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ABSTRACT

This paper treats the problem of conversion of decision tables to

decision trees. In most cases. the construction of optimal decision trees

is an NP-Complete problem and, therefore, a heuristic approach to this

problem is necessary. In our heuristic approach. we apply information

theoretic concepts to construct efficient decision trees for decision

tables which may include "don't-care" entries. In contrast to most of the

existing heuristic algorithms, our algorithm is systematic and has a sound

theoretical justification. The algorithm has low design complexity and yet

provides us with near-optimal decision trees.
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1. INTRODUCTION

In 1948. Shannon [1.2J proposed a mathematical theory to understand the

elusive true nature of the communication process and to find its inherent limi­

tations. There, resulted theorems of great power. elegance and generality and

these results have blossomed into the field known as information theory. While

information theory was primarily developed to deal with the fundamental questions

in communication theory it has had a much broader impact. Information theoretic

concepts have found widespread applications in such diverse areas as statistics,

optimization and population studies. Recently, there is a renewed interest in

the application of these concepts to some important problems in the field of

computer science as indicated by Toby Berger, in his presentation at the Shannon

Theory Workshop on future research directions held at Mount Kisco, New York,

during September 12-14. 1979.

In many computer application areas, the design of efficient data processing

algorithms is of fundamental importance. One of the problems in this area which

has many practical applications is a situation where certain actions or decisions

depend on the outcomes of a set of tests. A convenient way of specifying the

correspondence between test outcomes and the actions is by means of a decision

table. Decision tables have found a widespread application in various areas of

data processing, e.g •• computer programming, data documentation. In addition,

it has applications in the fault-diagnosis of digital systems and artificial

intelligence.

In order to formalize a decision process, one prefers a decision table.

but When one wants to program it, a decision tree is found to be more suitable.

It is. therefore. necessary to devise algorithms for the conversion of decision

tables into decision trees. Several algorithms for such conversion have been

proposed in the literature [3-30] which are optimal (or near-optimal) according

to some criterion. The most frequently considered efficiency measures for such



a conversion are:

1. Storage, i.e., construction of a decision tree with minimum number of
nodes (space efficient programs)

2. Timet i.e., construction of a decision tree which minimizes average
execution time (execution time efficient programs).

Several algorithms for the construction of optimal decions trees have been

proposed. These algorithms are based on two different approaches. Reinwald

and Soland [5] have suggested a branch-and-bound approach whereas a dynamic pro-

gramm1ng approach has been taken by Garey [3J, Schumacher and Sevcik [4J,

Goel [17J, and Bayes [23J. These algorithms always guarantee an optimal solu-

tion but require an extensive search. For example, in the dynamic programming

method of Schumacher and Sevcik, the storage requirement and the execution time

grow with the number of binary tests, M, in proportion to 3
M

• The branch-and-

bound algorithm of Reinwald and Soland is even worse, as pointed out in [4J.

This comes to us as no surprise since it has recently been s h o ~ v n that the con-

struction of optimal decision trees in many cases is an NP-complete problem

[31,32J. Thus, at present we conjecture that there does not exist an efficient

algorithm to find an optimal decision tree (on the supposition that NP ~ P).

This result provides us the motivation to find efficient heuristics for con-

structing near-optimal decision trees.

Most of the heuristic algorithms apply the principle of decomposition.

In these algorithms t tests are selected at each stage of the construction of

the decision tree according to some criterion. These decomposition

algorithms are computationally efficient but, in general, do not generate

optimal decision trees. Some of these algorithms use heuristics which are

based on information theory concepts (e.g. [10,11,16,18,19,21,28J).

In this paper, we employ an information theoretic approach to the con-

version of decision tables to decision trees where decision tables may in-

clude "dontt care" ("dash") entries. In contrast to most of the existing

2



3

heuristic algorithms, our algorithm is systematic and has a sound theoretical

justification. The algorithm has low design complexity and yet provides us

with near-optimal decision trees. Our approach is to first obtain an upper

bound on the efficiency criterion of a given decision tree. Then, a decision

tree is designed so as to minimize this upper bound at each step of its con­

struction. In Section 2, we formulate the problem, introduce the notation and

present some background material. In Section 3, we obtain bounds on the gen­

eralized efficiency measure for a given decision tree. This upper bound is

employed in Section 4 for the construction of efficient decision trees. Com­

plexity of this construction is discussed in Section 5 and a summary is presented

in Section 6. The concepts are illustrated by means of examples throughout

the paper.
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2. PRELIMINARIES:

Let U = {ul' ••• , ~} be a finite set of unknown objects with an associated

probability measure such that Pu(u
k

) represents the frequency of occurrence of

the object uk. For each unknown object uk' there is a corresponding action

Ai which must be taken. Let A = {AI' ••• ' AI} denote the set of all possible

actions. Thus, we have an onto mapping ~ : U ~ A. Let {T
l

, ••• , T
M

} be a

finite set of tests to be applied to the elements of U. When a test is applied

to an object, one of the D possible outcomes can occur t i.e., for a test

We may also assume a cost C associated with each test T •
m m

The problem is to construct an efficient testing algorithm which, for any un-

known object of U, uniquely identifies the corresponding action to be taken.

In general, ¢ may be a many-to-one mapping. When this is the case, it is not

necessary to identify the objects of U in order to be able to identify the

action to be taken. It suffices to identify the subsets of U whose elements

correspond to the same action. But it may not be achieved due to the con-

straints imposed by the available set of tests.

A testing algorithm is essentially a D-ary decision tree, and a test is

specified at its root node and all other internal nodes. The terminal nodes

specify subsets of U whose elements correspond to the same action. It should

be observed that two or more of the above subsets at the terminal nodes may



correspond to the same action. The testing algorithm is implemented by first

applying the test specified at the root node to the set of unknown objects.

If the outcome 1s (d-I), we take the dth branch from the root node. This

procedure is repeated at the root node of each successive subtree until one

reaches a terminal node which names an unknown subset of objects whose ele-

ments correspond to the same action or the action itself. In this paper, we

assume that a testing algorithm always exists. The necessary and sufficient

condition for this is given by

only if

~ (u .) = ¢ (u . ) •
1 J

Testing algorithms, which contain tests that do not distinguish at least two

different sets of objects, will not be considered here since these tests may

be dropped from the testing algorithm thereby making it more efficient.

In order to define a general efficiency measure, which includes the

most frequently used measures such as storage, average cost and average

execution time, the notion of branch level at any branch of a decision tree

needs to be introduced. Branch level zero (BL
O

) is defined prior to the root

node of the decision tree. Any branch which has i decision nodes between

BL
O

and itself is defined to belong to the branch level i (BL
i
). The notion

of branch level is illustrated below.

5



Bli
BLo

6

u

Let s., i = O,l, ••• ,R, be a set of nonnegative integers such that
1

o = So < sl < • • • < sR-l <sR where sR is the length of the longest path in

the decision tree 7 i.e., sR is equal to the number of decision nodes in the

longest path. In the above decision tree, sR = 2. Having introduced the no­

tion of branch level, we are in a position to define our general efficiency

measure, G, which is given by

(1)

where

g(s. 1 ' s.) is a strictly positive function which can be selected to
1.- 1

provide the desired efficiency measure. e.g., storage, average cost and

average execution time.

It should be noted that in the special case, when ~ is a one-to-one

mapping, the lower bound on the number of nodes for any D-ary dec-ision tree

is given by

Number of nodes ~ 1 + RK-D)/(D-l~ (2)
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where rxl represents the smallest integer greater than or equal to x.

For a binary decision tree, (2) reduces to an equality and the number of

nodes is given by (K-l). Therefore, the storage efficiency measure is not

appropriate for the binary case.

Before proceeding further, we illustrate these concepts in the following

example.

Example 1: Suppose that we have six unknown objects u
1

' ••• , u
6

• The pro­

babilities of occurrence of these objects are given by

u u
1

u
2

u
3

u
4 Us u

6

Pu(u) 0.20 0.05 0.10 0.40 0.20 0.05

We have five tests TI, ••• ,T
S

' each having a binary outcome. The following

limited-entry decision table gives the result of each test when applied to

each of the objects.

u

T
u

1
u

2
u

3
u

4 Us u
6

T
I

0 0 0 1 1 0

T
2

1 0 0 1 1 1

T
3

0 1 0 0 0 1

T
4

0 1 0 1 1 1

TS
0 1 1 0 1 1

Let us first assume a one-to-one mapping ~ l : U ~ A. In this particular case,

identification of actions is the same as the identification of the unknown

objects. The following is the flowchart of a testing algorithm for this case.
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BLa El.3,
1,
I
I

I

(U, J U3' U4'US )
(U3 )

0
(U

4
)

S U T3 (US)

(U
2

)

(U
2

,U
6

)

(U6 )

Next, we wish to interpret our general efficiency measure Gas the

average execution time. If we set s. = i, i = 1,2,3, G is given by
1

3
G = r g(i-1, i)

1=1
(3)

where

For the above choice of s. 's , g(i-1, i) is the sum of probabilities of
1-

occurrence of the unknown objects which are associated with the branches of

branch level BL
i

.

If we have costs associated with the tests, G as given by (3) can be

interpreted as the average cost. In this case the g's are given by
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g(0,1) = C
3

[P
U

(u
1

) + P
U

(u
3
) + P

U
(u

4
) + PU(uS)] + C

3
[P

U
(u

2
) + P

U
(u

6
)]

g(1,2) = C
4

[P
U

(u
1

) + P
U

(u
3
)] + C

4
[P

U
(u

4
) + Pu (uS)] + C

2
P

U
(u

2
) + C

2
P

U
(u

6
)

For both of the above efficiency measures, consider a different set of integers,

Sl = 2 and 8
2

= 3. In this case, G is given by

2

G = L g(s. l' s.)
1=1 1- 1

where

g(0,2) = g(O,l) + g(l,2) and g(2,3) is the same as before. In general,

for the efficiency measures, average cost, average execution time and storage,

For the mapping ¢l storage is not an appropriate efficiency measure

since it is a one-to-one mapping and test outcomes are binary; and, there-

fore, the number of nodes is five for any testing algorithm.

Let us now assume a many-to-one mapping ~ 2 : U ~ A which is defined as

u ~2(u)

u
1

A
3

Uz A
3

u
3 ~

u4 Al

Us Ai

u
6 ~
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The decision tree obtained for ~ l is a testing algorithm for ~ 2 also.

However, we notice that it is not very efficient since we don't need to

distinguish {u
1

' u2} and {u
4

' uS} as ~ 2 ( u l ) = $2(u
2

) and ~ 2 ( u 4 ) = $2(uS)'

A more efficient testing algorithm is

Blo Bl
i BL2 BL3

I •
I I I

,, I , ,
I I I I
I

I J I
I
I I I ,
t I I ,
I

, I J

(U,)

(U I ,U3 'U4 'US )
(U3)

0
(U4,U5)

5 u T3

(U2)

(U2'US)

(Ue)

In the latter testing algorithm, it turns out that ul and u2 which correspond

to the same action are distinguished but u
4

and Us are not distinguished. In

general, we don't know prior to the construction of the decision tree which

unknown objects corresponding to the same action will be distinguished and

which will not.

In the case of a many-to-one mapping, storage is an appropriate effici-

ency measure because the number of nodes is not the same for all testing
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algorithms as illustrated by the above decision trees. In order to interpret

G as the storage efficiency measure, we may set si • i, i=1,2,3, and G is

again given by (3) where g(i-l. i) is equal to the number of decision nodes

between BL
i

_
1

and BL
i

. The average execution time and average cost can be

obtained as before.

In the literature (e.g. [6J, [26J), "dontt care" or "dash" has been used

to reduce the size of decision tables. A dash (-) may appear as an entry in

the decision table. in the decision table, then Tm(uk) can be

anyone of the D possible outcomes as illustrated in Example 2.

Example 2: Let us consider the random variable U, the limited-entry deci­

sion table and the mapping ¢2 of Example 1. Note that ¢2(u
4

) = ¢2(u
S

) and

T
m

(u
4

) = Tm(u
S

) , m=l, ••• ,4, but T
S

(u
4

) ~ TS(u
S
). We may, therefore, reduce

the size of the decision table by combining u
4

and Us into u
4
+

S
with

PU(u4+S) = PU{u4) + PU(uS) = 0.60 and T1 (u4+S) = 1, T2 (u4+S) = 1, T3(u4+S) = 0,

T
4

(u
4
+

S
) = 1 and T

S
(u

4
+

S
) = -. In this case, even though ¢2(u

1
) = ¢2(u

2
) , we

cannot combine u
l

and u
2

into a single unknown object because more than one

test outcomes differ from each other. The random variable U, the limited­

entry decision table and the mapping ~ 2 for the reduced problem are given by

u u
1

u
2

u
3 u4+5

u
6

PU(u) 0.20 0.05 0.10 0.60 0.05
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U
1

u
2

u
3 u4+5

u
6

T
I

0 0 0 1 0

T
2

1 0 0 1 1

T
3

0 1 0 0 1

T
4

0 1 0 1 1

T
S 0 1 1 1

u ¢Z(u)

u
1

A
3

Uz A
3

u
3

A
Z

u4+S Al

u
6

A
4

It should be pointed out that the introduction of dashes to reduce the

size results in an information loss. For instance» in Example 2, if TS

is applied to u
4
+

5
' the probability that the test outcome is zero is unknown.

Therefore, whenever possible we should keep all the information so that we

may be able to construct a more efficient testing algorithm. However, in

many situations the given decision table may already contain dashes and the

lost information cannot be recovered. In this paper, we shall address both

situations; when all the information is available and when it is not.

Now we define the concept of entropy which will be used in this paper.

Let us consider a discrete random variable X taking on values {xl' x2 ' ••• ,xr }.

Let Px(x
i

) denote the probability of the event {X = xi}. The average uncer-



tainity (entropy) of X is defined as

I

H(X) z - i~l PX(xi)log PX(xi ),

In the next section, we derive bounds on G.

13

(4)
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3. BOUNDS ON G

In this section, we derive bounds on the generalized efficiency mea­

sure, G, for a given decision tree. For notational convenience, we shall

only consider the binary case (D=2). However, the results can be extended

easily for any value of D. The upper bound will be used in the next section

for the construction of efficient decision trees. For the sake of clarity, we

first obtain bounds on G for a specific example. Bounds on G for the general

case are derived later.

Example 3: Let us consider the set of six unknown objects u
l

' ••• , u
6

and

the associated mapping ¢ which is given by

u ~(u)

u
l Al

Uz Al

u
3

A
2

u
4 A

3

Us A
4

u
6 Al

Let Pu(u
k

) denote the probability of occurrence of Uk as before. Consider

the following decision tree which identifies the actions to be taken.
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BLo Bli BL 2 B~3
t I

I I
J f

I I

I
I

I I

I
I

I I,
I I, I I I

( Up~)

0
(U1,U2,U3)

T2

0
( U3)

U T1
(U4 )

0

T2
(U5 )

(U4IUS'US ) 0

T3
(US,US)

(US)

In this example, let us assume si • i, 1=0, ••• , 3. Let H(BL
i

) denote the

entropy of the branch level BL
i

. In this case, we have

and
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where the following notations are used.

and

log
PU(u

iik
)

Pu(uij kR.mn)

(5)

(6)

PU'(uR,)
log

PU(uR,)

Pu (uij kR.mn) PU(uijkR.mn)

PU(u ) PU(u )
mn log mn

PU(uij kR.mn) Pu(uijkR.mn)

We note that H(BL
i

) is nothing but a conditional entropy [30J.

It is important to note that the objects which correspond to the same action

are treated as single objects at various branch levels. For example, in

H(BL
O
)' u

1
' u

2
and u

6
are considered to be a single object whereas in H(BL1)

only u
1

and u
2

are considered together because test T1 is such that it dis tin-

guishes u
6

from u
1

and u
2

• By definition E(u
k

) = 0 and, therefore,

H(BL3) = O. We can thus write H(BLO) = H(BLO) - H(BL1) + H(BL1) - H(BL2) +

H(BL
2

) - H(BL
3

) or,

(

H(BLO) - H(BL. ) ) (H(BL1) - H(BL2) \
H(BL

O
) = • g(O,l) + )1 g(1,2)

, g(O,l) g(1,2)

+ I'H(BL2) - H(BL3»)
g(2,3)

\ g(2,3)

Let

Hmin(sl' s'2' s3) .. min
(H(BLt _1 ) - H(BL i ) )

i g(i-1, i)

and

H
max

(8
1

,8
2

,8
1

)
(H(BLt _1) - H(BL i ) )

• max
i g(i-1, i}
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It follows from the results in the Appendix A that«H(BL
i

_
1

) - HCBLi»~(i-l, i)> 0

for i=1.2,3, and, therefore, we have

where
3

G = r g(i-l, i).

1=1

Consequently, we have the following bounds on G.

Next, we outline the procedure to obtain the bounds for the general case.

Let u
l

' ••• , ~ and ¢ denote the set of unknown objects and the associated map-

ping respectively where ~ ( u . ) = ~(u. ) =
~l ~2

= ¢(u. ), etc. Consider a given binary decision tree which identifies the
I n

actions to be taken. Let si' i=O,1, ••• ,R, be a set of nonnegative integers

such that 0 = So < 51 < ••• < sR_l < sR where sR is the length of the longest

path in the decision tree under consideration. As in Example 3 using the no-

tations of (5), we may write

Assume that the first test partitions the sets of objects as shown below.



Blo
I

I
I
I

I

o

((Uj, ... ,ui
m1 I

18

Sri
I
I

I

),( u· ... u· ) t • • · · )

J1 ' 'JOt

Then,

H(BL
1

) = PU(U
i

... 1.' • , ••• )
J1· · .J1 m

1
n1

E(u. .
1 1 ···l.ro

l

, u. '
J1· · · Jfi

l

, ... )

+ PU(ul.' i'·)
+ 1•·• J + 1··· J •••m

l
m n

1
n

E( U i . , u
j

, , ... )
m + 1 ... 1 + l··· Jn1 m n1

All of the H(BL
i

) can be obtained in an analogous fashion. Once again we

should emphasize that the objects which correspond to the same action are

treated as single objects at various branch levels.

may write

Since H(BL ) = 0, we
sR

H(BL
O

) = F(O,sl) g(O,sl) + F(sl,s2) g(sl,s2) + ...+ F(sR_l' sR) g(sR_l,sR)

(7)

where we use the notation
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As shown in the Appendix A, H(BL ) - H(BL ) ~ 0, which implies that
5 1- 1 51

F(St_l' 5
i

) ~ O. Thus, we have the following bounds on G:

H (s 1 ' • • • , sR)max

where

(8)

H · (s 1 ' • · • , sR)m1U

and

Next, we consider a property of this upper bound which will be found

useful in the selection of si's during the construction of efficient decision

trees. Once again we consider a given decision tree which identifies the actions
,

to be taken. Let si' i=O,l, ••• ,R, and Sj , j=O,l, ••• ,Q, be two sets of non-

negative integers with Q ~ R such that 0 So < 51 < ••• < sR_l < sR and

t" ,

a = So < ~'l < ••• < sQ_l < sQ ' where sR is equal to sQ ' and it is the

length of the longest path in the decision tree under consideration. Let

" ,
SR = {SO' 51"'" sR} and SQ = {sO' sl" •• ,sQ}' We assume that SR n SQ = SR'

This property of the upper bound is proved for those functions g which satisfy

g(a, y) ~ g(a,B) + g(B,y ) (9)

where a, Band yare nonnegative integers such that 0 :S 0. < 6 < y ~ sR.

We note that the most commonly used efficiency measures average cost, average

execution time and storage satisfy (9). Now we are in a position to prove the

following theorem.

Theorem 1: Given any decision tree, a function g satisfying (9) and the sets SR

and SQ satisfying the above properties, we have
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, ,
Hmin(sl , ••• ,sQ ) ~ Hmin(sl, •.• ,sR).

We prove the theorem by contradiction. Let us assume that

t

Hmin(sl , ••• ,sQ ) > Hmin(Sl, ••• ,sR)

As shown in Appendix A, Hmin(Sl , ••• ,SR) ~ 0 and, therefore,

(10)

,
Since SR n SQ = SR' we may write se-1= Sal

but

,
where s and sa are in SQ.

0. 1 m

,
of SQ which are greater than s

0.
1

, ... ,
,

Consider the elements s
a Z

less than s We may now express
ex

rn

m-l , , ,
H(BL ) - H(BL ) = r F(s s ) g(s s )

8 8- 1
5 e .t=1 Q.R, Ct£+l a£ a. 9.+1

(11)

Let

F =
m

min
l $ . t ~ m - l

,
F(s

Q.,t

then,
m-l

HeBL ) - HeBL ) ~ F L
8 e_1 5 e m ~=l

,
g(s

Ct£

Using (9) and (10), we may write

H(BL ) - H(BL ) ~ F g(se l' se)·
Be_

I
se m -

From the above, we conclude that
, ,

Hmin(~ , ••• , sQ ) > Hmin(s1'···' sR) ~ Fro

which is a contradiction since
, ,

Fm ~ Hmin(sl , ••• , sQ )

and thus we have the desired result.

Q.E.D.

,
For the special case, 8

1
=i, we have the following corollary.



21

Corollary 1:

H
min

(1,2, ••• tQ) S Hmin(sl, ••• ,sR>.

In addition, we can obtain a general lower bound on G for the efficiency

measures average execution time, average cost and storage. This lower bound

depends only upon the probability assignment and the m a p p i n g ~ . In order to

obtain the lower bound for the first two efficiency measures, we define a new

random variable V which takes on values Ai' i=1, ••• , I, where Ai are the

actions as defined earlier. The associated probability measure is PV(A
i

) which

is the sum of all Pu<u
j

) such that ~ < U j ) = Ai" Construct the Huffman code for

the random variable V and denote its average length by W
Huff

• Average exec­

ution time is proportional to the average path length, W, of the decision tree

and, therefore,

as seen in [26J. Let C. = min C , then the average cost, C, satisfies
m1n m m

c ~ C. WH ff.m1n u

For the storage criterion, from (2),

Number of nodes ~ 1 + r<I-D)/CD-l)l

where I is the number of distinct actions.

The upper bound derived above is employed in the next section for the

construction of efficient decision trees.
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4. CONSTRUCTION OF EFFICIENT DECISION TREES

4.1 Tables Without Dashes

The basic objective during the construction of decision trees is to min-

imize G. As mentioned earlier, in many cases it is impractical to construct

an optimum decision tree because it is an NP-complete problem. Therefore, it

is desirable to find heuristic yet systematic procedures for an efficient

construction. The systematic approach that we follow here is to minimize the

upper bound, obtained in the previous section, at each step during the con-

struction of decision trees. For a given decision tree, this upper bound has

been shown to be

H ( ' R T ~ O )

H .. (sl' • • • , sR)ml.n

Since the numerator, H(BL
O
)' of the above bound is fixed, an efficient decision

tree can be obtained by making the denominator, H . (Sl,.,.,sR)' as large as
m1.n

possible during the construction. Furthermore, since

in order to maximize Hmin(sl, ••• ,sR) it suffices to maximize F(si_l' si)

at each step of the construction. The above discussion motivates the following

definition.

Definition 1: Suppose 0=80 < 8
1

< ••• < sR-l < sR be a given set of integers.

An algorithm which maximizes F(Si_l- 51)' i=l, ••• ,R, during its construction is

defined to be a generalized optimum testing algorithm of order (sl,.",sR) and

is denoted by GOrA (sl, ••• ,sR).

To construct GOTA (slt ••• tSR)t we first select a set of tests which max­

imize F(OtSl). Based on the choice of the above set of tests t the second set

of tests is selected which maximizes F(sl,s2). This procedure is continued

until all the actions are identified. It should be noted that no tests are re-

peated in any path because repetition of a test in any path will produce a less
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efficient algorithm. They may, however, appear in other paths. The above

procedure does not necessarily provide us with an optimum algorithm since the

selection of tests which maximize Fesi_l,s1) is conditioned upon tlie selection

of the previous tests. The construction of the algorithm is illustrated by

means of the following examples.

Example 4: In this example, we construct GOTA (l,2, ••• ,sR) for the problem

posed in Example 1 for the many-to-one mapping ~ 2 . The efficiency measure is

assumed to be the average execution time which is proportional to the average

path length, W, of the decision tree. We select the first test which maximizes

FCO,I). For any selection of the first test, g(0,1) has the same value, 1,

and,therefore, minimization of H(BL
1

) corresponds to the maximization of F(O,l).

The values of H(BL!) for all the available tests are given in the following table:

Tests H(BL
l

) bits

T
I

0.5195

T
2

1.0612

T
3

1.2013

T
4

0.7899

TS
1.2508

We select T
I

as the first test which corresponds to the smallest value of

H(BL
1

) and yields the largest value of F(D,l). The decision tree for GOTA

(1,2, ••• , ~ ) begins as

((UI ,U2) 1 U3'Us)

o
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where u
1

and Uz have been put into a paranthes1s because they correspond to

the same action. Now we select the second test so as to maximize F(1,2).

Note that u
4

and Us correspond to the same action, therefore. tne lower branch

doesn't need to be pursued. Also, tests which do not distinguish at least two

sets of objects are not used, and, therefore, g(1,2) has the same value regard­

less of the selection of the ~ e x t test. Thus, maximization of F(lt2) corres­

ponds to a minimization of H(BL
2
). The values of H(BL

2
) corresponding to the

remaining tests is given in the following table:

Tests H(BL
2

) bits

T
2

0.3181

T
3

0.3754

T
4

0.3754

T
S

0.3000

Wet therefore,select IS and obtain the following tree

o

By a similar reasoning, g(2,3) is the same regardless of the selection of the

next test and a minimization of H(BL
3

) maximizes F(2,3). The values of H(BL)

for toe remaining tests are given Ey the following table:
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Tests H(BL
3

) bits

T
Z 0.1377

T
3

0.1000

T
4

0.1000

Out of T
3

and T
4

,we arbitrarily select the test T
3

as the next test.

Finally, we select T
2

to distinguish u
2

from u
6

• The decision tree for

GOTA (1,2, ••• ,sR) is given by

It can be easily shown that the above decision tree is the optimum solution

with W= 1.7. For this example the lower bound W
Huff

is 1.55. This lower

bound cannot be achieved here since proper tests are not available. Note

that the algorithm outlined in [28J is also applicable to this problem. How­

ever, it is less efficient since its objective is to distinguish all the un­

known objects and, in fact, it can be shown that its average path length is

at least 2.3.

In the next example, we illustrate the construction of GOTA (1,2, ••• ,sR)
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and GOTA (2.3 ••••• S
Q

) and compare their efficiencies.

Example 5: Let us consider the following limited-entry decision table for U

along with the probability measure PU(u) and the mapping ¢.

~ u
l

u
2

u
3

u
4 Us u

6
u

7

PU(u) 0.10 0.60 0.01 0.02 0.10 0.05 0.12

<P (u)
Al Al A

2
A

3
A

4 AS A
6

T
1

0 a 0 0 I 1 1

T
Z

1 1 0 1 1 0 0

T
3

1 0 0 1 0 0 1

T
4

0 0 0 1 1 0 1

IS 0 1 0 1 0 1 1

We again consider average execution time as our efficiency measure which is pro­

portional to the average path length. W. First we construct GOTA (1,2, ••• ,sR).

As in Example 4, we first select the test which minimizes H(BL
l
), the values of

which are provided in the following table for all the tests.

Tests H(BL
1

) bits

T
I

0.6131

T
2

0.7735

T
3

1.0745

T
4

0.6594

T
S

1.1259

We select T
I

as the first test and the decision tree begins as
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o

Next. we select the second set of tests. one for the upper branch and one for

the lower branch. which minimizes H(BLZ). We should point out that this sel-

ection can be done independently for each branch of the above tree, because

after the selection of the first test, TIt each branch becomes an independent

problem. The minimization of H(BL
Z

) can be attained by the individual minimi­

zations of H(BL2IUpper) and H(BLZ!Lower) which are the contributions of the

upper and lower branches to H(BL2) respectively, i.e.,

min H(BL
Z

) =

T

where

and

The values of H(BL2IUpper) and H(BL
2

!Lower) for the remaining tests are listed

below.
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Tests H(BL
2
IUpper) bits H(BL2ILower) bits

T
Z

0.1327 0.1485

T3
0.1502 0.1377

T
4

0.0755 0.2187

T5
0.1750 0.1485

We select T
4

as the test for the upper branch and T
3

as the test for the

lower branch. The decision tree, therefore, becomes

({U1,U
2

) ,U
3
)

0
((U"U2) ,U3,U4)

0
(U4)

u
(US'% )

0

(U5,U6,U7 )

(U7)

The decision tree can now be easily completed and is given by
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--(U3)

o

o

o

We note that GOTA (1,2, ••• ,sR) yields W= 2.86.

Next, we construct GOTA (2,3, ••• ,sQ) which is expected to be more eff­

icient due to Theorem 1. Since sl = 2, we must select tests which maximize

F(O,2) which is given by

F(O,2) = H(BLO) - H(BL2)

g (0,2)
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where

From the limited-entry decision table. we note that there is no single test

which uniquely identifies any action. Therefore, g(O,2) is equal to two for

all possible choices of tests at this step of the algorithm. Therefore, a

maximization of F(O,2) corresponds to a minimization of H(BL
Z
). For any sel­

ection of the first test, H(BL2) is minimized by minimizing H(BLZIUpper) and

H(BL2ILower) independently. These values are tabulated below for all possible

choices of the first test.

A. First test T1 :

Tests H(BL2 !Upper) bits H(BLzlLower) bits

T
Z

0.1327 0.1485

T
3

0.1502 0.1377

T
4

0.0755 0.2187

T
S

0.1750 0.1485

The minimum value of H(BL
2

) when the first test is TI is min H(BL
2

) =

0.0755 + 0.1377 = 0.2132 bits

B. First test T
2

:

Tests H( BL2 IUpper) bits H(BLZ!Lower) bits

T
I

0.1485 0.1327

T
3

0.0391 0.4925

T
4

0.0391 0.0781

IS 0.1485 0.1750



min H(BL
2

) = 0.1172 bits

C. First test T
3

Tests

min R(BL2) = 0.2880 bits

D. First test T
4

H(BLZIUpper) bits

0.2099

0.4535

0.3291

0.2335

H ( B L Z I L o w e ~ bits

0.0781

0.0781

0.0829

0.0829

31

Tests H(BL2 !Upper) bits H(BLZILower) bits

TI
0.0755 0.2187

TZ 0.0391 0.0781

T
3

0.3291 0.0829

Ts 0.3029 0.2407

min H(BLZ) = 0.1172 bits.

E. First test TS

Tests R(BLZIUpper) bits H(BL2 !Lower) bits

T
1 0.0484 0.2752

T2 0.2000 0.2752

T
3 0.0484 0.2680

T
4 0.0484 0.2680

min H(BL ) = 0.3164 bits
2



32

Thus, the minimum value of H(BL
2

) is 0.1172 bits which corresponds to first

test T
2

and subsequent tests T
3

(or T
4

) and T
4

in the upper and lower branches

respectively. We note that another choice which also gives the minimum value

of H(BL2) is to have T
4

as the first test and T
2

as the subsequent test in both

the branches. We may complete the above three trees by appropriately select­

ing the next set of tests, one of which is given below

o

o

o

For the above decision tree, W = 2.18 which is, as expected, more efficient than

GOTA (1,2, ••• ,sR) and the improvement in Wis 24%. It can easily be shovm that

this is an optimum solution for this problem. We should point out that the other

two decision trees also provide the same efficiency.
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In Examples 4 and 5, during the construction of GOTA (1,2, ••• ,sR)'

maximization of F(i-l, i) corresponded to the minimization of H(BL
i

) since

g(i-l, i) was the same for all possible choices of tests at any step of the

algorithm. In general, this result is true for the construction of COTA

(1,2' ••• 'SR) with the commonly used efficiency measures, average execution

time and storage. Furthermore, at any stage of the construction of the tree

further extension of each branch becomes an independent problem. Therefore,

minimization of H ( B ~ ) can be achieved by minimizing the H(BLkIUpper) and

H ( B ~ I L o w e r ) for each problem, as illustrated in Example 5.

We should point out that if ¢ is a one-to-one mapping, then it can

be shown in a straightforward manner that the algorithms GaTA and OTA [28J

provide the same decision trees. Therefore, we may conclude that GOTA (1,2, ••• ,sR)

when ¢ is a one-to-one mapping provides the same decision tree as : ~ s s e y ' s first-

order optimal algorithm [18,19].

4.2 Tables With Dashes

Up to this point, we have concentrated on the construction of decision

trees for decision tables when all the information is available. In other

words, when T , m=l, ••. ,M, is applied, the probability of the outcome d is
m

always known. When all of these probabilities are not known, i.e., the de-

cision table contains dashes t we must modify the above algorithm for the con-

struction of decision trees. Let us consider a test T with binary outcomes
m

which has a dash in the decision table corresponding to the object ~ .

When T
m

is applied to uk' then with an unknown probability ~ k P U ( u k ) the test

outcome is zero and with probability (l-ak)PU(uk) the test outcome is one as

shown below
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where PU(ukO) = akPU(uk) and PU(ukl) = (l-ak)PU(u
k
), One possible approach

is to arbitrarily set ok equal to 0.5 and construct the GOTA as outlined above.

Another approach is to obtain the values of the unknown ak's for each T
m

so

as to minimize F(si_l' si) at each step of the construction of GOTA. This

approach, which is consistent with Pollack [8J, discourages the use of the

tests which have dashes in the decision table. In this approach, during the

construction of the decision tree, a test with dashes in the decision table is

used only if under the worst conditions its performance is better than all the

remaining tests. We illustrate the second algorithm in the following exam­

ple. Details regarding the computation of ak's are provided in Appendix B.

Example 6: In this example, we consider the following limited-entry decision

table alongwith the associated probability measure PU(u) and the mapping ¢.

u
T

0.3 0.1 0.1 0.2 0.3

~ ( u )

010

o 1 1 0 1

110 1

10101

The efficiency measure to be considered is average execution time and we con­

struct GOTA (1,2, ••• ,sR). Since in this example, tests T1 and T3 contain

dashes, we compute the values of ak's which minimize FCO,l) and this, in

turn, corresponds to the maximization of H(BL
1

) for the tests T
1

and T
3

•

These values of ak's are employed to calculate H(BL1) for tests T1 and T3•

For the test T
I

, we have
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where

From Appendix Bt it follows that the values of a
1

and a2 which maximize

HeBl
l ) for T1 are given by

P3+PS

a1=a2= P3+P4+PS = 0.667

and the corresponding maximum value of H(Bl1) is 1.6201 bits. In a similar

manner, for test T3 , we have

o

u
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where P
U

(u
40

) = a
4
P

U
(u

4
) and P

U
(u

41
) = (1-a

4
)P

U
(u

4
).

The value of 04 which maximizes H(BL!) and the maximum H(BL1) are given by 0

and 1.7016 bits respectively. The values of H(BL
I

) for T2 and T4 are obtained

in the usual manner. H(BL!) for all the tests are given below:

Tests H(BL!) bits

TI 1.6201

T
2

1.1710

T
3 1.7016

T4 1.2886

Clearly, T
2

is the first test of the decision tree. Proceeding in a straight­

forward fashion, the complete decision tree, is

o

o

u

o

o

...----(us)
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For the above decision tree. W= 2.4 which is the optimum for this example.

If we had selected ak's to be 0.5. we would get the same decision tree in this

case.

In the next section, we discuss the complexity of the construction of

COTA (slJ ••• ,sR).
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5 • COMPLEXITY OF THE CONSTRUCTION OF GOTA

In the previous section, we proposed a systematic algorithm for the con-

struct10n of efficient decision trees. In this section, we study the com-

plexity of this construction. The complexity measure considered here,

GC(Sl, ••• ,SR)' is the number of computations of the function F(si_l' s1) during

the construction of GOTA (sl t ••• ,sR). Since GC(sl, ••• ,sR) depends upon the

specific problem under consideration, it is not possible to compute its exact

v a l ~ e . Therefore, we obtain an upper bound on GC(sl, ••• ,sR) by evaluating the

complexity of the worst case which occurs when a tree that is complete at all

levels is constructed. Since a test used at any decision node may not be

used at subsequent decision nodes of the same subtree, a simple counting argu-

ment provides us the following result:

R Sj

L IT

j=l i=8. 1+1
J-

i-I
(M-i+l)D (12)

where recall that M is the number of tests.

Another considerably smaller, upper bound on the complexity measure is

obtained in the special case when the function g satisfies

and that g(si-l, si) does not depend upon the selection of the tests at

Then, once the tests prior to BLs 1 have been specified. g(si-l' si)
i-

remains constant for each possible selection of the tests at the current level

BLSi_1o Thus, maximization of F(si_l' si) corresponds to the minimization of

H(BL
s

). This minimization can be performed independently for each subtree
i

corresponding to each selection of tests prior to BLs ._
l

' as in Example 5.
1

Therefore t an upper bound is given by

R

L

j=l

SJ. -1 1-1
Sj_l D

D (M-s.+l) TI (M-i+l)
J i=s. +1

J-1

(13)



where 1
Sj-

IT

i=s. 1+1
J-

i-I
(M-i+l)D = 1
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Example 7: Let us compute the upper bounds for the constructions in Example

5. We have, M = 5 and D = 2. Using (13), the upper bound on GC(1.2,3) is

25. If we use (12). the upper bound is 102. The actual complexity is 19.

For GC(2,3), the upper bounds are 52 and 161 respectively whereas the

actual complexity is 46.
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6. SUMMARY AND CONCLUSIONS

In this paper, we have presented a systematic approach to the construc-

tian of efficient decision trees from decision tables which may include

"don't care" entries based on information theoretic concepts. The basic

philosophy in our approach is the same one as used in [28J in which the upper

bound on the efficiency measure is minimized at each step of the construction

of decision trees. Such heuristic procedures are important in practice since

the construction of optimum decision trees is an NP-complete problem [31-32J

in many cases.

We observe that the systematic procedure presented in this paper pro-

vides us with a trade-off between the complexity of the construction of the

decision tree and the upper bound on the efficiency measure. In other words,

a smaller upper bound on Gmay be achieved by choosing larger values of

(S.-s. 1)'5 and thereby increasing the complexity of the construction of
1 1-

COTA (sl, ••• ,sR). In most cases, this provides us a more efficient decision

tree. However, in some rare instances this may not occur as found in Example

9 of [28J. This does not contradict Theorem 1 since it provides the relation-

ship between upper bounds on G for the same decision tree. However, the con-

struction of GOTA for different sets of si's may lead to different decision

trees. The importance of Theorem 1 is to provide a clue for the selection of

the set of si's.

Now we suggest the general procedure for the construction of efficient

decision trees whenever a lower bound on C, LBG) can be computed.

(1) Compute LBG.

(2) Construct GOTA (1,2, ••• ,sR) and calculate the associated efficiency mea­

sure G (1,2, ••• ,sR). If G (l,2, ••• ,sR) is close to LBG. accept

GOTA (1,2, ••• ,sR) as the solution. Otherwise continue.
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(3) Construct GOTA (2,3""'SQ) and calculate the associated efficiency mea-

sure G (2,3 •.• ,sQ)' If G (2,3 ••• ,sQ) is close to LBG, accept GOTA (2,3""SQ)

as the solution. If G (2,3"",sQ) is close to G (l,2, ••• ,sR)' we may con­

clude that we are near the optimum value of G and accept the algorithm with

smaller efficiency measure as the solution. Otherwise continue with the sel-

section of other values of s. '5 until an acceptable solution is achieved.
1



42

ACKNOWLEDGEMENT

We would like to thank Dr. S. J. Hong of r.B.M. for his comments and

helpful discussion on the subject.



43

REFERENCES

[lJ Shannon, C.E., A mathematical Theory of communication. Bell Syst.
Tech. J. 27 (July 1948). 379-423.

[2J Shannon, C.E., A mathematical theory of communication, Bell Syst.
Tech. J. 27 (Oct. 1948), 623-656.

[3J Garey, M.R., Optimal binary identification procedures. SIP}1 J. Appl.
Math 23, 2 (Sept. 1972), 173-186.

[4J Schumacher, H., and Sevcik, K.C., The Synthetic approach to decision
table conversion, Carom. ACM 19, 6 (June 1976), 343-351.

[5J Reinwald, L.T., and Soland, R,M., Conversion of limited entry decision
tables to optimal computer programs I: Minimum average processing time.
J. ACM 13, 3 (July 1966), 339-358, II: Mimimum storage requirement.
J. ACM 14, 4 (Oct. 1967), 742-755.

[6J Montalbano, M., Tables, flowcharts and program logic. IBM Systems J.
(Sept. 1962), 51-63.

[7J Egler, J.F., A procedure for converting logic table conditions into an
efficient sequence of test instructions. Carom. ACM 6, 9 (Sept. 1963),
510-514.

[8J Pollack, S.L., Conversion af limited entry decision tables to computer
programs. Camm. ACM 8, 11 (Nov. 1965), 677-682.

[9J King, P.J.H., Decision tables. Computer J. 10, 2 (Aug. 1967), 135-142.

[10J Shwayder, K., Conversion of limited entry decision tables to computer
programs--A proposed modification to Pollack's algorithm. Comm. ACM
14, 2 (Feb. 1971), 69-73.

[11J Ganapathy, S.t Information theory applied to decision tables. M. Tech.
Th., Indian Institute of Technology, Kanpur, India, (July 1969).

[12J King, P.J.H., Conversion of decision tables to computer programs by

rule mask techniques. Comm. ACM 9, 11 (Nov. 1966), 769-801.

[13J Muthukrishnan, C.R., and Rajaraman, V., On the conversion of decision
tables to computer programs. Carom. ACM 13, 6 (June 1970), 347-351.

[14 J Ibramshah, M., and Rajaraman, V., A fast rule mask algorithm for the con­
version of decision tables to computer programs. Techn. Rept. Computer
Centre, Indian Institute of Technology, Kanpur, India, 1971.

[15] Kirk, H.W., Use of decision tables in Computer programming. Comm. ACM
8, 1 (Jan. 1965), 41-43.

[16J Shwayder, K., Extending the information theory approach to converting
limited-entry decision tables to computer programs. Carom. ACM 17, 9
(Sept. 1974), 532-537.

[17J Goel, D.K., Random test generation for fault detection and diagnosis.
Ph.D. dissertation, School of Computer and Information Science, Syracuse
University, Syracuse, N.Y., 1978.



44

[ISJ Massey, J.L., An information-theoretic approach to data-processing algor­
ithms, Presented at 1974 IEEE Int. Symp. Info. Th., Notre Dame, Indiana,
Oct. 1974.

[19J Massey, J.L., Topics in Discrete Information Processing. Unpublished
manuscript, Dept. of Electrical Engineering, University of Notre Dame,
Indiana, 1976.

[20] Verhelst, M., The conversion of limited-entry decision tables to optimal
and near optimal flowcharts: two new algorithms. Comm e ACM 15, 11
(Nov. 1972), 974-980.

[21J Ganapathy, S. and Rajaraman, V., Information theory applied to the conver­
sion of decision tables to computer programs. Corom. ACM 16, 9
(Sept. 1973), 532-539.

[22J Alster, T.M., Heuristic algorithms for constructing near-optimal decision
trees. Report No. UIUCDCE-R-71-474, Department of Computer Science,
University of Illinois. Urbana, IL., Aug. 1971.

[23J Bayes, A.T. A dynamic programming algorithm to optimise decision table
code. Australian Computer T. 4 (May 1973). 77-79.

[24J Fisher. D.L., Data documentation and decision tables. Corom. ACM,
18 (Jan. 1965), 26-31.

[25J Jarvis, J.M. An analysis of programming via decision table compilers.
SIGPLAN Notices (ACM Newsletter) 6,8 (Sept. 1971), 30-32.

[26] Pooch, U.W. Translation of decision tables. Computing Surveys 6,
(JUne 1974), 125-51.

[27] Rabin, T., Conversion of limited-entry decision tables into optimal
decision trees: fundamental concepts. SIGPLAN Notices (ACM Newsletter)
6, (Sept. 1971), 68-71.

[28J Faria, J.M., Hartmann C.R.P., Gerberich e.l., and Varshney P.K., An
information theoretic approach to the construction of efficient decision
trees, Tech. Report 1-80, School of Comput. and Info. Sc., Syracuse
University, Syracuse, N.Y. 13210, Jan. 1980. Also presented at the 1981
IEEE Int. Symp. Info. Th., Santa Monica, California, Feb. 1981.

[29J Michalski, R.S., Designing extended entry decision tables and optimal de­
cision trees using decision diagrams, Report No. UIUCDCS-R-78-898, Depart­
ment of Computer Science, University of Illinois, Urbana, Ill., March 1978.

[30J Yasui, T., Conversion of Decision Tables into Decision Trees, Report No.
UIUCDCS-R-72-501, Department of Computer Science, University of Illinois,
Urbana, ILL., Feb. 1972.

[31J Comer, D. and Sethi, R., The complexity of trie index construction.
J. ACM 24, 3 (July 1977), 428-440.

[32] Hyafil, L. and Rivest, R.L., Constructing optimal binary decision trees
is NP-complete. Information Processing Letters 5, 1 (May 1976), 15-17.

[33J Gallager, R.G., Information Theory and Reliable Communication. New York:
Wiley, 1968.

[34J Rao, C.R., Linear Statistical Inference and Its Applications, New York:
Wiley, 1974.



45

APPENDICES

Appendix A: In this appendix, we show that F(si_l' si) ~ O. Since g(si_l' S1)

is always positive, it is sufficient to show that H(BL ) - H(BL ) ~ o.
8 1- 1 5 i

However,
5

i
-1

H(BLs ) - H(BL ) = r [H(BL
j

) - H(BL
j
+

1
)]

i-I si j=si-l

Therefore, we only need to show that

Proof: For the sake of clarity, we present the proof for the binary case only

which can be generalized in a straightforward manner.

In general, there are several branches and associated subtrees at BL. 1.
1-

Consider a typical nonterminal branch at BL
i

_
l

as shown below

BLi-1
I
I

I
I

o

BLi
I
I

I

«(Ub ,Ub ),Ub ,Ub )
1 2 4 7

where ub and ub (also ub and u ) have been put into a paranthesis because
1 2 4 bS

~(ub ) = ~(~ )(and . ( ~ ) = ~(~ ». The corresponding contribution
1 2 4 5

(H(BLi _1) - H(BLi»r of this branch to H(BL
i
_

1
) - H(BL

i
) is given by

m
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Notice that H(BL
i

1) - H(BL.) is a summation of terms similar to (H(BL. 1)-- ~ ~-

H(BLi»T and, therefore, it suffices to show that ( H ~ ~ L i _ l ) - H(BLi»)T ~ o.
m m

For notational convenience, we donote PUCu
bi

) by Pi and also,

Now, we may express

Pl+P2 P4 P7
-(H(BLi_1)-H(BLl.·»T = - (P1+PZ) log - P4 log -- - p log

m Po Po 7 Po

- P3 log
P3

log
Ps

log
P6

~
- Ps -- - P

~PI 6

+ (Pl+P2) log
p 1+OZ

+ P3
P3

(p 4+P 5) log
P4+PS

P
log p + p

P3Pl/P
log { }

P3

(P4+PS)Pl/P
} + PSlog { p }

5

(AI)

where

6 (Pl+P2)PO

1£16i = P



(Pl+P2+P4+PS+P7)PO

P
+
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7
= r p

j=l j

Thus, using (le.6.1) of [34] we conclude

(H(BLi_1)-H(BLi)T ~ o.
m

(A2)

Furthermore, equality is achieved in (Al) if all the arguments of the logarithm

are I in (AI).

Appendix B: In this appendix, mathematical details pertaining to the don't

eare case, discussed in Secion 4, are presented. Recall that when there are

dashes in the limited-entry decision table, the maxireum of F(si_l' s1) cannot

be obtained because the probabilities of some of the test outcomes are unknown.

Throughout this appendix, we only consider the case when the tests have binary

outcomes. The results can, however, be generalized in a straightforward man-

ner. We also restrict our attention to the construction of GOTA (l,2, ••• ,sR).

Let us consider a test Tm which has a dash in the decision table corresponding

to the object Uk. Then as before,

Uk,

unknown.

Assume that during the construction of GOTA (l,2, ••• ,sR)' the next step

is the selection of tests between BL
i

_
1

and BL
i

• This selection is made so
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as to maximize F(i-l. i). During this selection. some of the tests may have

dashes in the decision table. To calculate F(i-l. i) for this situation. we

first find values of Qk'S which minimize F(i-l. i). If g(i-l. i) is inde­

pendent of ak's, it suffices to maximize H(BL
i
). This can be done by max­

imizing the contribution of individual subtrees· to H(BL
i
). For clarity in

presentation, we consider the following special cases.

Case I: Consider the following subtree.

BL;_,
I,
I

o

In terms of unknown coefficients ai' 1=1,2.3. the contribution to H(BL i )

may be expressed as

P4 Ps
+ P4 log -- + Ps log p- ·Po 1

where Pi = PU(ui ), i=1,2, ••• ,5 and Po= alPl + a2P2 + a3P3 + P4 and

PI = (I-a!) PI + (l-a2) P2 + (1-a3)P3+PS. The ~i's are obtained so as to

maxtmize (H(BLt»T ' i.e. by solving the equations
m
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(Bl)

This gives

j=l,2,3.

In particular, if P4 = Ps = 0, then the solution of equations (Bl) is

a
1

= a
2
=a

3
• Next, we want to show that the function (3(BL

i
»)r is concave (n)

m
in the entire region, R={O ~ Q

j
~ 1, j=I,2,3}. In order to prove this, it

is sufficient to show that the following matrix of the second-order partial

derivatives is negative definite in R.

1 1
- Po - P

l

1 1
---p

Po 1

1 1

- Po - PI

1 1
- Po - PI

1 1
- Po - PI

1 1

- Po - PI

Therefore, we need to show that

(1) The determinant of Z is negative.

(ii) All diagonal elements of Z are negative.

(iii) All principal minors have negative determinants.

To prove (i), we observe that

det (Z)
1 1

=-[l-(p+p)
o 1

3

j~1 Qj (I-Qj )Pj ]

and thus it is sufficient to show that

1

3
• L

1
a. (l-a.)p ·

J= J J J

(B2)

Since

we have.

1
1: a. Pj

j=l J

3
L (l-a

J
. )p

J
.

j=l
(B3)



1----+
3

r a
j P .

j=l J

3
r p.

1 j=l J
----=3 3 3

r (l-a.)p. (r a. Pj )( r (l-aj)P
j

)

j=l J J j=l J j=l
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(B4)

Thus it remains to show that the RHS of (B4) is less than the RHS of (B2).

The difference,

3
r p.

j=l J

3 3
(!: a j P .) (r (I-a.) p. )
j=l J j=l J J

1
3
r 0:. (I-a. ) p .

j=l J J J

3 3 3
(r a.p.)(r (l-a.)p.)(r a.(l-a.)p.)
j=l J J j=l J J j=l J J J

is obviously negative.

From (B3), it is easy to see that (ii) holds. The proof of (iii) is

analogous to the proof of (i). This discussion can be generalized to any arb-

itrary number of unknown objects.

Case II: Consider the following subtree

Bli,
I

«( U.O ,U 2 ), U30 ,U5)

o
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(H(BLi))r can be expressed as
m

(1-al)P1
+ (l-al)PI log PI + ((I-a3)P3+P4) log

P6
log - ]

PI

(I-a3)P3+p 4)

PI

and

and

After this transformation, (H(BLi))r has the same form as in Case I. There­
m

fore, the maximum is obtained at

Ps
PS+P6

But

and

We should notice that a
1

can be negative whereas a
3

can be greater than one.

Since (H(BLi))r is concave with respect to Yl and Y3 and the transforma­
m

tian to a's is linear, the maximum is obtained at the boundary, i.e. at

Q1 = 0 whenever Yl -«1- Yl)PZ)/Pl is negative and Q 3 = 1 whenever

( Y3(P3+P4)/P3 is greater than one. In the particular case when PS=P6=O,

if we can find a Y = Yl= Y3 such that al and Q3 both lie between 0 and 1,

then any such value of Q 1 and Q 3 will provide the maximum of (H(BLi»)T. If
m

no such value of Y can be obtained, then, as before, the maximum is obtained

by setting a1 = 0 and Q3· 1.



Case III: In this last case we consider the following subtree whose

(H(BLi»)T can be expressed as
m
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BLj-,
I
I
I

I

Bli
I
I
I

((UIO,U20'~ ) ,U40 ,U 5 )

and obtain (H(BLi))T in the same form as in Case I. Therefore, the maximum
m

is obtained at

From the above transformation ql = Pl+P2+P3 and



= y
1
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(BS)

If a solution of the above equation, satisfying 0 ~ at ~ 1, 1=1,2,

exists, then any such solution will give the maximum value of (H(BLi))T •
m

If Y
l

- P3 < 0 then no solution of (BS) satisfies 0 ~ a
i

s 1, 1=1,2, and

in this case the maximum is obtained at a i = 0, 1=1,2. If Pl/ql + P2/Q l

< Y1- P3 then again no solution of (B5) satisfies 0 S ai~ 1, 1-1,2, and

in this case the maximum is obtained at ai = 1, 1=1,2. Whenever P5 = P6 = 0,

the solution is analogous to the Case II.
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