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In this study, the intelligent computational strength of neural networks (NNs) based on the backpropagated Levenberg-Mar-
quardt (BLM) algorithm is utilized to investigate the numerical solution of nonlinear multiorder fractional differential equations
(FDEs). The reference data set for the design of the BLM-NN algorithm for different examples of FDEs are generated by using the
exact solutions. To obtain the numerical solutions, multiple operations based on training, validation, and testing on the reference
data set are carried out by the design scheme for various orders of FDEs. The approximate solutions by the BLM-NN algorithm are
compared with analytical solutions and performance based on mean square error (MSE), error histogram (EH), regression, and
curve fitting. This further validates the accuracy, robustness, and efficiency of the proposed algorithm.

1. Introduction

Mathematicians have regarded the theory of fractional
calculus as a branch of pure mathematics for nearly three
centuries. However, several researchers have recently dis-
covered that noninteger derivatives and integrals are more
useful for modelling phenomena with inherited and memory
properties than integer orders [1-4]. Fractional differential
equations (FDEs) are used to model various problems in
science, engineering, economics, biological sciences, and
applied mathematics [5-8]. FDEs are more complex than
their integer order since the fractional operators are nonlocal
and have weakly singular kernels [9-13]. The complications
in integer order introduce significant computational diffi-
culties for numerical methods to obtain solutions for such
equations.

Fractional differential equations have wide application in
the fields of science and engineering. Some recent applications
include fractional-order financial systems [14], electrical cir-
cuits [15], nuclear magnetic resonance [16], fractional-order
Bloch system [17], fractional-order Lorenz system [18], hep-
atitis B disease in medicine [19], pollution levels in a lake [20],
and fractional-order Chua’s system [21]. Due to the high usage
of FDEs, several numerical and analytical methods have been
proposed. Bhrawy [22-24] uses spectral methods based on
Jacobi, Chebyshev, and Legendre polynomials over a bounded
domain for an approximate solution of FDE’s. Atabakzadeh
[25] and Tripathi [26] use the operational matrix of Caputo
fractional-order derivatives for Chebyshev polynomials and
fractional integration of the generalized hat basis functions to
solve systems of FDEs. Baleanu [27] in 2013 uses modified
generalized Laguerre collocation methods and the Tau method


mailto:carlos.tavera00@usc.edu.co
https://orcid.org/0000-0002-8680-723X
https://orcid.org/0000-0002-4750-8384
https://orcid.org/0000-0002-4606-7222
https://orcid.org/0000-0002-4040-6211
https://orcid.org/0000-0001-9512-7191
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2710576

based on semi-infinite interval to calculate the approximate
solution for linear and nonlinear FDEs. Ahmadian [28, 29]
applied the Jacobi operational matrix to study a class of linear
tuzzy FDEs. The spectral approximation method is used by Li
[30] to compute the fractional derivative and integral and also
presents the pseudo-spectral approximation technique for
some classes of FDEs. Esmaeili [31] developed a numerical
technique in which the properties of the Caputo derivative were
used to reduce the fractional differential equation into a
Volterra integral equation.

Recently, the use of spectral methods to solve various types
of differential and integral equations has gained interest due to
their wide applicability in both finite and infinite domains
[32-35]. These methods include Galerkin [33], collocation
[36, 37], Tau [38], and Petrov Galerkin [39] classes. Researchers
have widely used the Homotopy perturbation method (HPM)
[40, 41], Legendre wavelets method (LWM) [42, 43], fractional-
order Laguerre and Jacobi Tau methods [44, 45], Chebyshev
Tau method (CTM) [45], variational iteration method (VIM)
[46], differential transform method (DTM) [40], Bernoulli
wavelets method (BWM) [47, 48], and Adomian decompo-
sition method (ADM) [49] for the numerical solution of
fractional differential equations.

In recent times, stochastic numerical techniques based on
artificial intelligence have been developed to solve stiff non-
linear problems arising in various fields. Such stochastic
computing techniques use artificial neural networks to model
approximate solutions. These numerical solvers have wide
applications in various fields including petroleum engineering
[50], heat transfer [51], civil engineering [52], wire coating
dynamics [53], and diabetic retinopathy classification [54]. The
abovementioned techniques inspire the authors to explore and
incorporate soft computing architectures as an alternative,
precise, and feasible way for solving nonlinear multiorder
fractional differential equations. The main purpose of this
article is to obtain approximate solutions for FDEs using ar-
tificial neural networks based on the Levenberg-Marquard
algorithm. Some highlighted features of the given study are
illustrated as follows:

(i) Novel applications of neuroheuristic techniques based
on backpropagated Levenberg-Marquardt neural
networks (BLM-NNs) are presented to obtain nu-
merical solutions for different classes of nonlinear
multi-order fractional differential equations.

(ii) The processes of training, validation, and testing are
carried out by generating a reference solution or
data set by using an analytical solution for different
cases and examples of FDEs.

(iii) The performance of the proposed scheme is incor-
porated by fitting the approximate solutions with the
reference solution. The absolute error between the
targeted data and approximate solutions illustrates the
worth and accuracy of the BLM-NN algorithm.

(iv) Convergence analysis based on mean square errors of
the objective function, regression analysis, and his-
togram plots are employed to study the complexity,
robustness, and correctness of the design scheme.
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(v) The advantage of the proposed design is that it does
not require any initial parameter settings. It has
simple and smooth implementation with exhaustive
applicability and stability.

2. Solution Methodology

In the field of artificial intelligence (AI), supervised machine
learning refers to a collection of algorithms that describe a
predictive model based on data set with known outcomes.
The method is learned through the uses of an efficient
teaching algorithm, such as artificial neural networks, which
use optimization procedures to minimise the error function.
The infrastructure of the proposed BLM-NN algorithm is
based on two fundamental steps. In the first step, a data set of
1201 points is generated by using an analytical solution from
0 to 6 with a 0.005 step size. In the next step, the Lev-
enberg-Marquardt framework of fitting tool “nftool” from
the neural network toolbox of MATLAB R2018a is used to
approximate the solutions with 75% training, 15% valida-
tion, and 15% testing. The suggested structure of the BLM-
NN algorithm with 60 neurons is shown in Figure 1. A
summary of the working procedure of the design scheme is
presented through the flow chart in Figure 2.

The performance of a design scheme is measured
through the performance indicators in terms of mean square
error (MSE) of fitness function, regression R, error histo-
grams, and absolute errors (AE). The mathematical for-
mulation of the MSE, R?, and AE is given as follows:

MSE = % i (u; (1) ;1))
: (1)
) M IO 0))
Y () -, (0)”
and
AEz'uj(t)—ﬁj(t)|, i=1,2,...,k (2)

Here, u;, u;, and i; denote the reference, approximate, and
mean of the solution at jth input and k is the number of
mesh points. The desired value of MSE and AE for perfect
fitting is equal to zero, while the value of R? is one.

3. Numerical Experimentation

In order to illustrate the performance of the BLM-NN al-
gorithm, we have considered various examples of nonlinear
multiorder fractional differential equations. All calculations
and evaluations for this research are performed on HP
laptop EliteBook 840 G2 with an intel(R) Core (TM) i5-5300
CPU @ 2.30GHz, 8.00GB RAM, 64 bit operating in
Microsoft Windows 10 Education edition, running the
R2018a version of MATLAB.

Example 1. Consider the following nonlinear fractional
differential equation [55]:
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FIGURE 1: Structure of a supervised neural network.
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FIGURE 2: A complete overview of the working procedure of the BLM-NN algorithm.
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D'u(x)+u*(x) =T (v+2)x +

with the following equation:
u(0) =u'(0) = 0. (4)

The exact solution of (3) is u(x) = x"*' + x3. Four
fractional orders are considered i.e., Case I v = 1.2, Case II
v = 1.4, Case IIl v = 1.6, and Case IV v = 1.8.

In order to find approximate solutions for various orders
of (3), the BLM-NN algorithm is executed using “nftool” in
the MATLAB package. The performance and convergence of
the mean square error (MSE) of the objective function are
shown in Figure 3. It can be seen that the best validated
performance for v =1.2,1.4,1.6, and 1.8 are 1.0846e — 10,
8.5718e¢ — 11, 9.7898e — 11, and 1.7456e — 10 which are
attained at 1000 epoch. Table 1 demonstrates the approxi-
mate solution for each case of Example 1. Further, the fitting
of approximate solutions with analytical solutions is plotted
in Figure 4. The absolute errors between targeted data and

D**u(x) + D%u(x) + D" u(x) + 1’ (x) =

T(4-0)

0.8 2
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3-v
+(x”+1 +x3)2, 0<v<2, (3)

obtained solutions for multiple orders of (3) are illustrated in
Figures 4 and 5, respectively. The values of AE for each case
lie around 107° to 107,107 t0 10~7, 107> to 10~ 7, and 10>
to 1078, respectively. Table 2 represents the measure of
convergence for each testing, validation, training, gradient,
mu, and complexity analysis in terms of time taken by the
system to achieve the desired results. It can be seen that the
values for the gradient for each case lie around 107* to 1077,
while the maximum time taken by the system is 5 seconds.
The training state of operators during the process of opti-
mization for Example 1 is shown in Figure 6. The accuracy
and efficiency of the proposed algorithm is shown by the
results of regression as dictated in Figure 7.

Example 2. Consider the following nonlinear multiterm
nonhomogenous fractional differential equation as [56]

3-a,

subjected to the following equation:
y(0) =y (0)=y"(0) =0, (6)

where &, and a, are 0.75 and 1.25, respectively. The exact
solution of (5) is u(x) = x*/3. The approximate solution
obtained by the proposed algorithm for (5) are shown in
Figure 8(a). In addition, Figure 8(b) shows the accuracy of
the solutions in terms of residual errors. It shows the ac-
curacy of the solutions as the errors are approaching zero.

aD’u(x) + b(x)D%u(x) + ¢ (x)Du(x) + e (x)D*u(x) + k (x)u(x) = f (x),

where 0<a; <1,1<a,<2 and f(x) are defined as follows:

_ b(x) 2-a,
f(x)=a mx c(x)x
with initial conditions as follows:
y(0) =2,
, 9
y (0)=0.
for a=1b(x)=x"%c(x)=x"e(x) = x" k(x) =

x',a; = 0.5, anda, = 1.5; the exact solution of (7) is

y(t) =2 - 1/2x*. Figure 9 depicts the comparison of exact

2 .
I8 "Tld-a)

2 sa (X }
T (3) ©

Further, to validate the efficiency, absolute errors in solu-
tions of BLM-NN are dictated through Table 3. It can be
observed that the results of the design scheme overlap the
exact solutions with minimum absolute errors as compared
to the Haar wavelet collocation method [56] and the Ber-
noulli wavelet operational matrix method [57].

Example 3. Consider the following nonlinear multiterm
fractional differential equation as follows:

x € [0,T1], (7)

6o XN 4 k(x)<2 - %xz), (8)

and numerical solutions obtained by the design algorithm
for (7). The results calculated by the BLM-NN algorithm are
compared with those obtained by the generalized block pulse
operational matrix method [58] as shown in Table 4. The
absolute errors lie around 1077 to 1078, The values of the
performance function in terms of mean square error are
shown in Table 2. The results in terms of computational
complexity and absolute errors show the accuracy of the
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FIGURE 3: Performance analysis of design schemes based on MSE for different cases of Example 1. (a) Case I, (b) case I, (c) case III, and
(d) case IV.

TaBLE 1: Approximate solutions obtained by the proposed algorithm for different cases of multiorder fractional differential equations.

Example 1
x Example 2 Example 3
Case I Case II Case III Case IV
0 0 0 0 0 0 2
0.5 0.342 638 0.314 465 0.289938 0.268 587 0.041 666 67 1.875
2 2 2 2 0.33333333 1.5

1.5 5.815061 6.021 178 6.244 705 6.487114 1.125 0.875

12.594 79 13.278 03 14.062 87 14.964 4 2.666 666 67 0
2.5 23.13203 24.641 87 26.455 39 28.633 64 5.208 333 33 -1.125
3 38.21158 40.966 61 44.398 64 48.67402 9 -2.5
35 58.61301 63.09417 68.851 28 76.247 64 14.291 666 7 -4.125
4 85.11213 91.857 62 100.758 3 112.5029 21.3333333 -6
4.5 118.4819 128.0831 141.054 158.577 30.375 -8.125
5 159.4932 172.591 3 190.6632 215.5975 41.666 666 7 -10.5
5.5 208.915 226.198 3 250.5035 284.6834 55.4583333 -13.125

6 267.5149 289.7162 321.4856 366.9467 72 -16
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F1GURe 4: Comparison of the analytical solution with the approximate solution obtained by the BLM-NN algorithm for different orders of
FDE as illustrated in Example 1. (a) Case I, (b) case II, (c) case III, and (d) case IV.

proposed algorithm in calculating solutions to fractional

differential equations.

Diuy (x) = u, (x),

Déuy (x) = —uy (x) — uy (x) + x7°

with the following equation:

Example 4. Consider the following system of fractional
differential equation:

7 csc(mv)x' Y

(10)

nx csc ()

T(-v-1T(2-v)

I(-v-1)" (1)
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FIGURE 5: Error histogram between target values and approximated values for multiple orders of equation (4). (a) Case I, (b) case II, (c) case

III, and (d) case IV.

TaBLE 2: Statistical analysis of performance measures including MSE, gradient, mu, number of iterations, and time taken by the system for

calculating the results of Examples 1,

2, and 3.

Mean square error

Example Case Hidden neurons o S ) Gradient Mu Epochs  Regression  Time (s)
Training  Validation  Testing
I 60 7.50E-11 1.08E-10 1.06E-10  1.00E-07  1.00E-10 1000 1 5
1 I 60 5.84E-11 8.57E-11 1.13E-10 1.00E-07  1.00E-10 1000 1 5
1T 60 7.64E-11 9.79E-11 1.15E-10 5.82E-04 1.00E-10 1000 1 5
v 60 1.26E-10 1.75E-10 1.66E-10  1.40E-04  1.00E-09 1000 1 5
2 60 5.18E-14 1.12E-13 1.61E-13 1.24E-08  1.00E-13 890 1 2
3 60 5.52E-12 1.58E-13 2.53E-12 1.51E-06  1.00E-10 1000 1 5
u, (0) =0, (12) uy (x) = x“U,
u, (0) = 0. (13)

The exact solutions of (10) and (11) are given as follows:

Uy (%) = I'(l-o)

v (v + 1)csc (7o)
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FIGURE 7: Regression analysis of cases I, II, III, and IV of Example 1.

We have solved this problem by considering different
cases based on orders of derivative, i.e., Case I v = 1/4, Case
IT v =1/2, Case III v = 2/3, and Case IV v = 9/10.

Approximate solutions obtained by the BLM-NN al-
gorithm for u, (x) and u, (x) are dictated in Table 5. The
comparison or fitting of analytical solutions with approxi-
mate solutions is plotted in Figure 10. It can be seen that
high-overlapping solutions with a minimum absolute error
are obtained. Figure 11 represents the error histograms for
different cases. The values of absolute errors for each case of
(10) and (11) lie around 107> to 107°, 107> to 10~7, 10~ * to
107°,107°t0 107°,107° to 1077, 107® to 107, 107 to 107,

and 10® to 107!, respectively. The smoothness of the al-
gorithm has been detected from the convergence of the
mean square error of the objective function. Figure 12
dictates that validated performance for each case of u, (x)
and u,(x) are 1.3684e —12, 1.4825e¢-12, 3.123¢ - 12,
4.987% — 11, 3.1169¢ — 12, 1.46e — 12, 1.1018e — 12, and
2.661e — 12, respectively. Further, details of performance
indices are provided in Table 5. The values of the gradient for
each case are 1.84e — 07, 3.49¢ — 06, 1.28e — 05, 1.43e — 07,
2.02e — 06, 4.23e —07, 8.03¢ —07, and 3.33e — 07. From
Table 6, it can be seen that the values of mu for each case at
1000 epochs lie around 107! to 10™!%. Regression analysis
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FiGURE 8: (a) Approximate solutions and (b) absolute errors in our solutions for Example 2.

1

TasLE 3: Comparison of absolute errors in solutions obtained by the BLM-NN algorithm with the Bernoulli wavelet operational matrix
method and the Haar wavelet collocation method.

; N=08 N=16 N=32 N=64 BLM-NN
HWCM BWOM HWCM BWOM HWCM BWOM HWCM BWOM
1.00E-01 2.27E-04 1.10E-03 6.55E-05 2.00E-04 1.83E-05 6.96E-05 5.05E-06 1.53E-05 6.40E-08
2.00E-01 4.76E-04 1.70E-03 1.33E-04 5.00E-04 3.69E-05 1.17E-04 1.02E-05 3.69E-05 4.82E-08
3.00E-01 6.92E-04 2.50E-03 1.93E-04 8.00E-04 5.34E-05 1.75E-04 1.48E-05 5.42E-05 2.64E-08
4.00E-01 8.72E-04 4.00E-03 2.43E-04 9.00E-04 6.73E-05 2.74E-04 1.87E-05 5.91E-05 3.02E-10
5.00E-01 1.02E-03 5.30E-03 2.83E-04 1.40E-03 7.88E-05 3.52E-04 2.20E-05 9.10E-05 2.98E-08
6.00E-01 1.13E-03 5.90E-03 3.15E-04 1.20E-03 8.79E-05 3.87E-04 2.46E-05 8.28E-05 5.82E-08
7.00E-01 1.21E-03 5.30E-03 3.38E-04 1.70E-03 9.48E-05 3.58E-04 2.66E-05 1.14E-04 2.01E-08
8.00E-01 1.26E-03 5.80E-03 3.54E-04 1.90E-03 9.96E-05 3.96E-04 2.81E-05 1.26E-04 5.93E-08
9.00E-01 1.28E-03 8.00E-03 3.63E-04 1.60E-03 1.03E-04 5.36E-04 2.91E-05 1.12E-04 2.10E-06
x107
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FIGURE 9: (a) Approximate solutions and (b) absolute errors in our solutions for Example 3.
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TaBLE 4: Comparison of absolute errors in the solutions of the BLM-NN algorithm with the generalized block pulse operational matrix
method for different step sizes.

X h=0.1 h=0.05 h=0.025 h=0.0125 h=0.00625
BLM-NN GBPOM

0.5 9.81E-08 2.40E-03 6.08E-04 1.52E-04 3.82E-05 9.55E-06

1.5 6.02E-07 2.00E-03 5.06E-04 1.27E-04 3.17E-05 7.95E-06

2.5 4.38E-07 1.60E-03 4.41E-04 1.10E-04 2.76E-05 6.90E-06

3.5 2.69E-07 1.60E-03 4.00E-04 1.03E-05 2.58E-05 6.46E-06

4.5 9.03E-07 1.60E-03 4.00E-05 9.99E-04 2.50E-05 6.25E-06

TaBLE 5: Approximate solutions obtained by the proposed algorithm for different cases of the system of FDEs given in Example 4.

Case I Case II Case III Case IV
X
u; (x) u, (x) u, (x) u, (x) u, (x) u, (x) u; (x) u, (x)
0.0 0 0 0 0 0 0 0 0
0.5 0.420 448 0.566 502 0.353553 0.664 67 0.31498 0.752 288 0.267 943 0.913678
1.0 1 1.133003 1 1.32934 1 1.504 575 1 1.827 355
1.5 1.660 023 1.699 505 1.837117 1.994 011 1.965 556 2.256 863 2.160 595 2.741 033
2.0 2.378 414 2.266 006 2.828427 2.658 681 3.174 802 3.009151 3.732132 3.65471
2.5 3.143 584 2.832508 3.952 847 3.323351 4.605 039 3.761 439 5.702772 4.568 388
3.0 3.948 222 3.399 009 5196152 3.988 021 6.240 251 4.513726 8.063 626 5.482 065
3.5 4.787238 3.965511 6.5479 4.652691 8.068 264 5.266 014 10.807 6 6.395743
4.0 5.656 854 4.532012 8 5.317 362 10.079 37 6.018 302 13.928 81 7.309 42
4.5 6.554139 5.098 514 9.545942 5.982032 12.265 56 6.770 59 17.42223 8.223 098
5.0 7.476 744 5.665015 11.180 34 6.646 702 14.620 09 7.522 877 21.2835 9.136 775
5.5 8.422739 6.231517 12.898 64 7.311372 17.13712 8.275165 25.50875 10.050 45
6.0 9.390 507 6.798 019 14.696 94 7.976 042 19.811 56 9.027 453 30.094 52 10.964 13
Function Fit for Output Element 1 Function Fit for Output Element 1 Function Fit for Output Element 1 Function Fit for Output Element 1
" 10 _ 15 . 20 _ 30
g, E ER ERE
Z =z 5 E Z 10
£ 2 & ] g
[©] ¢} o [©]
0 0 0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Elo'5 | 0 Flo’5 { ) ‘Elo'4 ] . \[xw"’ ]
g g3 g g
EaL -, ] & | & |
Input Input Input Input
« Training Targets . Test Outputs « Training Targets . Test Outputs + Training Targets . Test Outputs + Training Targets . Test Outputs
+ Training Outputs Errors + Training Outputs Errors + Training Outputs Errors + Training Outputs Errors
- Validation Targets ~——— Fit - Validation Targets ~——— Fit + Validation Targets ~——— Fit - Validation Targets ~——— Fit
+ Validation Outputs . Targets - + Validation Outputs . Targets - + Validation Outputs . Targets - + Validation Outputs . Targets -
Outputs Outputs Outputs Outputs
« Test Targets + Test Targets « Test Targets « Test Targets
(a) (b) () (d)

Figure 10: Continued.
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F1Gure 10: Comparison of analytical solution with approximate solution for u, (a) — (d) and u, (e) — (h) for multiple orders of Example 4.
(a) Case I, (b) case II, (c) case III, (d) case IV, (e) case I, (f) case II, (g) case III, and (h) case IV.
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FiGure 12: Convergence of performance in terms of mean square error for u, (x) (a—d) and u, (x) (e-h) for multiple orders of Example 4.
(a) Case I, (b) case II, (c) case III, (d) case IV, (e) case I, (f) case II, (g) case III, and (h) case IV.

TABLE 6: Statistical analysis of performance measures including MSE, gradient, mu, number of iterations, and time taken by the system for

obtaining the results of Example 4.

Perf Case | Case II Case III Case IV
erformance measures
u, (x) u, (x) u, (x) u, (x) u, (x) u, (x) u; (x) u, (x)
Hidden neurons 60 60 60 60 60 60 60 60
Training 8.67E-12 1.04E-11 1.64E-11 9.39E-13 3.88E-11 8.32E-13 3.83E-11 1.74E-12
Validation 1.37E-12 3.12E-12 1.48E-12 1.46E-12 3.12E-12 1.10E-12 4.99E-11 2.66E-12
Testing 8.52E-13 4.94E-13 1.06E-11 1.37E-12 8.76E-12 1.32E-12 4.29E-11 2.66E-12
Gradient 1.84E-07 3.49E-06 1.28E-05 1.43E-07 2.02E-06 4.23E-07 8.03E-07 3.33E-07
Mu 1.00E-13 1.00E-13 1.00E-13 1.00E-11 1.00E-12 1.00E-12 1.00E-11 1.00E-11
Epochs 1000 1000 502 1000 635 1000 1000 1000
Regression 1 1 1 1 1 1 1 1
Time (s) 65 5s 2s 5s 3s 5s 5s 5s
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FIGURE 13: Regression analysis of cases I, I1, III, and IV of Example 4.

(g) case III, and (h) case IV.

shown in Figure 13 further validates the efficiency and
correctness of the technique.

4. Conclusion

In this paper, we have designed an integrated soft com-
puting technique based on supervised learning. The
computational strength of neural networks is utilized by
the backpropagated Levenberg-Marquardt (BLM) algo-
rithm to find approximate solutions for nonlinear multi-
order fractional differential equations. The working
procedure of BLM-NN algorithms is categorized into two
steps in which the reference solution is generated by using
analytical solutions. Furthermore, the data set is used by
the BLM algorithm for validation, testing, and training of
approximate solutions. Multiple figures, in terms of ap-
proximate solutions, curve fitting of analytical solutions
and output data, error histograms, and regression and
convergence of performance, are plotted to validate the
efficiency of the design scheme. The tabulated data and
figures dictate the accuracy, efficiency, and robustness of
the design paradigm.

In the future, the authors would like to extend the
concept of soft computing based on neural networks to
solve the mathematical models represented by partial
differential equations and partial fractional differential
equations.
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