Book Co., 1961.
- Harman, W. W., <u>Principles of the Statistical Theory of</u> <u>Communication</u>, New York, McGraw-Hill Book Co., 1963.
- 26. Hopkins, C., "Possible Applications for Information Theory to Management Control," <u>IRE Transactions</u> <u>Engineering Management</u>, EM-8, No. 1 (March, 1961), 40-48.
- 27. Jaynes, T., "Prior Probabilities," <u>IEEE Transactions</u> on <u>Systems Science and Cybernetics</u>, SSC-4, No. 3 (September, 1968), 227-240.
- Jones, D. S., <u>Elementary Information Theory</u>, Oxford, England, Clarendon Press, 1979.

- 29. King, D. and others, "Statistical Indicators of Scientific and Technical Communication (1960-1980)," <u>Key Papers in the Design and Evaluation of</u> <u>Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 299-304.
- 30. King, D. W., editor, <u>Key Papers in the design and</u> <u>Evaluation of Information Systems</u>, White Plains, New York, Knowledge Industry Publications, Inc., 1978.
- 31. Knorr-Cetina, K., <u>The Manufacture of Knowledge</u>, Oxford, England, Pergamon Press, 1981.
- 32. Lev, B., "The Informational Approach to Aggregation in Financial Statements: Extensions", <u>Journal of</u> <u>Accounting Research</u>, (Spring, 1970), pp. 79-98.
- 33. Lev, B., "The Aggregation Problem in Financial Statements: An Information Approach," <u>Journal of Accounting</u> <u>Research</u>, VI, (Autumn, 1968), 247-261.
- 34. Lev, B., <u>Accounting and Information Theory</u>, Evanston, Illinois, American Accounting Association, 1969.
- 35. Li, D., "The Semantic Aspect of Communication Theory and Accounting," <u>Journal of Accounting Research</u>, (Autumn, 1968), pp. 102-107.
- 36. McGuire, C. B., "Comparisons of Information Structures," <u>Decision and Organization</u>, edited by C. B. McGuire and R. Rander, Amsterdam, Holland, North-Holland Publishing Co., 1972.
- 37. Murdock, J. and D. Liston, "A General Model of Information Transfer," <u>Key Papers in the Design</u> and <u>Evaluation of Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 287-298.
- 38. Nauta, D., <u>The Meaning of</u> <u>Information</u>, The Hague, The Netherlands, Mouton & Co., 1972.
- 39. Nokana, I., "Noise and Redundancy in Acountancy Communications," <u>The Accounting Review</u>, (October, 1972), pp. 693-708.
- 40. Raisbeck, G., <u>Information Theory</u> : <u>an Introduction for</u> <u>Scientists and Engineers</u>, Cambridge, Mass., The MIT Press, 1963.

- 41. Rothwell, R., "Patterns of Information Flow during the Innovation Process," <u>Key Papers in Information</u> <u>Science</u>, edited by B. Griffith, White Plains, New York, Knowledge Industry Publications, Inc., 1980, pp. 103-112.
- 42. Schwartz, I., "A Language Element for Compression Coding," <u>Information and Control</u>, X, (March, 1967), 315-333.
- 43. Schumacher, D., "The Professional Organizations: a Means for Information Transfer," <u>Information and</u> <u>Innovation</u>, Amsterdam, Holland, North-Holland Publishing Co., 1982.
- 44. Shannon C. E. and W. Weaver, <u>The Mathematical Theory of</u> <u>Communication</u>, Urbana, Illinois, The University of Illinois Press, 1949.
- 45. Shaw, W. M., "Entropy, Information, and Communication," <u>Information Choices and Policies: Proceedings of the</u> <u>ASIS Annual Meeting</u>, Vol. 16, edited by R. D. Tally and R. R. Deultgen, White Plains, New York, Knowledge Industry Publications, Inc., 1979, pp. 32-40.
- 46. Soest, J. L., "A Contribution of Information Theory to Sociology," <u>Syntheses</u>, IX, (1954), 265-273.
- 47. Stern, B. T., editor, <u>Information and Innovation</u>, Amsterdam, Holland, North-Holland Publishing Co., 1982.
- 48. Tally, R. D. and R. R. Deultgen, editors, <u>Information</u> <u>Choices and Policies: Proceedings of the ASIS Annual</u> <u>Meeting</u>, Vol. 16, White Plains, New York, Knowledge Industry Publications, Inc., 1979.
- 49. Theil, H., <u>Economics and Information Theory</u>, Chicago, Illinois, Rand McNally and North Holland Publishing Co., 1967.
- 50. _____, "On the Use of Information Theory: Concepts in the Analysis of Financial Statements," <u>Management</u> <u>Science</u>, XV, No. 9, (May, 1969), 459-480.
- 51. _____, "The Information Approach to Demand Analysis," <u>Econometrica</u>, XXXIII, (1965), 67-68.
- 52. White, D. J., <u>Decision Theory</u>, London, England, Allen and Unwin Publishing Co., 1969.

53. Whitemore, B. and M. Yovits, "A Generalized Concept for the Analysis of Information," <u>Information Science:</u> <u>Search for Identity</u>, New York, New York, Marcel Decker, 1974, pp. 29-45.

.

CHAPTER IV

RESEARCH METHODOLOGY

4.1 <u>Research Variables</u>

The independent variable of this study is time. The time span covers the period from the take-off phase of the American Industrial Revolution (1860) to 1984. The scope of the study is limited to the USA to keep it within a manageable level.

There are several reasons to choose the 1860 as the beginning time of the study:

- the end of the American Civil War confirmed the dominance of the industrializing North over the agrarian South;
- (2) the later half of the nineteenth century witnessed heavy foreign investments by European powers which accelerated the scientific and economic development of the US;
- (3) new forms of communication (e.g., the telephone, motion pictures, automobiles, aircraft, radio, paperback books, and television) have appeared since 1860;
- (4) the second half of the nineteenth century saw a

basic change in the education system in favor of universal public education and the growth of the state (land grant) universities.

Because some of the dependent variables did not exist in 1860, their measurement period is from the time which public records started to keep systematic data about them to 1984. The study also recognizes that the question of information explosion has been raised especially in the last three decades. So, data analysis is designed to test the hypotheses in a shorter time span (1942-1984) compared with the original time span of the study. The study considers the effects of population impact by testing the hypotheses before and after the adjustment of the data variables by population growth in the USA.

The following are the dependent variables:

- a) Information Production -- operationalized by the yearly growth of
 - 1. copyrights;
 - 2. patents;
 - 3. doctorates; and
 - 4. Library of Congress holdings
- b) Information Distribution---operationalized by the yearly growth of
 - 1. radio and TV stations;

- 2. miles of telephone wire;
- 3. telephones; and
- 4. post offices.

c) Information Flow---operationalized by the yearly growth of

- 1. pieces of matter handled in post offices;
- 2. number of books;
- 3. number of periodicals;
- 4. number of newspapers and circulation;
- 5. average daily phone conversation;
- 6. number of radio and TV sets.

Behind choosing these metrics is a belief that they are considered relevant parameters for generation, distribution, and flow of information at the global level in society. Despite possible changes in their relative importance caused by new technologies, these parameters constitute the basic forms of communication in the USA since the later half of the nineteenth century. In addition, the required statistics have been systematically collected and recorded by the Department of Commerce.

A list of the study's variables is provided in Table I:

TABLE I

VARIABLE LIST

INDEPENDENT VARIABLE	DEPENDENT VARIABLES
Time	A. <u>Information Production</u> 1. Total number of copyrights
	2. Patents:
	Z. Fatents.
	2.1 Total number of inventions 2.2 Total number of designs
	3. Total Number of Doctorates
	4. Total number of Library of Congress holdings
	B. Information Distribution
	1. Radio Stations
	1.1 Number of Commercial AM Stations 1.2 Number of Commercial FM Stations 1.3 Number of Non-Commercial FM Stations
	2. Television Stations
	2.1 Number of Commercial TV Stations 2.2 Number of Non-Commercial TV Stations
	3.3 Number of Cable Systems
	3. Number of Telephones
	4. Number of Miles of Telephone Wire
	5. Number of Post Offices

.

TABLE I

2

VARIABLE LIST (cont.)

INDEPENDENT VARIABLE	DEPENDENT VARIABLES
	C. Information Flow
	1. Material Handled in Post Offices
	2. Number of Books Published
	3. Number of Periodicals
	4. Number of Newspapers and Total
	Circulation
	5. Average Daily Telephone Conversations
	6. Number of Radios Produced
	7. Number of TV Sets Produced

4.2 Metrics of Information

4.2.1 Production: the yearly growth of copyrights, inventions designs, doctorates, and LC holdings are expressed according to Shannon's H = log N. Although these metrics chosen do not constitute an exhaustive list of information production parameters, they are considered more reliable than other parameters. For new copyrights, inventions, and designs, there is an evaluation process to make sure they are valid and are not redundant. There are laws which specify requirements and conditions to be met before patents on inventions or designs have been issued. As stated in the Historical Statistics of the USA from colonial time to 1970, "the subject matter covered by a patent must be sufficiently new as to be not obvious to one skilled in the art to which it relates (p. 954). The collection of the Library of Congress is chosen because all other library holdings are considered redundant and do not reflect production of new information. Each new copyright, invention, design, doctorate, and LC holding is considered a message holding new information and has equal chance of being produced. So, Shannon's $H = \log_{100} N$ is applied. Granted, using the Library of Congress holdings as a production metric has some difficulties such as including the foreign language

section in the total collection of the Library. Nevertheless, the growth of the total collection is still a major indicator in its overall sense of information production. It is, however, considered a special category.

- 4.2.2 <u>Distribution</u>: the yearly growth of telephones, miles of telephone wire, radio and TV stations, and post offices. These variables are chosen because they constitute the major distribution media in society. Each variable constitutes a distribution system which contains different channels to disperse information. The growth of the distribution channels will be the reflection of the changes in the number of these channels within each system.
- 4.2.3 <u>Flow</u>: the average daily telephone conversations, pieces of matter handled in post offices, the number of periodicals, newspapers, radio and TV sets all transformed by Shannon's metric of the capacity (C) of a discrete channel which is defined as

$$C = \lim_{T \to T} \log N(T)$$

where

N(T) = the number of allowed signals in a duration (T).

C = the channel capacity.

In a noiseless channel, the capacity (C) is equal to the amount of information (H) which means the most efficient flow of information through the channel. In the absence of any information about the flow of messages through the selected channels, noiseless flow is assumed and (H = log 2 N) metric is applied.

4.3 Hypotheses

To investigate information explosion, a set of hypotheses for the stated variables is tested. The test applies to each individual point on each individual curve and is conducted in two steps:

- computation of first and second derivatives of each point on each individual curve to determine the behavior of the function at each point;
- 2. frequencies from the result of computing these derivatives at the points on each individual curve are tabulated and used to evaluate the general growth behavior of each variable. Any point whose first and second derivatives are positive is considered explosive.

There is no defined measure to easily identify that one entire curve as explosive. However, in this dissertation, a curve is interpreted as being explosive if the change in information at more than fifty percent of the points are considered to be significantly explosive. The following hypotheses are stated in the null form.

A. Investigating the Information Production Explosion

The following null hypotheses are tested at each of the points on the fitted curves.

- HA1 : At a specified point between 1870 and 1984, the change in the amount of information generated, as reflected by increase in copyrights, is not explosive.
- HA2 : At a specified point between 1860 and 1984, the change in the amount of information generated, as reflected by increase in inventions, is not explosive.
- HA3 : At a specified point between 1860 and 1984, the change in the amount of information generated, as reflected by increase in designs, is not explosive.
- HA4 : At a specified point between 1872 and 1984, the change in the amount of information generated, as reflected by increase in doctorates, is not explosive.
- HA5 : At a specified point between 1900 and 1984, the change in the amount of information generated, as reflected by increase in LC holdings, is not explosive.

B. Investigating the Information Distribution Explosion

The following null hypotheses are tested at each of the points on the fitted curves:

- HB1 : At a specified point between 1921 and 1984, the change in the amount of information distributed, as reflected by increase in number of commercial AM radio stations, is not explosive.
- HB2 : At a specified point between 1941 and 1984, the change in the amount of information distributed, as reflected by increase in number of commercial FM radio stations, is not explosive.
- HB3 : At a specified point between 1940 and 1984, the change in the amount of information distributed, as reflected by increase in number of non commercial FM radio stations, is not explosive.
- HB4 : At a specified point between 1941 and 1984, the change in the amount of information distributed, as reflected by increase in number of commercial TV stations, is not explosive.
- HB5 : At a specified point between 1953 and 1984, the change in the amount of information distributed, as reflected by increase in number of non commercial TV stations, is not explosive.

- HB6 : At a specified point between 1952 and 1984, the change in the amount of information distributed, as reflected by increase in number of cable TV systems, is not explosive.
- HB7 : At a specified point between 1876 and 1984, the change in the amount of information distributed, as reflected by increase in the number of telephones, is not explosive.
- HB8 : At a specified point between 1894 and 1984, the change in the amount of information distributed, as reflected by increase in miles of telephone wire, is not explosive.
- HB9 : At a specified point between 1860 and 1984, the change in the amount of information distributed, as reflected by increase in the number of post offices, is not explosive.

C. Investigating the Information Flow Explosion

The following null hypotheses are tested at each of the points on the fitted curves:

HC1 : At a specified point between 1886 and 1984, the change in the amount of information flow, as reflected by increase in the number of pieces of matter handled in post offices, is not explosive.

- HC2 : At a specified point between 1880 and 1985, the change in the amount of information flow, as reflected by increase in the number of books published, is not explosive.
- HC3 : At a specified point between 1919 and 1984, the change in the amount of information flow, as reflected by increase in the number of periodicals, is not explosive.
- HC4 : At a specified point between 1920 and 1984, the change in the amount of information flow, as reflected by increase in the number of newspapers, is not explosive.
- HC5 : At a specified point between 1920 and 1984, the change in the amount of information flow, as reflected by increase in the number of total newspaper circulation, is not explosive.
- HC6 : At a specified point between 1895 and 1984, the change in the amount of information flow, as reflected by increase in the average telephone conversation, is not explosive.
- HC7 : At a specified point between 1922 and 1984, the change in the amount of information flow, as reflected by increase in the number of radio sets, is not explosive.

HC8 : At a specified point between 1946 and 1985, the change in the amount of information flow, as reflected by increase in the number of TV sets, is not explosive.

4.4 Data Collection and Analysis Procedure

The procedure designed to test the hypotheses of the study is arbitrarily classified into three steps. The first describes the process taken to collect, validate, and present the data used in the study. The second discusses the mathematical technique applied to identify the fitted function for each variable as a prerequisite to compute the derivatives. The third describes the process of interpreting the results of computations in order to compute the frequencies of the positive, negative, and undetermined derivatives as a final step before testing the hypotheses.

4.4.1 Data Collection and Presentation:

Data regarding the research variables were collected from government documents and classified into three categories: production, distribution, and flow. Appendixes A, B, and C fully present information production, distribution, and flow data and graphs. In Appendix A, information production data are presented before Shannon's log transformation in numerical units and after the log

transformation in number of bits. The original data were adjusted for population growth and then transformed into bits using the same procedure used to transform the original data before adjustment by population.

Since each variable is analyzed separately, an adjustment scale suitable for each variable is chosen to generate scaled data used for analysis. The scales used to adjust the data by population growth were designed to produce a unit of each variable per 1,000,000 population except for Library of Congress holdings which produced a unit per 1000 population. The information production data in bits were used to carry on the computation process to test the hypotheses.

The same process was applied to information distribution variables data using suitable scales. The original data are presented in numerical units except for telephones which are presented in thousands. Data after adjustment by population growth is presented as a unit per 1,000,000 population except for telephones data which is presented as a unit per 10,000 population and miles of wire data which is presented as a unit per 1000 population. Since the log transformation does not apply to information distribution metrics, the original data before and after adjustment are tabulated and plotted against time (see Appendix B). It has been also used to carry on the computation to test the related hypotheses. Information flow data are presented in the log forms before and after adjustment by population. The original data were collected in units for books, periodicals, newspapers, and in thousands for matter handled in post offices, newspaper circulation, average daily conversation, radio and TV sets. The adjusted data by population growth were (1) a unit per 1,000,000 population for books, periodicals, and newspapers; (2) a unit per 1000 population for newspaper circulation, radio and TV sets; (3) a unit per individual for matter handled in post offices and average daily conversation. The data are presented and plotted against time in Appendix C.

The fitted and the actual data are plotted against time in Appendic D to validate the technique used to carry on the computation process as described in the next section. The information generation and information flow data before the log transformation were used to carry on the computation but not used to test any hypotheses. The results are presented in Appendix E. The population data are used as a correction factor for all variables data. A pure population growth curve is presented in Appendix F along with population data in the USA.

4.4.2 <u>Data Computation Process:</u>

The final objective of data computation process was to compute the number of explosive points on each curve representing a specific variable. Review of the basics of mathematics reveals that the slope of a point on a curve is determined by the slope of the straight line tangent to the curve at that point. So, the slope changes from point to point as the curve changes steepness according to its specified function. To compute the first and second derivatives of a point on a curve, an approximation of the function of that curve must be defined either analytically or by a discrete set of data (Pachner, 1984, p. 2.1). So, the first step in the computation process is the approximation of a function suitable for each data set in order to be able to go through the given points and compute the prescribed derivatives.

There are many interpolation techniques to approximate a function y(x) given by a discrete set of data such as Lagrange, Newton, Hermite, and cubic-spline interpolations. Unlike the interpolation techniques, least-squares method can be used to approximate a function not by going through the given set of all points on a specific curve but to reduce the total sum of squares of the deviation at all the points to a minimum. Pachner (5) states that the leastsquares technique approximation can be applied successfully in problems where the data are the result of observations which have a degree of error (p. 2.15). Smith and Williams (10) support using least-squares technique, which is called "regression" or "curve fitting" in time-series analysis to fit the function Y = f(x) where Y represents the dependent variable over specified time intervals (x). The most commonly used forms to represent time series functions are the polynomial forms which can be expressed as:

$$Y = B + B x + B x + B x + ... B x = 0$$

where n refers to the degree of the function.

The least-squares method was applied to fit the function of each data set. Generally, any observations made over a period of time are subject to secular, seasonal, cyclical, and erratic influences (1, p. 145). So, it was expected that all or some of these influences might affect the observations under investigation. Preliminary review of the plotted data, revealed that the graphs have cycles which indicate changes in the trends of the data over time. So, a special case of regression, cycle regression, was used to obtain the fitted function for each data set.

Shah (6) defines cycle regression analysis as "an algorithm that allows the estimation of sinusoidal or

harmonic components in time series data" (p.7). The cycle regression algorithm, developed by Simmons and Williams (8, 9), Simmons and Simmons (7), and Mehta and Simmons (4), has different steps to determine the period (length of the cycle), amplitude (height of the peak), and the phase (distance from the zero value of the sine wave to time equal zero). The general strategy of the algorithm is to test for the significance of the extracted harmonic using an F-test. If the extracted harmonic is significant, then the process is repeated to extract an additional one; otherwise no more harmonics are extracted and the previously significant harmonics are obtained.

The cycle regression algorithm has been validated by being successfully using it to estimate the harmonics from time series data (e.g., 8, 9, 4). Shah (6) points out that the results obtained by using cycle regression algorithm were better than the periodogram technique given the same sets of parameters (p. 44). He also states that the cycle regression algorithm overcomes many of the the limitations of other techniques such as Fourier analysis and periodogram method which makes the cycle regression algorithm an accurate technique to handle time series data without a priori knowledge of the sinusoidal periods (4, p. 45).

In relation to the objective of the study, cycle regression algorithm was only used to extract the fitted function of each data set. The algorithm was then extended to obtain the cycle regression equation and compute the first and the second derivatives at each point on the fitted curve in terms of sines and cosines. Since the derivatives are computed for the fitted function, an error term should be considered where the actual dependent value of each variable at any point may differ from the corresponding fitted value. A common technique to deal with the error term is to use a confidence interval, generally in the form $(1 - \alpha)\%$, to obtain bound of error when using the fitted value instead of the actual value.

The concept of simultaneous confidence intervals was applied to determine if the value of any computed derivative at each point is statistically significant. The level of alpha chosen was .05. This means that for each derivative of a point on each curve, lower and upper bounds were computed in order to conclude that with ninety five percent confidence, the value of the derivative falls between the computed lower and upper bounds. Bowerman, O'Connell, and . Dickey (2) explain what simultaneous confidence intervals concept means:

We say that a sample in the population of all possible samples is simultaneously successful for all the linear combinations of regression parameters in a set of linear combinations if all the $100(1 - \infty)$ % confidence intervals for the linear combinations in the set computed using the sample contain their respective linear combinations (p. 392).

The simultaneous confidence interval procedure will allow for the construction of (100 - 4)% confidence

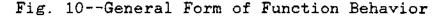
intervals for the first and second derivatives at each time value on a population curve such that the overall confidence level for all the confidence intervals taken simulataneouly is still $(1 - \omega)$ %. The Scheffe simultaneous confidence * formula is

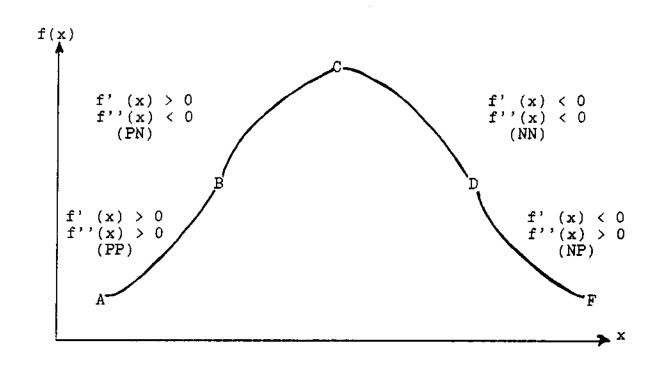
$$[\lambda b - \sqrt{qF} [\alpha] = \sqrt{\lambda (XX)} + \sqrt{\lambda (XX)} + \sqrt{qF} [\alpha] = \sqrt{\lambda (XX)} + \sqrt{\lambda (XX)}$$

where

- 1. F(q,n-k)= the point on the scale of the F-distribution [%] with q and (n-k) degrees of freedom so that the area under the curve to the right of that point is %.
- 2. b = a column vector containing the least squares

estimates b, b, b,, b. 0 1 2 p


- 3. s = the standard error.
- 4. n = the number of observed values of the dependent variable.
- 5. k = the number of parameters in the regression model.
- 6. q = the number of the regression parameters B, B, ...B 0 1 p that are involved nontrivially in at least one of the linear combinations for which simultaneous intervals are being computed.


* The formula and the interpretations of its components have been adapted from Bowerman, O'Connell, and Dicky (2). The cycle regression algorithm was modified and extended to compute Scheffe confidence intervals for the first and second derivatives and to compute the frequencies of each class of significant and insignificant derivatives.

4.4.3 <u>Results Interpretation and Frequency Computations</u>

There are several combinations of positive, zero, or negative first and second derivatives each of which describes a specific behavior of a function at a point. In general, as shown in Figure 10, the function f(x) changes its behavior as it moves from left to right. Starting from point A, the function increases at increasing rate until it reaches the inflection point (B); then the rate of increase decreases until it reaches a maximum point (C). Between C and D, the function decreases rapidly where the magnitude of the decreasing rate is getting larger. After the inflection point (D), the magnitude of the rate gets smaller until it

reaches a minimum point (F) and the function continues.

Expressing these different behaviors in terms of derivatives, both derivatives are positive at any point from A to B, while the first is positive and the second is negative at any point from B to C. Both derivatives are negative from C to D, while the first is negative and the second is positive at any point from D to F. The second derivative at any inflection point is zero.

In relation to the study, A confidence interval is computed for each derivative. If the lower and upper bounds of a derivative are positive, it is considered positive. On the other hand, the derivative is negative if both bounds are negative. If the lower bound is negative and the upper bound is positive, it can not be statistically concluded that the derivative is positive or negative. In other wards, the confidence interval will determine whether the derivative is significant positive or negative.

Based on the above rules, nine possibilities (3) were expected:

PP	Ē	first derivative	is	positive	and	the	second	is
PN	=	positive. first derivative	is	positive	and	the	second	is
PU	=	negative. first derivative	is	positive	and	the	second	is
NP	=	undetermined first derivative	is	negative	and	the	second	is
NN	=	positive. first derivative	is	negative	and	the	second	is
NU	Ξ	negative. first derivative	is	negative	and	the	second	is
UP	=	undetermined. first derivative	is	undetermi	ined	and	the sea	cond is
UN	=	positive. first derivative	is	undetermi	ined	and	the sea	cond is
		negative.						

UU = first derivative is undetermined and the second is undetermined.

Expressing the derivatives of a function in terms of growth behaviors, there are two types of growth behavior: (1) increase and (2) decrease. Increasing function is where the first derivative is positive while decreasing function is where the same derivative is negative. Within the increasing function, the highest increase is where the second derivative is also positive followed by relatively

less increase where the second derivative is either undetermined or negative.

Although the analyses are focused on the explosive increase (FP), total count of all the frequencies of each possibilities was done to facilitate general understanding of the whole behavior of the associated variable. But the last three categories (UP, UN, UU) were combined in one category in the frequency tables presented in the next chapter for simplicity. Once the first derivative is not statistically significant at a specific point, that point is excluded from analysis. It is called Not Significant (NS) in the frequency tables. The process was repeated for each production, distribution, and flow variable at four different levels to produce the frequency tables presented in the next chapter.

4.5 Basic Assumptions

The study is based on the following assumptions:

- the indicators selected to reflect the amount of information generated, distributed, and flow represent the relevant indicators;
- all pieces of information have equal chances to be generated, distributed, and flow through the communication systems;
- 3. noise and redundancy in information production,

distribution, and flow systems do not affect the measurement of amount of information at the gross level. So, they are ignored in computing the amount of information.

4.6 Limitations of the Study

The limitations of the study center around five factors:

- the scope of the study is geographically limited to the USA;
- the time span of the study covers a period from 1860 to the present;
- 3. the variables taken as indicators of amount of information production, distribution, and flow are not exhaustive;
- 4. the assumption that no information is available about the probability distribution of information growth somehow does not reflect the real behavior of information growth systems. But because of the complexities and interdependences of the system at social level, it is nearly impossible but to assume an unknown probability distribution. This assumption leads to the use of Shannon's metric H = log N which assumes equal chance for each message of information to be produced and distributed.
- 5. There are noise and redundancy in the production and distribution of information in society. These factors

are ignored because of the necessity to study these factors at the very low levels of each subsystem of information growth. The main objective of this study, however, is to provide a gross measure of information growth in order to characterize its behavior.

CHAPTER BIBLIOGRAPHY

- Balsley, H., <u>Basic Statistics for Business and</u> <u>Economics</u>, Columbus, Ohio, GRID, INC., 1978.
- Bowerman, B., R. O'Connel, and D. Dicky, <u>Linear</u> <u>Statistical Models: an Applied Approach</u>, Boston, Mass., Duxbury Press, 1986.
- Bowerman, B. and R. O'Connell, <u>Time Series and</u> <u>Forecasting: An Applied approach</u>, LA, California, Duxbury Press, 1976.
- Mehta, R., L. F. Simmons, and L. P. Simmons, "Cycle Regression Made Objective - The T-Value Method," <u>Cycles</u>, XXXIII, No. 4, (1983), 99-102.
- 5. Pachner, J., <u>Handbook of Numerical Analysis</u> <u>Applications</u>, New York, New york, McGraw-Hill Book Co., 1984.
- Shah, V., <u>Application of Spectral Analysis to the Cycle</u> <u>Regression Algorithm</u>, Unpublished Ph.D. Dissertation, North Texas State University, 1984.
- 7. Simmons, L. F. and L. P. Simmons, "Cycle Regression Analysis: 53- Years, 42-Years and 520-Years Cycles in the Purchasing Power of Gold," <u>Cycles</u>, XXXIII, No. 3, (1983), 65-67.
- Simmons, L. F. and D. R. Williams, "A Cycle Regression Algorithm for Extracting Cycles from Time Series Data," <u>Journal of Computer and Operations Research</u>, <u>An International Journal</u>, IX, No. 3, (1983), 243-254.
- 9. ______, "The Use of Cycle Regression Analysis to Predict Civil Violence," Journal of Interdisciplinary Cycle Research, An International Journal, XIIII, No. 3, (1983), 203-215.
- 10. <u>for Business: A Conceptual Approach</u>, Belmont, California, Wadsworth Publishing Co., Inc., 1976.

CHAPTER V

RESULTS AND ANALYSIS

Following the procedure explained in the previous chapter, the results obtained are classified and tabulated to test the three groups of hypotheses stated in the study. All the results related to a specific variable are included in one table to facilitate testing the related hypothesis.

5.1 Test of the Information Production Hypotheses:

To examine the hypotheses HA1, HA2, HA3, HA4, and HA5, the following tabular results are presented.

TABLE II

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF COPYRIGHTS AT ALPHA = .05 *

Classifi- cations		stment 1984	Adjus 1860		No Adju 1942-1				
	Number	%	Number	%	Number	%	Number	%	
PP PN PU NP NN NU NS	35 36 44 0 0 0	30.4 31.3 38.3 0 0 0	19 27 21 0 0 48	16.5 23.5 18.3 0 0 41.7	10 17 16 0 0 0	23.3 39.5 37.2 0 0 0	0 0 0 0 0 43	0 0 0 0 0 100	
TOTAL	115	100	115	100	43	100	43	100	

* Data are available since 1870.

TABLE III

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

Classifi- cations		istment - 1984	Adjus 1860		No Adju 1942-1		Adjust 1942-1	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	20 41 22 5 5 5 27	16.0 32.8 17.6 4.0 4.0 4.0 21.6	2 1 19 0 15 88	1.6 .8 15.2 0 12.0 68.4	0 0 3 0 2 38	0 7.0 0 4.7 88.3	0 5 0 4 34	0 0 11.6 0 9.3 79.1
TOTAL	125	100	115	100	43	100	43	100

CLASSIFICATION OF INVENTIONS AT ALPHA = .05

TABLE IV

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF DESIGNS AT ALPHA = .05

Classifi- cations		stment 1984	Adjus 1860					Adjustment 1942-1984	
	Number	%	Number	%	Number	%	Number	%	
PP PN PU NP NN NU NS	19 14 23 5 5 7 52	$15.2 \\ 11.2 \\ 18.4 \\ 4.0 \\ 4.0 \\ 5.6 \\ 41.6$	13 8 17 6 8 17 56	10.4 6.4 13.6 4.8 6.4 13.6 44.0	1 1 8 1 2 5 24	2.3 2.3 18.6 2.3 4.7 11.6 58.1	2 1 6 3 5 6 20	4.7 2.3 14.0 7.0 11.6 14.0 46.6	
TOTAL	125	100	125	100	43	100	43	100	

TABLE V

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

Classifi- cations	No Adjustment 1860 - 1984			Adjustment 1860 -1984		No Adjustment 1942-1984		Adjustment 1942-1984	
	Number	%	Number	%	Number	%	Number	%	
PP PN PU NP NN NU NS	51 45 9 0 0 7	45.5 40.2 8.0 0 0 6.3	37 38 7 0 0 0 30	33.0 33.9 6.3 0 0 25.7	12 9 4 0 3 14	28.6 21.4 9.5 0 7.1 33.3	5 3 14 2 0 3 18	11.9 7.1 33.3 4.8 0 7.1 35.7	
TOTAL	112	100	112	100	42	100	42	100	

CLASSIFICATION OF DOCTORATES AT ALPHA = .05 *

* Data are available from 1872.

TABLE VI

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF L.C. HOLDINGS AT ALPHA = .05 *

Classifi~ cations	No Adjustment 1860 - 1984		Adjustment 1860 -1984		No Adjustment 1942-1984		Adjustment 1942-1984	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	34 39 12 0 0 0 0	40.0 45.9 14.1 0 0 0	21 22 25 0 0 17	24.7 25.9 29.4 0 0 20.0	14 12 8 0 0 0 9	32.6 27.9 18.6 0 0 20.9	11 6 8 0 0 18	25.6 14.0 18.6 0 0 41.9
TOTAL	85	100	85	100	43	100	43	100

* Data are available from 1900.

The results in Table II show that only 30.4% of the points at the curve have had explosive increases. Recalling that the criterion chosen for the curve to be explosive is to have more than fifty percent explosive points, the study concludes that there has not been an explosive increase in the amount of information generated as indicated by the growth of copyrights issued. As expected, the results show that the impact of population growth makes the degree of explosiveness relatively less. The percentage of explosiveness as well as the total percentage of increase (explosive and unexplosive) has gone down from 30.4 to 16.5 percent and from 100 to 58.3 percent respectively.

Contrary to the common belief that the information explosion is a recent phenomenon, the analysis shows that the degree of explosiveness in the shorter time span was less than in the longer time span of the study. Furthermore, the impact of population growth was to cause the computations of all the derivatives to be statistically insignificant, which concludes that there has not been an information explosion in all cases of analysis.

As shown in Table III, the analysis shows that there has not been an information explosion. Only 16.0 percent of the points was explosive increases. Furthermore, 12.0 percent of the points was decreasing in which 4 percent had explosive decreases. The impact of population growth did not contradict the general expectation of making the growth of

any phenomenon less explosive. The degree of explosiveness was decreased from 16.0 to 1.6 percent. In the shorter time span, the analysis shows that there has not been any explosive increase at any point which concludes that there has not been an information explosion in the amount of information generated as indicated by the growth of inventions at any level of analysis.

Table IV indicates that the amount of information generated as indicated by the growth of designs was only 15.2 percent explosive. The total percentage of information increase was only 45 percent leaving 56 percent of the points to have information decrease or undetermined growth. The impact of population growth was in the same general trend but the magnitude of the decrease was relatively less compared to the magnitude of decrease in the other production metrics.

Based on the results in Table V, only 45.5 percent of the points was explosive decreasing to 33 percent as a result of the impact of population growth. The shorter time span has had only 28.6 percent explosive increase which has been decreased to 11.9 percent because of the impact of population growth. So, there has not been an information explosion in the amount of information generated as indicated by the growth of doctorates.

Results in Table VI indicate that even all the points have had increase in the amount of information generated as

indicated by the growth of the Library of Congress holdings, only 40 percent of the growth was explosive. The patterns detected for the impact of population growth and the shorter time span of the study still hold with similar magnitudes.

5.2: Test of the Information Distribution Hypotheses

To examine hypotheses HB1 through HB9, the following nine tables are prepared to present the results required for examining the stated hypotheses. Discussions of the results follow the frequency tables.

TABLE VII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES CLASSIFICATION OF AM RADIO STATIONS AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984		Adjustment 1860 -1984		No Adjustment 1942-1984		Adjustment 1942-1984	
Cabions	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	28 31 4 0 0 0 0	44.4 49.2 6.3 0 0 0 0	23 18 2 0 0 20	36.5 28.6 3.2 0 0 31.7	0 34 8 0 0 0 0	0 81.0 19.0 0 0 0	0 23 6 0 10 0 3	0 54.0 14.3 0 23.8 0 7.1
TOTAL	63	100	63	100	42	100	42	100

* Data are available since 1921.

TABLE VIII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF COMM FM RADIO STATIONS AT ALPHA = .05 *

lassifi- ations	No Adju 1860 -			Adjustment No Adjustment 1860 -1984 1942-1984		Adjustment 1942-1984		
Cations	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS				-	24 0 14 0 0 5	55.8 0 32.6 0 0 11.3	9 19 3 0 0 0 12	20.9 44.2 7.0 0 0 28.0
TOTAL	1				43	100	43	100

* Data are available since 1941.

TABLE IX

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF NON COMM FM RADIO STATIONS AT ALPHA = .05 *

Classifi~ cations	No Adju: 1860 -		Adjust 1860 -		No Adju 1942-:	istment 1984	Adjust 1942-1	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS					32 8 4 0 0 0 0	72.7 18.2 9.1 0 0 0	31 8 5 0 0 0 0	70.5 18.2 11.4 0 0 0
TOTAL				· · · · · · · · · · · · · · · · · · ·	44	100	44	100

TABLE X

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF COMMERCIAL TV STATIONS AT ALPHA = .05 *

Classifi- cations	-	Adjustment 860 - 1984		Adjustment 1860 - 1984		No Adjustment 1942-1984		Adjustment 1942-1984	
Cations	Number	%	Number	%	Number	%	Number	%	
PP PN PU NP NN NU NS					21 10 5 0 0 7	48.8 23.3 11.6 0 0 16.4	18 9 3 0 0 0 13	41.9 20.9 7.0 0 0 28.0	
TOTAL					43	100	43	100	

* Data are available since 1941.

TABLE XI

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF NON COMMERCIAL TV STATIONS AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984			Adjustment 1860 -1984		istment 1984	Adjustment 1942-1984	
Cutions ,	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS					15 14 2 0 0 0 0	48.4 45.2 6.5 0 0 0	14 10 7 0 0 0	45.2 32.3 22.6 0 0 0
TOTAL					31	100	31	100

* Data are available since 1953.

TABLE XII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF CABLE TV SYSTEMS AT ALPHA = .05 *

Classifi- cations	No Adju 1860 -		Adjust 1860 -		No Adj 1942-		Adjust 1942-1	
Cations	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS					18 0 14 0 0 0 1	54.5 0 42.4 0 0 0 3.0	11 12 10 0 0 0	33.3 36.4 30.4 0 0 0 0
TOTAL					33	100	33	100

* Data are available since 1951.

TABLE XIII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF TELEPHONES AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984		Adjustment 1860 -1984		No Adju 1942-:	istment 1984	Adjust 1942-1	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	28 26 0 0 0 12	64.2 24.5 0 0 0 11.3	51 27 17 0 0 0 11	48.1 25.5 16.0 0 0 10.4	40 0 0 0 0 0 0	100 0 0 0 0 0 0	29 0 11 0 0 0	72.5 0 27.5 0 0 0
TOTAL	106	100	106	100	40	100	40	100

* Data are available since 1876.

TABLE XIV

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF MILES OF WIRE AT ALPHA = .05 *

Classifi- cations		istment – 1984	Adjus 1860		No Adj 1942-1		Adjustment 1942-1984		
Cations	Number	%	Number	%	Number	%	Number	%	
PP PN PU NP NN NU NS	52 18 0 2 3 2 10	57.8 20.0 0 3.3 4.4 3.3 11.2	55 21 8 0 0 0 6	61.1 23.3 8.9 0 0 0 6.6	40 0 0 0 0 2	95.2 0 0 0 0 4.8	32 0 7 0 0 3	76.2 0 16.7 0 0 7.1	
TOTAL	90	100	90	100	42	100	42	100	

* Data are available since 1894.

TABLE XV

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF POST OFFICES AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984			Adjustment No Adj 1860 -1984 1942-		stment 984	Adjust 1942-1	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	24 17 1 0 0 0 11	19.2 13.6 .8 29.6 24.0 4.0 8.8	9 11 1 49 37 6 12	7.2 8.8 39.2 29.6 4.8 9.6	0 0 13 9 14 7	0 0 30.2 20.9 32.6 15.4	0 0 16 8 16 3	0 0 37.2 18.6 37.2 7.0
TOTAL	125	100	125	100	43	100	43	100

Based on the results in Table VII, the study concludes that there has not been an information explosion as indicated by the growth of commercial AM radio stations. Only 44.4 percent of the points on the curve were explosive increase. The impact of population growth was to decrease the degree of explosiveness to 36.5 percent. As for the shorter time span of the study, the analysis shows that the curve as a whole maintained 100 percent increase but no explosive increase at any point. The impact of population growth was so severe to the point of having 23.8 percent explosive decrease in the shorter time span of the study. So, examining hypothesis HB1 reveals that there has not been an explosion in the amount of information distribution as indicated by the growth of AM radio stations at all levels of the analysis taken.

As shown in Table VIII, there are no results available for the longer time span of the study because the data is available only since 1941. Based on the results available, the study concludes that there has been an information explosion as indicated by the growth of commercial FM radio stations. The percentage of explosive points was 55.8 which means that the criterion of curve explosiveness was met. The impact of population growth was to decrease the degree of explosiveness below the fifty percent line. So, it can be concluded that there has been an explosion in the amount of information distribution as indicated by the absolute growth of commercial FM radio stations but not as indicated by the relative growth.

The results in Table IX indicate that there has been an information explosion measured by the growth of non commercial FM radio stations. The impact of population growth has decreased the degree of explosiveness but it is still above the fifty percent which means that the study rejects the hypothesis in all cases of analysis. So, a conclusion can be drawn that there has been an explosion in the amount of information distribution as indicated by the absolute or relative growth of non commercial FM radio stations.

Regarding the growth of commercial TV stations, Table X shows that the study's conclusion is that there has not been an information explosion. But it should be noticed that the percentage of explosiveness was very close to the fifty percent criterion. Furthermore, taking the time span of the study, the number of observations used, and the level of alpha used into consideration, it can be concluded that one more explosive point would have increased the percentage of explosiveness to more than fifty percent. But the impact of population growth has, however, decreased the percentage to be definitely not explosive. As a result of this discussion and the data presented in Table X, it can be concluded that

distribution as indicated by the absolute or relative growth of commercial TV stations. The degree of explosiveness was, however, very close to meet the criterion of explosiveness.

Table XI presents results very similar to the results in Table X. Only 48.4 percent of the points were explosive which concludes there has not been an information explosion measured by the growth of non commercial TV stations. The impact of population growth has decreased the percentage to 45.2 but 100 percent increase (explosive and unexplosive) was maintained. In conclusion, examining hypothesis HB5 reveals that there has not been an explosion in the amount of information distribution as indicated by the absolute or relative growth of non commercial TV stations. The percentage of explosive points was, however, very close to meet the criterion of explosiveness for the absolute growth.

Based on the results presented in Table XII, it can be concluded that there has been an information explosion measured by the growth of cable TV systems. The degree of explosiveness has, however, decreased from 54.5 to 33.3 percent as a result of the impact of population growth. So, examining hypothesis HB6 reveals that there has been an explosion in the amount of information distribution as indicated by the absolute growth of cable TV systems but not as indicated by the relative growth.

As shown in Table XIII, examining hypothesis HB7 reveals that there has been an information explosion. The degree of explosiveness was 64.2 percent decreasing to 48.1 percent as a result of the impact of population growth. At .10 alpha, the degree of explosiveness of the relative growth was 50 percent which rejects the hypothesis at that level of alpha. The results of the shorter time span of the study was in total agreement with the common expectations that information explosion is a recent phenomenon. The curve was 100 percent explosive for the absolute growth and 72.5 percent explosive for the relative growth. So, examining hypothesis HB7 reveals that there has been an explosion in the amount of information distribution as indicated by the absolute or relative growth of telephones. The degree of explosiveness was at every individual point on the curve for the shorter time span of the study.

Similar to the results exhibited in Table XIII, Table XIV indicates that the study concludes that there has been an information explosion measured by the growth of miles of telephone wire. In all cases of analysis, the curve has met the criterion of explosiveness at .05 alpha level. The only observation contrary to the general expectation is that the impact of population growth has slightly increased the degree of explosiveness for the absolute growth. It seems that the impact of population growth has resulted in this case in a fitted curve which changed the relative increases of the points so the curve was explosive at points which were not on the curve of the absolute growth. In conclusion, examining hypothesis HB8 reveals that there has been an explosion in the amount of information distribution as indicated by the absolute or relative growth of miles of wire. The degree of explosiveness in the shorter time span of the study was close to 100 percent which exhibited the second highest degree of explosiveness.

As for hypothesis HB9, Table XV indicates that the study concludes that there has not been an information explosion measured by the growth post offices. The degree of explosive decrease (24%) was even higher than the degree of explosive increase (19.2%). The results also show that in the shorter time span of the study, there has not been any increase compared to 20.9 percent explosive decrease in this period which should trigger questions to investigate certain factors behind these results.

5.3: Test of the Information Flow Hypotheses

The hypotheses HC1 through HC8 are designed to examine the information flow explosion. The results needed to examine these hypotheses are presented in the next eight tables followed by analyses of these results in the light of examining the related hypotheses.

TABLE XVI

FREQUENCY DATA OF FIRST AND SECOND

DERIVATIVES CLASSIFICATION OF MATTER HANDLED

Classifi- cations	No Adjustment 1860 - 1984		Adjus 1860				Adjust 1942-1	
00010110	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	50 38 6 0 0 5	50.5 38.4 6.1 0 0 5.0	38 31 4 7 6 2 11	38.4 31.3 4.0 7.0 6.0 2.0 11.0	15 21 7 0 0 0 0	34.9 38.8 16.3 0 0 0	0 27 9 0 0 7	0 62.8 20.9 0 0 16.3
TOTAL	99	100	99	100	43	100	43	100

IN POST OFFICES AT ALPHA = .05 *

* Data are available since 1886.

TABLE XVII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF BOOKS AT ALPHA = .05 *

Classifi- cations		ustment - 1984		justment No Adjustment 60 -1984 1942-1984		Adjustment 1942-1984		
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	24 27 21 4 3 20	23.5 26.5 20.6 3.9 2.9 2.9 19.7	19 23 10 10 9 6 25	18.8 22.5 9.8 9.8 8.8 5.8 22.5	15 14 11 0 0 0 0	37.5 35.0 27.5 0 0 0 0	11 10 4 0 0 0 24	27.1 25.0 10.0 0 0 37.1
TOTAL	102	100	102	100	40	100	40	100

* Data are available since 1880.

TABLE XVIII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF PERIODICALS AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984		-	Adjustment No Ad 1860 -1984 1942		stment 984	Adjust 1942-1	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	00 25 33 0 0 0 0 8	0 37.9 50.0 0 0 0	6 10 11 2 8 12 17	9.1 15.2 16.7 3.0 12.1 18.2 26.2	8 9 4 0 0 0 12	41.9 20.9 9.3 0 0 28.0	10 5 12 6 2 6	23.3 11.6 4.7 27.9 14.0 4.7 14.0
TOTAL	66	100	66	100	43	100	43	100

* Data are available since 1919.

TABLE XIX

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF NEWSPAPERS AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984		Adjustment 1860 -1984		No Adju 1942-:	ustment 1984	Adjustment 1942-1984	
	Number	%	Number	%	Number	%	Number	%
PP	0	0	0	0	0	0	0	0
PN	0	0	0	0	0	0	0	0
PU	3	4.6	0	0	6	14.0	0	0
NP	7	10.8	15	26.2	0	0	9	20.
NN	7	10.8	26	38.5	3	7.0	4	9.
NU	15	23.1	24	35.4	8	18.6	25	58.
NS	33	49.9	0	0	26	60.5	5	11.
TOTAL	65	100	65	100	43	100	43	10

* data are available since 1920.

TABLE XX

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF NEWSPAPER CIRCULATION AT ALPHA = .05 *

Classifi- cations	No Adjustment 1860 - 1984		Adjus 1860	tment -1984	No Adju 1942-1	stment 1984	Adjust 1942-1	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	2 33 17 0 0 0 13	3.1 50.8 26.1 0 0 20.0	8 10 5 6 22 4 14	12.3 15.4 7.7 9.2 32.2 6.2 17.0	0 25 6 0 3 9	0 58.1 14.0 0 7.0 20.9	0 15 0 20 7 1	0 34.9 0 0 16.3 2.3
TOTAL	65	100	65	100	43	100	43	100

* Data are available since 1920.

TABLE XXI

FREQUENCY DATA OF FIRST AND SECOND

DERIVATIVES CLASSIFICATION OF AVERAGE DAILY

PHONE	CONVERSATION	ΑT	ALPHA	=	.05 *	
-------	--------------	----	-------	---	-------	--

Classifi- cations	No Adjustment 1860 - 1984		Adjus 1860		No Adjustment		Adjustment 1942-1984	
	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS	39 46 5 0 0 0 0	43.3 51.1 5.6 0 0 0 0	25 35 9 0 0 21	27.8 38.9 10.0 0 0 23.3	16 14 13 0 0 0	37.2 32.6 30.2 0 0 0 0	21 12 10 0 0 0	48.8 27.9 23.3 0 0 0 0
TOTAL	90	100	90	100	43	100	43	100

* Data are available since 1895.

TABLE XXII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF RADIO SETS AT ALPHA = .05 *

Classifi- cations	-	ustment – 1984	Adjus 1860				Adjustment 1942-1984	
	Number	%	Number	%	Number	%	Number	%
PP	21	33.3	19	30.2	2	4.7	0	0
PN	34	54.0	31	49.2	ō	Ō	Õ	Ō
PU	8	12.7	2	3.2	12	27.9	2	4.
NP	0	0	0	0	0	0	0	0
NN	0	0	0	0	0	0	0	0
NU	0	0	0	0	9	20.9	0	0
NS	0	0	3	17.5	20	48.5	41	95.
TOTAL	63	100	63	100	43	100	43	100

* Data are available since 1922.

TABLE XXIII

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES

CLASSIFICATION OF TV SETS AT ALPHA = .05 *

Classifi- cations	No Adju 1860 -		Adjust 1860 -		No Adjustment 1942-1984		Adjustment 1942-1984	
<u></u>	Number	%	Number	%	Number	%	Number	%
PP PN PU NP NN NU NS					0 13 12 0 0 0 14	0 33.3 30.8 0 0 35.9	0 7 9 0 0 23	0 17.9 23.1 0 0 59.0
TOTAL					39	100	39	100

* Data are available since 1946.

From the results reported in Table XVI, the study concludes that there has not been an information explosion. The impact of population growth has, however, decreased the degree of explosiveness to the point of not meeting the criterion of curve explosiveness. Furthermore, contrary to common belief, the criterion of explosiveness has not been met in the shorter time span of the study. So, examining hypothesis HC1 reveals that there has been an explosion in the amount of information as indicated by the absolute growth of matter handled in post offices but not as indicated by the relative growth. As for the shorter time span of the study, the degree of explosiveness was much less.

Based on the information exhibited in Table XVII which is designed to examine HC2, only 23.5 percent of the points were explosive decreasing to 18.8 percent as a result of the impact of population growth. For the shorter time span of the study, the results are in agreement with the common expectation even the criterion of curve explosiveness has not been met. The degrees of explosiveness have increased from 23.5 to 37.5 percent and from 18.8 to 27.5 percent as indicated by the absolute and relative growth of books. Furthermore, the results indicate that the curve has maintained 100 percent increase as indicated by the absolute growth which supports the common assumption that information explosion is a recent phenomenon.

The information reported on Table XVIII strongly support the previous claim about information explosion. The degree of explosiveness has gone up from zero to 41.9 percent for the shorter time span of the study. Despite this fact, the study concludes that there has not been an information explosion at all levels of analysis because the degree of curve explosiveness has not been met. So, examining hypothesis HC3 reveals that there has not been an explosion in the amount of information flow as indicated by the growth of periodicals.

The results reported in Table XIX indicate that the study concludes that there has not been an information explosion measured by the growth of newspapers. Furthermore, the results clearly reveal that the behavior of the function was 100 percent decreasing at all levels of analysis. So, examining hypothesis HC4 reveals that there has not been an explosion in the amount of information flow as indicated by the growth of newspapers in any case of analysis.

Based on the results reported in Table XX, the study concludes that there has not been an information explosion measured by the newspaperes circulation. Although the degree of explosiveness increased from 3.1 to 12.3 percent as a result of the impact of population growth, the total percentage of increase has decreased from 80 to 35.4 percent which comply with the general expectation of the impact of population growth. Additionally, the percentage of explosive decrease has gone up from zero to 32.2 percent which clearly supports the previous conclusion. So, examining hypothesis HC5 reveals that there has not been an explosion in the amount of information flow as indicated by newspaper circulation at all levels of analysis.

Based on the information reported in Table XXI, the criterion of curve explosiveness has not been met. So, examining HC6, reveals that there has not been an information explosion as indicated by the average daily telephone conversation at any level of analysis. But the

degrees of explosiveness were relatively close to the fifty percent line and the curves maintained 100 percent increases in the amount of information flow which should be kept in mind even if the conclusion is that there has not been an information explosion.

Based on the information reported in Table XXII, the study concludes that there has not been an information explosion as a result of examining HC7. Contrary to the common belief that information explosion is recent, the results show that degree of explosiveness was much less in the shorter time span of the study. So, examining hypothesis HC7 reveals that there has not been an explosion in the amount of information flow as indicated by the growth of radio sets.

As shown on Table XXIII, examining hypothesis HC8 shows that there has not been an information explosion. Furthermore, the degree of explosiveness was zero in both cases of analysis which concludes that there has not been an explosion in the amount of information flow as indicated by the growth of TV sets.

The previous analyses of results and hypotheses examination are used to reach a general conclusion of the study in the next chapter. The implications as well as suggestions for future research are also discussed.

CHAPTER VI

CONCLUSIONS

6.1 Review

The main problem motivating this research is that there has not been any studies which quantitatively test the common claim that there has been an information explosion. Departing from past efforts (1, 2) which consider information explosion as a proven fact and study its impact on aspects such as educational institutions or manpower force, this study concentrated on the development of quantitative parameters to test if there has been an information explosion and, if so, how it might be described.

The specific task chosen for the study required the development of a taxonomy of information in three dimensional contexts, the selection of the most common production, distribution and flow parameters to be surrogates for the measurement of each dimension, the adoption of Shannon's log transformation to be used in the production and flow dimensions, and the development and application of workable definition of explosiveness.

Three groups of hypotheses were developed to test if there has been an explosion in the generation, distribution, or flow of information in a time span covering a period from 1860 to 1984. Hypotheses testing has also extended to investigate the impact of population growth on the production, distribution, and flow of information. Data related to a shorter time span covering only a period since 1942 to 1984 was used to test if the information explosion is a recent phenomenon. The data was collected from government documents, tabulated, and graphed to get the preliminary assessment of the functions' behaviors. The methodology to carry out the computation process was developed and used to produce the results required to test the stated hypotheses.

6.2 <u>Discussion of Results</u>

It might be useful to summarize the hypotheses examination results presented in the previous chapter to facilitate the discussion.

TABLE XXIV

SUMMARY OF INFORMATION PRODUCTION HYPOTHESES TEST

	No Adjustment	Adjustment	No Adjustment	Adjustment	
	1860 - 1984	1860 -1984	1942-1984	1942-1984	
Copyrights	Not	Not	Not	Not	
HA1	explosive	explosive	explosive	explosive	
Inventions	Not	Not	Not	Not	
HA2	explosive	explosive	explosive	explosive	
Designs	Not	Not	Not	Not	
HA3	explosive	explosive	explosive	explosive	
Doctorates	Not	Not	Not	Not	
HA4	explosive	explosive	explosive	explosive	
LC holdings HA5	Not explosive	Not explosive	Not explosive	Not explosive	

TABLE XXV

SUMMARY OF INFORMATION DISTRIBUTION HYPOTHESES TEST

· · · · · · · · · · · · · · · · · · ·	No Adjustment	Adjustment	No Adjustment	Adjustment
	1860 - 1984	1860- 1984	1942-1984	1942-1984
AM Radio Stations HB1	Not explosive	Not explosive	Not explosive	Not explosive
FM Radio Stations HB2			Explosive	Not explosive
Non Comm FM Stations HB3			Explosive	Explosive
TV Stations HB4			Explosive at .10 alpha level	Not explosive
Non Comm TV Statio. HB5			Not explosive	Not explosive
Cable TV Systems HB6			Explosive	Not Explosive
Phones HB7	Explosive	Explosive at .10 alpha level	Explosive	Explosive
Miles of Wire HB8	Explosive	Explosive	Explosive	Explosive
Post Offices HB9	Not explosive	Not explosive	Not explosive	Not explosive

TABLE XXVI

SUMMARY OF INFORMATION FLOW HYPOTHESES TEST

	MARY OF INFORM	ATION FLOW II		
	No Adjustment 1860 - 1984	Adjustment 1860- 1984	No Adjustment 1942- 1984	1942 -1984
Matter Handled in P.Offices HC1	Explosive	Not explosive	Not explosive	Not explosive
Books HC2	Not explosive	Not explosive	Not explosive	Not explosive
Period- icals HC3	Not explosive	Not explosive	Not explosive	Not explosive
News- papers HC4	Not explosive	Not explosive	Not explosive	Not explosive
Newspapers Circula- tionsHC5	explosive	Not explosive	Not explosive	Not explosive
Avg.Daily Conversa- tions HC6	Not explosive	Not explosive	Not explosive	Explosive at .10 level
Radio Sets HC7	Not explosive	Not explosive	Not explosive	Not explosive
TV Sets HC8			Not explosive	Not explosive

As shown on the summary tables of hypotheses examination, the information distribution is first in rejection rate of hypotheses followed by the information flow group and then the information generation group. For the first group, the study shows that there has been an explosion in the distribution of information as measured by most of the parameters used in the study. There were only two variables have been explosive in the information flow group. So, a conclusion can be reached that there has not been an explosion in information flow in general as indicated by failing to meet the criterion of explosiveness in most of the hypotheses. There was no hypothesis meeting the criterion of explosiveness in the information generation group which concludes that there has not been an explosion at any degree in the production of information.

The above results are based on the formal hypotheses examination based on the criterion applied in the study. Because there is no mathematical criterion for curve explosiveness, an arbitrary criterion was developed by classifying the curves into two groups: (1) explosive if more than fifty percent of the points on the curve was explosive; (2) unexplosive if less than fifty percent was explosive. This criterion was necessary to be able to examine the stated hypotheses but it does not really reflect the degrees of explosiveness of the phenomena under investigation.

Consequently, in addition to the previous analyses, it is very reasonable to assume a continuum of possible results under such a dichotomy which was developed to test the hypotheses. To explain the point further, a curve which has 48 percent explosive points is classified as totally unexplosive curve while curve with 50.1 percent explosive points is considered totally explosive, which does not really reflect the true behavior of both phenomena. As a matter of fact, a curve with 50.1 percent explosive points is closer to a curve with 48 percent explosive points than to a curve with 90 percent explosive points; but it is categorized as explosive curve.

To overcome this problem, ranking of the variables based on the degree of explosiveness is presented to facilitate looking at the results as a continuum of possible results to reflect the relative degree of explosiveness. The higher the percentage of explosive points, the higher the degree of explosiveness. Furthermore, if the rest of the points on a curve were increasing, but not at an explosive rate, it may be concluded that the degree of explosiveness is higher than if the rest of the points were decreasing.

As stated in Chapter IV, there was no single hypothesis to test the information explosion in general and the only case to reach such conclusion is to have all of the hypotheses meeting or not meeting the rule of thumb of curve explosiveness. But ranking the variables based on their

relative degree of explosiveness helps to reach a conclusion as regard to which dimension of information was more explosive than the others. The following tables represent the ranking of the groups of variables based on two types of increases: (A) refers to the percentage of explosive points (PP); and (B) refers to the percentage of increasing points but not at an explosive rate (PU + PN).

TABLE XXVII

RANKING OF INFORMATION DISTRIBUTION VARIABLES

	No Adjustment 1860 - 1984		Adjustment 1860 -1984		No Adjustment 1942-1984		Adjustment 1942-1984	
	A	В	A	В	A	В	A	B
Telephones	64.2	24.5	48.1	41.5	100.0	0.0	72.5	27.5
Miles of Wire	57.8	20.0	61.1	29.1	95.2	0.0	76.2	16.7
Non Comm. FM Stations					72.7	27.3	70.5	29.5
Comm. FM Stations					55.8	32.6	20.9	51.2
Cable TV Systems					54.5	42.4	33.3	66.8
Comm. TV Stations					48.8	34.9	41.9	27.9
Non Comm. TV Stations					48.4	51.6	45.2	54.8
AM Radio Stations	44.4	55.6	36.5	31.8	0.0	100.0	0.0	68.3
P. Offices	19.2	14.4	7.2	9.6	0.0	0.0	0.0	0.0

TABLE XXVIII

RANKING OF INFORMATION FLOW VARIABLES

	No Adjustment 1860 - 1984		Adjustment 1860 -1984		No Adjustment 1942-1984		Adjustment 1942-1984	
<u> </u>	A	B	A	В	A	В	A	В
Matter Handles in Post Offices	50.5	44.6	38.4	35.3	34.9	65.1	0.0	83.7
Avg.Daily Conversa- tions	43.3	56.9	27.8	48.9	37.2	62.8	* 48.8	51.2
Radio Sets	33.3	62.7	30.2	52.4	4.7	27.9	0.0	4.
Books	23.5	47.1	18.8	32.3	37.5	62.5	27.5	25.0
Newspapers Circula- tions	13.1	66.9	12.3	23.1	0.0	72.1	0.0	34.
Period- icals	0.0	100.0	9.1	31.9	41.9	30.2	23.3	16.
Tv Sets					0.0	64.1	0.0	41.
Newspapers	0.0	4.6	0.0	0.0	0.0	14.0	0.0	0.

* At .10 alpha level = 51.1 percent

TABLE XXIX

	No Adjustment 1860 - 1984			Adjustment 1860 -1984		No adjustment 1942-1984		Adjustment 1942-1984	
	A	В	A	B	A	В	A	В	
Doctorates	45.5	48.2	33.0	40.2	28.6	30.9	11.9	40.4	
LC Holding	40.0	60.0	24.7	55.3	32.7	46.5	25.6	32.6	
Copyrights	30.4	70.6	16.5	41.8	23.3	76.7	0.0	0.0	
Inventions	16.0	50.4	1.6	16.0	0.0	7.0	0.0	11.6	
Designs	15.2	29.6	10.4	20.0	2.3	20.9	4.7	16.3	
							<u> </u>		

RANKING OF INFORMATION PRODUCTION VARIABLES

The above ranking tables support to the formal hypotheses examination that the highest degree of explosiveness at any level of analysis was in the distribution of information. Furthermore, the percentage of total increase (explosive and unexplosive) was also in the same area which supports the general conclusion that there has been an explosion in the distribution of information as indicated by the growth of most of the variables investigated in the study. The second highest degree of explosiveness was in the velocity of information. There was only, however, one variable (matter handled in post offices) which passed the criterion of explosiveness. The second highest degree of growth (explosive and unexplosive) was also detected in the same area which showed consistency in the results of data analysis. With only one exception (newspapers), the total growth showed almost 80 to 100 percent increase which reflected a general sense of steady growth even if it failed in most cases to reach the minimum level of being explosive.

The lowest degree of explosiveness was in the information production. But ranking the degree of explosiveness showed that two variables were close to meet the criterion of explosiveness. Furthermore, the total percentage of increase showed that it was above 80 percent in two variables which truly reflected a degree of explosiveness but lower than it was for information flow. So, another general conclusion can be supported by this analysis that even it was an explosion in the velocity of information as reflected by few parameters, that explosion was not the general dominant behavior of the velocity of The last general conclusion supported by the information. analysis is that even if there has not been an explosion in the generation of information, the results reflected a moderate degree of explosiveness.

6.3 Implications of the Study and Future Research

In recent years, the information systems community as well as the other information sciences communities have been accustomed to statements such as "the amount of information is increasing at exponential rate" or "there has been an information explosion which should be brought under control" or "the information explosion is going to become storage and retrieval problems" (1, 2, 3). The main implication of the study is not to treate the phenomenon as metaphors but to quantitavely measure and characterize its growth.

The second implication is to reveal different growth behaviors in generation, distribution, and flow of information which is basically contrary to the findings of Price (5) that the law of exponential growth was universal to the growth of scientific information. The third implication is to set the foundations for more extended research to predict the amount of information for short and long term periods in different contexts which could be useful for information systems planning specially in the areas of storage and retrieval of information at the organizational as well as society levels.

Specifically, the present study could be directly extended to forecast the characteristics of the next cycle in each of the variables investigated. The technique used is primarily designed to identify and characterize the sinusoidal cycles in the data (4, 6), which could be useful in predicting which is most likely to occur based on the extracted behavior of the variable. The long term prediction, however, may basically rely on extracting the general trend of the whole curve and not to concentrate only on the specific characteristics of the next cycle which is expected to occur in the near future.

There is a word of caution, however, to totally rely on such prediction raised by Bell (1) concerning the use of mathematical models to predict the behaviors of social sciences phenomena. Because of the oppennes in social sciences, specific and exact prediction should not be the main objective of such forecasting. "Yet one advantage of this technique remains: by the use of mathematical language, one can often discern identical underlying structures in highly diverse phenomena" (1, p. 183).

CHAPTER BIBLIOGRAPHY

- Bell, D., <u>The Comming of Post-Industrial Society</u>, New York, Basic Books Inc., 1973.
- , "The Social Framework of the Information Society." <u>The Microelectronics Revolution</u>, edited by T. Forester, Cambridge, The MIT Press, 1981.
- Fallwell, W., editor, "Information Explosion Closer to Control," <u>Chemical & Engineering News</u>, (December 20, 1971), pp. 28-36.
- 4. Mehta R., L. F. Simmons and L. P. Simmons, "Cycle Regression Made Objective- The T-Value Method," Cycles, XXXIII, No. 4, (1983), 99-102.
- 5. Price, D. D., <u>Little Science</u>, <u>Big Science</u>, New York, Cambridge University Press, 1963.
- 6. Shah, V., <u>Application of Spectral Analysis to the Cycle</u> <u>Regression Algorithm</u>, Unpublished Ph.D. Dissertation, North Texas State University, 1984.

APPENDIX A

INFORMATION PRODUCTION VARIABLES AND GRAPHS

Legends <u>Used</u> (TP) = Time Period
(CORB) = Copyrights Raw Data Before Adjustment by Population
(INRB) = Inventions Raw Data Before Adjustment by Population
(DERB) = Designs Raw Data Before Adjustment by Population
(DORB) = Doctorate Raw Data Before Adjustment by population
(LCRB) = LC Holdings Raw Data Before Adjustment by population
(CORA) = Copyrights Raw Data After Adjustment by Population
(INRA) = Inventions Raw Data After Adjustment by Population
(DERA) = Designs Raw Data After Adjustment by Population
(DORA) = Doctorate Raw Data After Adjustment by population
(LCRA) = L C Holdings Raw Data After Adjustment by population
(COBB) = Copyrights Data in Bits Before Adjustment by Population
(INBB) = Inventions Data in Bits Before Adjustment by Population
(DEBB) = Designs Data in Bits Before Adjustment by Population
(DOBB) = Doctorate Data in Bits Before Adjustment by population
(LCBB) = L C Holdings Data in Bits Before Adjustment by population
(COBA) = Copyrights Data in Bits After Adjustment by Population
(INBA) = Inventions Data in Bits After Adjustment by Population
(DEBA) = Designs Data in Bits After Adjustment by Population
(DOBA) = Doctorate Data in Bits After Adjustment by population
(LCBA) = L C Holdings Data in Bits After Adjustment by population

٢

INFORMATION PRODUCTION RAW DATA BEFORE ADJUSTMENT BY POPULATION

(TP)	(CORB)	(INRB)	(DERB)	(DORB)	(LCRB)
1160		4357	183		
1801		3020	142		
1462		3214	195		,
1867 1884	•	3773	178		
1885	•	4630	130		
1849	•	6968	221		
1187		\$ \$ \$ \$	294		
1468		12277	325		
1969		12528 12931	445		
1870	5600	12137	508 737		
1171	12448	11659		•	
1172	14194	12180	903 384		
1873	15352	11610	747	14	
1174	10283	12230		13	
1875	15927	13291	915	23	
1876	14387	14189	102	31	
1877	13731	12020	489	39	
1 878	15783	12345	500	32	
1878	18125	12125	591	38	
Dael	20886	12903	314	54	
1001	21075	15500	585	37	
1882	22918	10091	858	41	
1483	25274	21167	1017	50	
[104	24483	19110	1150	68	
1983	28411	23285	788	17	
1880	31241	21787	584	14	
1887	35083	20403	941	77	
1.88	38225	19551	132	140	
1889	40915	23374	723	124	
1890	42794	25213		149	
1891	41901	22312	#35	117	
1892	54735	22847	T16	190	
1893	51850	2275D	199	211	
1884	62762	19855	\$27	279	
1895	87572	20856	1108	272	
1196	72470	21822	1441	271	
1007	75000	22087	1620	319	
1386	75545	20377	1798	324	
1 2 9 9	80958	23278	2137	345	
1400	94798	74544	1754	282	1457102
1001	92351	25548	1729	365	1877941
1902	92978	27119	\$C2	582	1751077
1903	97978	31024	538	337	1877412
1904	103135	30251	552	334	2015482
103	113374	29775	416	189	2021170
1906	117704	31170	670	342	2121000
1907 1909	123828 119742	35859 32735	5 # P 7 3 5	349	2250741
3908	12013)	32739	735	391 451	2403104 2618357
1910	109074	25141	875	443	2018357
1911	113191	32850	1004	497	2909254
1912	120931	36108	1341	300	30#2##3
1913	119405	33917	1677	302	3254173

INFORMATION PRODUCTION RAW DATA BEFORE ADJUSTMENT BY POPULATIC
--

<u>(TP)</u>	(CORB)	(INRB)	(DERB)	(DORB)	(LCRB)
1914	123134	38892	1711	559	3476293
1812	115193	43118	1531	611	3624991
1916	115987	43182	1745	687	3789327
1917	111438	40905	1505	\$11	3890095
1918	106728	34452	1206	55e	3898913
1919	110001	36797	1571	588	4131361
1920	126285	37050	2481	815	4300884
1921	135280	27798	3285	726	4432015
1922	138633	30305	1809	136	4557350
1123	141948	78818	1927	987	4676171
1824	182684	42574	2670	1000	4790688
1925	165141	46432	2810	1253	5676120
1928	177635	44733	2397	1409	5870870
1927	184000	41717	2387	1420	8066317
1828	193914	42357	3182	1947	8297851
1929	181950	45267	2905	1873	6565019
1930	172792	45220	2710	2299	8126373
1831	184642	51750	2875	2478	7018142
1932	151735	53458	2942	2654	7350812
1933	137424	41774	2411	2342	7539452
1934	138047	44420	2919	7830	7770494
2001	142031	40418	3184	2=00	7990374
1938	154582	39782	4558	2770	8787946
1937	154424	37683	5138	2150	8481244
1938	106248	18081	5026	2932	7008139
1839	173135	43073	5582	3111	9019346
1940	176997	42238	8145	3290	9435846
1941	180847	41108	6443	3294	9970388
1942	182232	38448	3726	3497	10262897
1943	160795	31054	7278	2901	18150972
1944	169289	78053	2914	2 3 0 5	22879738
1845	178242	23825	3574	2138	24479999
1946	202144	21103	2778	1986	24675124
1947	230215	20138	2102	2971	2308644
1941	238121	23983	3962	3989	24400061
1949	201100	35131	4450	5043	27560873
1950	210564	43040	4718	\$633	
1951	200354	44328	4163	7337	78691350
1252	203705	43918	2938	7813	29319603 3074677 <u>2</u>
1953	214508	40483	2713	8307	31628551
1954	222885	33898	2530	2225	33152652
1955	224732	30432	2713	2340	34201414
1953	224908	48817	2977	1103	35331657
1957	225807	42744	2362	8756	30118629
1951	238935	48230	2374	4942	38805919
1950	241735	52400	2781	8360	3112024]
1960	343828	47170	2547	1478	31993221
1961	247014	41361	2487	10575	41743011
1962	254778	55661	2300	11622	41867894
1967	264845	45878	2985	12822	43131479
1065	278967	47378	78 84	14480	43528482
1965 1965	293817	82857	3424	16467	50010548
1987	215385 284408	13496	3165	18237	54289230
	*****	65632	3145	\$00[]	55457244

,

INFORMATION PRODUCTION RAW DATA BEFORE ADJUSTMENT BY POPULATION

.

.

<u>(TP)</u>	(CORB)	(INRB)	(DERB)	(DORB)	(LCRB)
1988	303451	59102	3352	23089	50483358
1005	301258	67557	2225	24188	59990533
1970	318488	84427	3214	78858	81317142
1971	329898	78210	3150	32107	84845101
1972	344374	74838	2901	28840	71108427
1973	252648	74139	4033	35100	72488928
1974	372#32	76275	4303	00466	69332852
1975	401274	71904	4282	34100	10537768
1975	410988	70200	4800	34100	72805909
1977	452702	65300	3900	33300	73563478
1978	331942	66100	3600	32131	74397574
1978	429004	48900	0010	32703	75683694
1980	464743	61800	3900	32615	78945360
1981	471178	65 800	4700	37958	78841380
1947	482349	57900	4900	32707	79754413
1883	418756	58900	4600	33085	10788452
1884	502828	\$7200	4000		81805918

.

· .

.

INFORMATION PRODUCTION RAW DATA AFTER ADJUSTMENT BY POPULATION

•

.

1880 121.181 3.000 1841 80.251 4.2764 1842 16.468 5.1725 1843 120.300 3.8700 1844 120.300 3.8700 1845 21.000 3.8700 1846 221.472 4.1651 1847 221.472 4.9654 1848 21.011 12.8514 1849 21.121 2.8514 1849 21.121 2.8514 1849 21.121 2.8514 1849 21.121 2.8514 1849 21.0121 2.8514 1849 22.777 20.127 0.127.18 1847 328.47 27.022 0.111 0.2516 1849 22.777 207.207 17.3943 0.47225 1849 22.777 207.207 17.3943 0.47225 1849 21.277 20.727 0.7074 1.07347 1849 41.159 24.403 12.0107 0.7318 1849 41.159 24.403 12.0107 1.7434	<u>(TP)</u>	(CORA)	(INRA)	(DERA)	(DORA)	(LCRA)
1492 10.8144 5.8754	1050		171.101	5.8238		
1892 110.844 5.1725 1844 120.309 3.870 1845 742.388 4.5944 1847 214.472 1.4654 1847 214.472 1.4653 1848 227.744 12.0574 1877 304.147 14.4689 1871 307.344 20.977 1872 37.44 20.977 1873 353.34 274.797 20.2004 0.53518 1875 353.34 274.797 20.2004 0.51028 1877 353.34 274.797 20.2004 0.51028 1878 327.77 307.007 17.3443 0.47231 1879 324.32 24.407 0.2004 0.51028 1879 324.32 24.407 10.4071 14.4279 1879 324.32 24.402 12.0102 0.7128 1879 324.32 24.402 12.0102 0.4427 1879 341.53 24.728 0.7721 1871 40.4075 12.727 1.5607 1884	1881		83.351	4.3894		
1484 122.408 3.870 1485 170.577 4.103 1486 242.508 4.0444 1487 314.472 4.653 1488 327.744 11.4653 1489 31.131 12.5514 1470 140.52 304.147 14.4689 1471 309.653 247.677 22.0577 1472 334.673 277.702 20.1181 0.73758 1474 344.73 277.702 20.1181 0.73758 1474 344.73 277.702 20.1181 0.72518 1474 344.73 277.702 20.1181 0.72518 1474 324.77 307.207 17.3443 0.4723 1474 324.77 307.207 17.3443 0.4723 1475 327.74 224.403 12.0102 0.72158 1477 324.403 12.0102 0.72158 14.543 1474 324.77 301.665 17.705 27.721 1475 327.74 14.6512 17.7058 0.72241 1	1882		38.842	5.8758		
1465 170.577 4.1003 1466 224.569 4.0444 1477 214.472 8.6954 1478 207.764 11.4653 1479 140.52 304.171 14.4653 1471 309.53 214.797 22.0577 1472 377.44 200.120 17.2997 0.5054 1472 374.47 270.101 0.27558 1.0047 0.27558 1472 374.47 270.002 17.2997 0.50647 1.00477 1474 346.73 277.702 20.1181 0.27518 1.00477 1474 346.73 277.702 20.1181 0.27238 1.00427 1477 324.277 274.071 14.4276 0.87235 1.07437 1478 327.74 234.328 12.273 0.64648 1.01738 1478 277.74 234.231 20.7607 1.3070 1.1417 1480 410.757 13.71327 1.3070 1.1417 1.4482 1482 447.17 241.642 12.2727 2.055 1.1427	1100		110.880	5.1725		
1448 242,588 4,0844 1447 221,472 3,4954 1488 231,121 12,5574 1470 140,52 304,147 14,4883 1471 308,33 214,787 22,0577 1472 308,33 214,787 22,0577 1472 308,33 214,777 22,0577 1473 354,47 270,002 0,5025 1474 348,73 277,702 20,1141 0,87235 1475 322,77 307,207 17,3443 0,87235 1476 322,77 307,207 17,3443 0,87235 1477 344,33 24,407 12,0102 0,73158 1478 322,77 307,207 17,3443 0,87235 1479 344,33 24,407 12,0102 0,73158 1478 327,744 28,238 12,2473 0,64249 1479 344,334 10,7427 1,67437 1478 327,74 24,071 10,7427 1,67437 1484 45,62 26,221 27,7680 <	1164		132.808	3.8870		
1487 321 473 1.4954 1188 321 744 11.4633 1189 31.131 12.5574 1170 140.32 304.147 14.4689 1471 201.53 214 797 22.0577 1172 394.87 270.102 17.2697 0.80457 1473 394.87 270.102 17.2697 0.80457 1474 344.73 277.702 20.1141 0.23518 1475 333.34 244.477 70.2004 0.51028 1476 322.77 307.307 17.343 0.87223 1477 324.77 244.402 12.0102 0.73158 1478 328.33 244.403 12.0102 0.7158 1478 321.52 244.403 12.0102 0.7244 1479 344.52 245.221 70.7660 1.16174 1482 447.17 311.165 18.7485 0.87241 1482 447.17 314.165 12.5727 1.3600 <tr< th=""><th>1465</th><th></th><th>170.577</th><th>4.J#03 ···</th><th></th><th></th></tr<>	1465		170.577	4.J#03 ···		
1888 327 794 11.8853 1899 301.132 12.9574 14 4689 1870 140.32 304.147 14 4689 1871 201.532 21.0617 0.37358 1872 327.44 210.182 21.0617 0.37358 1872 354.67 270.102 17.2067 0.80657 1873 353.34 244.877 70.2004 0.5028 1875 353.34 244.877 70.2004 0.5028 1877 324.277 307.307 17.3643 0.87233 1877 324.277 307.471 14.4279 0.8428 1877 324.277 307.207 17.3643 0.8723 1878 324.402 12.2072 0.8428 12.159 1872 324.2440 16.2325 0.4744 1.159 1881 401.89 206.728 10.3523 1.4482 1882 501.45 40.075 13.572 1.35003 1882 514.54	1248		242.368	8.9484		
1889 231.132 12.8574 1770 140.23 304.147 14 4889 1871 309.33 224 787 22 0577 1872 337.44 20.183 21 0617 0.33354 1873 384.87 270.102 17 2697 0 80457 1874 386.73 277.702 20.1141 0.27338 1875 353.34 244.677 20.2044 0.87238 1876 322.77 307.307 17.3443 0.87238 1877 324.27 274.071 14.4279 0.87238 1877 324.27 274.071 14.8279 0.87238 1878 324.403 10.2744 1.07437 1881 401.89 300.724 10.3718 11.978 1882 41.159 244.755 10.2784 1.07437 1881 401.89 302.748 16.7255 0.87021 1882 451.22 12.775 1.18179 1.18179 1882 501.45 405	1007			3.4954		
1170 140.32 304.147 14 4889 1471 309.53 244 787 22 0577 1172 327.44 270.102 17 2989 0 80457 1474 366.73 277.702 20.1183 0.27518 1475 323.34 244.077 70.3004 0 51028 1477 324.277 207.207 17.3443 0.67235 1477 324.277 274.071 14.8779 0 87731 1478 277.742 274.071 14.8779 0 87731 1477 364.32 244.405 12.0102 0.73158 1477 364.32 244.405 12.0102 0.71786 1481 401.89 300.728 10.9418 0.7738 1482 447.17 301.165 18.7885 0.87421 1484 445.52 245.221 20.7860 1.18178 1484 445.52 245.221 20.7860 1.18178 1485 501.45 410.975 10.2523 1.44893 1484 445.52 245.24 12.777 2.0535						
1871 309.93 244 797 22 0577 1872 327 44 280.82 10 617 0.32354 1873 354.47 270.102 17 3697 0.80457 1874 368.73 277.702 20.1181 0.25518 1875 353.34 244.477 20.2004 0.51028 1876 227.77 307.307 17.343 0.64228 1877 323.74 254.258 12.2472 0.64428 1877 327.74 254.75 10.2724 1.64427 1878 327.74 254.75 10.2724 1.64427 1879 344.53 244.403 12.2472 0.64428 1877 341.54 242.449 16.7425 0.87647 1881 401.87 322.4403 16.7425 0.87647 1882 441.54 242.449 16.7425 0.87647 1882 441.55 244.544 16.7350 0.87421 1884 453.92 242.549 1.35503 1.44483 1885 501.45 410.877 1.30033 1.44						
1172 337 44 280 120 017 9 9 9 9 1173 388 47 270 102 17 2989 0 90857 1474 386 73 277.702 20.1181 0.29518 1 1475 353.34 244 477 20.004 0 51028 1477 324.27 204.071 14.4279 0 87731 1478 327.54 284.339 12.0102 0 72158 1480 411.59 254.715 10.2744 1.07437 1481 403.89 200.728 10.9214 0.17386 1482 447.17 281.165 14.7495 0.87421 1484 445.62 245.221 70.7600 1.18178 1484 445.62 245.221 70.7600 1.18178 1484 455.92 244.544 14.0019 1.30007 1484 455.92 245.52 2.8570 1.4489 1484 455.92 245.77 2.9055 1.18178 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
1170 258.87 270.102 17.987 0.80857 1474 368.73 277.702 20.111 0.28518 1675 353.34 284.877 20.0004 0.51028 1877 326.27 274.071 14.8278 0.87235 1877 326.27 274.071 14.8278 0.87235 1877 326.27 274.071 14.8278 0.87235 1878 277.94 284.339 12.2473 0.48428 1879 341.53 224.403 12.2473 0.48428 1879 341.54 236.715 10.2784 1.07437 1881 401.89 300.728 10.818 0.7738 1882 435.62 342.466 16.7435 0.87067 1884 445.62 345.221 20.7860 1.18178 1885 501.45 440.975 12.9727 1.35005 1884 631.46 377.584 11.7038 2.0073 1884 631.46 377.584 11.7038 2.8734 1889 63.25 20.613 27527 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
1174 349.73 277.702 20.1141 0.23519 1475 353.34 244.477 70.9004 0.51028 1477 322.77 307.307 17.3943 0.87235 1477 324.27 27.84 258.28 12.2472 0.8428 1477 344.33 244.403 12.0102 0.72156 1480 411.54 254.715 10.2784 1.07437 1481 40.89 300.721 10.9414 0.71936 1482 423.85 224.408 15.7435 0.87421 1482 423.85 224.735 0.87421 1.07437 1482 423.85 224.408 15.7435 0.87421 1482 435.82 244.408 15.7435 0.87421 1483 501.45 440.775 1.35103 1.3003 1484 435.82 244.848 18.0089 1.3003 1488 539.21 275.843 11.7038 2.0073 1488 631.86 277.354 11.7330 2.3142 1489 14.877 40.4377 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
1175 333.34 284.877 20.3004 0.51028 1876 322.77 307.307 17.3443 0.87235 1877 324.27 274.071 14.4279 0.87235 1877 324.27 274.071 14.4279 0.87235 1878 327.94 28.329 12.0107 0.73158 1879 344.33 244.403 12.0107 0.73158 1840 411.54 254.715 10.2724 1.07437 1841 401.89 300.728 10.5818 0.77267 1842 445.62 344.2449 16.7435 0.72421 1844 445.62 344.321 20.7660 1.18179 1845 501.45 344.544 18.0089 1.3000 1848 431.86 322.176 12.7302 2.3142 1849 631.86 377.584 11.7038 2.0073 1849 633.477 401.437 13.4739 2.555 1849 633.487 307 77 13.4239 2.555 1849 633.571 41.52412 3.00						
1876 222.77 307.207 17.3943 0.87235 1877 374.77 274.071 14.2779 0.87731 1878 327.94 258.239 12.2473 0.88428 1879 328.33 22.473 0.88428 1.07437 1880 411.56 254.715 10.2284 1.07437 1881 403.89 300.728 10.9818 0.77786 1882 443.852 342.2489 16.2435 0.87421 1884 435.82 342.2489 10.2522 1.48879 1885 501.45 410.975 12.5727 1.35903 1884 529.21 275.883 10.2522 1.44893 1884 529.21 275.883 10.2527 1.3122 1884 529.21 275.883 10.2527 1.44893 1884 529.21 276.893 1.3003 1.3122 1884 529.21 275.493 2.9573 1.4489 1887 52.453 289 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
1177 224.27 224.071 14.4279 0 87731 1178 227.94 236.23 244.402 12.0102 0 72158 1179 284.33 244.402 12.0102 0 72158 1180 411.58 254.715 10.2244 1.07437 1181 401.89 200.721 10.9414 0.7128 1182 432.88 342.484 16.7425 0 87067 1184 401.89 200.721 10.9414 0.7244 1184 445.62 342.484 16.7425 0 87067 1184 445.62 345.221 70.7880 1.18378 1185 501.45 410.075 13.5727 1.35803 1186 529.21 275.895 10.2322 1.44883 1188 631.88 277.584 11.7038 2.0073 1188 631.89 277.584 11.7038 2.0073 1189 673.87 401.427 12.4725 1.8734 1189 673.87 401.427 12.4725 1.8734 1189 10.323 379.704						
1478 227.94 238.239 12.2473 0.88428 1479 388.33 244.403 12.0102 0.73158 1480 411.58 256.715 10.2284 1.07437 1811 403.83 200.728 10.818 0.71786 1823 457.17 281.165 18.7395 0.87421 1844 445.62 244.221 20.7860 1.16179 1845 501.45 410.975 13.5727 1.23903 1846 435.62 244.544 18.0029 1.3003 1847 529.45 344.544 18.0029 1.3003 1848 631.48 277.584 11.703 2.0073 1849 633.48 377.584 11.703 2.0073 1849 633.47 401.427 14.0510 2.3530 1841 73.87 401.427 14.0510 2.3532 1842 12.429 3.2552 1.823 14.84 1857 400.329 3.2552 1.824 14.829 12.211 1857 402.34 13.574 <						
1279 341.33 244.403 12.0102 0.72158 1480 411.59 254.715 10.2244 1.07437 1481 403.89 300.728 10.9418 0.71286 1482 432.88 342.498 15.7435 0.87067 1483 447.17 301.145 15.7435 0.87067 1484 445.62 345.221 20.7880 1.18178 1484 445.62 345.221 20.7880 1.18178 1484 59.21 373.885 40.2522 1.4489 1484 59.21 375.885 40.2522 1.4489 1484 59.245 344.544 18.0089 1.2003 1484 592.45 344.544 18.0089 1.2003 1484 592.45 344.544 19.029 2.053 1485 501.45 21.77.584 11.7038 2.0073 1480 673.67 401.427 14.6510 2.3630 1483 39.33 393<794 12.4295 2.952 1484 915.25 290.100 13.5774						
1110 411.54 254.715 10.2244 1.07437 1161 401.89 300.728 10.5616 0.71786 1142 432.68 342.486 15.7455 0.87067 1142 445.17 381.165 18.7885 0.87067 1142 445.62 245.221 20.7840 1.18176 1144 445.62 245.221 20.7840 1.18176 1145 59.45 344.546 18.0089 1.2003 1148 529.21 273.885 10.2522 1.44483 1148 529.45 344.546 18.0089 1.2003 1148 631.86 223.175 13.7530 2.3142 1148 631.87 401.437 14.0510 2.0635 1149 673.87 401.437 14.0510 2.953 1181 139.25 290.808 13.5774 8.084 1182 430.33 379.764 13.4229 3.2521 1184 191.25 290.808 13.5774 4.085 1185 171.14 205.814 22.4412						
1481 403 89 200 728 10 5818 0.71786 1482 433 88 342 484 16 7435 0.87087 1883 447,17 281,185 18 7865 0.82421 1884 445 62 245,221 20,7880 1.18178 1885 501 45 410,975 13.5727 1.3503 1885 501 45 410,975 13.5727 1.3503 1885 501 45 245,221 70,7880 1.3003 1887 52 45 244.544 18 0019 1.2003 1888 631 88 277,584 11.7038 2.0073 1889 663 44 277,174 12.5727 2.8055 1881 738 97 401 427 14.0510 2.3630 1891 78 98 344 882 12.4265 2.8724 1892 430.33 337 904 13.5774 4.084 1893 102.214 205 884 22.4411 4.4080 1894 1022.34 207 91 1.5774 2.8892 1894 1024.77 21.6220 1.8224		411.50				
1482 432 88 342 489 16.7425 D 87087 1883 467.17 381.165 18.7885 D.87621 1884 445.82 245.221 20.7880 1.18178 1885 501.45 440.875 13.5727 1.35803 1885 528.21 275.885 10.2522 1.44883 1887 522.45 244.544 18.0028 1.3003 1888 631.88 227.178 13.7530 2.3142 1887 522.45 244.544 11.7038 2.0073 1889 63.48 277.384 11.7038 2.0073 1880 673.87 401.437 14.0510 2.3830 1881 755.90 344.882 12.4255 2.8234 1882 430.33 329.704 13.2439 3.2552 1883 1022.34 307.151 20.3247 3.1221 1884 1022.34 307.151 20.3247 3.1231 1897 1038.44 205.884 22.4411 4.180 1897 1032.47 311.207 21.5699<						
1894 445.62 345.221 20.7660 1.18179 1885 501.45 410.975 13.5727 1.35803 1887 529.21 375.885 40.2523 1.44883 1887 592.45 344.544 18.0089 1.3003 1888 631.48 327.384 11.7038 2.0073 1888 653.44 377.384 11.7038 2.0073 1890 673.67 401.427 14.0510 2.3055 1892 430.77 44.892 12.4285 2.8934 1892 430.33 379.704 13.4239 3.2552 1892 180.33 377.844 15.5744 9.864 1892 180.33 379.704 13.4239 3.2552 1894 1022.36 307.751 20.3247 3.8092 1895 971.14 290.544 22.441 4.810 1895 1022.36 307.751 20.3247 3.8274 1895 1022.47 311.207 21.5699 4.8174 1896 1022.47 311.207 21.699		433 88	342 488			
1845 501.45 410.975 12.5727 1.25902 1888 529.21 273.895 10.2522 1.44883 1887 592.45 344.544 18 0089 1.2003 1888 631.86 322.178 13 7530 2.3142 1889 663.46 377.584 11.7038 2.0073 1880 673.67 401.437 14.0510 2.3830 1881 739.90 344.870 12.9737 2.8055 1882 423.54 344.882 12.4265 2.8234 1883 739.90 344.870 12.5737 2.8055 1884 103.25 290.800 13.5774 4.8844 1887 380.33 378.704 13.4299 3.2521 1884 1022.36 307.751 20.3247 3.8221 1885 971.14 208.684 22.4411 4.480 1885 1022.47 311.207 21.5698 4.8174 1897 1038.94 205.684 22.4411 4.4180 1898 1022.47 311.207 21.5698 <th>1843</th> <th>467.17</th> <th>381.185</th> <th>LE.7005</th> <th>0.87421</th> <th></th>	1843	467.17	381.185	LE.7005	0.87421	
1488 529.21 275.895 10.2522 1.44893 1887 592.45 344.544 18 0089 1.3003 1888 831 88 223.178 13 7330 2.3142 1889 663 48 277.584 11.7038 2.0073 1890 673.67 401.437 14.0510 2.3630 1891 759.50 244.670 12.4727 2.8055 1892 423.54 344.802 12.4236 2.824 1892 430.33 376.704 13.5774 0.864 1893 971.14 289.741 13.5744 0.802 1894 1022.36 207.851 20.3237 3.8221 1895 971.14 289.741 13.5744 9.802 1895 1022.36 207.851 20.3237 3.8221 1897 1038.94 051.84 22.4411 4.4190 1896 1082.47 311.207 21.6498 6.8124 1900 1245.70 323.937 23.0498 5.0197 18.1472 1901 1190.08 325.201	1884	485.82	345.221	20.7680	1.19370	
1887 592.45 344.544 18 0089 1.3003 1888 831.88 223.174 13 7530 2.3142 1888 663.48 277.584 11.7038 2.0073 1880 673.67 401.437 14.0510 2.3830 1891 758.80 244.670 12.5737 2.9055 1892 433.54 334.704 13.4239 3.2552 1893 480.33 334.704 13.6239 3.2552 1894 915.25 290.809 13.5774 4.0844 1895 971.14 298.741 15.8241 3.8092 1894 1022.36 207.811 20.3287 3.8231 1895 971.14 298.741 15.8241 3.8092 1896 1027.91 277.884 22.4411 4.1800 1897 1038.94 205.842 24.822 4.6124 1890 1245.70 323.437 23.0488 5.0187 18.1472 1901 1180.09 223.201 22.200 4.7039 21.6230 1902 1173.98 <th>1845</th> <th>501.45</th> <th>410,975</th> <th>13.5727</th> <th>1.33103</th> <th></th>	1845	501.45	410,975	13.5727	1.33103	
1888 631 84 323.174 13<7530 2.3142 1889 663 44 377.564 11.7038 2.0073 1890 673.67 401 437 14.0510 2.3830 1891 759.90 246 670 12.9737 2.9055 1892 433.54 344 82 12.4265 2.8924 1893 480.33 334 704 13.4239 3.2552 1894 913.25 290.809 13.5774 4.0264 1895 971.14 200.741 15.9241 3.9092 1894 1022.36 307 151 20.3287 3.1221 1895 971.14 200.741 15.9244 3.9092 1894 1022.34 307 151 20.3287 3.1221 1897 1938.94 205.884 22.4411 4.180 15.220 1898 1022.47 311.207 21.5898 4.6124 1 1901 1190.09 229.201 22.2409 4.7039 21.6220 1902 1173	1400	529.21	375.895	10.2523	1.44883	
1889 653 44 377.584 11.7038 2.0073 1890 673.67 401 437 14.0510 2.3830 1891 759.90 346 870 12.9737 2.9055 1892 433.54 344 882 12 4265 2.8834 1892 430.33 378 704 13.4239 3.2552 1892 190.33 378 704 13.5774 4 D884 1895 971.14 206.741 15.8241 3.8082 1895 971.14 206.784 22.4411 4 4180 1897 1038.94 205.884 22.4411 4 4180 1898 1022.35 201 721 21.5898 4.8124 1897 1038.94 205.884 22.4411 4 4180 1898 1022.47 311.207 21.5898 4.8124 1900 3245.70 323.937 23.0488 5.0187 18 1472 1901 1190.09 328.201 22 2809 4.7038 21 6230 1902	1887	592.45	344.546	18 0089	1,3003	
1880 673.67 401 437 14.0510 2.3630 1891 758.90 344 870 12.8737 2.3635 1892 433.54 344 882 12 4265 2.8834 1893 480.33 337 704 13.4239 3.2552 1884 915.25 290.808 13.5774 4 0864 1895 971.14 200.781 20.3227 3.8231 1897 1038.94 305.884 22.4411 4 4180 1898 1022.36 207 851 20.3287 3.8231 1898 1022.47 311.207 21.5898 4.8174 1900 1245.70 323.337 23.0488 5.0197 19.1472 1901 1190.09 328.201 22.2099 4.7039 21.6230 1902 1173.98 342.412 8.0682 3.8995 22.1098 1803 1325.81 9.8501 4.1811 23.2930 1902 1173.98 342.412 8.0682 8995 22.1098 <	1888	031 00	323.17#	13 7530	2.3142	
1891 758.90 744.870 12.9737 2.9055 1892 833.54 344.882 12.4265 2.8534 1892 840.33 337.704 13.4239 3.2552 1884 815.25 290.809 13.5774 4 Da64 1195 971.14 280.741 15.8741 3.8092 1884 1022.36 207.851 20.3287 3.8231 1897 1038.84 205.884 22.4411 4.4180 1897 1038.84 205.884 22.4411 4.4180 1898 1027.91 277.281 24.4782 4.4015 1899 1082.47 311.207 21.5898 4.6124 1900 1245.70 323.337 22.0498 5.0187 18.1472 1901 1180.08 327.201 22.2809 4.7039 21.6230 1902 1173.98 342.412 8.0982 3.8985 22.1098 1803 1215.82 344.375 8.8501 4.1811 22.2930 1804 1254.82 344.102 8.7775 4.0732<	1089	663 46	377.584	11.7038	2.0073	
1892 \$32.54 344 882 12 4285 2.8834 1893 480.33 339 704 13.4239 3.2552 1884 915.25 290.809 13.5774 4 8884 1195 971.14 200.741 15.8741 3.9992 1894 1022.34 307 851 20.3287 3.8221 1897 1030.94 205.884 22.4411 4 4190 1897 1030.94 205.884 22.4411 4 4190 1898 1022.47 311.207 21.5699 4.6174 1900 1245.70 323.337 22.0488 5.0197 19.1472 1901 1190.09 329.201 22.2809 4.7029 21.6230 1902 1173.98 342.412 8.0682 3.8995 22.1098 1803 1215.82 34.975 8.9501 4.1811 20.2930 1902 1173.98 342.412 8.0682 3.8995 22.1098 1803 1235.82 34.975 8.9501 4.1811 20.2930 1904 1254.82 344.192 8	1880	\$73.87	401 437	14.0510	2.3630	
1892 480.73 375 704 13.4239 3.2552 1884 915.25 290.609 13.5774 4.0484 1895 971.14 200.741 15.8241 3.9092 1896 1022.36 307.851 20.7287 3.8221 1897 1038.94 205.834 22.4411 4.4005 1898 1022.36 307.851 24.4782 4.4035 1898 1022.47 311.207 28.5698 4.8174 1899 1082.47 311.207 28.5698 4.8174 1890 1245.70 323.937 23.0488 5.0187 18.1472 1891 1192.47 311.207 28.5698 4.8174 1.5230 1890 1245.70 323.937 23.0488 5.0187 18.1472 1800 1245.70 327.01 22.2809 4.7039 21.6230 1902 1173.98 342.412 8.0682 3.8995 22.1098 1803 1254.62 384.875 8.8501 4.1811 23.2930 1804 1254.82 364.102 <t< th=""><th>1893</th><th>759.90</th><th>344 870</th><th>12.9737</th><th>2.9055</th><th></th></t<>	1893	759.90	344 870	12.9737	2.9055	
1884 915.25 290.809 13.5774 4.084 1895 971.14 200.741 15.8241 3.8092 1896 1022.36 207.851 20.3287 3.8231 1897 1038.94 205.884 22.4411 4.4190 1897 1038.94 205.884 22.4411 4.4190 1898 1027.91 277.281 24.4782 4.4095 1899 1082.47 311.207 28.5699 4.6174 1900 1245.70 323.337 23.0498 5.0197 18.1472 1901 1190.09 328.201 22.2809 4.7036 21.6230 1902 1173.98 342.412 8.0682 3.8995 22.1098 1803 1215.62 304.875 8.8501 4.1811 23.2330 1804 1254.62 348.102 8.7275 4.0633 24.150 1805 1352.91 355.310 5.7895 4.0633 24.150 1804 1278.27 8.701 4.0115 25.870 1805 1352.91 355.310 5.7	1892	\$33.54	344 882	12 4265	2.8934	
1185 971.14 288.741 15.8241 3.8092 1886 1022.38 207.851 20.3247 3.8221 1897 1038.94 205.884 22.4411 4.4190 1897 1038.94 205.884 22.4411 4.4190 1897 1038.94 205.884 22.4411 4.4190 1898 1027.91 277.283 24.4782 4.4085 1899 1082.47 311.207 21.5898 4.8174 1800 1245.70 323.837 22.0488 5.0197 18.1472 1901 1190.08 328.201 22.2809 4.7039 21.6230 1902 1173.98 342.412 8.0682 3.8995 22.1098 1803 1215.82 384.875 8.8501 4.1811 23.2930 1804 1254.62 384.102 8.7275 4.0873 24.1190 1805 1352.91 355.310 5.7895 4.6073 24.1190 1805 1352.91 355.310 5.7895 4.6073 24.1190 1806 1378.27 <		190.33	331 704	13.4239	3.2552	
1898 1022.38 207 FS1 20.3247 3.8221 1897 3038.94 205.884 22.4411 4.4190 1897 3038.94 205.884 22.4411 4.4190 1898 1027.91 277.281 24.4782 4.4035 1898 1092.47 311.207 28.5698 4.6174 1900 1245.70 323.337 22.0498 5.0197 19.1672 1901 1190.09 323.201 22.2609 4.7039 21.6230 1902 1173.98 342.412 4.0682 3.8995 22.1098 1803 1215.82 384.875 8.8501 4.1811 23.2930 1902 1173.98 342.412 4.0682 3.8995 22.1098 1803 1215.82 384.875 8.8501 4.1811 23.2930 1903 1215.82 384.875 8.8501 4.1811 23.2930 1904 1254.82 368.102 8.7275 4.0873 24.1190 1905 1352.91 355.310 5.7995 4.4023.24 1.926				13.5774	4 D364	
1897 1038.94 205.884 22.4411 4.4190 1898 1027.91 277.283 24.4782 4.4035 1899 1092.47 311.207 21.5698 4.6174 1900 1245.70 323.937 23.0498 5.0197 19.1672 1901 1190.08 328.201 22.2609 4.7039 21.6230 1902 1173.98 342.412 4.0682 3.8985 22.1098 1803 1215.62 384.875 8.8501 4.1811 23.2930 1804 1254.62 346.102 8.7775 4.0832 24.3214 1805 1352.91 355.310 5.7895 4.6073 24.1190 1804 1254.62 346.102 8.7775 4.0832 24.1190 1805 1352.91 355.310 5.7895 4.6073 24.1190 1805 1352.71 354.888 7.2800 4.4848 24.1381 1907 1423.32 412.172 8.7701 4.0115 25.8708 1908 1327.41 403.898 7.5028 4.804					3.9092	
1888 1027.91 277.201 24 4782 4 4005 1899 1082.47 311.207 28.5698 4.8124 1000 1245.70 323.337 23.0498 5.0197 18 1472 1901 1190.09 328.201 22 2809 4.7036 21 8230 1902 1173.98 342.412 8.0682 3.8395 22.1098 1803 1215.62 384.875 8.8501 4.1811 23 2930 1804 1254.82 344.192 8.7775 4.0873 24.1290 1805 1352.91 355.310 5.7895 4.6073 24.1190 1804 1254.82 344.192 8.7775 4.0873 24.1190 1805 1352.91 355.310 5.7895 4.6073 24.1190 1805 1352.91 355.310 5.7895 4.6073 24.1190 1806 1378.27 364.898 7.2800 4.4444 24.150 1807 1423.32 412.172 8.701 4.0115 25.9708 1907 1423.32 412.172 8.701						
1889 1082.47 311.207 28.5698 4.8174 1800 1245.70 323.337 23.0498 5.0197 18.1472 1801 1190.09 327.201 22.2609 4.7036 21.6230 1902 1173.99 342.412 8.0682 3.8985 22.1098 1803 1215.62 384.875 8.8501 4.1811 23.2930 1804 1254.62 364.102 8.7775 4.0873 24.15214 1805 1352.91 355.310 5.7985 4.6073 24.1190 1804 1254.62 364.875 8.7775 4.0873 24.1190 1805 1352.91 355.310 5.7985 4.6073 24.1190 1805 1352.91 355.310 5.7985 4.6073 24.1190 1808 1078.27 364.888 7.2800 4.4848 74.8361 1807 1423.32 412.172 8.701 4.0115 25.8708 1808 1348.97 368.053 8.3114 4.004 27.0925 1808 1348.97 368.053						
J#00 J245.70 J23.337 Z2.0488 5.0197 18.1472 1901 1190.08 J28.201 Z2.2809 4.7039 Z1.6230 1902 1173.98 J42.412 8.0682 J.8995 Z2.1098 1803 J215.62 384.875 8.8501 4.1811 Z3.2930 1804 1254.62 368.102 8.7275 4.0832 Z4.1321 1805 1352.91 355.310 5.7885 4.6033 Z4.1380 1807 1423.32 412.172 8.7701 4.0115 Z5.8708 1807 1423.32 412.172 8.701 4.0115 Z5.8708 1807 1423.32 412.172 8.701 4.0115 Z5.8708 1808 1348.97						
1901 1190.00 729.201 22 2809 4.7036 21 8230 1902 1173.90 342.412 8.0682 3.8995 22.1098 1803 1215.62 304.875 0.8501 4.1011 23 2930 1804 1254.62 368.102 8.7775 4.0872 24.5214 1805 1352.91 355.310 5.7985 4.8032 24.1280 1805 1352.91 355.310 5.7985 4.8032 24.1280 1805 1352.91 355.310 5.7985 4.8032 24.1280 1805 1352.91 355.310 5.7985 4.8032 24.1280 1805 1352.91 355.310 5.7985 4.8032 24.1280 1805 1352.91 355.310 5.7985 4.8032 24.1280 1806 1378.27 384.888 7.2800 4.4848 24.1381 1907 1423.32 412.172 8.7011 4.0115 25.8708 1908 1348.97 368.053 8.3114 4.4041 27.0925 1909 1227.41						
1902 1173.98 342.412 8.0682 3.8585 22.1098 1803 1215.82 384.875 8.8501 4.1811 23.2930 1804 1254.82 388.102 8.7275 4.0832 24.5214 1805 1352.91 355.310 5.7895 4.8032 24.1380 1805 1352.91 355.310 5.7895 4.8032 24.1380 1805 1352.91 355.310 5.7895 4.8032 24.1380 1805 1352.91 355.310 5.7895 4.8032 24.1380 1806 1078.27 384.888 7.2800 4.4843 24.1381 1907 1423.32 412.172 8.7701 4.0115 25.8706 1808 1349.97 369.053 8.8114 4.4041 27.0925 1909 1327.41 402.898 7.5028 4.9634 23.921 1909 1327.41 402.898 7.5028 4.9634 23.7552 1910 1180.45 380.314 6.8831 4.7944 23.7552 1911 1228.82 <						
1803 1215 82 384.875 8.8501 4 1811 23 2930 1804 1254.82 384.102 8.7275 4 0832 24.3214 1905 1352.91 355.310 5.7995 4 6032 24 1180 1905 1352.91 355.310 5.7995 4 6032 24 1180 1906 1378.27 364 888 7.2800 4 4843 24 1381 1907 1423 32 412.172 8 7701 4.0115 25 1708 1908 1343 97 368 53 1.8114 4 4081 27 0925 1909 1343 97 368 53 1.8114 4 4081 27 0925 1909 1327 41 403 898 7.5028 4 9424 23 7552 1909 1180 4 914 5 2403 24 921 24 14 24 14 14 14 1						
1904 1254.62 344.102 8.7275 4.0873 74.3214 1905 1352.91 355.310 5.7985 4.0073 24.1190 1905 1378.27 364.888 7.2800 4.4848 74.1381 1907 1423.32 412.172 8.7701 4.0115 25.1708 1907 1423.32 412.172 8.7701 4.0115 25.1708 1907 1423.32 412.172 8.7701 4.0115 25.1708 1907 1423.32 412.172 8.7701 4.0115 25.1708 1908 1348.97 368.053 1.3110 4.4001 27.0925 1909 1327.41 403.098 7.5028 4.9434 23.9521 1909 1327.41 403.098 7.5028 4.9434 23.7552 1910 1180.45 310.314 5.8431 4.7944 23.7552 1911 1228.82 349.804 10.8922 5.2979 30.9426 1912 1298.95 3.79.832 34.0714 5.2466 32.3493						
1905 1352.91 355.310 5.7995 4.6073 24.1190 1908 1378.27 364.888 7.2800 4.4849 24.1381 1907 1423.32 412.172 8.7701 4.0115 25.8708 1907 1423.32 412.172 8.7701 4.0115 25.8708 1908 1349.97 368.053 1.3119 4.4081 27.0925 1909 1327.41 403.898 7.5028 4.9634 23.9321 1910 1180.45 210.314 6.8831 4.7944 23.7552 1911 1226.82 349.804 10.8922 5.7979 30.9426 1912 1298.95 3.79.832 34.0714 5.2466 32.3493						
1908 1378.27 364 888 7.2000 4 4849 74 1361 1907 1423 32 412.172 8 7701 4.0115 25 8706 2908 1348 97 368 053 8.3110 4 4001 27.0925 1909 1327 41 403 898 7.5028 4 8634 28 9321 1910 1180 45 310 314 6 8831 4 7944 23 7552 1911 1226 82 349 804 10 8922 5 2979 30 9426 1912 1298 95 379 832 34 0714 5 2466 32 3493						
1907 1423 32 412.172 0 7701 4.0115 25 1708 2908 1349 97 269 053 1.3110 4 4091 27.0925 2909 1327 41 403 998 7.5020 4 9534 23 9321 2910 1180 45 310 314 6 8831 4 7944 23 7552 1911 1226 82 349 804 10 8922 5 2979 30 9426 1912 1298 95 3-79 832 34 0714 5 2466 32 3493						
1908 1349 97 369 053 1.5110 4 4001 27.0925 1909 1327 41 402 898 7.5020 4 9534 23 9321 1909 1180 45 340 988 7.5020 4 9534 23 9321 1910 1180 45 340 344 6 6831 4 7944 23 7552 1911 1226 82 349 804 10 8922 5 2979 30 9876 1912 1298 95 3-9 832 34 0714 5 2466 32 3493						
1905 1327 41 403 898 7.5028 4 9534 23 9321 2810 L140 45 280 314 6 8831 4 7944 23 7552 1811 1226 82 348 804 10 6922 5 2979 30 9876 1912 1798 85 379 832 34 0744 5 2466 32 349	29D8	1345 97				
1\$11 1228 \$2 348 \$04 \$10 \$522 \$ 2979 \$70 \$832 \$1912 1798 \$5 3-9 \$32 34 \$714 \$5 2466 \$32 \$49	1905	1327 41	403 898	7.3D20	4 9134	
1912 1292 95 J+9 832 J4 0714 5 2466 32 3493		LIED 45	380 314	6 8831	4 7944	29 7552
					\$ 2979	30 9878
1817 1228.37 248.840 17.2531 \$ 5350 33 e#53					5 2466	32 3483
	1913	1229.37	349.940	17.2531	\$ \$3\$0	33 (13)

<u>(TP)</u>	(CORA)	(INRA)	(DERA)	(DORA)	(LCRA)
1914	1242.72	402.543	17.2854	5 8408	35.078
1 #19	1348.20	429 035	15.3035	6 0796	36 070
1914	1136.93	430.314	17.1074	8.5392	36.854
1817	1078.78	396,273	14.3012	5 9148	37.854
1918	1034.19	372.587	11.6160	5.2076	37 780
1919	1081.37	352.124	14.5550	5.8077	39.535
1920	1188.38	347.98L	23.2951	5.7748	40.385
2921	1248.82	248.389	30.0922	8.8812	40.148
1922	1259.14	341.492	54.8540	7.5931	41.295
1923	1329.80	344.788	17.2054	8 6339	41.752
1924	1425.89	373.120	23 4005	9 6231	41 987
1123	1432.19	400.947	24.3437	10.8204	49 023
1574	1513 07	381.031	22 1710	12 0017	\$0 007
1827	1546.22	350 56J	20.0514	17 0000	50 977
192\$	1609.24	351.510	26 4086	12 0013	52.265
1929	1329 71	371.850	23 \$508	15 3777	53.900
1930	1403.87	367.392	22.0146	18 8758	55.450
1931	1328.60	417.051	23 6593	19.9517	57 100
1435	1215.13	428.348	23.5737	21.2860	58.002
1933	1084.34	361.320	19.1930	21 4312	60 027
1974	1100.05	251.424	23 0514	22.3492	61.475
1935	1115.72	317 488	30.3535	21.5953	82 815
1938	1225.31	210.554	35 5460	21.6237	84.543
1937	1198.94	292.570	38.4758	22.1272 -	85.848
1928	1280.80	293.221	38.7211	27.5186	61.372
1939	1322.85	329.053	42.7186	23.7662	69.903
1940	1335.83	318.777	48.3774	24.8302	71.214
1941	1751.14	307 . 472	48,5116	25.385	74.573
1942	1253.80	285.854	27.8865	25.882	76.246
1943	1180.19	228.838	10 4915	21 473	134 352
1944	1264.34	209.507	2. 7825	17.214	169 079
1945	1340.69	192.610	28 418\$	16 015	143.50
1944	1438.TD	154.961	19.7441	13 973	175 019
1947	1597.61	139.757	14 5871	20.865	160.210
1943	1623.10	163.347	27 0484	27.192	166.328
1948	1347.56	235.305	29.0050	33.818	184.601
1950	1388.20	283.344	31.0595	43.687	184.843
1951	1301.00	287.831	27.0325	47 843	190.307
1952	1202.44	278.875	10.9104	49.124	198.591
	1274.25	254.518	17.0629	52.745	196.909
1953 L#54	1275.02	208.126	15.8840	35.565	204.774
1955	1201.10	184.325	16 4325	57 543	207 156
1935	1337.84	274.507	17.7007	52.963	210.102
1857	1318.97	240,873	13 7967	51.145	210.073
1938	1372 40	277.598	13.6358	51.383	711.001
1959	1384 88	295.823	15 8290	52.851	215.281
1980	1255 14	762 036	14 1278	54 404	215.640
1961	1348.80	284.308	12.5002	57 787	225.590
1982	1371.24	299.738	12.3789	62.551	225.336
1943	1405.01	242.J29	15.7284	68 CZ1	221.114
1964	1459 90	247.912	14 0555	75 824	227 788
1945	1517 40	324 142	17 6951	83 101	275.507
2588	1485 50	349.724	16.2946	33.236	277.552
1987	1490.84	332.415	16.0253	104.380	28D.796

INFORMATION PRODUCTION RAW DATA AFTER ADJUSTMENT BY POPULATION

<u>(TP)</u>	(CORA)	(INRA)	(DERA)	(DORA)	(LCRA)
1983	1521 82	296.399	16.8104	115.792	292.198
1968	1495.82	335.437	16.5591	130.020	297 371
1110	1551 30	215 818	15 7545	146 402	300 574
1971	1594.27	371.704	15.2611	155.254	212.597
1972	1848.32	357.583	13 4605	126.137	239,734
1973	1872.80	350.705	19.0774	166.036	342.785
2974	1747.92	257.585	20.1735	158.031	325.D49
1975	1882.06	199.000	19.8701	156.237	327.321
1976	1031.04	322.810	21 1397	158 710	333 887
1977	2050 0 1	297.088	17.7434	151.503	334.544
1578	1494.58	287 814	17.5597	144.009	234.925
1979	1910.08	217.720	13.8023	145 806	336 971
1910	2045.52	272.001	17 1855	143 552	338 868
1961	2054.85	286.98G	20 4972	143.733	343.804
1982	2022.24	250.108	ZI 1563	141.282	344 512
1983	2089.24	243 475	19 6834	141 583	345.736
1984	2132.75	285.143	20 7917		347.543

INFORMATION PRODUCTION DATA IN BITS BEFORE ADJUSTMENT BY POPULATION

Υ.

<u>(TP)</u>	(COBB)	(INBB)	(DE88)	(DOBB)	(LCBB)	
1860		12.0891	7.5157			
1961		11.5003	7.1487			
1462		11 4502	7.8073	·		
1103		11.8825	7 4584			
1154		12.3788	7.1188	·		
1165		12.5718	7.7479	·		-
1966		13.1130	. 1987	·		
1887		12.5837	E. 3443			
1663		13 8128	8 7977		•	
1269		12 8585	0 9830			
1470	12 4512	13 5871	# 5255	-		
1071	13.0312	13.5012	9 9100			
1172	13 7848	13 5722	9 7279	3 40/25		
1873	13 9081	13 5034	9.3450	4 70044		
1874	12 9811	17.5701	9 7912	3 70044		
1175	13 9597	13 4882	8 8378	4.52351		
6978	13 8613	13.7905	9.8475	4,05420		
1877	13 8438	13 4575	8 4481	3.23540		
1878	13.9475	\$3.5914	\$.2948	5.00000	•	
1879	14 1457	13.5057	8.2070	5.10003	•	
1840	14.2284	12.0354	1 0050	3.75489		
1001	14,3422	13.9200	9.3421	5.20945		
1112	14 4842	\$4.1420	¥.7441	5 52356		
1002	14 8254	14 2892	1 9101	5 84218		
1004	14.7148	64 2220	10.1674	8.04439		
1895	14.7842	14.5071	9.3848	8.28678		
1000	14.9312	£4.4088	8.2141	B.30232		
3887	15 0085	14.3185	0.0107		·	
1100	15.2222	34.2550	\$ 7004	\$.288E		
1009	15.3228	14 5095	9 4979	7.1293		
1890	15 3851	J4 8274	8 7912	8.9542		
1891	15 5778	14 4455	9 7058	7.2182		
1112	15 7402	14 4870	9 6726	7 5489		
1893	15 8474	14 4736		7 5899		
1194	15.0370	14.2772	9 8122	7 7882		
1075	18 0441	14.3462	9.8504 19.1177	¥1241		
1798	10.1451	34 -4135		3 0875		
1297	10 1848	14 4296	10.482 9	1.0121		
1101	28.2030	34.3347	10.6010	4.3174		
1899	10.3051	14.5067	10.1100 11.0014	1.3398		
1800	10.5320	14.5000	10.7784	4 4 2 0 5		
3801	38 494E	14 4401	10.7597	8.5774	20 4747	
1902	10.5040	14.7270	1.3137		20 8783	
1003	14 9802	F# #212	0.0001	2.1945	20 7392	
1404	34 8543	34.8859	9.1111	4.2998 1.2037	20.8402	
1005	34 7907	34 9633	1 9248	1.5771	20 9428 20 9448	
1405	18 8848	14.9279	8.2783	# 5812	21 0183	
1907 1909	14. TINO	15.1200	0.2021	8.4471	21 1020	
1928	10.0405 15.5742	14.0925	9 9000	• •135	21.1045	
1810	34 7348	15.1510	B 4073	3 8130	21.3202	
1111	10.4131	15 2009	* 3128	\$ 7817	21 3407	
1012	16 8830	15 1436	# \$715	* *571	21 4722	
3813	39.0000	15.0487	20 3091 10.7117	P 1431	71 5554	
		·····		9.0715	21.8341	

(TP)	(COBB)	(INBB)	(DEBB)	(DOBB)	(LCBB)
	10.9101	15 2830	10,7400	8.1287	21.7293
1915	10.2127	15.3000	20.3863	1.2550	21.7895
1936	34.8234	15.4217	10.7690	1.7115	21.8450
1917	18.7659	15.3210	10.5555	9.2550	23.8914
1918	18.7038	15.2304	10.2360	9.1109	21.8946
1019	16.7850	15.1072	10.5702	9 1944	21 9782
1920	18.9495	15.1778	11.2767	8.2544	22 0362
1921	17 0458	15.2040	11.6720	9.5038	22 0784
1922	17,0009	15,2277	10 6510	9.7074	22.1188
1923	17.1044	15.2300	10.8121	9.9174	22.1569
1974	17.3118	15.3777	11.3828	10.1007	22.1918
1925	17.3385	15.3021	11.4610	10.2912	22 4387
1924	17 4238	15.4491	11.3476	10 4805	22 4951
1927	17 4193	15.3413	11.2210	15 4798	22 3324
1928	17.5851	15.3703	11.0357	ID 4958	22 5185
1978	17.3053	15 4062	11.5043	10 0711	.2 8484
1930	17.3947	15.4049	11.4041	11.1968	22.7031
1931	17.3280	15.0594	11.5101	11.2738	22.7588
1932	17.2112	15.7061	11.5220	11.3740	22.1005
1932	17.0633	15.5738	11.2354	11.4230	22.448D
1934	17.0852	15.4319	11.5113	11.4666	22.1196
1935	17.1156	15.3026	11.0150	11 4512	22.9309
1938	17.2601	15.27.00	12.1530	11 4357	22 9781
1937	17.2385	15.2016	12.3264	11 4757	23.0154
1938	17.3430	15.2140	12.2952	11.5177	22,9254
1939	17.4015	15.3845	12.4411	11.6032	23,1048
1840	17.4324.	15.3003	12.5052	11.6130	23.1697
1941	17.4628	15,3277			
1842	17.4754	13.2207	12.9631 11.0642	11.7208	23.2492
1843	17.2848	14.8225	11.1215	11,7710 11,5023	23.2808
1944	17.3890	14 7758	11.5088	11,1708	24.1135
1945	17 4484	14.6492	11.7830	11.0607	24,4324
1944	17.6250	14 4122	11,4393	10.9410	24.5453
1947	17 8120	14.2977	11.0375	11 3401	24 4505
1940	17.4613	14.5485	11.9542	11 0618	24 3404
1948	17 8162	15.1005	12.1196	12.3014	24 7181
1950	17.6839	15.3934	12.2040	12.6954	24.7741
1951	17.6172	15.4359	12.0234	12.4410	24.4054
1952	17 6381	15 4126	11.5309	12.9075	
1953	17.7373	15.3045	11.4057	10.0201	24,1731
1954	17.7845	15.0431	11.3083		24.8146
1955	17.7771	14.8832	11.4057	12.1351	74.9324
1950	17.7790	15.3147	11.4097	13.1098	25.0278
1957	17.7047	15.2434	11,205#	13.0881 13.0881	25.0745
1957	17.8463	13.3806	12.7131	11.1294	25.1062 25.1073
1958	17 8431	13.6775	11.4344	13,1923	25.1842
1960	17 3961	13 5258	11.3123	12 2420	25.2163
1981	17.9142	15.5010	11.2602	17.3084	25.2990
1982	17.9588	25.7632	11.1074	13.5046	25.3183
1963	18.0348	15 4782	11.5338	13 0463	25.3622
1964	11.089t	15.5319	11.3912	13 1228	25.3754
1985	LE. 3030	15.9308	11.7415	14 0073	25 6679
1988	T# 1380	10.0018	11.0194	14.1546	25.0042
1867	10,1074	16.0026	11 9260	34.7315	25.7240

			- 11	D. 7 M.C	00000	ADJUSTMENT	BY	POPULATION
INFORMATION	PRODUCTION	DATA	ŢΝ	BITS	BEFORE	100001.10.1		

(COBB) 11.2111 14.2008 11.2717	(INBB) 15.8509 18.0439	(DEBB) 11.700 11.7035	(DOBB)	(LCBB)
16.2006	18.0431			
11.3208 11.3845 11.4320 13.5082 13.6142 15.6487 15.7832 15.3406 13.7100 18.6261	15.0754 16.2570 16.1015 16.2100 16.2100 16.1023 10.0902 15.9043 35.0174 15.5775 15.0153	11.6302 11.6238 11.5023 11.8778 12.0711 12.0641 12.1674 11.8283 11.5881 11.9293	14.8852 14.9708 14.8057 15.0892 15.0595 15.0575 15.0575 15.0232 14.9717 14.9871 14.9871	25 8353 25 8698 25 9480 26 0135 26 1108 28 0470 29 0735 26 1135 26 1325 26 1488 28 1735 28 1973 26 2324
18 8458 18 8368 18 8877	16.0050 15.0213 15.7061	12.1984 12.2586 12.1674	14 9973 15.0140	26.2491 28.2678 28.2873
18.8301	19.0365	12.2580		28.2415
	11.2300 11.3045 11.4320 12.5062 13.6142 16.6407 11.7882 18.3406 11.7100 18.6261 18.6265 18.6366 10.606 10.606	11.200 16.2570 12.3045 16.1015 11.4220 16.1779 12.5062 16.2100 13.6142 16.1233 14.6142 16.1233 15.642 16.1233 16.642 16.0092 17.7832 15.9843 18.3406 36.0124 18.7100 15.5775 18.6261 15.0153 18.6251 15.0153 18.6261 15.0153 18.6261 15.0153 18.6261 15.775 18.6261 15.0153 18.6263 15.0258 13.6268 15.8213 18.8772 15.7861	11.2717 11.2737 11.2737 11.2737 11.2737 11.2730 11.2737 11.2730 11.2737 11.2730 11.2737 11.2776 11.2737 11.2776 11.2737 11.2776 11.2757 11.2776 11.27582 15.2180 12.0641 11.27822 15.9843 11.2763 11.27832 15.9843 11.2783 11.27832 15.9843 11.2783 11.3706 15.5775 11.5981 12.3406 35.0124 11.9293 13.7100 15.5775 11.5981 14.6261 15.0153 11.9293 15.458 16.0058 12.1384 13.8458 15.0058 12.1384 13.8458 15.7061 12.1874 13.8972 15.7061 12.1874	11.2717 15.0754 11.0228 14.8708 12.3208 16.2570 11.0228 14.8708 18.3945 36.1815 13.5023 14.8057 18.3945 36.1815 13.5023 14.8057 18.4200 16.1779 11.9778 15.0892 12.5062 16.2188 12.0711 15.0490 18.642 16.1233 12.0641 15.0575 18.6487 18.0992 12.1674 15.0575 18.7892 15.9843 14.8283 15.0232 18.3406 35.0174 11.8293 14.8971 18.7106 15.5775 11.5981 14.8971 18.6261 15.9153 11.9293 14.3972 18.6261 15.0158 12.1884 15.0033 18.6261 15.8213 12.2586 14.3973 18.6268 15.8213 12.1874 15.0140 18.8772 15.7961 12.1874 15.0140

.

.

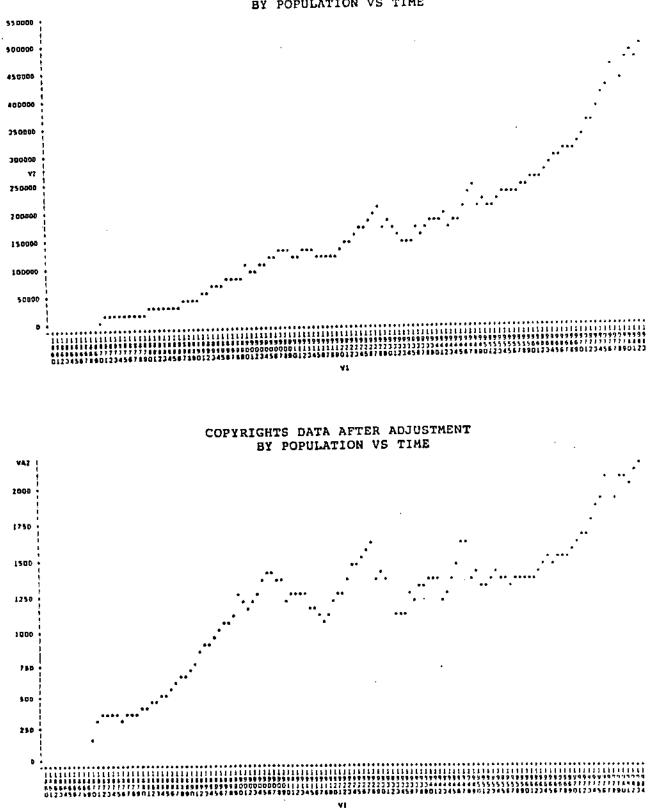
•

.

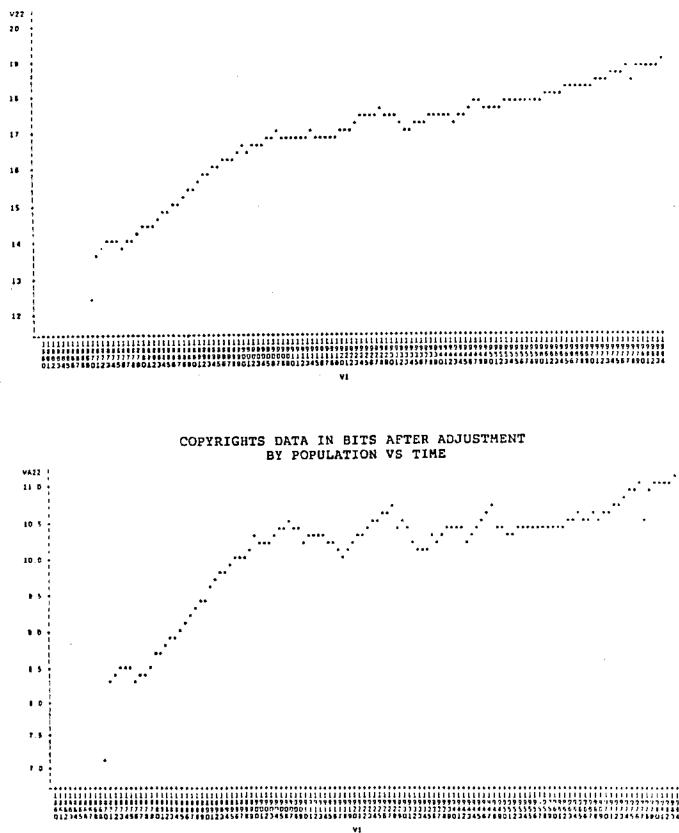
.

.

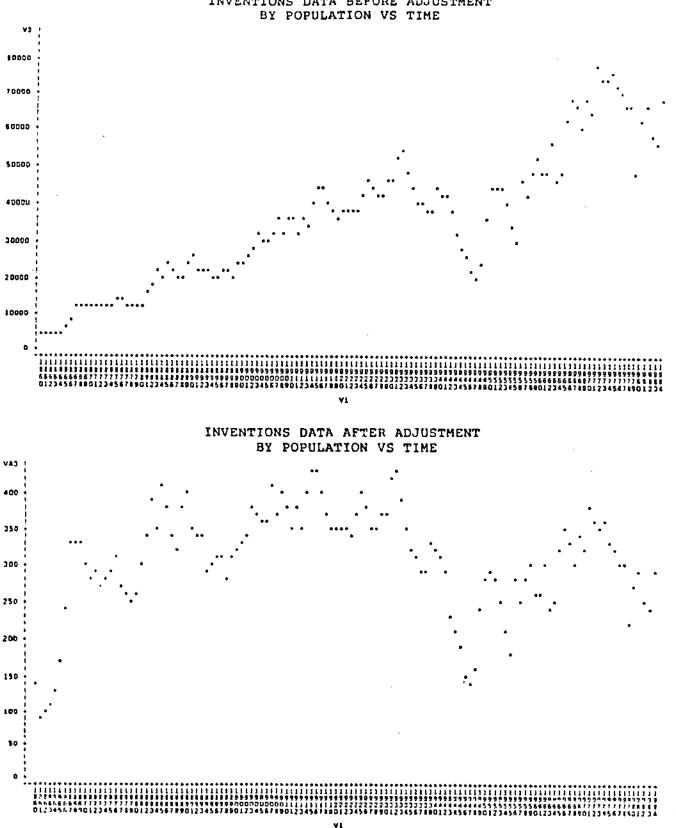
(TP)	(COBA)	(INBA)	(DEBA)	(DOBA)	(LCBA)
		7.11042	2.53700		
1641		8.54459	2.13401		
1152		6.59756	2.55474		
3862	·	8.78283	2.370#7		
1001	•	7.05317	1.99532	•	
	•			•	
1805	•	7 41360	2 43001		
1966	,	7 82225	2.00135		
1887	•	8.25983	3.12020		
1162		8.35445	3.54187		
1861		1.37129	3 68571		
1870	7 1327	8.24863	4 20702		
1871	8.2758	\$ 15378	4 46321		
1872	1 3914	8 18087	4.39655	-1 3240	
\$\$73	\$ 4797	8.07736	4,11850	-0 7260	
1874	\$ 5303	8.11739	4.33042	-1 7603	
1875	8 4650	8.20397	4.34344	-0 9708	
1876	8.2344	8.26354	4.12054	-0.5727	
1877	L.3845	8.08841	3.0024	-0.2735	
1278	1.3573	8.00148	3.81438	-0.5002	
1179	1.5248	7 94488	2 58818	-0 4508	
1810	8.8350	8.00402	3.35423	0.1035	
1881	1.6756	\$ 23230	3 45443	-0 47#2	
1887	4 7612	0.41004	4 92179	-0.1095	
1383	8.8878	£.61163	4.23255	-0.1137	
1684	8.9237	8.47138	4.37915	0.2531	-
1885	1.8700	\$.01201	3.78283	0.4420	•
1000	8 0747	1.55242			
			3, 15766	0.5356	
14#7	8.2105	8.42955	4.00080	0.37885	
1	1.3025	6.33910	7.78167	1.21052	
1429	0.0730	¥.50051	3.54490	1 00525	
1890	\$ 4068	8.84903	2 11260	1 74081	· .
1891	¥ 5¥97	8 43742	3 88752	1.53078	
1992	8 7031	1 42996	2 63525	£.5227#	
1003	* 7814	8 40814	3.74673	1 70274	
1884	9 1443	6.18393	3.76314	2.03084	
1492	B. 9235	E.22757	2.01314	1 16488	
1124	8.9877	4.28609	4,34545	1.11474	
J U 8 7	10.0200	8.25500	4.48807	2.14371	
1898	10.0035	8.11510	4.83342	2.14030	
1899	10.0101	\$.28173	4,13642	2.20551	
1800	10.2827	8.33912	4.52681	2.32760	4.25906
1001	10.2109	8.36283	4.47774	2.20077	4 63449
1902	10.1972	8.41250	3.01224	1.88733	4 46880
1903	10.2475	0.51162	2.73334	2 08390	4.54102
1804	10.3030	E.52300	2.75007	2.02284	4.81597
1905	10 4019	8 47294	2.13583	2.13880	4 59210
1908	10 4284	0.51171	2.13990	Z. 18504	4 43438
1907	LO 4750	0.00710	2.75918	2.00414	4 59324
1908	10 3007	1 32788	2.01947	2 14916	4 73842
1909	10 2744	1.85817	2.90742	2 31714	4 13400
1910	10 2051	\$ 57305	2 78306	2 26134	4 29507
1911	10 2407	\$ 45082	3 41849	2 40405	4 95329
1952	10 3094	1 34922	3 81498	2 38638	5 01588
1913	10.2637	1 44894	4.10571	2 46133	5 08548
				,	

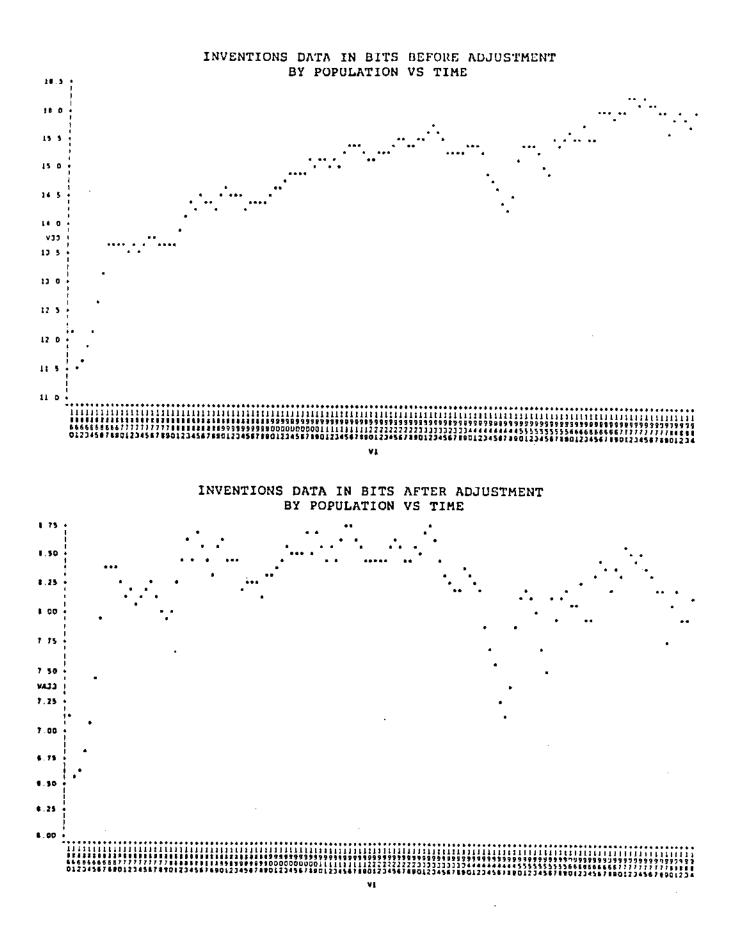

INFORMATION PRODUCTION DATA IN BITS AFTER ADJUSTMENT BY POPULATION

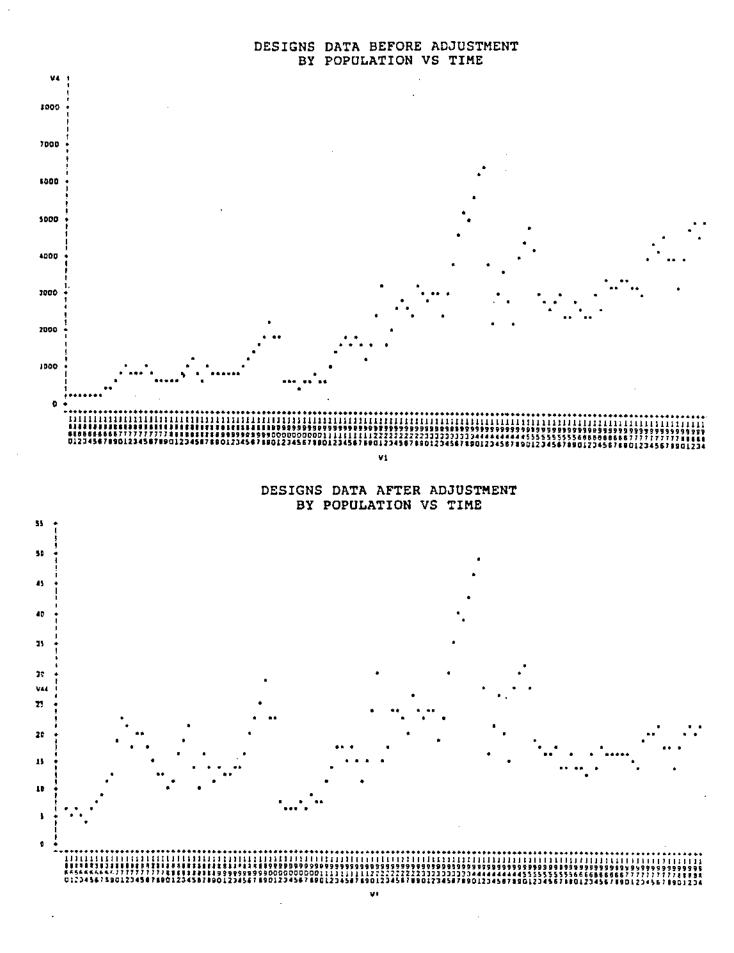
<u>(TP)</u>	(COBA)	(INBA)	(DEBA)	(DOBA)	(LCBA)
1914	10.2793	4.85300	4.10981	2 49589	5 13252
1925	10 1828	\$ 74495	3 92579	2 80398	5 17771
2910	10.1908	1.74825	4 09858	7 70912	5.20747
1817	10.0752	J 83035	3.86415	2.58413	5.23488
1923	10.0143	8.54147	2.54672	2 42984	5.23958
1919	10.0718	á 45994	3.16745	2 48740	3.30504
1920	10.2145	8.44287	4.54200	2.52973	3.33574
1921	10 2840	8 44847	4 01122	2.74227	5.05722
1122	10 2982	3 44492	3 46928	2 97480	5.37137
1923	10 3771	1 42958	4.10479	3.11002	
1924	10 4778	1.54252	4 54847	3,28851	5.38378
1925	10 4240	\$ 64734	4 60546	3 43568	5 39188
1928	10 5633	1.57376	4 46734	3.51517	5 61338
1927	10 5945	6 45353	4 32617	J 58498	\$ 88407
1928	10.8522	6 45742	4 72283	3.58596	5 87178
1929	10.3759	1.53710	4 57595		5.7077
1930	10.4550	8.52118	4 46039	3.94278	5.75221
1831	10.3738	L. 70408	4 56378	4.22310	5 79321
1832	10.2477	8.74294	4 55812	4,21844	5.03543
1933	10 0956	8 60113	4.28272	4 41044	5 38025
1934	10 1034	1 45707	4.52041	4 44832	5 90755
1935	10 1231	E. 21053	4 92779	4 48473	5 84198
1938	10.2589	4.27870	3 15743	4 45912	5.97303
1937	10.2275	1.19264	5.31744	4 43434 4 46778	\$ 01219
1038	10.3228	4.19546	3.27505		8.04107
1939	10.3092	8.38217	5.41623	4 49752	5 83952
1840	10.3135	8.31641	\$. \$2523	4.57084	0.10849
194)	10 4000	8.28431		4.53402	4.13408
1842	10 4029	8.15412	5.80026	4.98592	9.22058
(\$4)	10.2170	7.84481	4.79185	4 69937	¢.25231
1944	10.3039	7.71086	4 04385	4 42445	7 08981
1945	10.3088	7.51959	4 44377	4.10554	10154
1946	10 4885	7.27578	4.72338	4.00101	/ 51976
1947	10 8417	7.12878	4.30375	3 80457	7.45136
3941	10.4646	7 25180	3.56562	4,36920	7.32384
1949	10.3861		4.75747	4 74500	7 37787
1950	10 4769	7 77358	4.80752	5.07#71	7.32820
1951	10,7454	0.3464) 5.3464)	4 95088	5.44247	7.56135
1952	10.3470	F. 1990)	4.75682	5.57419	7.57279
1953	10.4744	F. J2347	4.24180	5,41030	7.41805
1954	10.4250	7.9930L 7.70414	4 01279	5.70723	7 83597
1855	10.4106	7.70414	5.96938 5.9	5.79611	7 67780
1958	10, 3851	7.52011	4.03948	5.74283	7.89457
1937	10.3452	8.12157 7.84390	4 . 14647	5.72880	7 71350
1858	10.4225	F. 11886	2.78623	5.87852	7 72092
1850	10 4144	\$. 20¥06	3.74833 3 96821	5.88241	7 72779
1960	10 4042	1.03373	3.12040	5.72367	7 75001
(843	10.3085	8.04807	3.78448	5.7709# 5.852#7	7.75010
1942	10.4213	1.22758	3.62881	5.98414	7.81758
1983	10 4584	7.92012	3.97540	8 08791	7.81594 7.83803
1264	10 5117	7.25308	3.81306	6 24459	7 83147
1362	LC 5874	1 24280.	4.14528	5 41110	1 10584
1968	10 5183	45007	4 02667	4 54282	1.11662
1887	10.3417	E.37844	4.00228	8.70584	1.13338

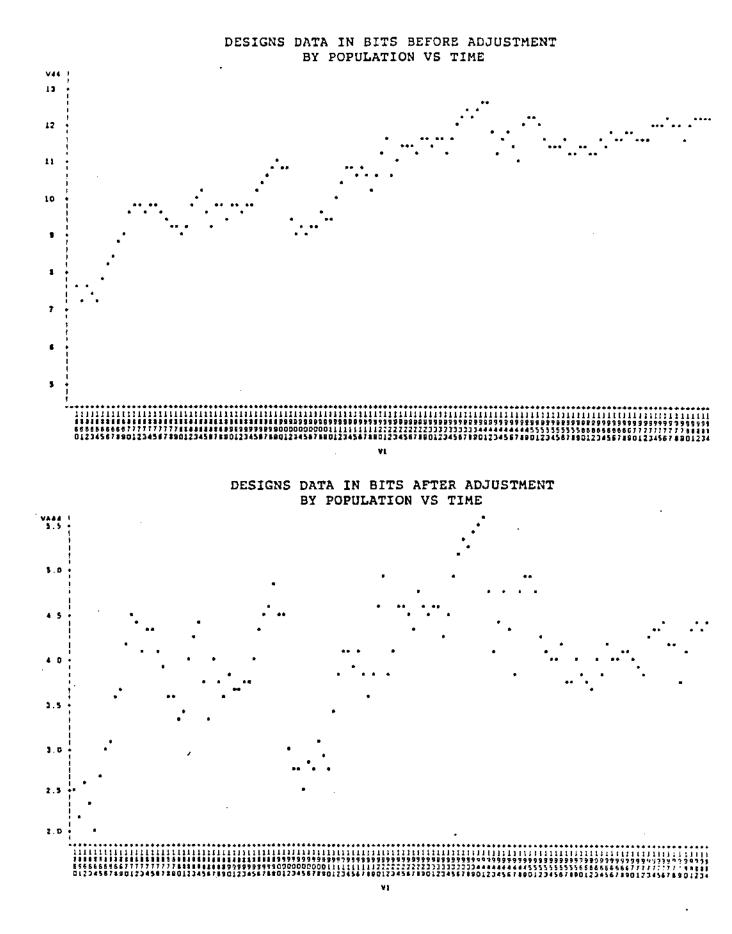

•

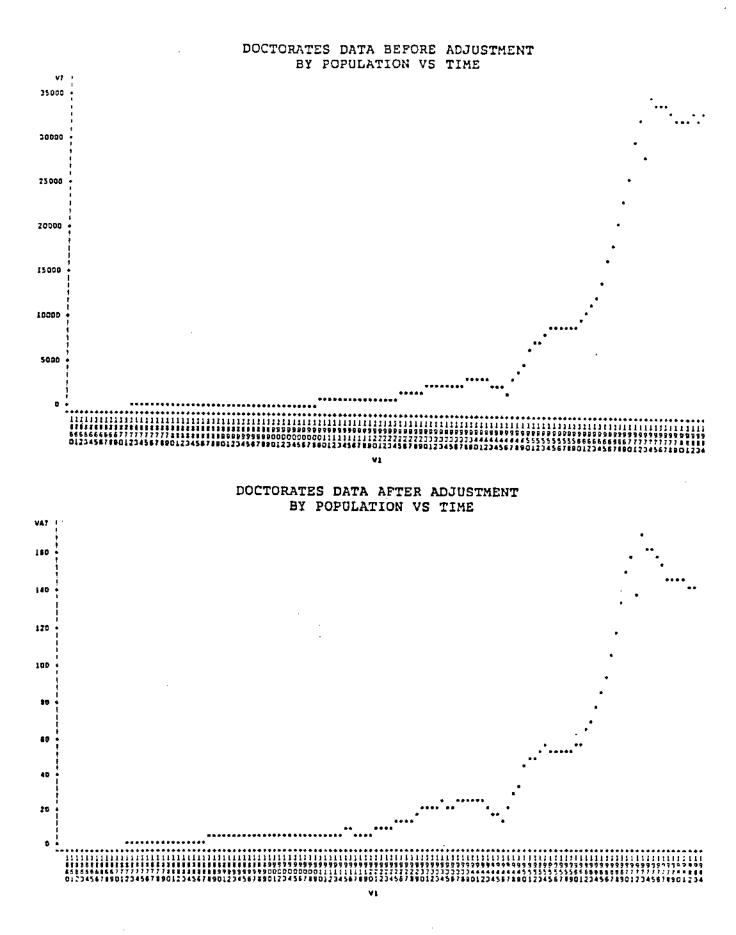
INFORMATION PRODUCTION DATA IN BITS AFTER ADJUSTMENT BY POPULATION

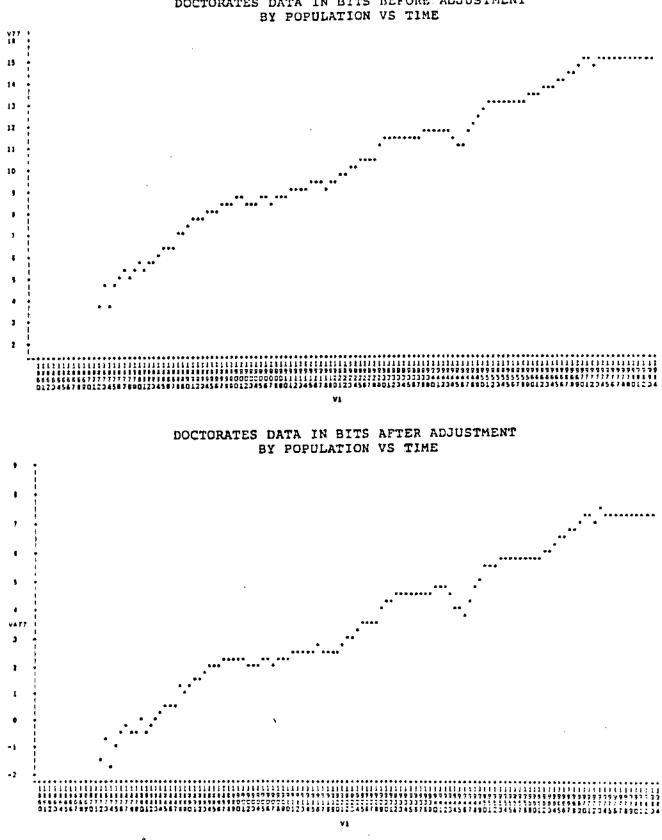

(TP)	(COBA)	(INBA)	(DEBA)	(DOBA)	(LCBA)
1988	10 5718	E.21140	4.07128	8.15540	1 1#572
1968	10.5487	8.38990	4.04155	7 02270	8.21612
1970	10.5893	1.30295	3 97773	7.19370	1.23158
1971	10.0387	1.58493	3 93179	7.27151	8.24618
1972	10.6650	1.41205	3.79291	7 09632	8 40828
1973	10.7081	8 45411	4.25361	7,37535	. 42120
1874	10.7714	8.48218	4.32439	7,31226 -	2.34451
1975	10 0627	\$. 38224	4.31253	7.30584	8.35456
1976	10 8831	1.33385	4 40148	7.23105	1 36226
1977	11.0082	8.21475	4 14921	7.24329	3 31666
1978	10 5455	8.21730	4.13419	7.17661	1 31 1
1979	10 1994	7 76833	3 78884	7.10502	8 29648
1980	10.9983	B 08759	4 10144	7 18543	E 40373
1911	11.0046	8.18471	4.35735	7.16725	8 42557
1932	10.9017	7 96541	4 40370	7 14244	8 47841
1983	11 0288	7 92763	4,29390	7.1455L	1 43353
1984	11.05.05	8.15554	4.27794		1 44105

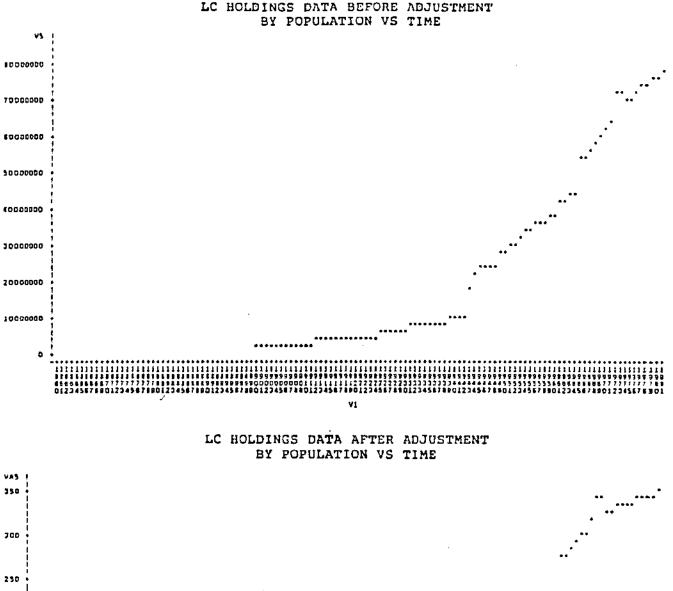

COPYRIGHTS DATA BEFORE ADJUSTMENT BY POPULATION VS TIME




COPYRIGHTS DATA IN BITS BEFORE ADJUSTMENT BY POPULATION VS TIME




INVENTIONS DATA BEFORE ADJUSTMENT



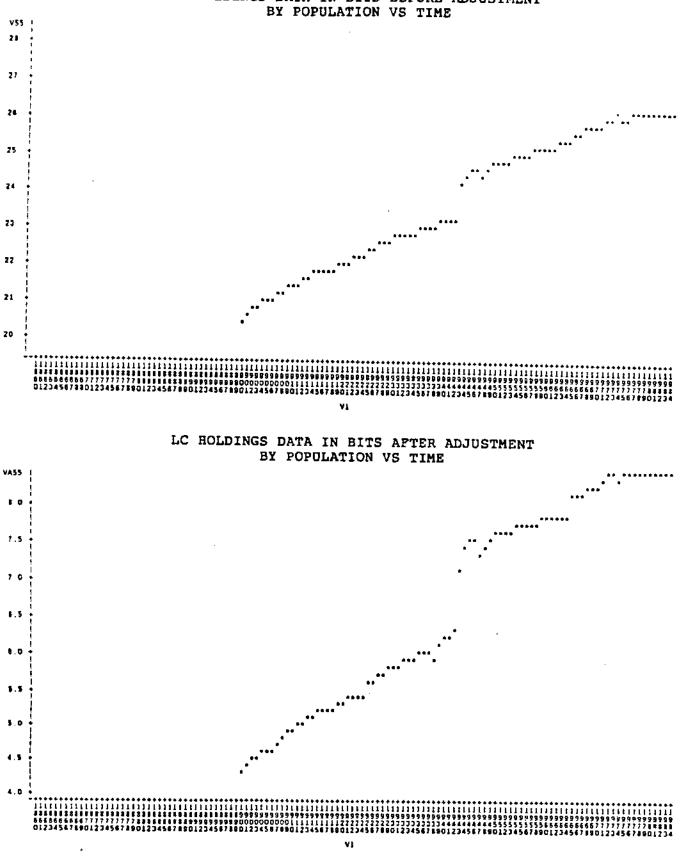
DOCTORATES DATA IN BITS BEFORE ADJUSTMENT

200

150

100

90


ø

· · ·

........

\$685666666777777777777788886868888999999988800000000111111111222222222333333 0123456789012345678401234567890123456789012345678901234567890123456789012345 171

¥٤

Population

- Population (PORB) = Post Offices Raw Data Before Adjustment by
- (MWRB) = Miles of Wires Raw Data Before Adjustment by
- Population (PHRB) = Phones Raw Data Before Adjustment by Population
- Adjustment by Population (CARB) = Cable TV Systems Raw Data Before Adjustment by
- by Population (NTRB) = Non-Commercial TV Stations Raw Data Before
- Adjustment by Population (CTRB) = Commercial TV Stations Raw Data Before Adjustment
- Adjustment by Population Growth (NFRB) = Non-Commercial FM Radio Stations Raw Data Before
- Population (CFRB) = Commercial FM Radio Stations Raw Data Before
- (ASRB) = AM Radio Stations Raw Data Before Adjustment by
- (TP) = Time Period

Legends Used:

APPENDIX B

INFORMATION DISTRIBUTION VARIABLES DATA AND GRAPHS

Population

- Population (PORA) = Post Offices Raw Data After Adjustment by
- (MWRA) = Miles of Wires Raw Data After Adjustment by
- Population (PHRA) = Phones Raw Data After Adjustment by Population
- Adjustment by Population (CARA) = Cable TV Systems Raw Data After Adjustment by
- by Population (NTRA) = Non-Commercial TV Stations Raw Data After
- Adjustment by Population (CTRA) = Commercial TV Stations Raw Data After Adjustment
- Adjustment by Population Growth (NFRA) = Non-Commercial FM Radio Stations Raw Data After
- Population (CFRA) = Commercial FM Radio Stations Raw Data After
- (ASRA) = AM Radio Stations Raw Data After Adjustment by

(TP)	(ASRB)	(CFRB)	(NFRB)	(CTRB)	(NTRB)	(CARB)	(PHRB)	(NWRB)	(PORB)
**0									28498
\$61				-					28548
62									21175
13 54									29047
5									28878
			•						2\$8\$2
,				•					29388
1						-			25163
									26481
									27106
									28492
									00045
	•		•						31063
			•						33744
				•					34294
									35547
L ,							3		24213
	-			•			,		37745
							26		34253
0			·						40588
							54		42989
2						-	71 91		44512
3									46231
4		-					124		46820
5							148 158		48434
8							187		51252
,									\$3614
t		-					181		55157
							195		57376
•							212		51998
							234 238		62401
2							281		64329
3							268		67119
4							215	577	68403
							340	675	69305
6							404	\$D5	79064 70360
							\$15	351	
I	•						681	1159	7 1022 7 35 7 0
)							1005	1519	7500D
I							1056	1962	76688
						. ·	1001	2445	76945
			-				2371	3282	75924
)							2808	9399	74188
							3353	4671	71101
			•			,	4127	5780	68137
				•			4933	7489	63600
	•		•				6738	F611	62158
	•						0424	9131	60704
							6334	10410	60144
			•				7635	11462	59580
							1349	12933	59237
							8730 9543	14011	5#729
							8243	16511	5 80 70

.

9543

16111

58020

INFORMATION DISTRBUTION DATA BEFORE ADJUSTMENT BY POPULATION

.

INFORMATION DISTRBUTION DATA BEFORE ADJUSTMENT BY POPULATION

101	UNIALIC								(PORB)
(TP)	(ASRB)	(CFRB)	(NFRB)	(CTRB)	(NTRB)	(CARB) (PHRBI	(MWRB)	(FORB)
		<u> </u>					10048	11478	56110
1914							10524	18508	58380
1913							11243	19650	55935
9916							13817	2261D	55414
2917							14294	23348	54347
1916							34347	24163	\$3084
1918		•					15316	25377	52641
1920							18015	27788	52163
1921	1					- •	16875	10617	51950
1922	30					•	17580	34524	51613
1923	558						18448	39894	51264
1924	530						18523	45474	50957
1925	571		•		·		20103	50851	50501
1926	528		•	•			19002	58123	50266
1927			•				17341	62193	49944
2928	577						17474	89519	49482
1920	606						16620	76241	49063
1930	618						18889	79238	41733
1935	\$12	•					16621	80491	48159
1932	604				-		16469	\$0281	47841
1822	598		•				17424	8D118	45506
1934	593		•	•			18433	\$0458	45888
1935	623		•	•			19453	11925	45730
1938	658		•	-		•		\$7391	44 677
1937	704				-		19453		44516
1931	743		•.				19953	85295	44327
1939	778				•	•	20131	87411	44074
1940	347		3				21928	91273	
1941	197	41	7	2			23523	97206	43739
1942	875	42	F	10			74819	99709	43350
1943	\$12	43	7	6		•	26381	99400	42854
1944	924	52	ŀ	,			26258	100271	42151
1945	955	53	12	•			27887	100013	41792
1948	1215	511	24	20			31811	107343	41751
1947	1795	918	31			-	34 887	114850	41710
1948	2034	1020	46	108			3\$205	126424	41695
1949	200 6	737	34	69	• •		40709	135400	41607
1950	2144	691	82	104			43004	144264	41464
1951	2281	643	83	101			45636	152112	4:193
1952	2355	629	92	101		70	41056	162120	40919
1953	2431	580	108	198	ì	150	50073	173375	40909
1955	2582	550	117	402	•	300	52806	145809	39405
1955	2732	540	124	454	11	400	58243	201235	31318
1951	2898	530	126	496	20	450	60190	220154	37515
	3079	520	135	518	- 20	500	\$3624	243730	37012
1957 1994	3283	948	147		32	525	11145	250464	10096
1950	3377	822	154		43	580	70620	282287	33750
1960	3483	741	103		47	840	74342	207070	35231
1981	3602		100	353	54	700	77422	327319	34935
1942	3745	1013		571		800	10988	348697	34797
1982	3600	1120	221			1000	\$4453	308584	24498
1984	3878	1101				1200	88792	.094360	34040
1985	407\$	1343				1325	82856	427673	73674 93121
L 5 8 8	4075	1515				1570	98787	453521 480308	32620
1987	4135	1708	310	628	127	1770	103752	-10101	34764

.

INFORMATION DISTRBUTION DATA BEFORE ADJUSTMENT BY POPULATION

<u>(TP)</u>	(ASRB)	(CFRB)	(NFRB)	(CTRB)	<u>(NTRB)</u>	(CARB)	(PHRB)	(MWRB)	(PORB)
1968	4201	1230	241	635	150	2000	109758	\$17250	37760
1961	4254	2910	375	\$10	177	2260	115222	\$35C2	17064
1970	4288	2124	416	691	190	2490	120218	601912	32002 .
1971	4398	2368	520	786	217	2638	175141	645000	31847
1972	4422	2462	599	774	227	2849	132000	605000	31566
1973	4434	2540	610	785	237	2991	138000	752000	31385
1974	4487	2713	784	758	238	3124	144000	\$00000	31000
1975	4488	2847	850	758	256	3596	149000	832000	30754
1978	4525	2947	913	764	261	3661	155000	\$71000	30521
1977	4555	3101	1000	774	285	3835	152000	910000	30521
1978	4577	3508	1053	745	. 263	3175	168000	952000	10518
1970	4638	3300	1112	\$07	275	4150	176000	1011000	30499
1920	4635	2390	1150	544	288	4225	110000	1068000	30326
1981	4784	3570	1205	909	296	4375	112000	11:3000	30242
1982	4838	3749	1253	975	303	4125		1152000	30155
1983	4934	4090	1048	1181	322	5600		1141000	29990
1984				•		5200			29850

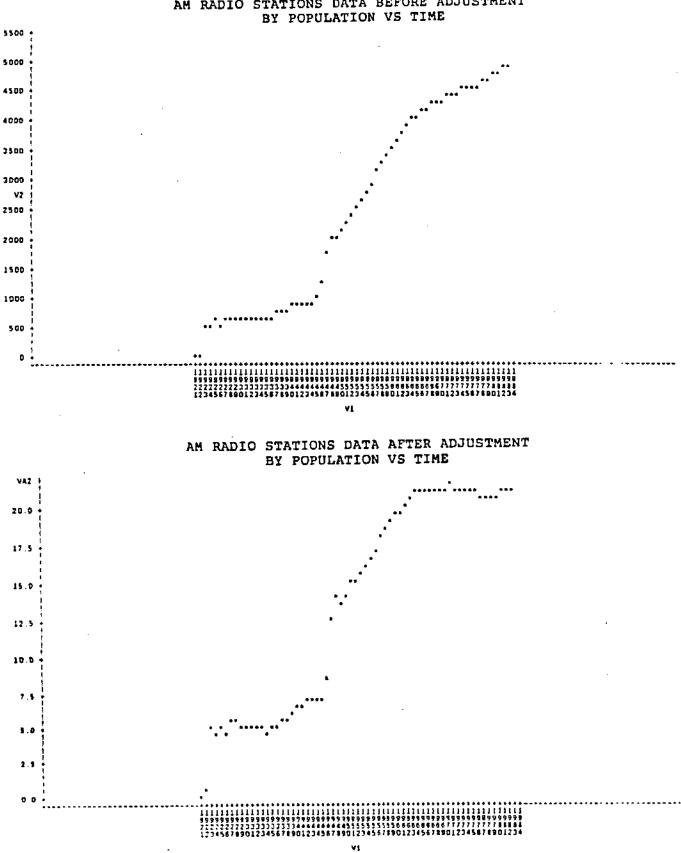
<u>(TP)</u>	(ASRA)	(CFRA)	(NFRA)	(CTRA)	(NTRA)	(CARA)	(PHRA)	(MWRA)	(PORA)
1 # 5 0									103 81
1961									180 62
1162				· .					870 04
1163						• *			853.67
1864									\$28 33
: # 6 5					· ·				\$09 00
1868									104.34
1167									873 24
1\$6\$									\$92 93
1859	-								694 12
1870									714 00
1871									732 91
1172									759 15
1473 -									773 01
1874					,				778 70
1175									748 65
1876							O GESI		789.10
1177				· .			0.1909		192.20
1978							0 5397		794 06
1179							0 6200		824 83
1000							1 0744		855 30
1881							1 3775		683 61
1112							1.0550		875 24
1883							2.2921		865 43
3224							2 6725		874 58
1885							2 7534		904.59
3886							2.1524		925 37
1287							3.057		931 44
1111							3.223		948 43
1009							3 432		955 08
1890							3 711		19 41
1891							3 713		999 50
1892							3.975		1072 13
1893							3 972		1071 40
1873							4 174	8 451	1022 41
1895				-			4 188	9 701	1006 96
1836				-			5 699	11 371	992 59
1597							7 134	13 174	983 83
1998							9 268	15 770	1001 00
1839							13 438	20 301	1002 69
1900		•					17.819	25 782	1007 73
1901						•	23.209	31 508	992 56
1902							28 837	41 439	951 64
1803							24 151	115.117	\$20.23
1804							40,791	58.825	185.34
1905							49.248	88.974	110 Q2
1906							\$7.7\$3	07 459	768 15
1807							70.333	98 977	720 21
1903			•				73,100	110 834	684 37
1909							77.304	115 001	684 37
1910							82 600	124 D48	544 3 1
1911							\$8 1 14	137 737	620 85
1912							91 405	150 DIE	616 25
1913						•	91,179	165 751	596 9 1

INFORMATION DISTRBUTION DATA AFTER ADJUSTMENT BY POPULATION

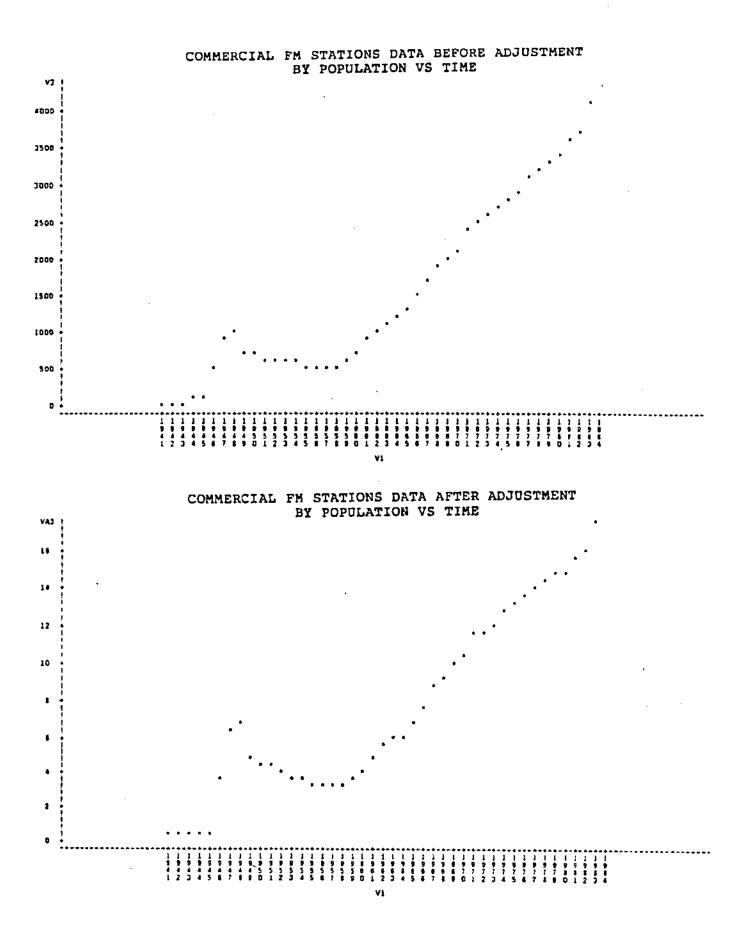
.

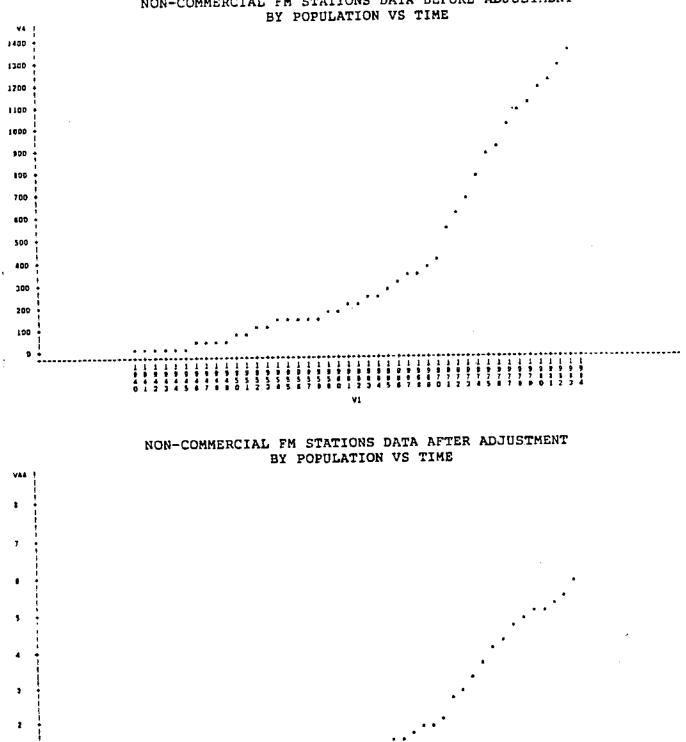
IN	IFORMATI	ON DIST	REUTION	DATA AL		001			
((ASRA)	(CERA)	(NFRA)	(CTRA)	(NTRA)	(CARA)	(PHRA)	(MWRA)	(PORA)
<u>(TP)</u>	(hona)	(011017		<u> </u>			101.372	178.35	573 258
1914			•				104.716	184 34	560 995
1915		·		·			110.200	194 OL	548 382
1916							100,754	233 88	526 438
1917							138.508	228 25	526 BJ B
1919							117 292	231 22	507 981
1919							143 112	238 28	494 282
1920							147 ED4	255 91	480 853
1971	0 0097 0 2725						153.270	278 08	471 944
1927	4 9643			•			157.157	301.25	460 830
1973 . 1974	4 8450						181 685	348 64	449.308
1925	4 9309					-	159.957	392 89	440 D43
1926	4 4974						171,235	433.23	431 014
1927	5 7727						184 773	477.50 516 12	422 403 414 473
1928	5 6183			•			408 CM1	570.74	406 258
1979	4.9754						143.054 135.077	819 40	398 562
1930	5.0203				•		125 931	638 51	392 691
1931	4 9315			•	-	-	133.237	544.96	385 889
1932	4 8397						104.307	838.31	379 307
1933	4 7611					-	107 848	633 84	367 927
1934	4 6915						144 100	632.QJ	358 865
1835	4 8940		·	•	•		151 151	639 54	353 844
1936	5 1210				•		151.033	847 45	345 474
1937	5 4858		•	•	•		153 721	657 13	343 498
1938	5 7242						159.137	887 77	338 033
1939	5 9425						J#3 494	688 15	332 257
1940	6 3925		0.02764				175 924	727 05	327 143
1941	8 7091	0 3885	0.05234	0 01498			185.134	740 78	322.125
1942	5 \$722	0.3120		0.07428 0.05522			195,270	735 75	315 722
1943	6 7500	0.3553		0 04721			200.590	348-85	314 889
1944	a. 1007	0,3883		0 06747			208 898	815 69	313 243
1945	7.1582	0 3973 3 6318		0.21322			224 670	782 92	295.731
1946	8 6354	8.370		0.45102			241 964	797 02	219 799
1947	12 4588	8 9530		0 73620	1 .		280.429	881 79	284.219
1941	13.8890	4 9364		D 49231	1		272.665	906 90	278 681
1949	14 1145	4 549		0 69460			283.107	949 73	272 969
1950		4 234		. D 89481	L .		296 333	987 74	767 417
1951 1957	14 8117 15 0575	4 021	•	_		D 4471	307.283	1036 57	261 830
1952	15 4591	3 647			0.0062	S 0 943	118-111	L09D 41	257.248
1854	15 9543	3 415		2 . 4130	1 0 0070	e 1.453			
1955	18.5475	3.270	7 0 75106	2.7740	1 0.0646				
2 9 54	17.2270	1.132	s 0 74859						
1857	17.9848	2 085					_		
1958	18.0047								
1958	10 0803							-	
2960	10.3300 10.8131							_	191 011
1961	20 1361						435 780	1965 97	107 282
1962						35 \$.305	D 448.027		
1364				3.0455	9 0 413				
1985			1.7540	1 3 0430					
1968		7 749	in 1 4877						
1967	20 1387	1 641	11 1 0101	3 3 1891	12 0 443	04 8 962	0 525.327	2431.94	

INFORMATION DISTRBUTION DATA AFTER ADJUSTMENT BY POPULATION


,

INFORMATION DISTRBUTION DATA AFTER ADJUSTMENT BY POPULATION

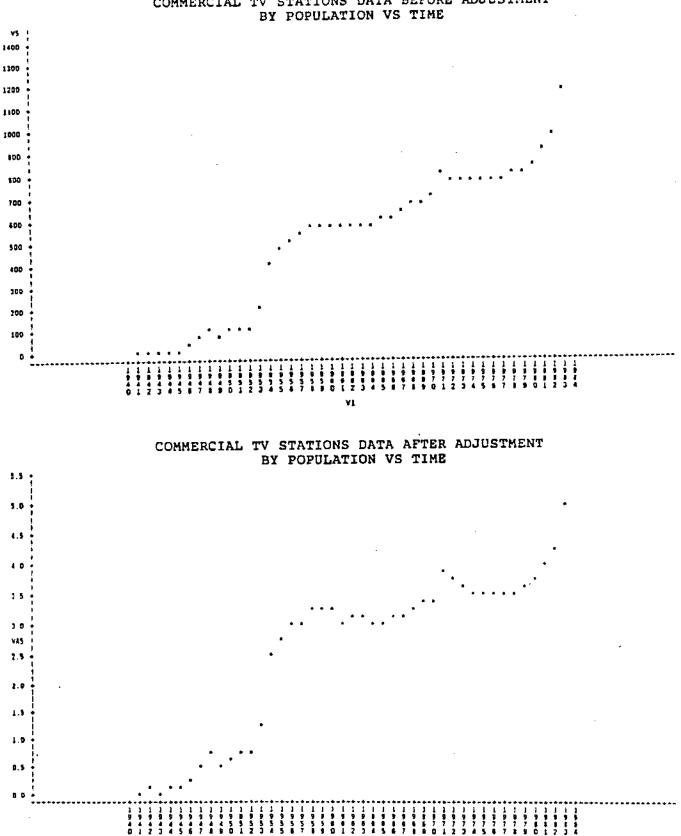

(TP)	(ASRA)	(CFRA)	(NFRA)	(CTRA)	(NTRA)	(CARA)	(PHRA)	(MWRA)	(PORA)
		3,2771	1 74524	3 71485	0 78235	10 0301	547 924	2588 98	161 745
1968	21.0782		1.06197	3.37637	D \$7885	11 2214	572 105	2750 09	159 208
1948	21.1721	10 0189	-	2.31725	0 93137	12 2059	519.004	2950.55	156 873
1970	21.0194	10 4218	2 03922			12 7611	605.131	3123 79	154 483
1971	21.2373	11 4507	2.51451	3.84913	1.04932				151 390
1372	21 1276	L1 7917	2 86192	3 69804	1.08457	13 6120	530.574	1320 59	
	20 9745	12 1097	3,21665	3 61873	1 12110	14 1485	152 791	3557 24	148 463
1973	-		3.58181	2 55137	1.11500	14 1054	\$75 105	3750 59	145 335
1974	20 9423	12 7192	-	3.52204	1 18794	LE .2631	891 415	3160 79	142.710
1975	20 8260	13.2111	3 94432	-	•	18.9184	712 318	4002 76	140 252
1976	70 7950	13 5432	4 19577	3 51103	1.23162				134.458
1977	20.7234	14 1013	4.54959	3.52138	1.20544	17 4340	737 034	4140.13	
	20 8078	14 4349	4 74111	3 53444	1 20866	17 4471	760 919	4331 38	127 407
1971		14.6928	4.95102	3.59305	1.22440	18.4773	783 615	4532 50	.135 793
1979	20 6500			3,71478	1,26761	11.5960	792.254	4700 70	133 477
1910	20 6382	14.9208	5 08803			19.0798	783 720	4153.90	101 835
1901	20 7763	15.5691	5.25512	3.98424	1,29069				
1912	20.8985	18.1944	5 47117	4,21169	1,30888	20.8423	•	4975 24	130.251
		17.5011	5 76808	4 9679L	1.37783	23.9523		5053 49	124 327
161)	21.1211	11.9011				28.3079			125.660
1984		1		•	•				


.

•

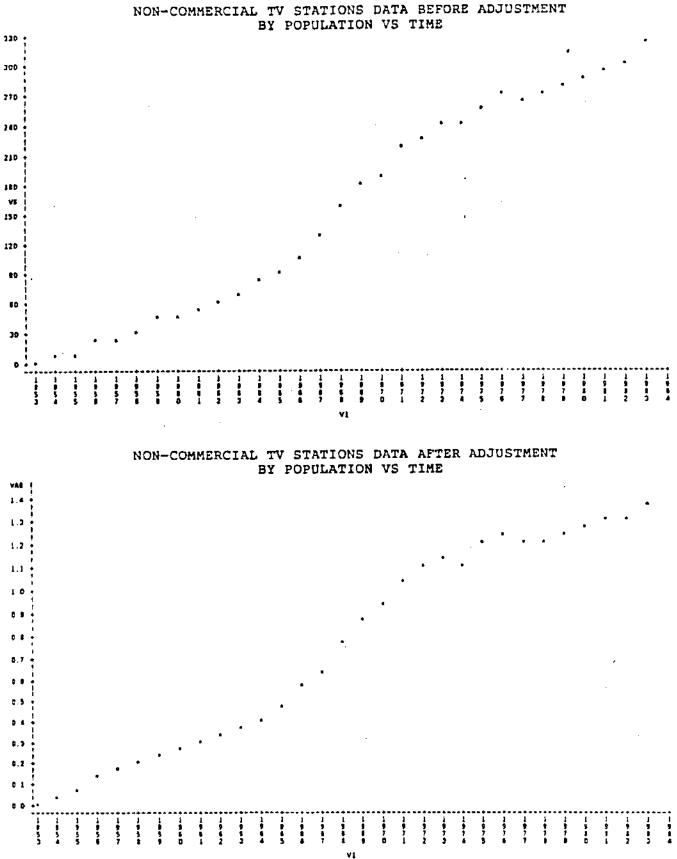
AM RADIO STATIONS DATA BEFORE ADJUSTMENT

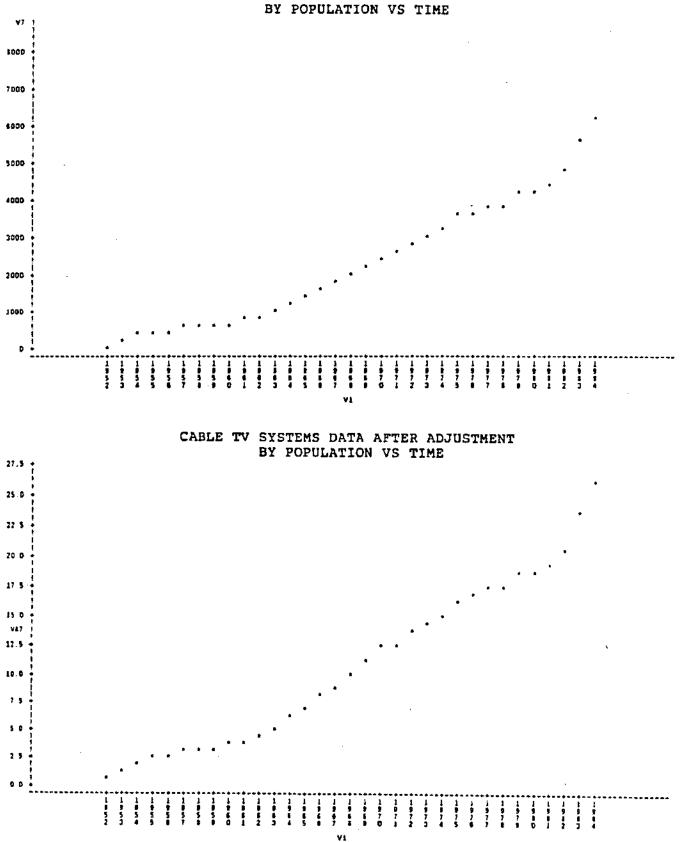
l

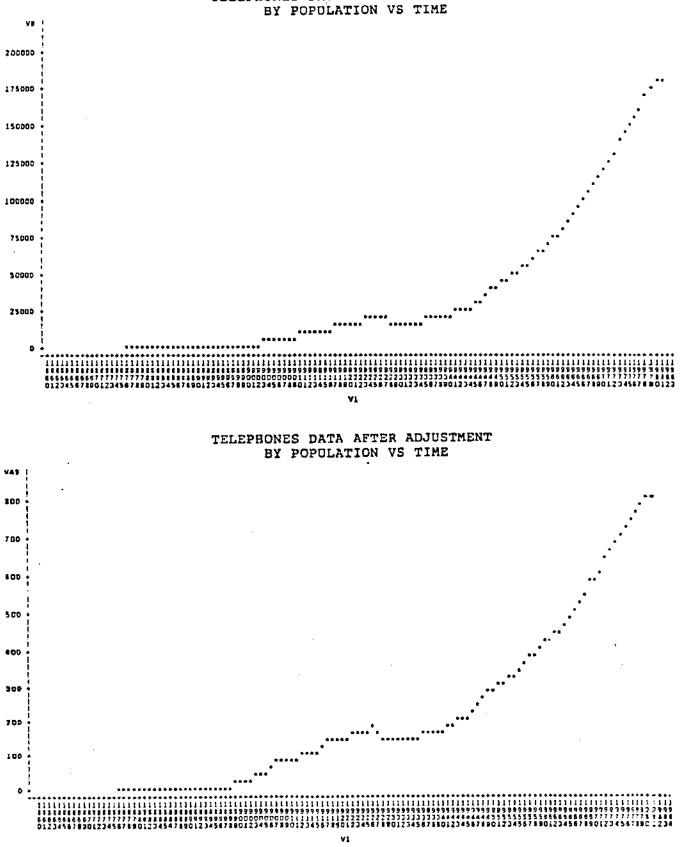

1 ٧I

ŝ ŝ

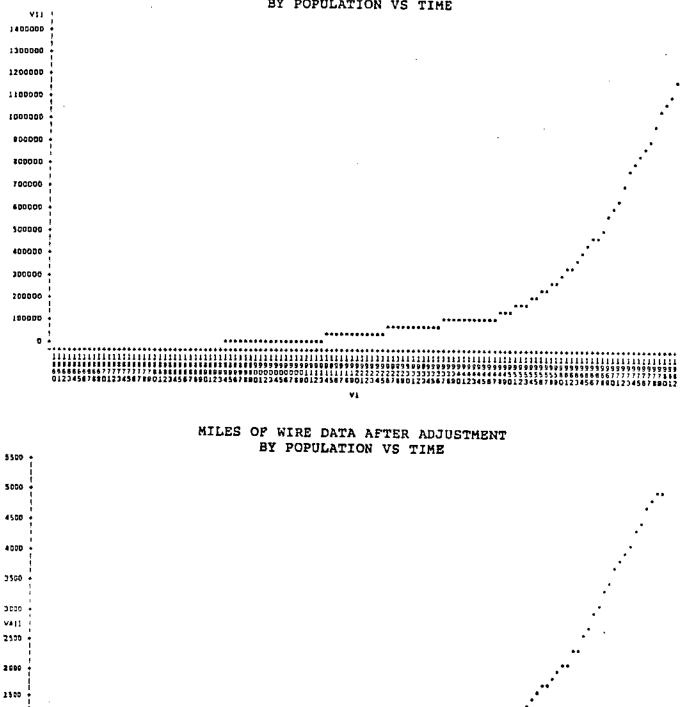
1


û

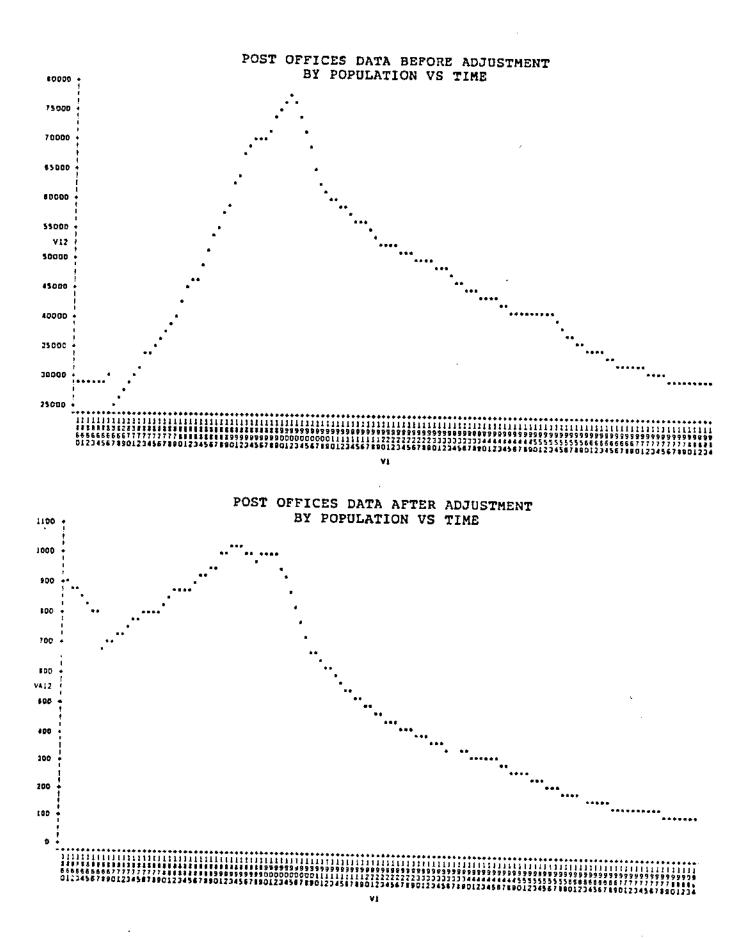

NON-COMMERCIAL FM STATIONS DATA BEFORE ADJUSTMENT


¥1

COMMERCIAL TV STATIONS DATA BEFORE ADJUSTMENT



CABLE TV SYSTEMS DATA BEFORE ADJUSTMENT



TELEPHONES DATA BEFORE ADJUSTMENT

V k

MILES OF WIRE DATA BEFORE ADJUSTMENT BY POPULATION VS TIME

(NBRB)	=	Adjustment by Population Number of Books Raw Data Before Adjustment by
(PERB)	=	Population Periodicals Raw Data Before Adjustment by Population
(NERB)	=	Newspapers Raw Data Before Adjustment by Population
(NCRB)	=	Newspaper Circulation Raw Data Before Adjustment by
(ADRB)	=	Population Average Daily Conversation Raw Data Before
(RSRB)	=	Adjustment by Population Radio Sets Raw Data Before Adjustment by Population
(TSRB)	=	TV Sets Raw Data Before Adjustment by Population
(MHRA)	=	Matter Handled in Post Offices Raw Data After
(NBRA)	=	Adjustment by Population Number of Books Raw Data After Adjustment by
(PERA)	=	Population Periodicals Raw Data After Adjustment by Population
(NERA)	=	Newspapers Raw Data After Adjustment by Population
(NCRA)	=	Newspaper Circulation Raw Data After Adjustment
(ADRA)	-	by Population Average Daily Conversation Raw Data After Adjustment
(RSRA)	=	by Population Radio Sets Raw Data After Adjustment by Population
(TSRA)	-	TV Sets Raw Data After Adjustment by Population

.

(TP) = Time Period

(MHRB) = Matter Handled in Post Offices Raw Data Before

Legends Used

INFORMATION GENERATION VARIABLES DATA AND GRAPHS

APPENDIX C

- (NCBA) = Newspaper Circulation Data in Bits After Adjustment by Population (ADBA) = Average Daily Conversation Data in Bits After Adjustment by Population (RSBA) = Radio Sets Data in Bits After Adjustment by Population (TSBA) = TV Sets Data in Bits After Adjustment by Population
- (NEBA) = Newspapers Data in Bits After Adjustment by Population
- Population (PEBA) = Periodicals Data in Bits After Adjustment by Population
- Adjustment by Population (NBBA) = Number of Books Data in Bits After Adjustment by
- (MHBA) = Matter Handled in Post Offices Data in Bits After
- Population (TSBB) = TV Sets Data in Bits Before Adjustment by Population
- Adjustment by Population (RSBB) = Radio Sets Data in Bits Before Adjustment by
- by Population (ADBB) = Average Daily Conversation Data in Bits Before
- Population (NCBB) = Newspaper Circulation Data in Bits Before Adjustment
- Population (NEBB) = Newspapers Data in Bits Before Adjustment by
- Population (PEBB) = Periodicals Data in Bits Before Adjustment by
- Adjustment by Population (NBBB) = Number of Books Data in Bits Before Adjustment by
- (MHBB) = Matter Handled in Post Offices Data in Bits Before

INFORMATION FLOW DATA BEFORE ADJUSTMENT BY POPULATION

-

(TP)	(MHRB)	(NBRB)		(10000)	(1)000			
	<u>(MIRD)</u>	<u> </u>	(PERB)	(NERB)	(NCRB)	(ADRB)	(RSRB)	(TSRB)
1880 3885		2078 2891						
1832		3472		•				
1111		3481	-			-		
1164		4093						
1485		4030						
1885	3747000	4874		-		·		
1017	3495100	4437		-				
1111	3578100	4631						
1 8 3 9	3660200	4014						
1100	4005403	4550		•				
1881	4389900	4445	-			-		
1192 1893	4774575	4862		•				
1894	\$021841 4918090	5134 4494		·				
1895	5134281	5468		•	·		-	
1896	5093719	5703		-	•	2575 J423		
2 8 8 7	\$781002	4928				4461		
1 = = 3	87 14447	4386			·	5782		
1880	8578310	5321				7709		
1900	7120050	£354				7982		
1901	7424390	8141				11005		
1902	8085447	7833	-			14330		
1903	***7467	2885				15542		
1804	9502460	8291				174#3		
1905	10117506	1112				21471		
1900 1907	11361041	7130 9620				25941		
1901	13344089	9254		•		29784 31985		
1909	14004577	10901	•	•	-	33754		-
1910	14850102	13470				36161		
1911	16900532	11123				36120		-
1912	17548858	10803				40809		
1913	18567445	12230				40973		
1914	10010104	12010				41034		
1915	10464973	9734				44320		
2918	10013542	10445				49578		
1917	20362401	10080				51941		
1910 1910	20811140 21259379	9237 8594	4798			50100		
	21703818	1422	3771	2042	21791	48887 51814		
	22157357	\$329	3747	2020	78424	53755		
1927	22608096	1631	3788	2013	29760	\$7000	180	
1927	22054832	1411	2828	2026	21434	+1430	300	
1974	23884397	1015	4182	2014	32988	84409	1900	
1925	24673982	2574	4498	2000	33738	\$7300	2000	
1924 1927	25461529 28898556	8925 10133	4377 4838	2001 1849	34002	71100	1790	
1928	20037005	10334	4808	1039	37987 37973	73685 77300	2350 3250	
1928	27951548	10107	3157	1944	39426	12850	4424	
9261	27887823	10027	5022	1842	39589	13520	3749	
1831	28544352	10307	4887	1253	3#781	82500	3594	
1932	24306744	9033	4173	1412	36408	11000	2006	
1833	1 * * * * * * * *	6092	3450	1111	23175	72000	4157	
			•					

-

<u>(TP)</u>	(MHRB)	(NBRB)	(PERB)	(NERB)	(NCRB)	(ADRB)	(RSRB)	(TSRB)
1834	20825327	8198	5002	1222	36700	73400	4475	
1925	22231752	8768	8546	1950	38154	76000	6030	
1936	23571315	10436	8570	1985	40292	81954	8749	
1937	25801279	10912	5720	1943	41419	35480	8013	
1938	28041978	11087	8417	1936	38572	87688	7142	
1938	28444848	10840	8348	1888	29671	82311	10763	
1940	27749457	11726	\$432	1878	41132	98783	11871	
1941	2#225791	11172	7143	1157	42010	104310	13842	
1942	30117633	9525	7374	1727	43375	107057	4107	
1947	32818282	8325	7040	1754	44393	105277	7244	
2944	34830885	6970	8672	1744	43955	106329	10101	
1945	37912087	6548	6567	1749	48384	111980	17116	
1946	36318158	7735	5597	1783	50928	124098	15955	6
1947	37427706	9182	7083	1759	51673	139422	20000	179
1942	40280374	9 6 9 7	7346	1701	52285	192120	18500	875
1940	43555108	10332	7570	1780	52848	160511	11400	3000
1950	45063737	11022	8960	1772	53828	170623	13468	7464
1951	46908430	1:255	7835	1773	54018	175923	11928	5785
1952	49905875	11840	7711	1786	53951	181123	10431	6 095
1953	50048258	12050	7792	1785	54472	194229	17852	7716
1954	52213170	11901	8092	1765	55072	201548	10020	7347
1955	55203584	12549	7648	1760	56147	213010	14123	7757
1936	58441218	12538	1711	1781	57102	227244	15318	7387
1957	59077633	13142	8722	1755	57 805	23#570	14505	8349
1958	60129911	13462	\$\$27	1751	57418	252298	11747	4920
1750	61247220	14876	9004	1755	50300	26335D	15622	6349
1950	83574604	15012	1422	1763	56682	285386	17127	5708
1951	64832859	18060	9275	1761	59281	297110	17374	6178
1982	66493190	21904	0403	1760	59849	3165D6	19182	5471
1983	67152738	25714	P 643	1754	58905	328800	1 4 2 8 2	7130
1764	69676477	28451	9792	1783	60412	345200		\$107
1965	71873186	28595	0000	1751	50338	367800	24119	
1966	75607302	30050	10002	1754	01397	389500	23595	8382
1967	78364572	2 8 7 8 2	9238	1749	01301	406000	23598	7285
1968	79316731	20347	9400		62525			\$104
1968	12024501		9434	1752 1758	62D6D	425900	22566	5113
1970	14881833	29579				450200	20545	5309
		36071	9573	1748	62100	415200	44427	9483
1971	6700000	37692	9637	1749	62231	525000	47610	11197
1972	1720000	38053	9690	1761	6251D	546000	55311	17507
1973	6790000	39951	9530	\$774	63147	576000	50198	17367
1974	0100000	40346	8755	1781	81677	613000	43992	15779
1975	000000	39372	9657	1738	60655	627000	34515	\$ D6 7 3
(978	**100000	25141	9372	1761	60976	844000	44101	14131
1977	92200000	42710	8732.	1750	61495	678000	52929	15431
1978	\$0000¢	#121#	4582	1750	63980	733000	4 8035	17407
1379	99500000	43 1 82	9719	1763	42200	756000	40025	10018.
1980	10120000	42377 48793	10236	1745	52200	717000	39974	18532
198) 1982	114211000		10873 10682	1730 1711	\$1400 82500	E00000 932207	44759 44088	18478
1963	119381000		10952	1701	62500	1069014	48535	+406 961
1984	131545000		10100	1598	\$3100	1100220	62030	22364
		•						

r,

.

INFORMATION FLOW DATA AFTER ADJUSTMENT BY POPULATION

<u>(TP</u>	(MHRA)	(NBRA)	(PERA)	(NERA)	(NCRA)	(ADRA)	(RSRA)	(TSRA)
:	•	41.304						
1.883		58.030			•		•	
1882		65.721				•	-	•
1883		84.344			•	•		•
1884		73.819						•
10.05		71.129						•
	84.873	89.707		•	•			•
1887	58.022	74.821					·	•
1833	59.113	78.551		•			•	•
	62 488	84.978				·		
180	83.521	72.301	•	•			•	
1891	\$7.107	72.482		•				•
:	72.740	74.041	•	•	•			•
1492	74.916	78.681					•	•
1894	72.043	85.678	•	•	·			•
1195	73.700	78.800	-	•		3.7008		•
1900	80.323	80.454	•	·	•			-
1\$97	110 08	88.265	•			4,1289		
1488	84.537	48.422		-	•	8.1788		•
1000	87 920	71.137		•	•	7.8401		
1100	83.692	83.522	·			10.3083		•
1001	15.875	104.910	•	-	•	10.3574		•
1802	102.035	81.102		•	•	J4.2590	•	•
1903	110.208	87.501	-	•	-	18,0834		•
1904	115.602	100.304	•		•	19.3325	•	•
1905	121.500	96,202	•	•		21.5243	,	•
1808	133.034	83.585	•	•	•	25.4062	•	•
1907	140.870	110.575	•	•	• .	39.3759	•	
1903	350.866	104.329	·	•	•	34.234	•	
1908	154.747		·	•	•	26,071	1	
1910	160.715	120.453 145.779	•	•	•	37.297	•	
1911	179.985	111.456	•	•	•	38.135		
1912	104.501	214.407	•	•		40.628		
1913	191.023	125.822	·	•	•	42.812		
1914	101.889	121.191	•			42.153		
1915	103.081	11.130	·	·	•	41.407		
1918	105.222	102.402		•	•	44.507		
1017	107.119	97.388		•	-	41.608		
1913	201.653	E1.505	·	-	٠	50.282		
1919	201 444	\$2.233	45.1947	•	-	48.532		
1920	203 . \$37					48.782		
1920	204.215	79,DSD 76.765	35.4015 34.5344	10.1737	280.848	48.852		
		78.458		15.6912	281.972	49.544		
1037	205.223 205.847	78.438	94.4081 94.1878	16,4080 10,1710	270.401 275.739	51.771 53.027	0.10F	•
1824	208.153	74.983	31.4742	17.6512	208.211	54.442	4.464	-
1925	212.074	82.877	38.6250	17.3402	201.350	50.117	13.140 17.271	•
1=24	217.044	84.540	31.0004	17.0443	108.001		34.004	•
1827	224.257	85.338	38.1513	14.3782	318.030	63.835	18.748	
1.828	222.714	15.825	40.7303	10.0813	315.129	44.548	28.871	•
1529	229.437	83.437	42.3398	15.9808	323.685	\$7.857	78.795	-
1830	228.340	01.454	40.7991	J5.7738	321.000	47.847	30.780	
1931	213.895	83.054	38.3795	25.4958	212.337	68.478	20.901	
1937	1\$4.788	72,386	33.4375	15.3213	291,731	61.699	19.500	
1033	198.100	84.427	27.5388	13.2150	210.058	57.225	33.087	

INFORMATION FLOW DATA AFTER ADJUSTMENT BY POPULATION

<u>(TP)</u>	(MHRA)	(NBRA)	(PERA)	(NERA)	(NCRA)	(ADRA)	(RSRA)	(TSRA)
1834	182.178	44.353	78.3728	13.2011	230.410	51.070	25.425	
1535	175 426	41.401	31.4718	15.3141	281.733	50.701	47.384	•
1926	144.007	31.486	52.0827	15.5268	314.536	83.077	84.285	-
1937	200.320	84.720	52.1738	15.3460	321.576	87.143	42.754	
1934	200.032	15.252	48.3881	14.8253	304.089	#7.356	35.023	
1836 -	202.023	181.283	52.2895	14.4232	303.063	70,520	82.223	
1940	209.430	85.484	48.5434	14.1738	319.430	74.552	UD.201	
7843	230.867	\$3.111	\$3.4108	13.8883	314,734	71.015	102.034	•
1842	222.757	79,785	34.7845	13.2784	322.251	71.545	31.000	
1943	242-913	81.621	\$2.1085	12.9830	321.594	72.085	52.620	
1844	280.871	52.054	40.8282	13.0246	343.204	73.408	78.034	
1945	244.193	41.015	41,2428	11,1100	352.000	83.943	81,338	
1848	258.125	54.875	47.3482	12.5302	361.962	11.042	113.387	0.0428
1847	258.734	61.720	48.1574	12.2762	351.581	88.754	131 783	1.7422
1941	274.577	\$7.454	50.0750	12.1404	338.408	101.718	112.474	8.8452
1949	201.720	72.254	50:7033	11.5223	353.858	107.563	76.358	20.0038
1950	228.457	72.581	45.8186	11.6050	254.371	112.320	88.004	49.1376
1621	394,600	73.984	48.5778	11.5130	230.78#	114.238	T7.455	34.0075
1823	310.031	75.703	48.3031	11.4184 '	344.155	115.000	88.484	38.8770
1153	320 428	75.788	48.0063	11.2284	342.581	122.137	30.130	45.2138
1854	322.303	72.508	48.8815	10.8018	340.101	124.488	\$1,829	45.3788
1255	334,540	78.251	48.3234	10.4602	349.078	128.010	15.803	41.0126
1850	335.780	74.307	51.1620	10.4758	220.001	125.184	81.124	43.9441
1157	345.080	78.784	SQ. 9463	10.2312	327.846	130,030	14.725	37.3179
1958	745.37B	77.323	51.2751	10.0574	328.788	144.818	67.472	21.2586
1952	345.834	12.000	52.0417	0.0037	328.193	152.088	FE.210	35.4482
1840	352,748	83.400	46.7689	8.7844	327.122	158.348	45.150	31.7111
1961	354.824		50.0321	8.12275	323.831	102.355	94.940	33,7598
1962	357.875	117.890	51.0318	8.47253	322.115	170.348	103.132	34.8278
1163	235.981	128.785	51.1505	8.30504	312.493	174.445	38.887	
1864	384,607	148.880	51.2718	9.22554	310.128	180.838	1007245	37.8248
1965	371.438	147.778	48.4598	8.04910	311.828	180.079	124.848	42.4228
1968	311.540	153.430	\$1.1350	1.01728	313.801	191.171	120.128	43.3178
1967	388.793	145.030	44.7747	8.85570	311.701	205.570	109,403	37.7444
1968	391.780	152.302	47.1414	8.73836	313.816	234.082	113.170	23.3410
1969	407.172	141.147	48.8421	8.72890	304.143	228.500	102.031	20.1925
1870	418.087	378.818	48.9283	8.30063	304.451	237.943	217.778	20.3005
1971	420.006	182.263	46,8073	8.45745	300.124	253.348	230,222	48.4253
1272	418.827	181.811	48.2572	8.41378	293.882	280.170	284.287	54.1441 14 9349
1873	415.789	188.882	45.5535	8.38167	298.700	272.488	237.455	44.3342
1874	422.415	191.408	45.7327	8.21110	290.094	287.300	204.245	\$2.1523 71.0315
3875	414.315	182.701	44.8121	6.34849	281.482	280.851	140.182	48.1207
1878	412.884	181.484	45.2878	8.06283	210.221	205.050	202.070	##.\$2#7 \$4,\$403
1977	418.472	194.833	44,2765	7.87543	278.777	301.917	240.782	70.2047
3878	442.288	283.874	43.3427	7.80425	278.108	332.022	218.276	71.3748
147#	444.348	201.187	42.2725	7.14851	278.837	224.588	174,224	73.8838
1810	467.170	388.518	45.0528	7.01046	273.788	348.282	174.181	F1.3488
1981	4\$0.157	212.781	47.4192	7,34470	247.771	346,100	182.454	\$0.5887
1083 1083	482.784	•	40.1055	7.38083	248.878	402.481	190.445	70.8883
1984	510.430	·	46.8833 45.8848	7.27358	247.437	457.430	207.001	\$4.2148
		•		?.18253	267.745	301.953	283.281	84.8788

.

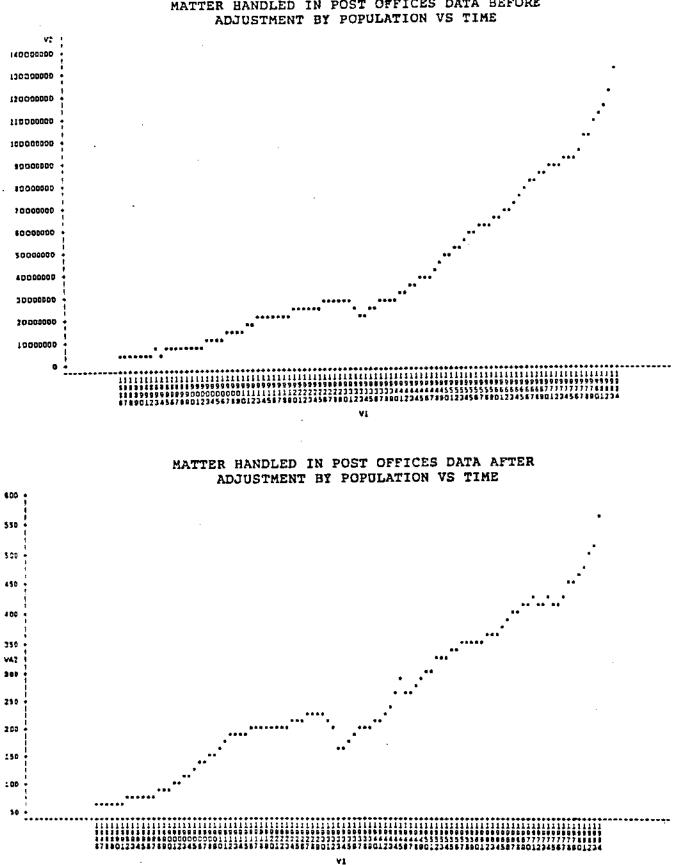
.

INFORMATION FLOW DATA IN BITS BEFORE ADJUSTMENT BY POPULATION

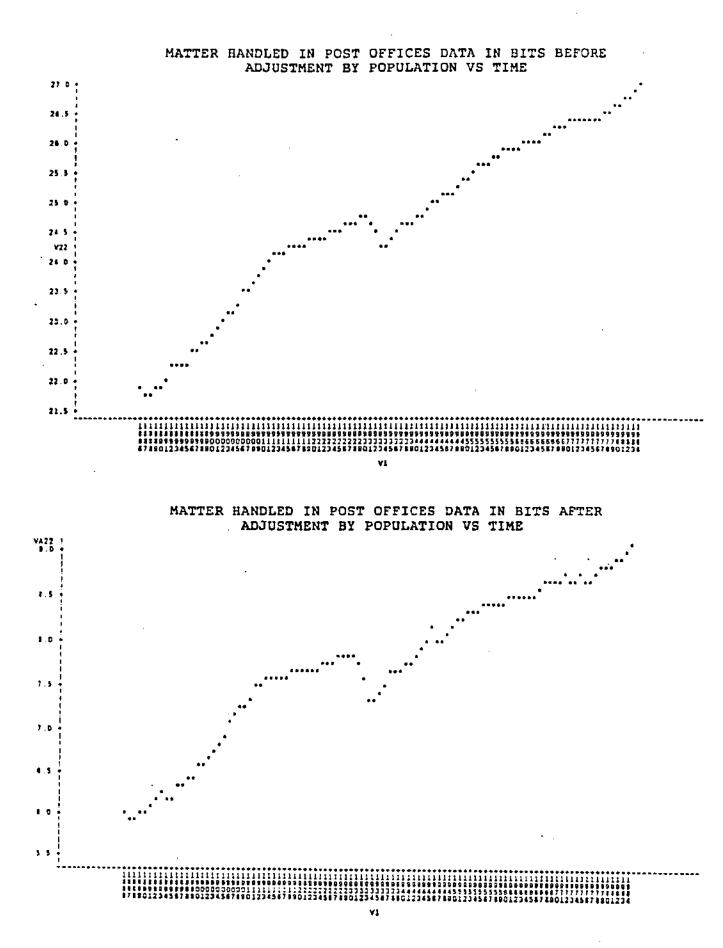
(TP)	<u>(MHBB)</u>	(NBBB)	(PEBB)	(NEBB)	(NCBB)	(ADBB)	(RSBB)	(TSBB)
1880		11 0186					•	
1881	•	J1.5464						
1882		11.7016						
188 7 1887		11.7652	·					
1145		11.9972	•					
1886	21.8373	11.0788	•	•	•			
1007	21.7288	12.1911 12.1154			•		-	
1.8.8.6	21.7700	12.1771	·	·	•	•		
1009	21.4802	13.9704						
1890	21.9375	12.1545						
1991	22.0592	12.1877						
1892	22.1875	12.2473						
1893	72.2591	12.3258			•	•	•	•
1894	22 2300	12.1306		•			•	
1195	22.2917	12 4171				11.3304	·	
100	22 4408	12 4775				11.7410		
1897	22.4828	12.2568				12.1232		
1888	22 5472	12.2544				12 4974		
1488	22.8488	12.3775				12.9123		
1900	22.7655	12 6339		•		12.9443	•	
1001	22.8238	12.9910	• ·		•	13.4337		
1902	22.9488	12.9353			•	13 9061	-	
1001	23.0433	12.9412			•	13.9278		
1904 1905	23.1799 23.2803	13 0173				34.110B		
1906	23 4374	12.0154				34 4038		
1907	23.5488	12 #015 13 2318				14 0829		
1901	23.9718	13.1759		•		14.1022		
1900	23 7384	13 4122				14.9256		
1910	23 8240	13 7175	-			15.0428	•	
1911	24 0106	13 4413		•		15.3421 15.2194		
1912	24 0481	17 4124				15.3095	·	
1913	24.1483	13.5781				15.3724		
1914	24.1807	4152.51				.15 . 37 45		
1915	24,2144	13 7488				15.4518		
1918	24.2473	13 3505				15.5974		
1917	24.2794	13.2963	-		-	15.5848	-	
1918	24.3108	13.1732				15.6127		
1019	24.3418	13.0691	12.2278			15.5772		
1920	24.3718	10 0399	11.007	10.9953	14.7823	15.6611		
- 1921	24.4013	13.0239	11.8715	10.9138	14.7948	15.7141		
1822 1823	24 4302 24 4386	13.0785	11.8872	10.9894	14.0021	15.7887	* 8438	
1824	34.5084	13 1130	11.9028 12.0231	30.9935	14.9410	15.0115	4.9658	
1925	24,3395	13.2249	12.1344	·10.8758	13.0101	25.9746	10.5507	
1825	24.8031	12.2788	12.1402	10.0713	15.0421 15.1350	10.0387 10.1182	10.0050 10.7755	
1927	24 4999	11.3098	12.1058	10.1213	13.2125	18.1887	10.7731 11.1984	
1921	24.8777	13.3370	12.2809	10.9266	15.2127	14.2302	11.0002	
1929	24,7384	12.3144	12.3323	10.9241	15.2668	16.3347	12.1124	
	24.7331	13.2518	12.2840	10.9233	15.2728	18.3498	11.8178	•
	24 9818	13.3313	12.2547	1606.01	15.2423	14.3321	11.0114	
	74.5348 24.2440	13.1413	12.0269	10.2014	15.1520	14.2326	11.2562	
		12.0823	11.7581	10.9001	15.1023	16.1357	17.0213	

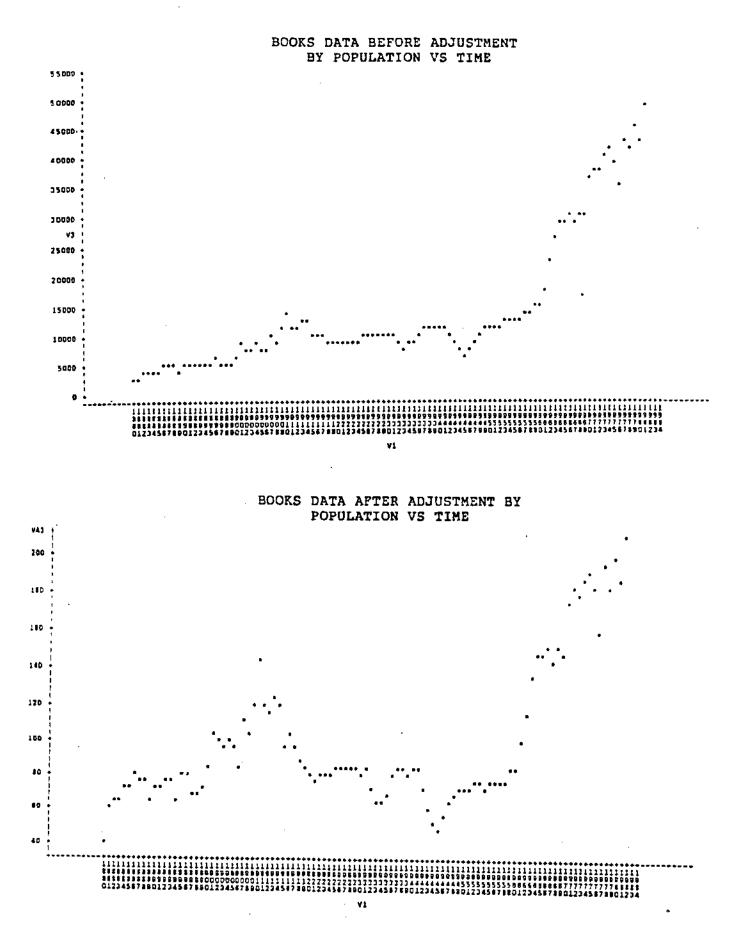
(TP)	(MHBB)	<u>(NBBB)</u>	(PEBB)	(NEBB)	(NCBB)	(ADBB)	(RSBB)	(TSBB)
1934	24.2078	11 0011	12.2883	10.9136	1. 15.1830	16.1675	17 12+0	
1975	24 4128	13.0977	12.6764	10.9293	15.2190	18.2137	12.5578	
2938	24 4905	13.3483	12.7035	10.9578	15.2942	18.3225	0010.C1	
1937	24.8209	13 4138	12.7142	10.0505	15.3380	18.4001	12.9807	
1978	24.8343	13.4340	12.8488	10.0100	15.2722	16 4201	12.8021	
1939	24.6565	13.3772	12.7410	10.0028	15.2754	18 4842	13.3938	
1940	24.7280	13.4578	12.0511	10.0750	15.3280	14.5920	13.5303	
1941	24.8012	13 4398	12.8018	10.8588	15.3404	10.0705	13.7358	
1942	24.8441	12 2175	12.3482	10 8033	15 4048	18 7012	12.0725	
1943	24.0030	13.0232	12.7814	10,7784	15.4380	14.8975	12.0220	
1944	25 0580	12.7655	12.7030	10 7682	15 4878	14 4582	13.3136	
1945	25.1762	12 6768	12.0015	10.7723	15.5522	10.7729	13 6793	
1948	25.1142	12.8172	12 7044	10.7838	15 6362	10.9005	13 9617	2 5150
1947	25.1576	13.1548	12.7801	10.7887	15.8571	17.0391	14.2177	7 4838
1948	25.2030	12.2728	12.8427	10 7985	15.6741	17.2152	14.0102	9 9293
1948	25.3763	13 4110	12.0061	10.7977	15.6095	17.2930	13 4787	11.5507
1950	25 4255	13 4283	12.7849	10.7912	15.7181	17 3405	13.7172	12 1657
1951	25.4833	13 4583	12.1004	10 7820	15.7212	17 4246	12.5421	12 3947
1052	25.5727	13.5314	12.0127	10.0025	15.7184	17.4086	13.3488	12.5736
1952	25.8025	13.5507	12.8278	10.1017	15.7332	17.5874	13 6497	12 1170
1954	25.8279	12.5388	12.9423	10.7855	15.7480	17.8208	13.2917	17 8429
1155	25.7190	13.6188	12.9008	10.7814	15.7788	17.7005	13.7858	12.9213
1958	25.7502	13.8140	13.0198	10.7822	12.1013	17.7939	13.9029	12.1500
1957	25.0101	13.0419	13.0004	10.7773	15.0189	17.8701	13.8243	12 6430
1958	25.8416	13 7186	13.1240	10.7740	15.8082	17.9448	13.5200	12.2644
1950	25 ###1	13.8807	13.1384	10.7773	15.4012	14.0391	C1C8.C1	12 6323
1980	25.8242	13.8738	13.03PB	30.7838	15.0455	18,1228	14.0640	12 4788
1961	25.8524	14.3405	13,1791	10.7822	15.0348	10.1500	14.0848	12.5929
1962	25.8867	34.4189	13.2111	10.7814	12.0690	18,2719	14.7260	12 8588
1963	28.0150	14.6542	13.2353	10.2784	15.8481	18.3271	14 1581	12.7997
1964	28.0542	14.7982	12.2583	10.7832	15 0025	18.3971	1 4 7 2 2 0	12 9130
1965	26.0885	14 1035	13.1341	10.7740	15.8813	13 4888	14.5579	15 0331
1964	26 1720	14.4751	13.2880	10.7784	15.0050	18.5713	14.5262	12 1307
1967	26.2237	34.8128	13.1734	10.7723	15.9097	18,6311	14 4053	12 3174
1982	26.2448	14 8912	13,1984	10.7748	15.8324	11 7035	34 463B	12 5051
1969	26.2192	14.8523	12.2037	10.7791	15 9214	18 2118	14 3262	12 2742
1870	26.3300	15.1300	13.2248	10.7715	15 1225	11.1115	15 4391	17.2111
1971	26,3745	15.2020	13.2374	10 7723	15.1253	19.0020	15 5390	10 4508
1972	28.3778	15.2157	13.2423	10.7122	15.9314	18.0585	15.7553	13 7214
1873	28 3894	15.7850	13.2000	10.7920	15.8464	11.1357	15 0152	14 0041
3874	26.4250	15.3179	13.2510	10.7878	15.8171	18.2255	15 4250	13 8993
1975	28 4122	15.2848	13,2374	10.7781	15.0083	18.256)	15 0749	13.3817
1874	28.4202	15.1000	13.2991	10.7422	15.8000	18.2947	15.4785	12 7888
1277	28 4583	13.3846	13.2485	10.7758	15.0002	10.3731	55 8017	13 9135
1974	24.5383	15.3309	13.7201	10.7781	15.9187	10.4835	15.5518	14 0\$74
1979	28.5725	15 4635	13.2448	10.7 938	15.9741	18.5210	25.2181	14 0205
1980	28.6830 38.7143	15.3710 15.5744	13.3214 13.4085	10.7000	15.9246	10.5600	15.2723	44.1777
1992 1992	28.7642 28.7884	15.5744	13.4005	10.7506	15.8080 15.8316	19.8000 19.8000	15.4388 13.4781	14.1736 14 0019
111)	26.8310		13 4100	10.7322	15.9314	20.0271	15.3667	14.2645
1984	24.8710		17.3888	10.7211	15.9454	20.1837	15 9212	14 4302
					-			

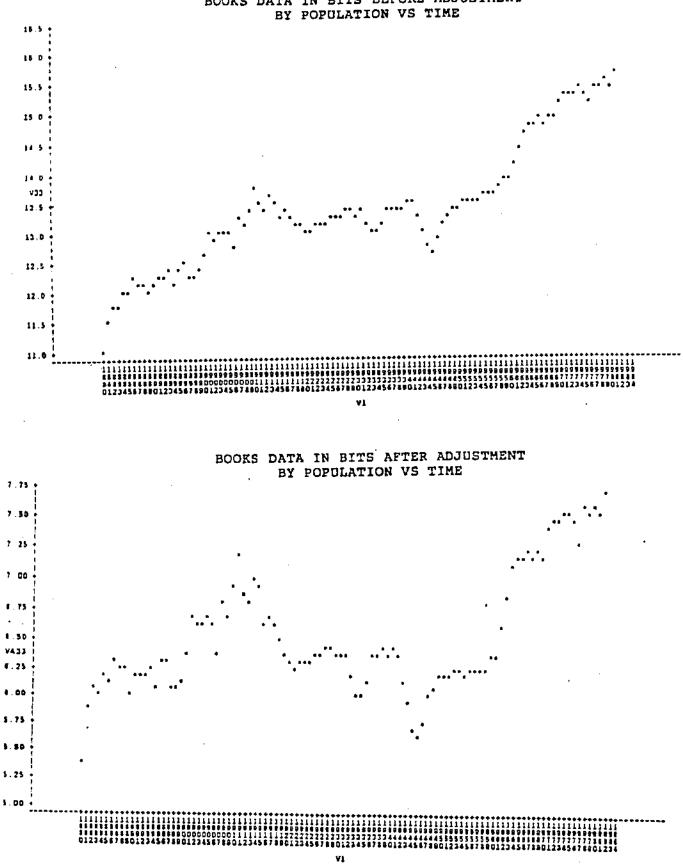
INFORMATION FLOW DATA IN BITS AFTER ADJUSTMENT BY POPULATION

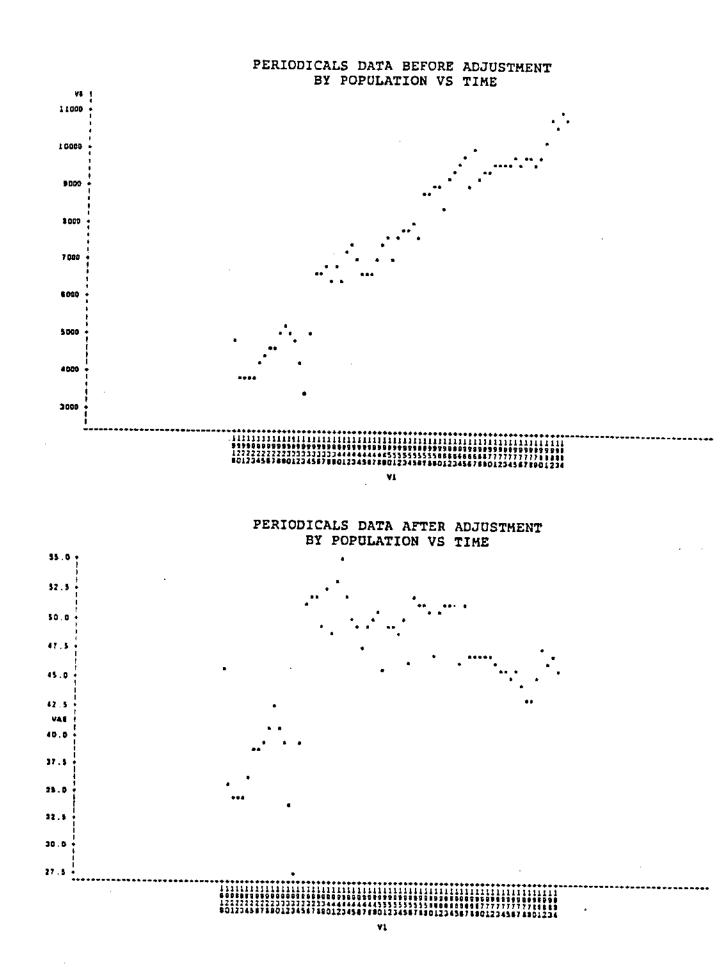

-

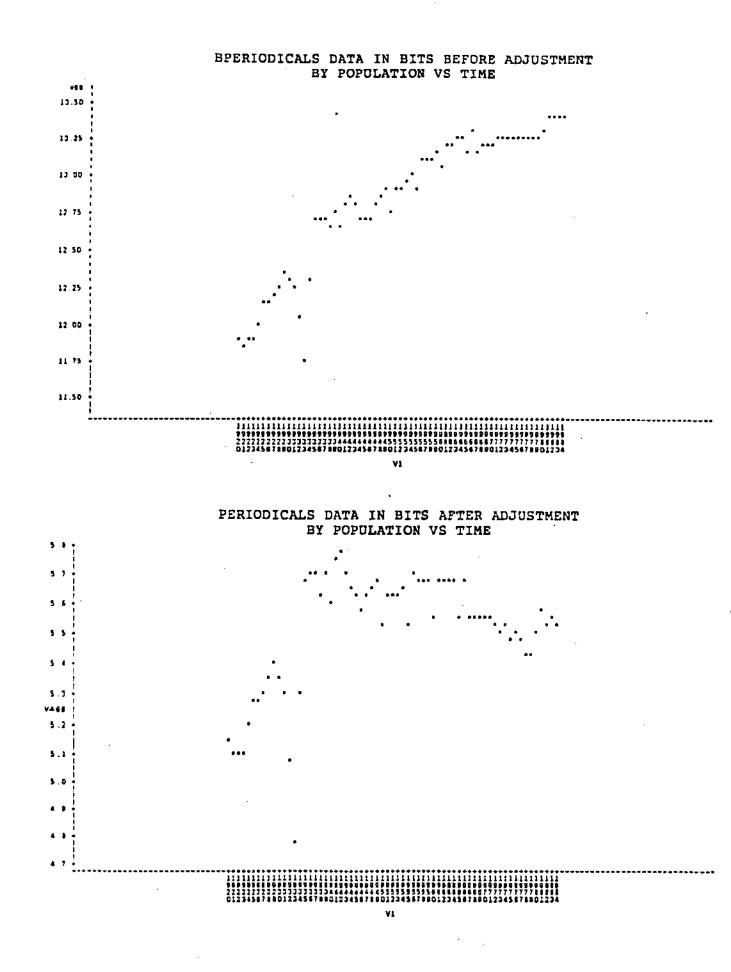
<u>(TP)</u>	(MHBA)	(NBBA)	(PEBA)	(NEBA)	(NCBA)	(ADBA)	(RSBA)	(TSBA)
		5.36818						
1881		5.85874			•			
1882		6.03451						
1111		8.00772			-	•	•	•
1124	-	8.20391				•	•	•
2015		8.15238	•		•	•	•	•
1===	8.01508	5.33482				•	•	•
68.87	5 88318	4.22743						•
1432	5.81540	0.25134						•
1883	5 88551	0.02107						
1890	5.88817	8.17594			•	,		•
1121	8.08527	0.37855						•
1882	8.13489	.21020						•
1183	8.22158	8.20042					-	•
1294	8,17088	8.03728				•		•
1385	8.2D535	8.28846	•	•	•	1.88783	•	•
1100	1.22775	0.33010		•	•		•	•
1897	8.32340	8.08308			•	2.27171		
1144	8.40108				•	2.82752	. '	,
1144	8.45812	£.05488	-	•	•	2.87087	•	•
1000	1.54889	8.15253 8.28408	•	•	4	1.38545	•	•
1001	6.38007	0.71201	•	•	•	3.37258	·	•
1902	8.87388	0.02702	•	•	•	3.83380	•	•
1803	8.78483	4.69152	•	•	•	4,17738	•	•
1904	8.85302	9.15928		•	•	4.27284 4.42780	•	•
1003	8.82543	C.50000			•	4. 93300	•	•
1806	7.05545	8.38574		•	•	4. 62483	•	•
1907	7.13822	4.76686	•	•	-	5.01731	•	•
1906	7.23521	8.70500		·				
1909	7.27379	0.01233	•	•	·	5.17277 5.22100	•	
1910	7.32838	7.10704	•		•			
1911	7.48173	0.08821	·	•		5.28040		
			•	•	•	5.34441		
1912	7.52785		•	•		5.41318		
1913	7.57780	8.87525	•		•	5.38757		
1914	7.53413	0.02114	-			5.37370		
1915	7.58754	0.50777	•			5.47386		
1910	7.80805	8.87830		•		5.0000		
1817	7.02202	8.60565				5.85198		
1010	7.85377 7.88849	6.46391 6.30175				5 80147		
1820	7.87127	4.20524	5.52020 5.34802	4.28108	1.02762	5.54788		
1921	7.87395	1.24231	3.10887	4.22428	3.03327	5.01083		•
1922	7.89175	8.28381	5.10455	6.20972	1 07838	5.89409		•
1922	7.63943	8.30622	3.06540	4.18417	1.13340	5.71200	-0,12001 2,15049	
1824	7.70342	0.30348	3.13881	4.14140	4.17398	5.81868	3.71858	•
1925	7.73521	8.38841	3.27893	4.11903	9.10004	5.44010	4.11028	•
1929	7.78189	8.4013F	5.38480	4.08122	8.29030	5.82187	3,00705	
1827	7.80901	0.41420	3,28089	4.03370	8.31784	5.85195	4 30343	
1070	7.70005	8.42501	3.34803	4.00121	1.29980	8.00338	4.73333	
1929	7.84227	8.28807	3 - 40395	3.99844	1.22148	1.03443	5.18407	
1839	7.82366	8.24782	5.35038	2.97864	1.32013	4.08422	4.84388	
1923	7.74076	8.375BB	5.29937	3.95378	1.28888	4.03482	4.15802	•
1932	7.40558	4.17782	5.08340	2.93615	1.17740	5.84717	4.29273	
1133	7.30350	6.00838	4,78343	3.92742	8,12997	5.#41QB	3.04183	•

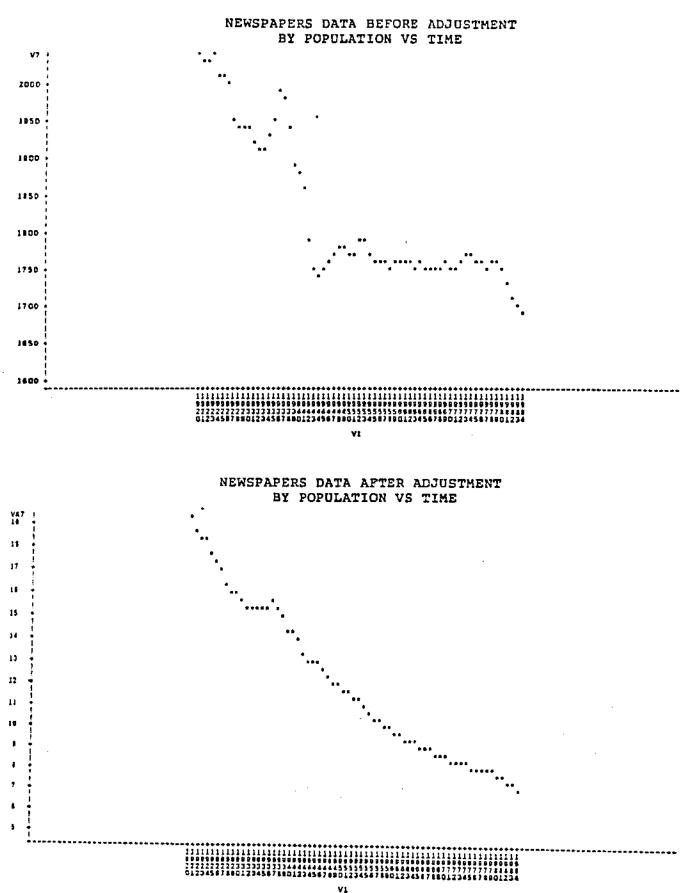

INFORMATION FLOW DATA IN BITS AFTER ADJUSTMENT BY POPULATION

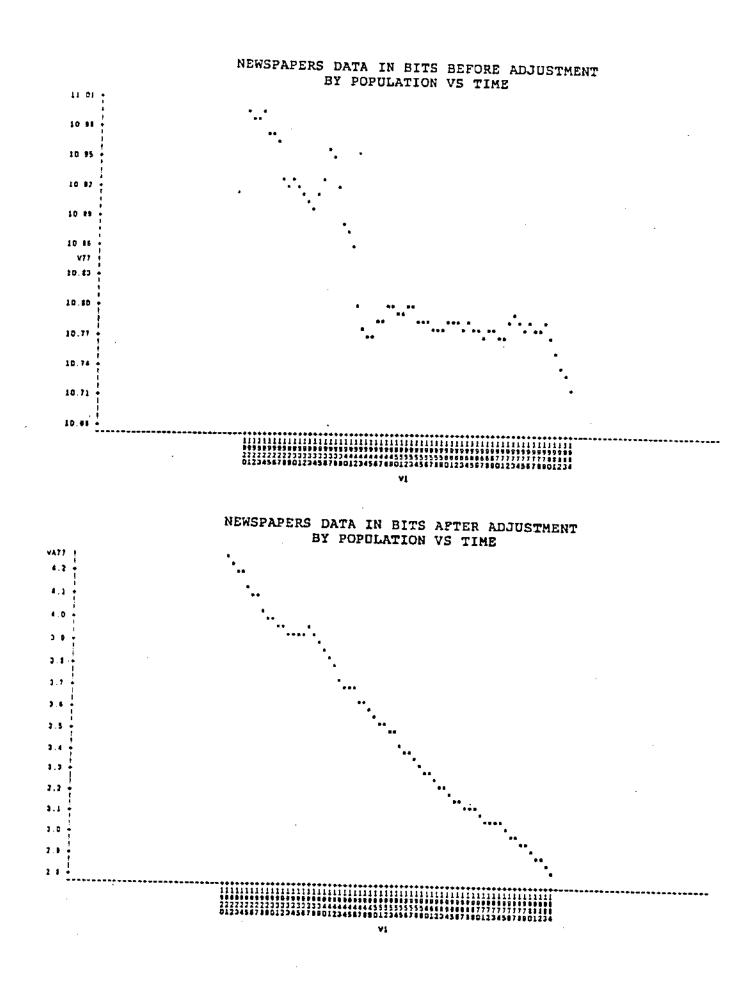

.

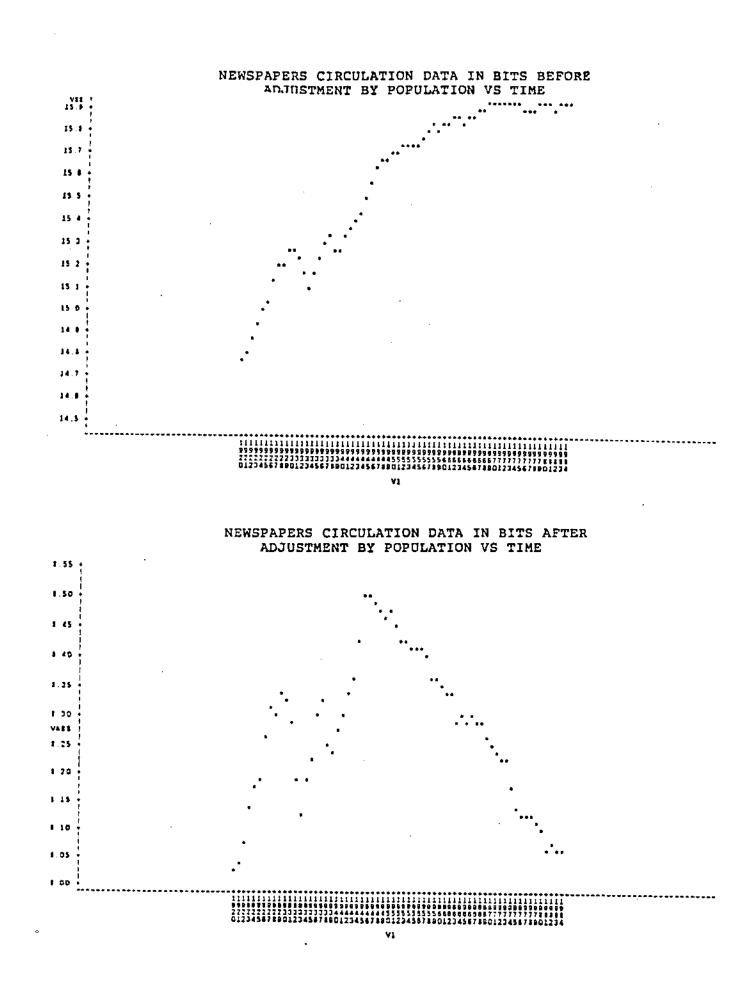

<u>(TP)</u>	(MHBA)	(NBBA)	(PEBA)	(NEBA)	(NCBA)	(ADBA)	(RSBA)	(TSBA)
1934	7.35031	.01820	5.30844	3.83178	8.18188	5.25971		1
1835	7.45472	8.10581	5.88431	2.83717	1.22753	3.40870	3.14711 3.54583	
1938	7.32782	1.34815	5.70234	3.85670	\$.20708	5.68847	4.COLES	•
1837	7.04817	4.40494	5.70326	3.8444	8.37402	\$.07916	5.87109	
1938	7.84840	8.41313	5.82441	3.89872	8.25205	8.07802	5.78187	
1935	7.43171	8.34488	5.70172	3.85032	1.24241	8.13987	8.36147	
1940	7.71032	8.41778	5.80120	3.82513	F. 27813	£.22020		
-1341	7.77258	6.37888	5.73905	2.78580	8.28785	8.24573	8.47201	
1942	7.80578	8.34497	5.77570	3.73078	1.33204	E.31389	4.88882	
1843	7.82433	5.94535	5.70348	3.69255	1.30018	1.25788	5.74488	
1944	8.02720	5.70183	5.43120	3,70317	1 42282	8,31124	8,24158	
1945	1.13073	5.01722	5.82184	3.71270	1.50283	0.30134	4.01905	• •
1944	1.01187	5.71071	5.57184	2.84734	1.48363	1.50644	4.82524	
1847	1.02088	3.88367	5.81822	3.81778	1.41020	4.50824	7.11679	-4.5515
1948	1.10108	\$.07803	5.84802	3.80175	\$.47738	9.00054	8.31345	0.0120
1849	1.20040	8.17891	5.68401	1.57550	8.48744	8.74903	8.23461	2.7325
1850	8.21270	8.14112	5.51739	3.34418	1.49917	8.81155	1.47027	4.0217
1#31	8.25077	8.18148	5.03162	3.52510	1.45437	4.82587	4.27521	5.1278
1952	8.31783	6.24228	5.02381	3.51342	1.43227	1.65550	8.03848	5.2146
3953	1.32380	8.24388	\$.61480	2.48823	1 42034	8.83258	6.33462	5,5041
1956	1.23317	8.19884	5.84332	3.44448	8.41007 .	4.45928	5.83278	5.5040
1855	8.31808	F. 25288	5.53287	3,43418	8.40973	7.01144	0.41056	5.5541
1956	8.38129	8.22084	5.89881	2.38800	1.40208	7.07178	E.3087E	5.4574
1157	4.43079	8.26238	5.87010	3.35772	8.30837	7.12882	8,40472	5.7241
2858	8.43202	8.27283	5.88015	3.33010	8.34544	7.17807	8.07523	4.4207
1950	1.43264	0.39220	\$.88782	3.30883	8.38278	7.24877	8.48287	5.1838
1980	8.48858	6.31188	5.34108	2.20100	1.25369	7.30177	8.57213	4.0000
1961	1.47086	6.82481	5.48343	3.28848	E.33816	7.34301	8 58184	5 01722
1942	E 41331	8.88130	5.47352	2.24375	£.33143	7.41234	1.01135	3.12217
1967	E 48170	7.0#577	5.87885	3.21#01	8.28768	7.4457*	8.59872	5.24127
1984	8.51020	7.21801	5.0000	3.20363	8.30434	7.43996	1.44149	5.40477
1145	C.53888	7.20728	5.53782	3,17777	5.28507	7.57944	1.3111	3.4303B
1966	2.59442	7.28331	5.87624	3.18467	8.28412	7.83757	4. 21 443	5.21805
1867	8.83224	7.18817	5.54788	2.34601	8.28402	7.83348	8.77957	4.69170
1888	F. 83945	7.25183	5.55482	3,13527	8.28285	7 7,4209	6. 12234	4 \$4555
1940	1.68850	7.18837	5 54973	3.12580	1.26741	7.1005	8.87289	4.72030
1970	8.70074	7.48813	3.55233	3.00004	1.25007	7.65387	7.74572	3.33870
1971	1.71504	7.50988	5.54527	3.01022	8.23325	7.98794	7.84833	5.75873
1972	8.70261	7.50820	5.53285	3.07275	1.22237	8.02718	1.04515	6.01198
1973	1.89974	7.56211	5.30849	3.06194	1.22280	8.01985	7.88151	6.38023
1974	1.72250	7.58117	5.51510	2.05136	1.14038	1.16834	7,44821	8.19252
1975	E. 89483	7.51334	5.41512	3.02853	1,13879	1.18463	7.32338	5.62013
1878	1.4535	7.33533	5.50358	3.01004	1.13042	1.20924	7.86288	8.07104
1877	8.71242	7.80480	5.44247	2.88558	8.12823	1.27100	7.81184	8.13350
1978	F.70102	7.52585	5.47105	2.00350	8.12468	1.38648	7.75873	8.20231
1070	8.78334	7.83228	5.45528	2.87280	1.11341	1.30400	7.47734	0.20033
- 1960	£.14888	7.54317	5.45355	2.84119	1.00011	3.43426	7.44445	8.34591
1007	8.80730	7.73228	5.34737	2.81549	1.05439	1.44462	7.38585	B.33251
1942	8.84774	•	3.32834	2.88576	8.07879	1.93349	7.57323	8,14707
1983	L.###70		5.9503#	2.86285	1,01305	8.23745	7.99672	8.38500
1994	9.12437	·	3.91932	2.84047	8.08472	8.00111	1,04051	.38833

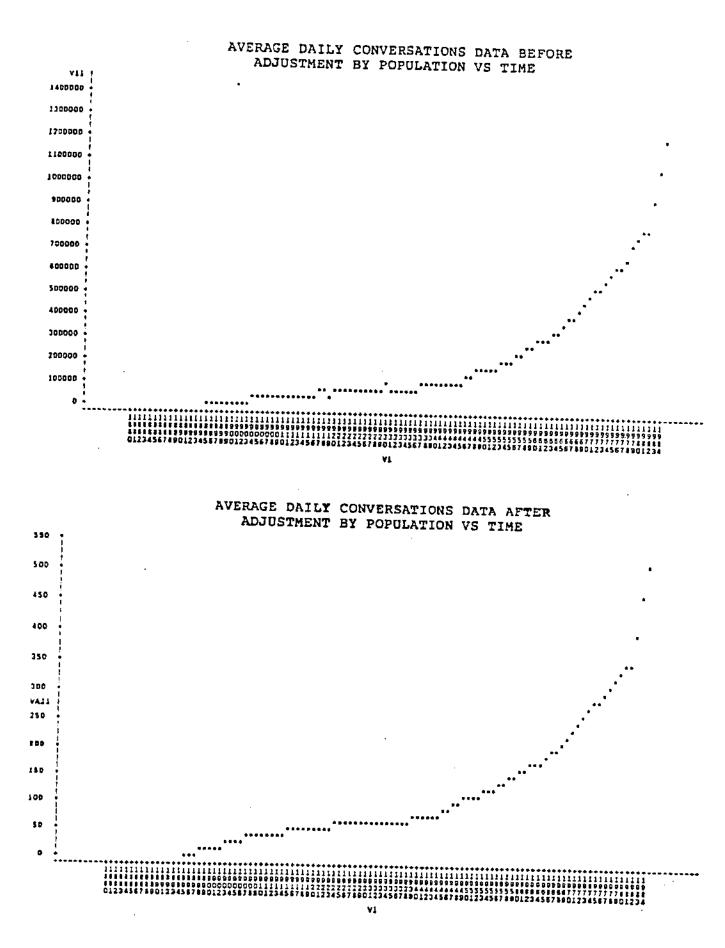

MATTER HANDLED IN POST OFFICES DATA BEFORE

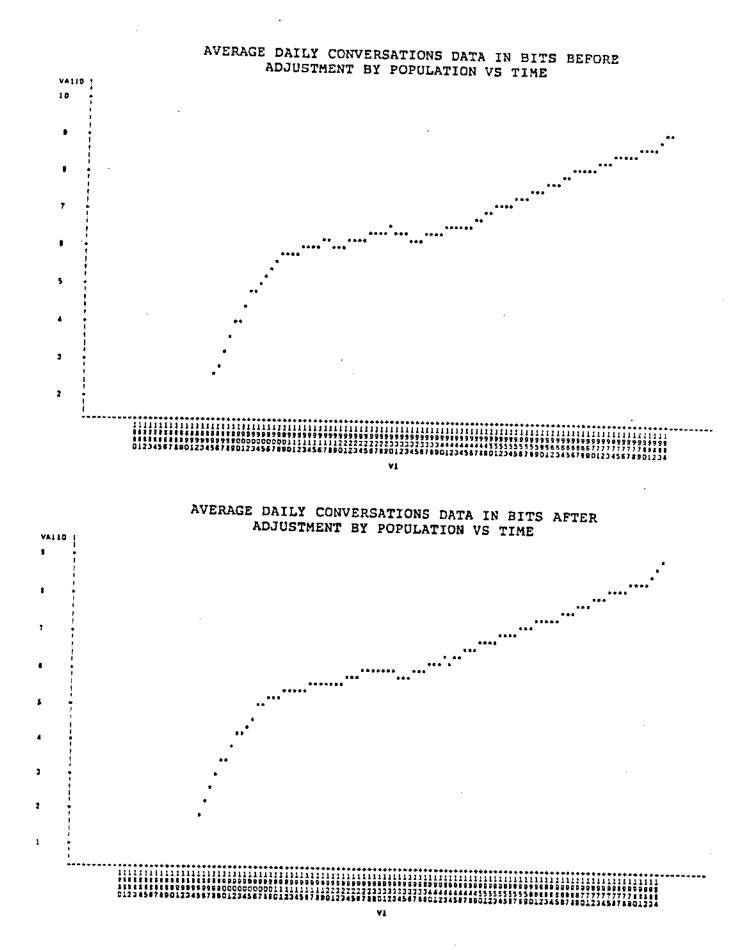


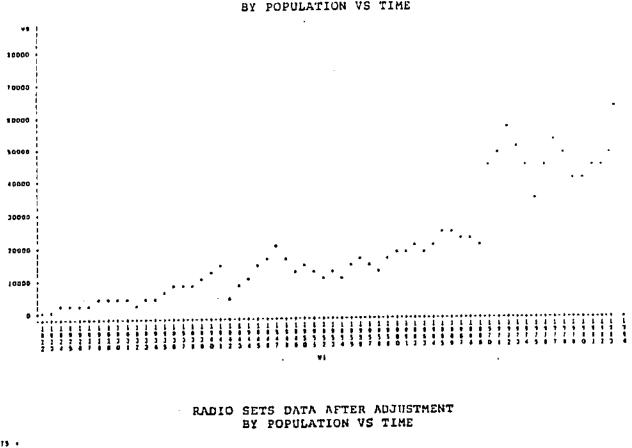


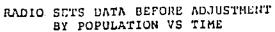

BOOKS DATA IN BITS BEFORE ADJUSTMENT

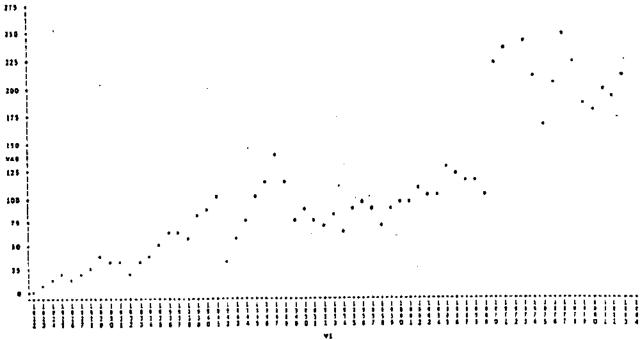


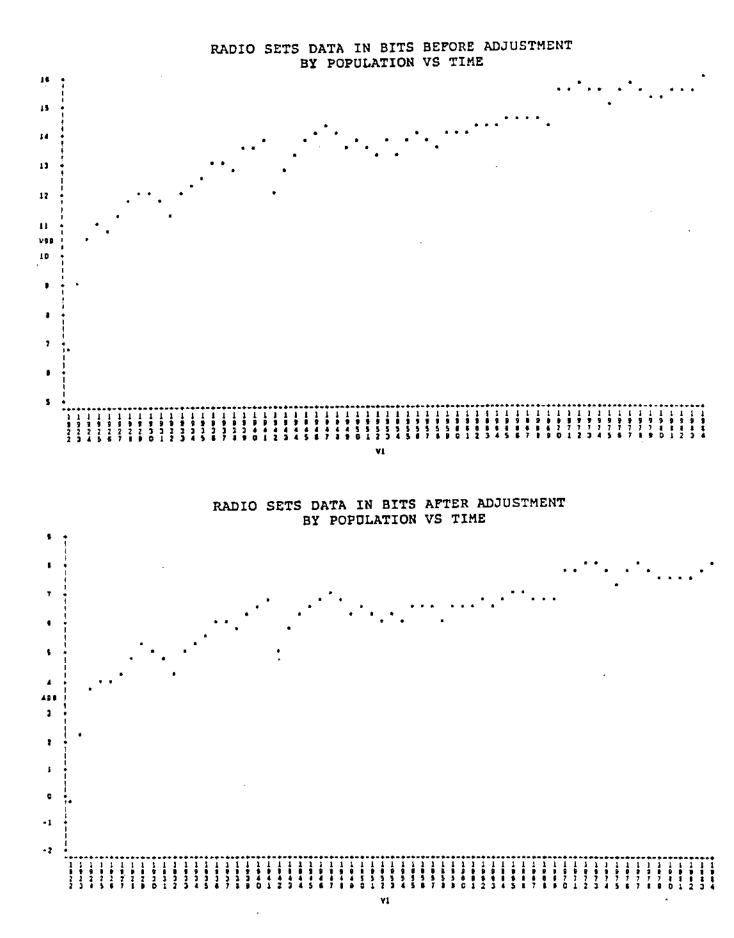


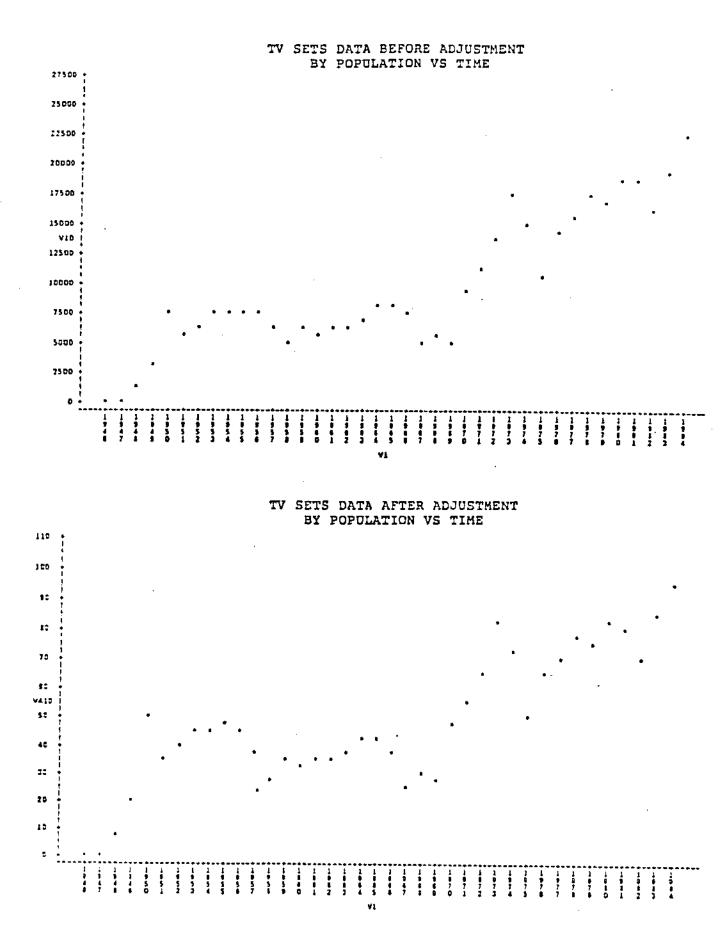

V1

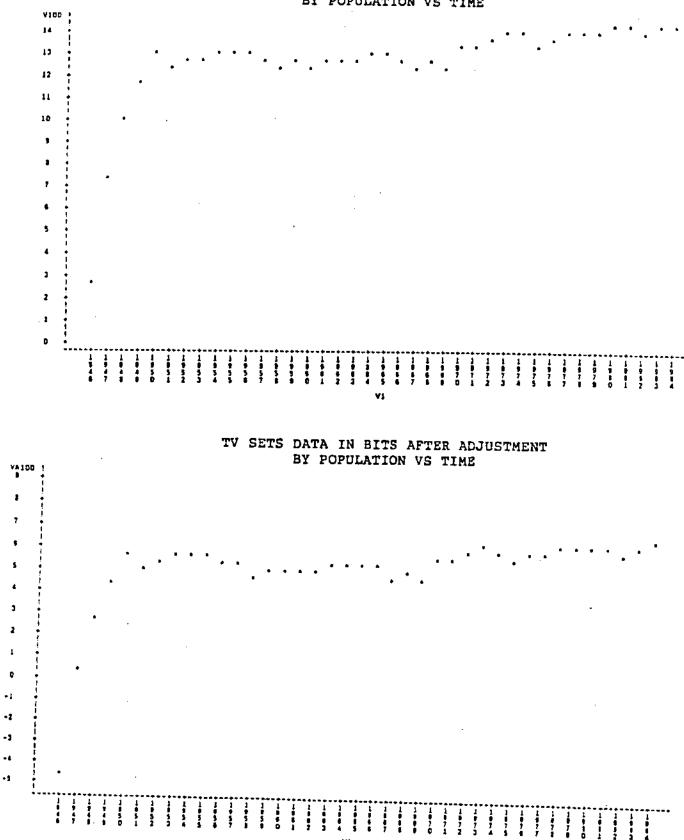


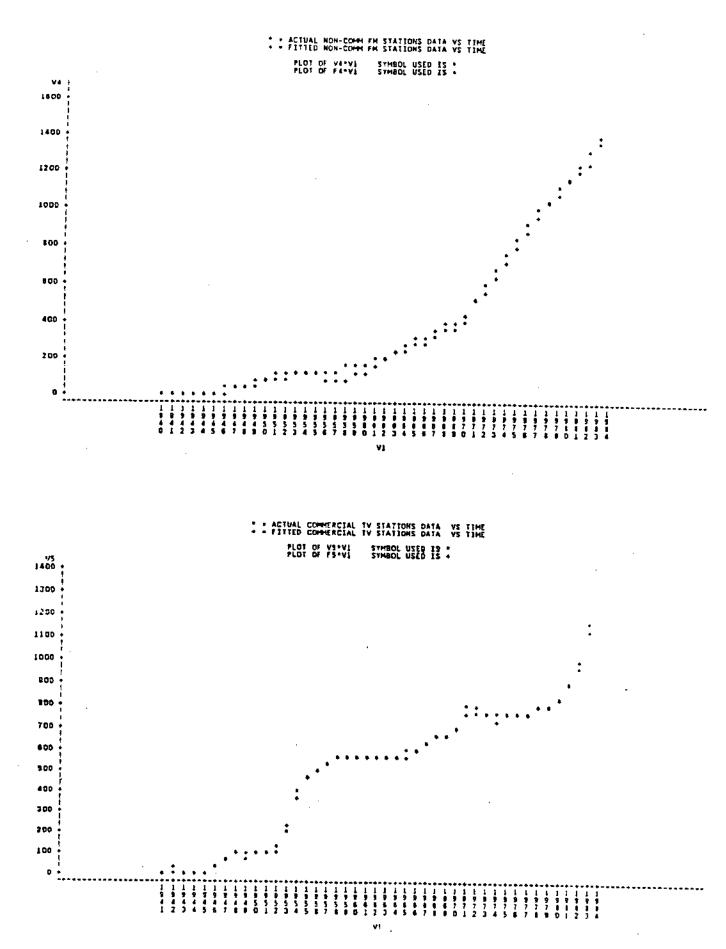




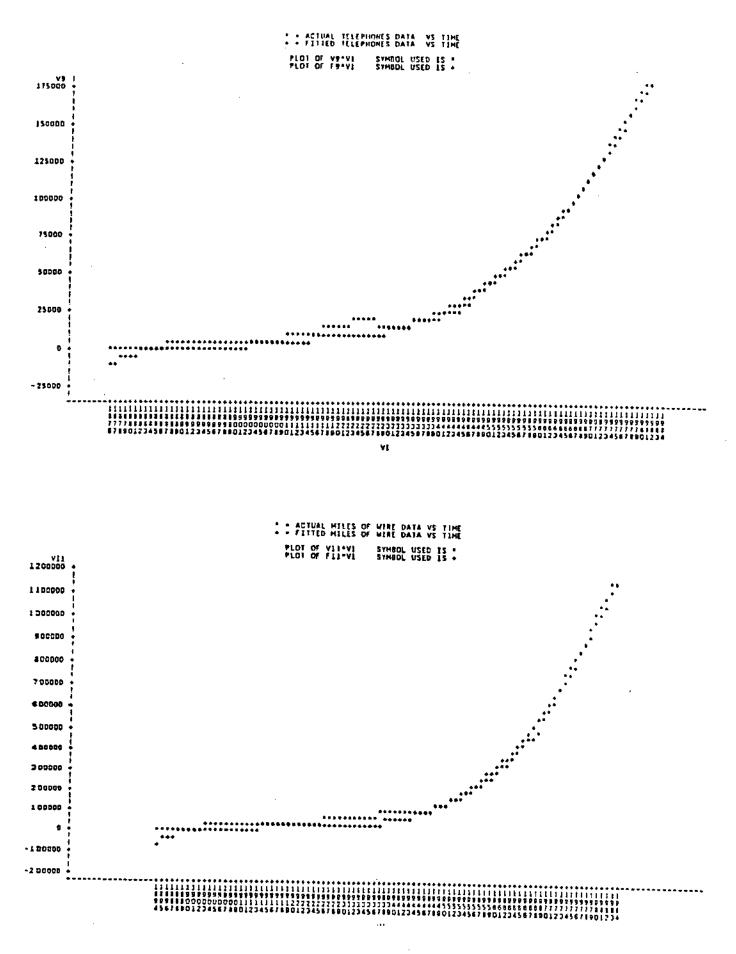


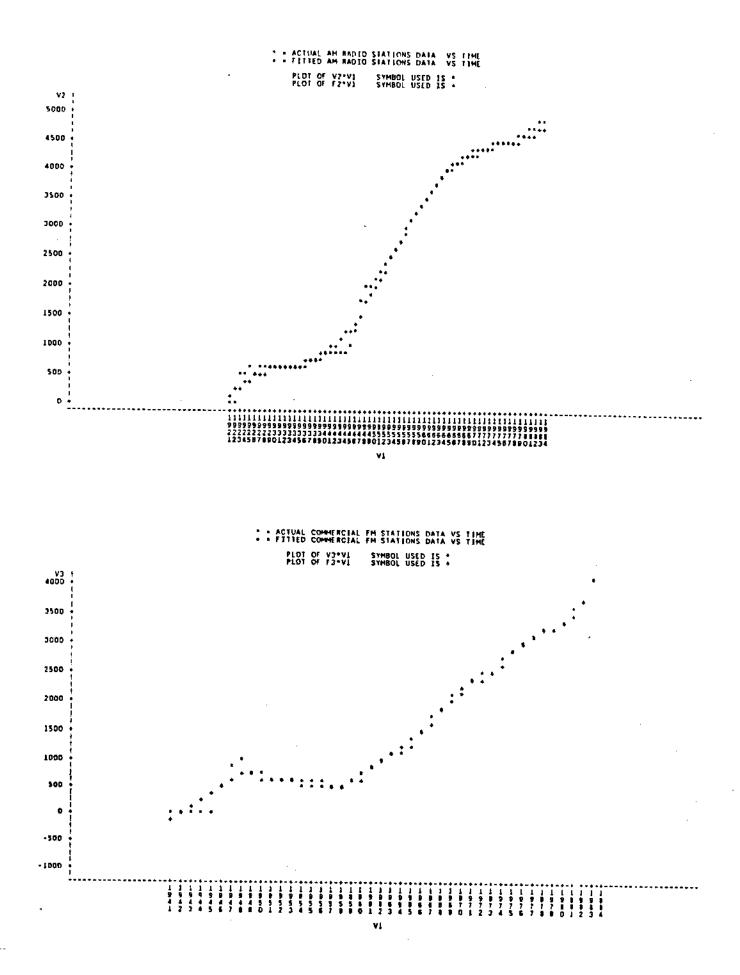


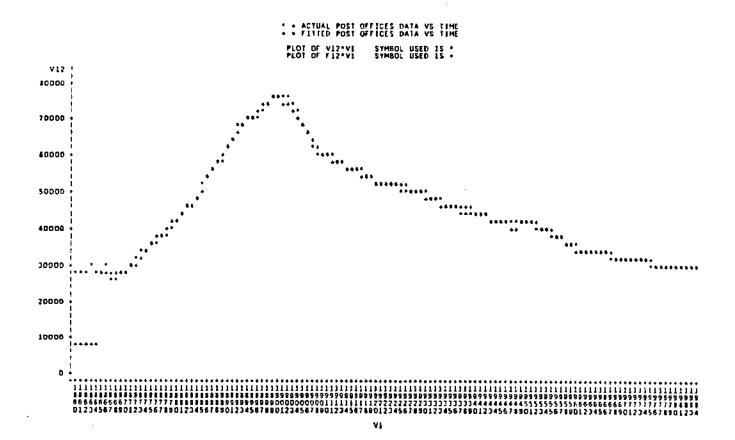




¥1


TV SETS DATA IN BITS BEFORE ADJUSTMENT BY POPULATION VS TIME


APPENDIX D


VALIDATION OF THE FITTING TECHNIQUE (CYCLE REGRESSION)

.

APPENDIX E

FREQUENCY DATA OF FIRST AND SECOND DERIVATIVES FOR THE ORIGINAL DATA OF INFORMATION GENERATION AND INFORMATION FLOW

Classifi- cation	No Adju 1860 ·	ıstment - 1984
	Number	%
PP PN PU NP NN NU NS	34 17 51 Ø Ø 3	38.3 14.8 44.3 Ø Ø 2.6
TOTAL	115	100

Frequency Data of First and Second Derivatives Classification for COPYRIGHTS at alpha = .05

Frequency Data of First and Second Derivatives Classification for INVENTIONS at alpha = .05

Classifi- cation	No Adjustment 1860 - 1984	
Cation	Number	%
PP	26	2Ø.8
PN	35	28.Ø 1Ø.4
PU NP	13	3.2
NN	8	6.4
NU	12	9.6
NS	27	21.6
TOTAL	125	100

Classifi-	No Adjustment	
cation	1860 - 1984	
	Number	%
PP	9	7.2
PN	8	6.4
PU	25	2Ø.Ø
NP	5	4.Ø
NN	2	2.4
NU	15	12.Ø
NS	6Ø	48.Ø
TOTAL	125	100

Frequency Data of First and Second Derivatives Classification for DESIGNS at alpha = .05

Frequency Data of First and Second Derivatives Classification for DOCTORATES at alpha = .05

Classifi-	No Adjustment	
cation	1860 - 1984	
	Number	%
PP	21	18.8
PN	Ø	Ø.Ø
PU	35	31.3
NP	1Ø	9.Ø
NN	Ø	Ø.Ø
NU	8	7.1
NS	8	7.1
TOTAL	112	100

Classifi-	No Adju 1860 -	istment - 1984
cation	Number	%
PP PN PU NP NN NU NS	52 6 1Ø Ø Ø 17	61.2 7.1 11.8 Ø Ø 2Ø.Ø
TOTAL	85	100

Frequency Data of First and Second Derivatives Classification for L.C. HOLDINGS at alpha = .05

Classifi- cation	No Adjustment 1860 - 1984	
	Number	%
PP PN PU NP NN NU NS	49 26 9 Ø Ø 15	49.5 26.3 9.1 Ø Ø 15.2
TOTAL	99	100

Frequency Data of First and Second Derivatives Classification for MATTER HANDLED IN POST OFFICES at alpha=.05

Frequency Data of First and Second Derivatives Classification for BOOKS at alpha = .05

Classifi- cation		istment - 1984
cation	Number	%
PP PN PU NP NN NU NS	47 25 Ø 8 8 4 1Ø	46.1 24.5 Ø 7.8 7.8 3.9 9.2
TOTAL	102	100

Classifi- cation	No Adjustment 1860 - 1984	
	Number	%
PP PN	Ø	Ø
PN PU NP	4 Ø	6.1 Ø
NN NU	Ø	ø
NS	61	93.9
TOTAL	66	100

Frequency Data of First and Second Derivatives Classification for PERIODICALS at alpha = .05

Frequency Data of First and Second Derivatives Classification for NEWSPAPERS at alpha = .05

Classifi- cation	No Adjı 1860 -	ustment - 1984
Cation	Number	%
PP	ø	ø
PN	ø	Ø
PU	4	6.2
NP	7	10.8
NN	7	10.8
NU	17	26.2
NS	ЗØ	46.1
TOTAL	65	100

Classifi- cation	No Adjustment 1860 - 1984	
<u></u>	Number	%
PP PN PU NP NN NU NS	2Ø 28 5 Ø Ø 12	3Ø.8 43.1 7.7 Ø Ø 18.5
TOTAL	65	100

Frequency Data of First and Second Derivatives Classification for NEWSPAPERS CIRCULATION at alpha=.05

Frequency Data of First and Second Derivatives Classification for AVERAGE DAILY CONVERSATIONS at alpha = .05

Classifi- cation	No Adjustment 1860 - 1984	
	Number	%
PP PN PU NP NN NU NS	53 21 Ø Ø Ø 17	58.2 23.1 Ø Ø Ø 18.6
TOTAL	91	100

Classifi- cation	No Adjustment 1860 - 1984	
	Number	%
PP PN	Ø	Ø
FU NP	Ø	Ø Ø
NN NU	Ø	ø
NS	63	100
TOTAL	63	100

Frequency Data of First and Second Derivatives Classification for RADIO SETS at alpha = .05

Frequency Data of First and Second Derivatives Classification for TV SETS at alpha = .05

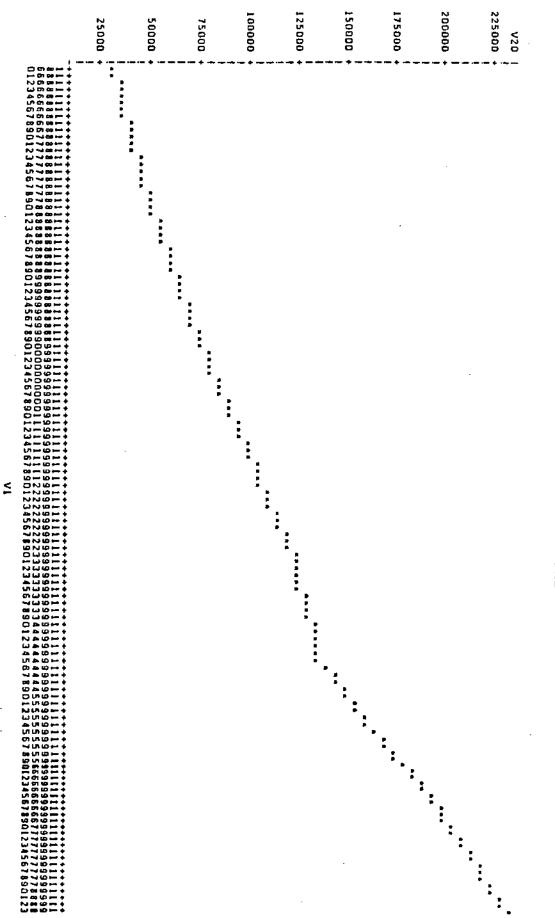
Classifi- cation	No Adjustment 1860 - 1984	
	Number	%
PP PN PU NP NN NU	6 14 6 Ø Ø	15.4 35.9 15.4 Ø Ø
NS TOTAL	13	33.4 100

APPENDIX F

.

.

POPULATION GROWTH DATA AND GRAPH


POPULATION GROWTH DATA IN THE USA

Time	Population	Time	Population
Period	in Thousands	Period	in Thousands
	31531	1891	64361
1860	32351	1892	65666
1861	33188	1893	66970
1862 1863	34026	1894	68275
1864	34863	1895	69580
1865	35701	1896	70885
1866	36538	1897	7.2189
1867	37376	1898	73494
1868	38213	1899	74799
1869	39051	1900	76100
1870	39905	1901	77600
1871	40938	1902	79200
1871	41972	1903	80600
1872	43005	1904	82200
1873	44040	1905	83800
1875	45073	1906	85400
1876	46107	1907	87000
1877	47.141	1908	88700
1878	48174	1909	90500
1879	49208	1910	92400
1880	50262	1911	93900
1881	51542	1912	95300
1882	52821	1913	97200
1883	54100	1914	99100
1884	55379	1915	100500
1885	56658	1916	102000
1886	57938	1917	103300
1887	59217	1918	103200
1888	60496	1919	104500
1889	61775	1920	106500
1850	.3056	1921	108500

POPULATION GROWTH DATA IN THE USA

Time	Population	Time	Population
Period	in Thousands	Period	in Thousands
1922	110100	1954	161900
1923	112000	1955	165100
1924	114100	1956	168100
1925	115800	1957	171200
1926	117400	1958	174100
1927	119000	1959	177100
1928	120500	1960	180000
1929	121800	1961	183000
1930	123100	1962	185800
1931	124100	1963	188500
1932	124800	1964	191100
1933	125600	1965	193500
1934	126400	1965	195600
1935	127300	1967	197500
1936	128100	1968	199400
1937	128800	1969	201400
1938	129800	1970	204000
1939	130900	1971	206800
1940	132500	1972	209300
1941	133700	1973	211400
1942	134600	1974	213300
1943	135100	1975	215500
1944	133900	1976	217600
1945	133400	1977	219800
1945	140700	1978	222100
1947	144100	1979	224600
1948	146700	1980	227200
1949	149300	1981	229300
1950	151900	1982	231500
1951	154000	1983	233700
1952	156400	1984	235671
1953	159000		

•

.

BIBLIOGRAPHY

Books

- Abramson, N., <u>Information Theory and Coding</u>, New York, McGraw-Hill Book Co., 1963.
- Ash, R., <u>Information</u> <u>Theory</u>, New York, John Wiley & Sons Inc., 1965.
- Attneave, F., <u>Application of Information Theory to</u> Psychology, New York, Henry holt, 1959.
- Balsley, H., <u>Basic</u> <u>Statistics</u> <u>for</u> <u>Business</u> <u>and</u> <u>economics</u>, Columbus, Ohio, GRID, INC., 1978.
- Bar-Hillel, Y., <u>Language</u> and <u>Information</u>, Cambridge, Mass., Addison-Wesley, 1964.
- Barnes, B., <u>Interests</u> and the <u>Growth</u> of <u>Knowledge</u>, London, England, Routledge & Kegan Paul Ltd., 1977.
- Bell, D., <u>The Coming of Post-Industrial Society</u>, New York, Basic Books Inc., 1973.
- Bhasker, R., <u>A Realist Theory of Science</u>, Sussex, England, Harvester Press, 1978.
- Boulding, K., <u>The Image: Knowledge in Life and Society</u>, Ann Arbor, Michigan University Press, 1956.
- Bowerman, B., R. O'Connel, and D. Dicky, <u>Linear Statistical</u> <u>Models: an Applied Approach</u>, Boston, Mass., Duxbury Press, 1986.
- Bowerman, B. and R. O'Connell, <u>Time Series and Forecasting:</u> <u>An Applied approach</u>, LA, California Duxbury Press, 1976.
- Brillouin, L., <u>Science and Information Theory</u>, New York, Academic Press, 1962.
- Burke, J., <u>Connections</u>, Boston, Mass., Little, Brown and Co., 1978.

- Debons, A. and J. Cameron, editors, <u>Perspectives</u> in <u>Information Science</u>, Leyden, Noordhof, 1975.
- Debons, A., <u>Information Science:</u> <u>Search for Identity</u>, New York, New York, Marcel Dekker, 1974.
- Dretske, F., <u>Knowledge</u> and the <u>Flow</u> of <u>Information</u>, Cambridge, Mass., The MIT Press, 1981.
- Forester, T., editor, <u>The Microelectronics Revolution</u>, Cambridge, Mass., The MIT Press, 1981.
- Fox, C., <u>Information and Misinformation:</u> an <u>Investigation of</u> <u>the Notions of Information, Misinformation, Informing,</u> <u>and Misinforming</u>, Wesport, Connecticut Greenwood Press, 1983.
- Fraasen, V., <u>The Argument Concerning Scientific Realism</u>, LA, California, University of Southern California Press, 1977.
- Gassmann, H. P., editor, <u>Information, Computer and</u> <u>Communications Policies for the 80's</u>, Amsterdam, Holland, North- Holland Publishing Co., 1981.
- Griffith, B., editor, Key Papers in Information Science, White Plains, New York, Knowledge Industry Publications, Inc., 1980.
- Guile, B., editor, <u>Information Technologies and Social</u> <u>Transformation</u>, Washington, D.C., National Academy Press, 1985.
- Hammer, D. P., editor, <u>The Information Age: Its Development</u>, <u>Its Impact</u>, Metuchen, New York, The Scarecrow Press, Inc., 1976.
- Hancock, J., <u>An Introduction to The Principles of</u> <u>Communication Theory</u>, New York, McGraw-Hill Book Company, 1961.
- Harman, W. W., <u>Principles of the Statistical Theory of</u> <u>Communication</u>, New York, McGraw-Hill Book Co., 1963.
- Haylock, E. W., editor, <u>Paper:</u> <u>Its</u> <u>Making</u>, <u>Merchanting</u>, <u>and</u> <u>Usage</u>, England, London, The National Association of Paper Merchants, 1974.
- Jones, D. S., <u>Elementary</u> <u>Information</u> <u>Theory</u>, Oxford, England, Clarendon Press, 1979.

- King, D. W., editor, <u>Key Papers in the design and</u> <u>Evaluation of Information Systems</u>, White Plains, New York, Knowledge Industry Publications, Inc., 1978.
- Kochen, M., editor, <u>The Growth of Knowledge: Readings on</u> <u>Organization and Retrieval of Information</u>, New York, New York, John Wiley & Sons Inc., 1967.
- Knorr-Cetina, K., <u>The Manufacture of Knowledge</u>, Oxford, England, Pergamon Press, 1981.
- Lev, B., <u>Accounting and Information Theory</u>, Evanston, Illinois, American Accounting Association, 1969.
- Machlup, F., <u>Knowledge:</u> <u>Its Creation, Distribution, and</u> <u>Economic Significance</u>, Vol. III, Princeton, N.J., Princeton University Press, 1984.
- Machlup, F., <u>Knowledge:</u> <u>Its Creation</u>, <u>Distribution</u>, <u>and</u> <u>Economic</u> <u>Significance</u>, Vol. II, Princeton, N.J., Princeton University Press, 1982.
- Machlup, F., <u>The Production and Distribution of Knowledge</u> <u>in the United States</u>, Princeton, N.J., Princeton University Press, 1962.
- Nauta, D., <u>The Meaning of Information</u>, The Hague, The Netherlands, Mouton & Co., 1972.
- Pachner, J., <u>Handbook of Numerical Analysis</u> <u>Applications</u>, New York, New York, McGraw-Hill Book Co., 1984.
- Phillip, R., editor, <u>Funk & Wagnalls New Encyclopedia</u>, R. R. Donnelley & Son Co., 1983.
- Price, D. D., <u>Little Science</u>, <u>Big Science</u>, New York, Cambridge University Press, 1963.
- Price, D. D., <u>Science Since Babylon</u>, Binghamton, New York, Vail-Ballou Press, 1961.
- Raisbeck, G., <u>Information Theory</u> : <u>an Introduction for</u> <u>Scientists and Engineers</u>, Cambridge, Mass., The MIT Press, 1963.
- Saracevic, T., <u>Introduction to Information Science</u>, New York, New York, Bowker Publishing Co., 1970.
- Shannon C. E. and W. Weaver, <u>The Mathematical Theory of</u> <u>Communication</u>, Urbana, Illinois, The University of

Illinois Press, 1949.

- Simmons. L. F. and D. R. Williams, <u>Statistical Analysis for</u> <u>Business: A Conceptual Approach</u>, Belmont, California, Wadsworth Publishing Co., Inc., 1976.
- Stern, B. T., editor, <u>Information and Innovation</u>, Amsterdam, Holland, North-Holland Publishing Co., 1982.
- Tally, R. D. and R. R. Deultgen, editors, <u>Information</u> <u>Choices and Policies: Proceedings of the ASIS Annual</u> <u>Meeting</u>, Vol. 16, White Plains, New York, Knowledge Industry Publications, Inc., 1979.
- Theil, H., <u>Economics</u> and <u>Information</u> <u>Theory</u>, Chicago, Illinois, Rand McNally and North Holland Publishing Co., 1967.
- White, D. J., <u>Decision</u> <u>Theory</u>, London, England, Allen and Unwin Publishing Co., 1969.
- Zill, D., E. Beckenbach, W. Wooton, I., Drooyan, <u>College</u> <u>Mathematics</u>, Belmont, California, Wadsworth Publishing Co., 1982.
- Zmud, R. W., <u>Information</u> <u>Systems</u> in <u>Organizations</u>, Glenview, Illinois, Scott, Foresman and Company, 1984.

Articles

- Abdel-Khalik, A. R., "The Entropy Law, Accounting Data, and Relevance to Decision-Making," <u>The Accounting Review</u>, (April, 1974), pp. 271-283.
- Allen, T., "Organizational Aspects of Information Flow in Technology," <u>Key Papers in Information Science</u>, edited by B. Groffith, White Plains, New York, Knowledge Industry Publications, Inc., 1980, pp. 74-95.
- Bandyopadhyay, R., "Information for Organizational Decisionmaking--A Literature Review" <u>IEEE Transactions</u> <u>on Systems, Man. and Cybernetics</u>, SMC-7, No. 1, (January, 1977), 1-15.
- Bedford, N. and L. Lee, "An Information Theory Analysis of the the Accounting Process," <u>The Accounting Review</u>, (April, 1969), pp. 256-275.

- Bedford, N. and M. Onsi, "Measuring the Value of Information--An Information Theory Approach," <u>Management Science</u>, (January, 1966), pp. 15-22.
- Bedford, N. and V. Baladouni, "A Communication Theory Approach to Accounting," <u>The Accounting Review</u>, (October, 1962), pp. 650-659.
- Belkin, J., "Information Concepts for Information Science," Journal of Documentation, 34, (1978), 55-85.
- Belkin, J. and S. Robertson, "Information Science and the Phenomenon of Information," <u>Journal of the ASIS</u>, 27, (1977), 197-210.
- Bell, D., "The Social Framework of the Information Society," <u>The Microelectronics Revolution</u>, edited by T. Forester, Cambridge, Mass., The MIT Press, 1981.
- Boatwright, B., "The Employment Consequences of Rapid Technological Change," <u>Information, Computer and</u> <u>Communications Policies for the 80's</u>, edited by H. P. Gassman, Amsterdam, Holland, North-Holland Publishing Co., 1981, pp. 91-106.
- Bostwick, C. L., "The Use of Information Theory in Accounting," <u>Management Accounting</u>, XLIX (June, 1968), 11-17.
- Burk, G., "Knowledge, the Biggest Growth Industry of Them All," Fortung, (November, 1964), pp. 1-9.
- Caspari, J. A., "Fundamental Concepts of Information Theory," <u>Management Accounting</u>, XLIX, (June, 1968), 8-10.
- Dow, J. T., "A Metatheory for the Development of a Science of Information," <u>Journal of the ASIS</u>, 28, (1977), 323-331.
- Faibisoff, S. and D. Ely, "Information and Information Needs," <u>Key Papers in the Design and Evaluation of</u> <u>Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 270-287.
- Fairthorne, R. A., "Information: One Label, Several Bottles," <u>Perspective in Information Science</u>, edited by A. Debons and J. Cameron, Leyden, Noordhof, 1975, pp. 65-73.

, "'Use' and 'Mention' in the Information Sciences," <u>Proceedings of the Symposium on Education for</u> <u>Information Science</u>, edited bt L. Heilprin, Washington, D.C., Spartan Books, 1965.

- Fallwell, W., editor, "Information Explosion Closer to Control," <u>Chemical & Engineering News</u>, (December 20, 1971), pp. 28-36.
- Farradane, J., "The Nature of Information," <u>The Journal of</u> <u>Information Science and Practices</u>, 1, (1979), 13-18.

_____, "Towards a True Information Science." <u>The</u> <u>Information Scientist</u>, 10, (1976), 91-101.

- Garvey, W. and B. Griffith, "Scientific Communication: its Role in the Conduct of Research and Creation of Knowledge," <u>Key Papers in Information Science</u>, edited by B. Griffith, White Plains, New York, Knowledge Industry Publications, Inc., 1980, pp. 38-57.
- Goffman, W., "A General Theory of Communication," <u>Introduction to Information Science</u>, New York, New York, Bowker Publishing Co., 1970, pp.762-747.
- Hopkins, C., "Possible Applications for Information Theory to Management Control," <u>IRE Transactions Engineering</u> <u>Management</u>, EM-8, No. 1, (March, 1961), 40-48.
- Jaynes, T., "Prior Probabilities," <u>IEEE Transactions on</u> <u>Systems Science and Cybernetics</u>, SSC-4, No. 3, (September, 1968), pp. 227-240.
- Karlsruhe, "Repercussions on the Economy and the Labour Market," <u>Information, Computer and Communications</u> <u>Policies for the 80's</u>, Amsterdam, Holland, North-Holland Publishing Co., 1981.
- King, D. and others, "Statistical Indicators of Scientific and Technical Communication (1960-1980)," <u>Key Papers in</u> <u>the Design and Evaluation of Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 299-304.
- Krupp, H., "Economic and Societal Consequences of Information," <u>Information and Innovation</u>, Amsterdam, Holland, North-Holland Publishing Co., 1982, pp. 27-47.

- Lemoine, P., "Information and Economic Development," <u>Information, Computer and Communications Policies for the</u> <u>80's</u>, edited by H. P. Gassman, Amsterdam, Holland North-Holland Publishing Co., 1981, pp. 91-106.
- Lev, B., "The Informational Approach to Aggregation in Financial Statements: Extensions ," <u>Journal of</u> <u>Accounting Research</u>, (Spring, 1970), pp. 79-98.
- Lev, B., "The Aggregation Problem in Financial Statements: An Information Approach," <u>Journal of Accounting</u> <u>Research</u>, VI, (Autumn, 1968), 247-261.
- Li, D., "The Semantic Aspect of Communication Theory and Accounting," <u>Journal of Accounting Research</u>, (Autumn, 1968), pp. 102-107.
- Marschak, J., "Economics of Inquiring, Communicating, Deciding," <u>American Economic Review</u>, 58, No. 2, (1968), 1-8.
- Mehta, R., L. F. Simmons, and L. P. Simmons, "Cycle Regression Made Objective - The T-Value Method," <u>Cycles</u>, XXXIII, No. 4, (1983), 99-102.
- McGuire, C. B., "Comparisons of Information Structures," <u>Decision and Organization</u>, edited by C. B. McGuire and R. Radner, Amsterdam, Holland, North-Holland Publishing Co., 1972.
- Murdack, J. and D. Listen, "A General Model of Information Transfer," <u>Key Papers in the Design and Evaluation of</u> <u>Information Systems</u>, edited by D. King, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 287-298.
- Nokana, I., "Noise and Redundancy in Accountancy Communications," <u>The Accounting Review</u>, (October, 1972), pp. 693-708.
- Otten, K., "Basis for a Science of Information." <u>Information Science: Search for</u> <u>Identity</u>, edited by A. Debons, New York, New York, Marcel Dekker, 1974, pp. 91-106.
- Pratt, A. D., "The Information of the Image," Libri, 27, 1977, 204-220.
- Rapoport, A., "What is Information?," <u>Introduction to</u> <u>Information Science</u>, edited by T. Saracevic, New York,

New York, Bowker Publishing Co., 1970, pp. 5-12.

- Rothwell, R., "Patterns of Information Flow during the Innovation Process," <u>Key Papers in Information Science</u>, edited by B. Griffith, White Plains, New York, Knowledge Industry Publications, Inc., 1980, pp. 103-112.
- Saracevic, T., "Relevance: A Review and a Framework for the Thinking on the Notion in Information Science," <u>Key</u> <u>Papers in the Design and Evaluation of Information</u> <u>Systems</u>, White Plains, New York, Knowledge Industry Publications, Inc., 1978, pp. 84-106.
- Sarrel, M., "Book Review," <u>American Sociological Review</u>, 28, (October, 1963), 841-849.
- Schumacher, D., "The Professional Organizations: a Means for Information Transfer," <u>Information and Innovation</u>, edited by B. T. Stern, Amsterdam, Holland, North-Holland Publishing Co., 1982.
- Schwartz, I., "A Language Element for Compression Coding," <u>Information and Control</u>, X, (March, 1967), 315-333.
- Shaw, W. M., "Entropy, Information, and Communication," <u>Information Choices and Policies: Proceedings of the</u> <u>ASIS Annual Meeting</u>, Vol. 16, edited by R. D. Tally and R. R. Deultgen, White Plains, New York: Knowledge Industry Publications, Inc., 1979, pp. 32-40.
- Simon, H., "What Computers Mean for Man and Society," Science, 195, 1977, 1186-1191.
- Simmons, L. F. and L. P. Simmons, "Cycle Regression Analysis: 53- Years, 42-Years and 520-Years Cycles in the Purchasing Power of Gold," <u>Cycles</u>, XXXIII, 3, (1983), 65-67.
- Simmons, L. F. and D. R. Williams, "A Cycle Regression Algorithm for Extracting Cycles from Time Series Data," <u>Journal of Computer and Operations Research, An</u> <u>International Journal</u>, IX, 3, (1983), 243-254.

, "The Use of Cycle Regression Analysis to Predict Civil Violence, <u>Journal</u> <u>of Interdisciplinary Cycle Research, An International</u> <u>Journal</u>, XIIII, 3, (1983), 203-215.

Soest, J. L., "A Contribution of Information Theory to Sociology," <u>Syntheses</u>, IX, (1954), 265-273.

Theil, H., "The Information Approach to Demand Analysis."

Econometrica, XXXIII, (1965), 67-68.

, "On the Use of Information Theory: Concepts in the Analysis of Financial Statements" <u>Management</u> <u>Science</u>, XV, No. 9, (May, 1969), 459-480.

- Weiss, P., "Knowledge: A Growth Process," <u>The Growth of Knowledge: Readings on Organization and Retrieval of Information</u>, New York, New York, John Wiley & Sons, 1967, pp. 210-215.
- Weizenbaum, J., "Once More, the Computer Revolution." <u>The Microelectronics Revolution</u>, edited by T. Forester, Cambridge, Mass., The MIT Press, 1981.
- Wellisch, H., "From Informational Science to Informatics: A Terminological Investigation," <u>Journal of Librarianship</u>, 4, (1972), 157-187.
- Whittemore, B. and M. Yovits, "A Generalized Concept for the Analysis of Information," <u>Information Science:</u> <u>Search for Identity</u>, New York, New York, Marcel Dekker, 1974, pp. 29-45.
- , "A Generalized Conceptual Development of the Analysis and Flow of Information," <u>Journal of the ASIS</u>, 24, (1973), 221-231.
- Wersing, G. and U. Neveling, "The Phenomena Interest to Information Science," <u>The Information Scientist</u>, 9, (1975), 127-140.
- Wright, K., "Trends in Modern Subject Analysis with Reference to Text Derivative Indexing and Abstracting Methods: The State of The Art," <u>Information PART2</u>, 1, No. 5, (September-October, 1972), 1-18.

Publications of Learned Organizations

Barnes, M. and others, editors, <u>Information and Society: a</u> <u>Collection of Papers Presented at Meetings of the B.S.A.</u> <u>Libraries and Information Study Group</u>, Leeds Polytechnic, England, School of Librarianship, 1981.

Heilprin, L., editor, <u>Proceedings of the Symposium of</u> <u>Education for Information Science</u>, Washington, Spartan Books, 1975. Tally and R. Deultgen, editors, <u>Information Choices and</u> <u>Policies---Proceedings of the ASIS Annual Meeting</u>, White Plains, New York, Knowledge Industry Publication, Inc., 1979, pp. 325-326.

Unpublished Materials

- Debons, A., <u>Determining Information Functions</u>, Discussion Paper, NSF Manpower Survey Project DS1-7727115, November, 1978.
- Porat, M., <u>The Information Economy</u>, Unpublished Ph.D. Dissertation, Stanford University, 1976.

.

Shah, V., <u>Application of Spectral Analysis to the Cycle</u> <u>Regression Algorithm</u>, Unpublished Ph.D. Dissertation, North Texas State University, 1984.