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Plant invasion caused due to various human activities has become a serious problem
affecting ecosystem diversity and imposes a burden on the economy. In recent years, there
have been increasing studies on the application of biochar (BC) in the field of environmental
protection. Invasive plants, which are considered as a kind of hazardouswaste biomass, can
be used as feedstocks to prepare BC. Consumption of invasive plants for BC preparation
can achieve a win-win situation in ecology and resources. This can solve a series of
ecological problems caused by invasive plants to a certain extent while also realizing the
resource utilization of wastes and bringing considerable economic benefits. Based on
previous studies, this paper summarizes the progress of preparing and using invasive plant
biochar (IPB). This includes the production, modification, merit and demerit of IPB, its
application in improving soil quality, the adsorption of pollutants, application in energy
storage, and climate change mitigation potential. It provides a basis for further study of IPB
based on the currently existing problems and proposes a direction for future development.
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INTRODUCTION

Invasive plants are one of the important factors that affect the global ecological environment
(Simberloff et al., 2013). Due to the strong adaptability and rapid spreading ability of invasive plants,
their negative impact on the local ecosystem cannot be ignored. Many effective methods to limit the
invasion of alien plants have been derived, including chemical, biological, and alternative controls
(Terry et al., 2021). These treatment methods have certain effects in long-term practice but still
require considerable manpower and material resources. Hence, we need to find a more economical
and effective way to deal with invasive plants. As an emerging material for environmental protection,
biochar (BC) is characterized by its economy and efficiency (Beesley et al., 2011). Studies show that
biochar production from invasive plants is suitable for mitigating ecological damage caused by
biological invasion (Feng et al., 2021). Biochar production using invasive plants as raw materials
realizes the effective utilization of waste and controls the expansion of invasive plants to a certain
extent. Thus, this method can potentially alleviate the issue of invasive plants.

Biochar possesses excellent physical and chemical properties. It can be prepared by pyrolysis of waste
biomass (Manya, 2012; Tan et al., 2015; Feng et al., 2021). Presently, biochar is often used to improve the soil
environment and remove various pollutants in the environment. Hence, it is an importantmaterial that aids
in environment recovery (Zhang et al., 2013; Ahmad et al., 2014b; Mohan et al., 2014). However, the
physical and chemical properties of biochar are greatly affected by rawmaterials and preparation methods.
Hence, finding suitable raw materials and corresponding preparation methods is particularly important.
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Invasive plants are extremely diverse and renewable; therefore,
using these plants as raw materials for biochar will be more
economical and easier to obtain than other biomass wastes
(Wang et al., 2021). Some researchers have used invasive plants
as raw materials to produce biochar which is mainly used in
agricultural soil improvement and pollutant adsorption (Cheng
et al., 2017; Beckinghausen et al., 2020). However, the advantages
and disadvantages of invasive plant biochar (IPB) and their
preparation methods need to be systematically analyzed. Most
studies about IPB are focused on its application in environmental
protection, while there is little information about its application in
the field of energy. There are still many challenges in the
implementation of IPB that need further analysis and
understanding. Therefore, based on the characteristics of
invasive plants and the preparation method of IPB, this paper
focuses on the preparation and modification methods of biochar
using invasive plants as raw materials, as well as on the application
and potential of IPB in the environmental and energy field. Finally,
this paper elucidates the current problems facing IPB and the
possible future developmental direction of IPB research.

INVASIVE PLANTS

Definition
Invasive plants are those that are introduced into a non-native or
alien environment and are capable of adept multiplication and
can cause damage to the environment, economy, or human health
(Prabakaran et al., 2019). Invasive plants usually have the
following characteristics: 1) Strong ecological adaptability and
high genetic diversity; 2) Strong and rapid reproductive ability,
i.e., they can produce offspring in adverse environments; 3)
Strong transmission capacity, which is suitable for the
transmission of seeds or propagators through media, and a
high transmission rate (Wan et al., 2010; Meng et al., 2020).

Some of the most adaptable plants appear in non-native
environments due to intentional, unintentional, or accidental
human activity (Leprieur et al., 2008; Blackburn et al., 2011;
Besnard and Cuneo, 2016). Generally, there are three main
pathways of plant invasion: 1) natural invasion; 2) initiative
taken to introduce; 3) passive spread (Rahel and Olden, 2008;
Hulme, 2009). After successfully entering a new habitat, invasive
plants often gain a great competitive advantage over native plants
due to the lack of natural enemies and a suitable living
environment. Simultaneously, invasive plants may produce
various organic acids, allelopathic substances, and hormones,
which can destroy the structure of rhizosphere soil microbial
community and interrupt the interaction between the soil
community and native plants. This results in successful
invasion (Simberloff et al., 2013; Jabran et al., 2015; Zhang
et al., 2019).

Hazards and Handling Methods
The inherent ability of plants to undergo rapid adaptive
evolution on genotypes or exhibit phenotypic plasticity
makes them formidable invaders (Prabakaran et al., 2019).
Due to the characteristics of strong adaptability and rapid

growth, invasive plants can cause significant harm to the
local ecological environment (Vila et al., 2011; Eviner et al.,
2017). Invasive plants increase the risk of extinction of native
species by disrupting biogeographical areas and encroaching on
their living space and resources. Many invasive plants also alter
ecosystem functions by altering nutrient cycling, habitat
structure, and disturbance mechanisms (Pysek et al., 2020).
Concurrently, some invasive plants release toxic substances
while consuming survival resources, which critically threatens
the health and safety of humans and livestock (Weller et al.,
2015; Jank and Rath, 2021; Simmons et al., 2021). The economic
cost of plant invasion is increasing worldwide, which brings
great financial burden to the local economy (Leung et al., 2002;
Diagne et al., 2021).

Commonly used methods for the processing of invasive plants
are mechanical control (removal by using artificial or mechanical
cleaning, shading, and other ways to remove invasive plants),
chemical control (through the use of chemicals to kill or control
invasive plants), and biological control (introducing other
biological agents to control the growth of invasive plants)
(Hussner et al., 2017; Weihua Li et al., 2015). Using invasive
plants in different ways is a desirable method to reduce the
damage caused by them. As shown in Figure 1, common
utilization methods of invasive plants include composting,
feed, activated carbon, biochar, etc. (Reaser et al., 2007; Atyosi
et al., 2019; Feng et al., 2021). Since traditional methods to deal
with invasive plants consume significant manpower and material
resources, we urgently need more economical and efficient ways
to deal with invasive plants.

Currently, the invasive plants most commonly used as raw
materials for BC are water hyacinth, Eupatorium
Adenophorum, Spartina Alterniflora, Alternanthera
Philoxeroides, Solidago Canadensis L, etc. (Nguyen D. T. C.
et al., 2021; Cui et al., 2022). These invasive plants are mostly
herbaceous, abundant and easily accessible. It is beneficial to
collect a large amount of raw materials to prepare BC. The
stems of herbaceous plants are densely covered with relatively
small vascular bundles, between which are a large number of
thin-walled cells (Buranov and Mazza, 2008), which is more
conducive to the preparation of BC with large specific surface
area and well-developed porosity.

PREPARATION AND MODIFICATION
OF IPB

The most common way to prepare biochar is by pyrolysis (Jahirul
et al., 2012). Pyrolysis conditions (temperature, heating rate, etc.)
have a significant effect on the physicochemical properties of
biochar (Mašek et al., 2013). During thermal decomposition,
hemicellulose, cellulose, and lignin (components of biomass) are
crosslinked, depolymerized, and cleaved at their respective
temperatures to produce solid, liquid, and gaseous products
(Cha et al., 2016). Biochar preparation by pyrolysis has the
advantages of simplicity and low cost.

At present, there are numerous relevant studies on the
preparation of biochar using invasive plants as raw materials
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(GuhaRay et al., 2019; Velez et al., 2018). In addition to the
direct preparation of biochar by pyrolysis, modified biochar
can also be prepared by pre-treatment of raw materials to
improve the relevant properties of IPB (Saravanakumar et al.,
2019; Zeng et al., 2019). This can aid in enhancing its
applicability in various scenarios. Using invasive plants as
the carrier, biochar was modified by acid and base, supported
metal and its oxides, oxidizer, etc., and had better
performance than the original biochar (Figure 1). Through
acid modification, the surface area of BC can be changed to a
certain extent while also removing metal and other impurities
on the surface of biochar and introducing oxygen-containing
functional groups (Shen et al., 2010). Alkali modification can
increase the specific surface area (BET) and oxygen-
containing functional groups of BC (Ahmed et al., 2016).
The modification of BC by metal or metal oxide can enhance
the adsorption and catalytic performance and endow it with
magnetic properties, which is conducive to recycling (Li et al.,
2021). Oxidant modification can increase oxygen-containing
functional groups on BC, which helps improve its
performance (Uchimiya et al., 2012) (Table 1).

Invasive plants used to prepare biochar often have porous
structures (such as water hyacinth). This enables the resulting
biochar to have a larger surface area and provide more active
sites, which greatly improves the ability of IPB to adsorb
pollutants (Zhuang et al., 2020). Pyrolysis temperature also
affects the properties of IPB. As high temperatures can remove
some impurities in IPB, the porosity of IPB increases with
increasing temperature. Simultaneously, high temperatures
can increase the carbonization degree of biochar and carbon
content of biochar. Eupatorium adenophorum biochar

prepared at high temperature has good stability, and the
removal effect of heavy metals is better (Fan et al., 2019).
Pyrolysis temperature also affects the functional groups on
biochar (Xiaoling Dong et al., 2013). At lower temperatures,
the degree of carbonization of IPB is not high, so there are
more oxygen-containing functional groups on the surface.
The specific surface area and pore volume of IPB can be
changed by acid-base modification, and some surface
functional groups can be introduced to improve the
adsorption performance of biochar (Sizmur et al., 2017).
The modification of supported metal and its oxides mainly
uses the binding force between supported metal elements and
biochar to improve adsorption. Metal element oxides attached
to the surface of biochar can provide more adsorption sites
and can also endow magnetic characteristics to biochar, which
is convenient for separation, recovery, and regeneration.
Water hyacinth biochar was used as the carrier of Fe3O4

particles to achieve effective separation and recovery of
materials (Zhuang et al., 2020). Citric acid was applied for
biochar modification (raw material: Anemonis crematis),
which introduced extensive carboxyl groups on the surface
of biochar and generated numerous active sites (Xu et al.,
2016).

The preparation of BC from invasive plants has obvious
advantages. Invasive plants are easy to obtain and provide a
large number of high quality and cheap raw materials for BC
preparation. Consumption of invasive plants for BC preparation
can achieve a win-win situation in ecology and resources. Invasive
plants have inherent structural advantages, such as the hollow
structure of water hyacinth, which can achieve excellent
structural characteristics in the initial BC. Most invasive plants

FIGURE 1 | Characteristics of invasive plants, IPB preparation and utilization.
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are herbaceous and have high cellulose content. In the pyrolysis
process, cellulose is easily volatilized by combustion, so BC
produced by invasive plants is characterized by abundant
pores. The use of invasive plants to prepare BC is still limited.
Invasive plant species are abundant, but only a few of them are
used to prepare BC. Meanwhile, due to the high content of
cellulose and hemicellulose, the yield of BC produced from
invasive plants was relatively low. In the actual production
process, invasive plants can be selected according to needs. To
generate BC with large specific surface area and abundant pores,
invasive herbaceous plants with high cellulose content can be
used. For those with high yield requirements, the selection range
can be expanded to adopt invasive plants with high lignin
content.

ENVIRONMENTAL APPLICATION OF IPB

Soil Quality Improvement (Soil Amendment)
Biochar is an excellent soil conditioner and can be used for
improving soil quality. It ameliorates the soil environment by 1)
affecting soil physical and chemical properties and 2) affecting
microbial activity. It can increase soil moisture and nutrient
retention capacity, promote growth and biological activity of
soil microflora, reduce nutrient leaching, increase circulation
of soil nutrients, and increase soil organic carbon, which
promotes the growth of plants. Biochar is generally alkaline
and can be used as a soil modifier to neutralize soil acidity
and raise soil pH (Yuan et al., 2011). Similar to other kinds of
biochars, when IPB is used to improve soil quality, it can also

TABLE 1 | Preparation, modification, characteristic, and use of biochar from invasive plants.

Invasive plants Production
method

Modification Feature Application References

Water hyacinth Pyrolysis/550°C/
60 min

With PCM impregnated High carbon content, high porosity,
good thermal conductivity

Energy storage Das et al. (2020)

Water hyacinth Pyrolysis/500°C/
180 min

Modification with alkali
(KOH) and hyperthermy

Developed carbon nanonetwork
and macropore structure

Energy storage Mo et al. (2020)

Prosopis juliflora Pyrolysis/400°C/
60 min

Modification with
alkali (KOH)

Large BET, large number of
heteroatoms

Energy storage Raj et al. (2022)

Water hyacinth Pyrolysis/250°C/
60 min

Modification with metal
oxides (Fe)

Large BET, more surface active
sites, magnetic

Adsorption of As (Ⅴ) in water Zhang et al.
(2016)

Water hyacinth Pyrolysis/400°C/
180 min

Modification with metal
oxides (Fe)

It has more -OH groups, magnetic Adsorption of Cr (Ⅵ) in water Chen et al.
(2019)

Water hyacinth Pyrolysis/<700°C Modification with metal
oxides (Mn)

BET and pore volume increased,
rich in Mn-OH groups

Adsorption of heavy metals in water Zhang et al.
(2020)

Water hyacinth Pyrolysis/700°C/
120 min

Modification with metal
oxides (Fe)

Large aperture, Fe3O4

nanoparticles aggregate to form
larger clusters

Degradation of 2,4,6-trichlorophenol
and coal gasification wastewater

Zhuang et al.
(2020)

Eupatorium
adenophorum

HTC/220°C/60 min Modification with acid
(HNO3)

Large BET, more pores, more
functional groups

Adsorption of Pb(Ⅱ) in water Liu et al. (2021)

Eupatorium
adenophorum

Pyrolysis/600°C/
120 min

Modification with metal
(Fe/Ni)

Surface functional groups
increased

Removal of 2,4, 6-trichlorophenol
from water

Guo Liu et al.
(2019)

Spartina alterniflora Pyrolysis/350°C/
120 min

— Many oxygen functional groups Adsorption of Cd in soil Cai et al. (2020)

Sicyos angulatus
Linn

Pyrolysis/700°C/
120 min

Steam-activated (45 min) BET and pore volume increased Adsorption of sulfamethoazine from
water (SMT)

Rajapaksha et al.
(2015)

Alternanthera
philoxeroides

Pyrolysis/450°C/
120 min

Modification with oxidant
(H2O2)

Oxygen-containing functional
groups and BET increased

Adsorption of metformin
hydrochloride in water

Huang et al.
(2016)

Alternanthera
philoxeroides

Pyrolysis — Rich microporous structure Adsorption of rhodamine B in water Du et al. (2018)

Solidago
canadensis L

Pyrolysis/
400–600°C/
120 min

— The contents of carboxylic acid,
phenol and amine are higher

Improvement of soil quality in saline-
alkali land

Tang et al. (2020)

Solidago
canadensis L

Pyrolysis/700°C/
240 min

Ca/Al hydrotalcite or
hydroxyapatite modification

Rich in P-, C-, O- functional groups Adsorption of Eu (Ⅲ) in water Dong et al.
(2021)

Mesquite Pyrolysis — Large pore Improvement of soil quality Hussain et al.
(2021)

Ambrosia trifida L Pyrolysis/700°C/
180 min

— High aromaticity, low polarity Adsorption of trichloroethylene in
water

Ahmad et al.
(2014a)

Lantana camara Pyrolysis/500°C/
240 min

— High ash content Reduction of soil acidity Berihun et al.
(2017)

Acacia
auriculiformis

Pyrolysis/500°C/
120 min

— Large BET Removal of dyes in water Nguyen et al.
(2021b)

Pistia stratiotes Pyrolysis/
400–700°C/
180 min

Nitrogen doped Large pore structure, rich functional
groups, graphene structure

Adsorption of phthalate esters in
water

Zhang et al.
(2021)
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improve soil fertility, reduce the damage of pollutants on soil
quality, and improve the quality and yield of agricultural
products, as well as it can reduce the persecution of local
species by invasive plants. This IPB application method has
good developmental prospects and can be widely used.

It was reported that fine-grained water hyacinth biochar
reduced soil macropores and contributed to water retention
by capillary action, and the hydrophilic surface bond (OH) of
biochar further improved water retention capacity (Bordoloi
et al., 2019). The pores of IPB can also provide a certain water
retention capacity, which can offer resistance to the
development of tensile force of soil cracks (Li et al., 2009).
Water hyacinth biochar has higher aromaticity and carbon
stability than the initial biomass at 300–350°C. After
experimental analysis, it was found that water hyacinth
biochar significantly improved soil biological activity, with
acid phosphatase and alkaline phosphatase activity increasing
by 32 and 22.8%, respectively, thereby increasing soil activity by
3 times (Masto et al., 2013). The abundance of pores in IPB can
also provide important habitats for microbes. Through field
trials, Lantana camara biochar significantly reduced soil bulk
density and exchangeable acidity, while significantly increasing
soil total porosity, pH, total nitrogen, organic carbon, and
available phosphorus and potassium (Berihun et al., 2017).
Organic anions can quickly neutralize soil acidity in acidic
soil, so the improvement effect of carbonates in biochar on
acidic soil can be long-lasting. The effects of Spartina
alterniflora biochar application on the germination and
growth of Salinaria salinosa were investigated under three
conditions: non-flooding, intermittent flooding, and
continuous flooding. IPB had positive effects on the growth
of Salinaria and improved the rhizosphere soil quality, which
indicated that biochar is feasible for soil remediation in coastal
wetlands (Cai et al., 2021). Additionally, biomass and grain yield
of maize treated by the Eupatorium adenophorum biochar were
significantly improved. This was partly due to changes in soil
physical properties, which included improved drainage and air
permeability of heavy clay upon the addition of biochar (Obia
et al., 2018). IPB can alleviate water, nutrient, and acid stress in
soil. Further, the addition of Eupatorium adenophorum biochar
improved soil nutrient availability and promoted plant growth
by increasing soil pH, Ca/Al ratio, and available phosphorus to
keep soil pH stable (Pandit et al., 2018).

Removal of Pollutants in Water/Soil
With the rapid development of various industries, heavy metals
and organic pollutants have increasing influence on the
environment and are one of the main challenges to be
overcome in the field of environmental sciences and
conservation/sustainability (Yang et al., 2018; Hu et al., 2020).
At present, IPB is mainly used in environmental remediation to
adsorb pollutants in water or soil and reduce the persistence of
pollutants in the ecological environment. The IPB has good
adsorption and removal effect for some pollutants.
Simultaneously, the use of IPB can reduce the ecological harm
caused by invasive plants, realize the resource utilization of waste,
and reduce the production cost of adsorbents.

The maximum adsorption capacity for Pb(II) of the
Alternanthera philoxeroides biochar was 257.12 mg g−1, which
was 5.3 times that of common activated carbon (Yang et al.,
2014). The adsorption capacity (Kd value) of water hyacinth
biochar for heavy metals (Cd, Cu, Pb, and Zn) is greater than
104 L kg−1, and the removal rate is up to 99.9% in the range of low
metal concentration. Thus, it shows high adsorption performance
and low adsorption reversibility (Doumer et al., 2016). Biochar
prepared with Prosopis juliflora as raw material can be effectively
separated by a magnetic field from the treated water after
modification with doped magnetic NiO, and the adsorption
rate of Pb(II) increased (Saravanakumar et al., 2019).
Nitrogen-doped biochar prepared from Pistia stratiotes has a
large pore structure and abundant surface functional groups.
Through hydrogen bonding, Lewis acid-base interaction, and
functional group interaction, the adsorption capacity of diethyl
phthalate can reach 161.7 mg g−1 (Zhang et al., 2021). Water
hyacinth biochar was modified with citric acid, and carboxyl
group was added to the surface of the biochar under esterification.
The modified water hyacinth biochar had good regeneration
adsorption performance and the maximum adsorption
capacity for methylene blue was improved (up to 395 mg g−1)
(Xu et al., 2016). The removal effect of 2,4,6-trichlorophenol
(2,4,6-TCP) in water by nano-iron/nickel bimetal loaded with
Eupatorium adenophorum biochar is significant and the
degradation rate of 2,4,6-TCP can be increased by 39.7–71.6%
under different conditions (Guo Liu et al., 2019).

Contaminants in soil tend to exist in more complex forms than
in water and are harder to remove. IPB can complete the
adsorption of soil pollutants to some extent. At 600–700°C
and pH 6, the Cu(II) removal rates of Spartina alterniflora
biochar and water hyacinth biochar were 29.4 and 28.2 mg g−1,
respectively. The process of Cu(II) fixation had no significant
effect on Na/K/Mg leaching, nutrient cycling (especially K), and
heavy metal retention could be achieved simultaneously (Mi Li
et al., 2015). Spartina alterniflora biochar prepared under low
temperature pyrolysis conditions (350 and 450°C) is beneficial to
the passivation of Cd in soil, and the effective Cd content
decreases by up to 26.9%, while the increase of soil salinity is
not significant. Therefore, Spartina alterniflora biochar can be
used to treat Cd pollution in coastal saline-alkali soil (Cai et al.,
2020).

Energy Storage and Climate Impact
Biochar is a promising energy storage material with easily
regulated surface chemical properties, multi-purpose porous
structure, and abundant surface functional groups. Biochar can
play an important role in various energy storage conversion
reactions and processes (Wu-Jun Liu et al., 2019). It can be
used to produce supercapacitors and batteries (Li-ion, Na-ion, Li-
S, and metal-Air) (Saning et al., 2019; Senthil and Lee, 2021). In
the recent study, a novel and low cost biochar-phase change
materials (PCM) hybrid latent heat energy storage material was
developed by the addition of water hyacinth biochar as a
supporting matrix. It was found that water hyacinth biochar
had a 13.82-fold increased coefficient of thermal conductivity of
PCM, and possessed enhanced stability due to the high carbon
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content and porosity of biochar (Das et al., 2020). Water hyacinth
biochar could absorb metal ions, which helped to improve
thermal conductivity in the production of PCM and solved the
problem of low thermal conductivity in traditional PCM (Muigai
et al., 2020). Hierarchical porous carbon based on water hyacinth
biochar could realize rapid ion transfer simultaneously by
coupling its layered porous structure with high specific surface
area, and provide rich active sites for energy storage (Mo et al.,
2020). The biochar produced by water hyacinth under high
temperature conditions had the characteristics of porous and
high graphitization, which contributed to overcome the water
degradation of ygroscopic perovskite layer and had better air
stability. It could be used to realize the continuous manufacture of
perovskite solar cells (Pitchaiya et al., 2020). Water hyacinth
absorbed Ni2+ in water through phytoremediation technology
and could be used as feedstock to prepare biochar. Metal ions
could be introduced naturally, and the electrochemical
performance of water hyacinth biochar could be significantly
improved (Shell et al., 2021). IPB has great development potential
in energy storage, more researches about the application of IPB in
energy storage are needed in the future.

Biochar has received increasing attention as a method of
almost permanently locking atmospheric carbon in the soil
through carbon-negative processes. The pyrolysis of biochar
from invasive plants can improve carbon stability and form
persistent carbon storage in soil (Gaurav et al., 2020).
Applying biochar to agricultural soils can increase soil carbon
sequestration, stabilize soil organic carbon pool, inhibit soil CO2

flux, and reduce greenhouse gas emissions to mitigate climate
change (Da Dong et al., 2013; Wang et al., 2014). Studies have
shown that IBP has a variable impact on greenhouse gas
emissions, which is reflected by the significant decrease in soil
N2O emissions, increase in soil CH4 uptake, and complex changes
(negative, positive, or negligible) in soil CO2 emissions (Li et al.,
2017). Meta-analyses from laboratory and potted and field studies
found that biochar application significantly affected soil
greenhouse gas fluxes and their global warming undercurrent
values and reduced soil N2O fluxes by 30.92% (He et al., 2017).
IPB could be applied to the soil to reduce nitrous oxide emissions
by reducing the use of fertilizers and lime (Simmons et al., 2021).
The extent and process of climate change mitigation through IPB
application requires further in-depth research.

CONCLUSION

The ecological damage caused by invasive plants worldwide
cannot be ignored, and efficient mitigation policies are
necessary to tackle the problems caused by invasive plants.
Using invasive plants to prepare biochar can turn problematic
weeds into valuable products, thereby taking advantage of them.
This method has become an effective way to control invasive
plants by reducing the control cost and realizing the sustainable
utilization of resources. Invasive plants, especially water hyacinth,
Solidago canadas and Alternanthera philoxeroides are excellent

raw materials for biochar preparation. Furthermore, the current
usage of IPB andmodified biochar elucidates that its performance
can be enhanced and meet more environmental protection
requirements. In this paper, the common methods of biochar
preparation by invasive plants and their application in the
environmental and energy storage field were discussed based
on previous studies. This can provide a basis for the future
management of invasive plants. Biochar preparation from
invasive plants can solve ecological problems caused by
invasive plants to a certain extent while also providing
economic value, realizing resource utilization of waste, and
meeting the requirements of sustainable utilization. However,
there are still some challenges and obstacles in the application
of IPB:

1) There are many kinds of invasive plants, but the existed
invasive plants are not fully utilized. Therefore, various
invasive plants should be considered while selecting raw
materials of biochar in the future.

2) The ability of the original IPB to mitigate environmental
problems may be insufficient to meet future environmental
conservation requirements. Therefore, various modification
methods must be considered to significantly improve the
performance of IPB.

3) Some biochars produced from invasive plants (such as water
hyacinth) showed superior properties and performance in the
specific applications. The advantages of invasive plants
compared to other raw materials of biochar need further
verification.

4) Many invasive plants have desirable structures that can meet
the requirements of energy storage materials. Biochar
preparation from invasive plants also has great potential in
energy storage, but research on this aspect is rare.

5) Fully utilizing invasive plants to prepare biochar can further
achieve carbon sequestration. However, there is still some
controversy over whether biochar can effectively mitigate
climate change, and further research should be carried out
in this regard in the future.
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