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Application of inversions to lossless image
compression

Ziya Arnavut
University of Nebraska
Geography and Geology Department
Omaha, Nebraska 68182
E-mail: zarnavut@cwis.unomaha.edu

Abstract. Linear prediction schemes, such as that of the Joint Photo-
graphic Experts Group (JPEG), are simple and normally produces a re-
sidual sequence with lower zero-order entropy. Occasionally the entropy
of the prediction error becomes greater than that of the original image.
Such situations frequently occur when the image data have discrete gray
levels located within certain intervals. To alleviate this problem, various
authors have suggested different preprocessing methods. However, the
techniques reported require two passes. We extend the definition of
Lehmer-type inversions (Lehmer 1960 and 1964) from permutations to
multiset permutations and present a one-pass algorithm based on inver-
sions of a multiset permutation. We obtain comparable results when we
apply JPEG and even better results when we apply some other linear
prediction schemes on a preprocessed image, which is treated as mul-
tiset permutation. © 1997 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(97)02304-0]

Subject terms: permutations; inversions; multiset permutations; data compaction;
dynamic range reduction; sparse histogram.
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1 Introduction

The goal of data compression is to find shorter representa-
tions for any given data. In a data storage application, this
is done to save storage space on an auxiliary device or in
the case of a communication scenario, to increase the chan-
nel throughput.

Image compression is divided into two main groups,
lossy and lossless. Most of the literature in image compres-
sion deals with lossy techniques, for which the pixel inten-
sities can not be recovered from an encoded bit stream.
Lossless applications, such as digital radiology in the medi-
cal field and satellite imaginary in remote sensing applica-
tions, can not tolerate such an irreversible process as the
images are subject to further processing.

A lossless image compression technique consists of two
main components, modeling and encoding.1 A model cap-
tures the structure inherent in the raw data and extracts it.
The residual, also called the error, is then encoded using an
entropy-encoding technique. Encoding techniques, such as
arithmetic and Huffman encoding, are known to perform
optimally in terms of the number of bits used to encode a
given data source. Hence the critical task in data compres-
sion is modeling.

One of the most popular models used in image compres-
sion is the linear prediction model. In this model, the cur-
rent pixel intensityxi , j is predicted using a linear combi-
nations of the neighboring pixel intensities. The residual is
then encoded and transmitted. The Joint Photographic Ex-
perts Group~JPEG! still picture compression standard2 uses
such predictive schemes in its lossless form. Although lin-
ear prediction models, such as JPEG are quite useful, and
usually yield a residual sequence with lower zero-order en-
tropy, in some cases, they may not yield significant gain.

Preprocessing an image prior to JPEG or JPEG-like pre-
dictive schemes may yield substantial gain. Various
authors3,4 have reported different preprocessing methods.
However, their methods require two passes. In this paper,
we present a one-pass preprocessing scheme, based on in-
versions of a multiset, that yields comparable results. We
treat an image as a multiset permutation and apply inver-
sions to it. We then apply JPEG-like predictive schemes on
preprocessed data. Results indicate that more substantial
gains can be obtained by preprocessing and using JPEG-
like predictive schemes than when using such schemes
alone.

In Sec. 2, we briefly review linear predictive techniques
and try to point out their weaknesses. In Sec. 3, we define
mathematical concepts, such as permutations, multiset per-
mutations, inversions, and inversions on multiset permuta-
tions. We give algorithms that generate inversion vectors of
multiset permutations and then methods for recovering a
multiset permutation from a corresponding inversion vec-
tor. Section 4 discusses our proposed approach. In Sec. 5,
we present the results obtained by applying JPEG and
JPEG-like predictive schemes on inversion vectors, gener-
ated from the image data, which are treated as multiset
permutations. In Sec. 5, we give algorithms that generates
inversion vectors adaptively. Finally, in Sec. 6, we compare
our results with some previous work.

2 Linear Predictive Techniques

For typical images, the values of adjacent pixels are highly
correlated; a great deal of information about a pixel value
can be obtained by inspecting the neighboring pixel values.
Linear predictive techniques try to exploit these correla-
tions between neighboring pixels. They scan the image in a
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fixed order ~usually raster order! and predict the current
pixel by taking a linear combination of neighboring pixels
that have been previously transmitted. The JPEG still pic-
ture compression standard2 uses linear predictive tech-
niques in the prediction step. It has eight different predic-
tive schemes, which are listed in Table 1. The first scheme
makes no prediction. The next three are 1-D predictors,
which scan the image in raster, vertical, and diagonal order.
The last four are 2-D predictors.

An adaptive version of JPEG, which was first proposed
by Niss,5 divides a given image intom3m blocks and se-
lects the best JPEG predictor for each block by determining
least absolute sum of prediction errors. Because the de-
coder needs to know which JPEG predictor is used for each
block, an overhead 3/m3m bits/pixel occurs from trans-
mitting the required information. For a block size of
838, this cost is 3/64'0.047 bits/pixel, however the gain
is usually much higher than the overhead. Memon and
Sayood6 suggested usingxi , j211(xi21,j112xi21,j21)/2 to
substitute the trivial predictor, JPEG 0. They further called
this version of JPEG, BJPEG. We refer to this method as
BJPEG hereafter.

Linear prediction schemes, such as JPEG or BJPEG, are
simple and normally produce a residual sequence with
lower zero-order entropy. Occasionally, the entropy of the
prediction error becomes greater than that of the original
image. For example, in the case of the green band of the
x-ray image @obtained from the University of Southern
California ~USC! database#, the entropy of the image data
is 5.21 bits/pixel. The JPEG predictors yield greater en-
tropy than the entropy of original image, except the first
prediction scheme, where the entropy is 5.17 bits/pixel. The
BJPEG predictive scheme, suffers similarly. The best en-
tropy of the prediction errors of BJPEG yields 5.81 bits/
pixel for the x-ray image. Such situations frequently occur
when the image data has discrete gray levels located within
certain intervals. For example, in the case of the x-ray im-
age, there are 66 different gray values, distributed in the
range of 0 to 255. To alleviate this problem, Kuroki et al.3

suggest a gray-level conversion method and with a different
approach Memon and Ray4 suggest optimal linear
ordering.7 We obtained comparable results when we ap-
plied JPEG and even better results when we applied BJPEG
on a preprocessed image, which is treated as a multiset
permutation.

3 Mathematical Preliminaries

To set the stage for our later discussions, in this section we
define the mathematical concepts.

3.1 Permutations

By a permutation of a finite setS, we mean a bijection from
S onto itself. For example, in functional notation,

p5S 1 2 3 4 5

2 5 4 3 1D
is a permutation onS5$1,2,3,4,5%. Since we can always
arrange the elements ofS in a particular order, a permuta-
tion p is completely described by the bottom row, for ex-
ample by@2 5 4 3 1#. The representationp5@2 5 4 3 1# for
the above permutation is called the Cartesian form ofp.

Given a setS of sizen, there are clearlyn! permutations
on S if elements of the setS are distinct. The idea of per-
mutations on a setS can be extended to multiset if the
elements of the setS are not distinct. By a multisetM
based on setS we mean a pair (S, f ), where f :S→N is a
function fromS into N and f is called the frequency~mul-
tiplicity ! function. The size ofM is defined by
uMu5(xPSf (x), say uMu5m. A multiset permutation8

M based on multisetM5(S, f ) is a mapping
M :$1,2, . . . ,m%→S, such that ifxPS,

f ~x!5u$ j :1< j<m, M @ j #5x%u.

Intuitively, we can think of a multiset permutation
M :$1,2, . . . ,m%→S as a linear array @M (1),
M (2), . . . ,M (m)], wherexPS appears as an element in
M exactly f (x) times. If the underlying set has an implicit
or explicit linear order, sayS5$a1 ,a2 , . . . ,an% with
a1,a2, . . .,an , we sometimes denote the multiset by

M5a1
f ~a1!

•a2
f ~a2! . . .an

f ~an! .

If M5a1
f1
•a2

f2 . . .an
fn @ f (ai)5 f i #, then it is easy to see

that the number of distinct multiset permutations ofM is

~ f 11 . . .1 f n!!

f 1! . . . f n!
.

This quantity is also called a multinomial coefficient.8

Given a 2-D imageP, by raster scanning the imageP
we can convert it to a linear arrayP8. We can think of
P8 as a multiset permutation of the multiset of gray values.
In the case of a 256-gray-valued image, we can consider
P8 to be a multiset permutation on multiset
0 f0•1 f1 . . . 255f255, where f i represents the frequency of
gray valuei in the multiset. There are

~ f 01 . . .1 f 255!!

f 0! . . . f 255!

possible different multiset permutations and the same num-
ber of images.

Table 1 Lossless JPEG predictors.

Mode Prediction for xi,j

0 No prediction

1 xi21,j

2 xi,j21

3 xi21,j21

4 xi,j211xi21,j2xi21,j21

5 xi,j211(xi21,j2xi21,j21)/2

6 xi21,j1(xi,j212xi21,j21)/2

7 (xi,j211xi21,j)/2

Arnavut: Application of inversions . . .

1029Optical Engineering, Vol. 36 No. 4, April 1997



3.2 Inversions

The notion of inversion for a given permutation was intro-
duced quite early8 in an effort to provide concise represen-
tations of ordinary permutations. Several variants and types
of inversions were defined at different times by different
authors. Sedgewick9 gives some other inversion generation
methods. We are particularly interested in Lehmer’s10,11

method, which we describe here.

Definition 1. Let p5@p1 ,p2 , . . . ,pn# be an arbitrary
permutation of ann setS of positive integers. The Lehmer
inversion vectorIp , associated withp is the sequence
@ I 1 ,I 2 , . . . ,I n# of non-negative integers defined as

for 1<k<n Ik5u$ j :k, j<n and pk.p j%u.

For instance, the permutation@3,1,5,2,4# yields @2,0,2,0,0#
as its inversion vector. Lehmer’s method simply counts the
number ofp i.p j , for i, j<n, and generatesn elements
in the inversion vector. We call this version of Lehmer’s
method right smaller~RS!.

Given a Lehmer-inversion vectorIp5@ I 1 ,I 2 , . . . ,I n#
for a permutation, one can obtain the permutation
p5@p1 ,p2 , . . . ,pn# from its inversion vector.
Lehmer9–11describes a relatively short method for recover-
ing a permutationp from its inversion vector. In this sec-
tion, we describe another recovery method from the inver-
sion vector Ip5@ I 1 , . . . ,I n# generated by Lehmer’s
method. By the definition of Lehmer’s RS inversion
method,I i is the number ofp j ’s, i, j<n, that are less than
p i to the right ofp i in p. Let l i be a linked list of ele-
ments that are candidates forp i . Thus, initially
l 15(1,2, . . . ,n). Since there areI 1 elements smaller than
p1 to the right ofp1 in p, p15l 1(11I 1). Now, the new
linked list l 2 of candidates forp2 is obtained by deleting
p1 from l 1. Since there areI 2 elements smaller thanp2 to
the right ofp2 in p, p25l 2(11I 2), and so on. We now
see that givenI i , p i5l i(11I i). We proceed to describe
this procedure in the following algorithm. For simplicity,
we usel instead ofl i in the actual implementation.

1. Let i←1, l ←(1,2, . . . ,n).

2. p i←l (I i11).

3. l ←l 2l (I i11) @deletel (I i11) from l ].

4. i← i11, if i.n stop, otherwise go to 2.

For example, the permutation

p5@3,1,5,2,4#

generates

Ip5@2,0,2,0,0#.

To obtain, the permutationp from Ip , we initialize linked
list l 5(1,2,3,4,5) of sizeuIpu55. Scanning, from left to
right of Ip , we see thatI 152. This means that, there are
two elements smaller thanp1 in l . Accessing the
21153rd position inl , we can retrieve the first element

of p, which isp153. On determiningp1, we drop it from
l . Hence, l has four elements now, namely
l 5(1,2,4,5). The next element inIp is I 250. Accessing
the 01151st position inl , we obtain the second element
of p, namelyp251. After determiningp251, we drop
1 from l , we havel 5(2,4,5). The third element inIp is
I 352. Accessing the 21153rd position inl , we obtain
the third element of the permutationp, p355. Repeating
the process in this manner, we can obtain the original per-
mutationp.

Instead of counting the number of elements that are
smaller thanp i among the elements to the right ofp i in
p, one can count the number of elements that are smaller
thanp i to the left ofp i in p and obtain a different inver-
sion vector. We call this method, left smaller~LS!. A simi-
lar bijection can easily be defined with the permutationp
and its inversion vector obtained in this way as well. Thus,
the algorithm we have given for RS can be modified for LS.
Other variations, which we discuss next, follow the same
idea. Two other inversion methods, similar to the methods
already mentioned, can be defined as right bigger~RB! and
left bigger ~LB!. These two, instead of counting ‘‘how
many smaller elements exist’’ to the left~or to the right! of
an elementp i , they simply count ‘‘how many bigger ele-
ments exist’’ to the left~or to the right! of the elementp i in
p.

3.3 Inversions on Multiset Permutations

We can extend the definition of inversions from permuta-
tions to multiset permutations in a similar manner. As we
show later, Lehmer-type inversion methods may create
more compact data~which has lower dynamic range, with
respect to the original data!, and hence may help JPEG-like
predictive techniques to lower the entropy significantly on
some images.

Definition 2. LetM5a1
f1
•a2

f2 . . .at
f t be a multiset and

M be a multiset permutation onM. Let Mi denote the
symbol in positioni of M , andn5( i51

t f i .

Initially let S5~M1!, ILB150. Then for i52, . . . ,n,

ILB i5u$sPSus.Mi%u and if Mi¹S, then S5S,Mi ,

where ‘‘,’’ means concatenation operation. We call this the
LB inversion method on multisetM .

If we changes.Mi in Definition 2 tos,Mi , we obtain
the LS inversion method. If we letS5$Mn%, IRBn50,
and scanM from right to left, for i5n21 to 1, we define
the so-called RB method. Similarly, we define RS. IfM is
the multiset permutation,M5@1,1,2,1,3,3,1,2,3,3,5,3#,
then,

LB generatesILB5^0,0,0,1,0,0,2,1,0,0,0,1&,

LS generatesILS5^0,0,1,0,2,2,0,1,2,2,3,2&,

RB generatesIRB5^3,3,2,3,1,1,3,2,1,1,0,0&,

Arnavut: Application of inversions . . .
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and RS generatesIRS5^0,0,1,0,2,2,0,0,0,0,1,0&.

Of all the strings generated by the inversion methods, LB,
LS, RB, and RS seem to be more compact, that is, there is
no sparse-histogram problem. Since the representations are
more compact, is it possible to obtain a lower zero-order
entropy for the inversion strings of the multiset permuta-
tions? Before we investigate this question, we give an al-
gorithm that shows how to recover an original multiset per-
mutationM from its inversion vector generated by the LB
method.

In the previous section, we showed that for any given
inversion vector generated by Lehmer variant inversion
methods~LB, LS, RB, and RS!, we can find the corre-
sponding permutationp. A multiset permutation is like a
permutation where the elements are not distinct. By anal-
ogy, we can generalize the algorithm given for permuta-
tions.

LetS5(M1 ,M2 , . . . ,Mt) be a linked structure that rep-
resents the ordered set of elements ofM . Let
F5( f 1 , . . . ,f t) be a linked list structure that represents the
frequencies~multiplicities! of the distinct elements ofM in
the order that they appear inS. From our definition,ILB i is
the number of distinctM j ’s, 1< j< i<n, that are bigger
thanMi to the left ofMi in M . So, for any givenILB i , it
is sufficient to construct an ordered set, which is repre-
sented by the linked listS5(M1 ,M2 , . . . ,Mk), k<t, to
determine the correspondingMi . That is, ILB i represents
Mi , which is at positionuSu2ILB i . Obviously, we require
F andS, since the elements ofM are not distinct, to recover
M from ILB. So, for any givenILB, we can obtain the
correspondingM by the following process:

1. Let i←n.

2. Mi←S(uSu2ILB i).

3. F(Mi)←F(Mi)21.

4. If F(Mi)50, deleteMi from S andF(Mi) from F.

5. If i50 stop, otherwise go to 2.

The algorithm just given requiresO(t•n) time in the worst
case, since theS andF vectors are represented with linked
list data structures. Initially, the size ofS andF are t. At
each iteration, to obtain the gray valueMi in S the process
has to move a pointeruSu2ILB i times inS ~step 2!, and to
reduce the frequency ofMi by one inF the process has to
search for the nodeMi in F ~step 3!. Both steps 2 and 3
then requireO(t) time. If we assume that the pointers in
steps 2 and 3 are used, deletion of an element from the
linked lists S and F ~step 4! then require constant time.
Hence, the worst case time complexity of the recovery al-
gorithm isO(t•n). By using more suitable data structures
we can reduce the time complexity. For example, instead of
using linked list data structure, we can use array structure
to represent the frequency vectorF and the set of the gray
valuesS. The receiver, on receiving theF vector from the
transmitter constructsS. Using a counter variable the pro-
cess can keep track of the number of gray values inS.
Whenever frequency count of a gray value becomes zero in

F, that gray value is deleted fromS. Figure 1 shows the
complete process. Deleting an element fromS requires at
mostO(t), since after deleting an element fromS the pro-
cess shifts all the gray values that are greater than the de-
leted gray value to the left by one location. There are at
mostt values to delete inS. Therefore, the time that will be
required to delete all the gray values fromS would be
O(t2). Thus, the worst case total time complexity is
O(t21n).

The definition given earlier for converting a multiset
permutation to its corresponding inversion vector (ILB),
which is a simple extension of Lehmer method for multiset
permutations requiresO(t•n). However, again with a
simple modification the time complexity can be reduced to
O(t•m1n), where 0,t,m andm is possible number of

Fig. 1 Algorithm to generate a multiset permutation from its inver-
sion vector.

Arnavut: Application of inversions . . .
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gray values. For example, in the case of an 8-bit image,
m is 256. Hence, letS, F andC be 1-D arrays of sizem.
Figure 1 shows a conversion algorithm which uses the ar-
ray structuresS, F, andC. From Fig. 1, it is clear that an
entry in S is updated whenever the process reads a new
gray valueM ( i ) that has not been previously seen. It up-
dates the entries of the arrayC whose locations are less
than M ( i ) by simply adding 1. Obviously, the time re-
quired to update the entries inC is no more thanm. This
happens at mostt times, since the number of different gray
values occurred are at mostt. Thus, the time complexity for
updating the information isO(t•m). Let t5m. Then the
worst case time complexity to update the information re-
lated to the number of gray values that has been previously
seen that are greater than the current gray value isO(t2).
Therefore, the total worst case time complexity is
O(t21n).

Both the modified conversion and recovery algorithms
haveO(t21n) worst case time complexity. For 8-bit im-
ages, wheren.t2 (t<256) the overall time complexity is
linear with respect ton.

The preceding algorithms can be easily modified for LS,
RB, and RS.

4 Simulation Results

For our simulations, we used some images~green band!
from the USC database and some others from the Univer-
sity of Nebraska at Lincoln~UNL! compression laboratory
of size 2563256.

Note that the inversion vectors obtained from the LB,
LS, RS, and RB methods generate different sequences and
different entropies. For example, we observe that when we
scan the images with raster scan, the entropies generated by
the preceding methods vary by approximately60.4 bits/
pixel for the same image. However, the entropies generated
by the best JPEG predictor, when applied to the data gen-
erated by LB, LS, RB, and RS, vary approximately by
60.04 bits/pixel. Therefore, in Table 2 we present only the
results obtained from applying best JPEG and BJPEG on
ILB. As can be seen from the results, for certain images,
such as the ‘‘USC-girl,’’ ‘‘x-ray,’’ and ‘‘couple’’ images,
the performance of the JPEG and BJPEG predictive
schemes is quite substantial on preprocessed data. To re-
construct the multiset permutation~image! from its inver-
sion vector, we need to transmit vectorsS andF. This can
be achieved by using run-length coding. For each gray
value i , we can transmit log2n bits to indicate its frequency
f i , wheren is the size of image. Wheneverf i50, it indi-
cates that the gray valuei does not exist in the image. Thus,
the receiver can constructF andS from the bit stream. For
our images,n5216. Therefore, with an overhead of 0.062
bits/pixel, the information needed to constructS andF can
be transmitted. For images,n.216, overhead would be
even smaller. In the case of a 5123512 image the overhead
wouldbe(2563 18)/(5123 512)' 0.02 bits/pixel.

For the ‘‘USC-girl,’’ ‘‘x-ray,’’ and ‘‘couple’’ images we
obtain a solid gain of 0.87, 0.82, and 0.32 bits/pixel instead
of using JPEG alone. Notice that, instead of using JPEG on
the entire inversion vector, if we use JPEG on blocks

~BJPEG! of the inversion vector we obtain a further gain at
a small cost such as 0.047 bits/pixel for a block size
838. This overhead is required if we choose a block size
838 to indicate to the receiver which JPEG method is used
for each block. The cost that is incurred from BJPEG is
also added to the entropy obtained for each image, as well
as the cost needed to transmitS andF vectors in Table 2.
On the remaining test images, the best JPEG or BJPEG
predictor, applied directly to the image, produces almost
the same results as the best JPEG or BJPEG applied to the
inversion

5 Adaptive Inversions

Inversions on multiset permutations generate more compact
data and eliminate the sparse-histogram problem. To deter-
mine inversion value of a data element, the transmitter must
maintain an ordered set of the previously seen elements.
The receiver, on the other hand, must receive the frequency
vector, in addition to the inversion vector, to construct the
original data. Although the transmission cost of the fre-
quency vector using the run-length coding requiresnlog2n
bits, it can be reduced tot log2m, wherem is the set of

Fig. 2 Algorithm to convert a multiset permutation to its inversion
vector.

Arnavut: Application of inversions . . .

1032 Optical Engineering, Vol. 36 No. 4, April 1997



possible gray values, using adaptive techniques. In Fig. 3,
an adaptive version of Fig. 1 is presented. The difference
between Figs. 1 and 3 are the following:

1. Instead of always copying the value ofC@M ( i )# to
ILB( i ), we copy the value ofC@M ( i )# to ILB( i )
wheneverM ( i ) has been previously seen. Otherwise,
we copy the value of the index variable into
ILB( i ).

2. We maintain a gray-value vectorG, which stores the
first occurrences of different gray values in the order
that they appear.

3. We no longer need to maintain frequency vectorF.

The transmitter, after generatingILB andG vectors, trans-
mits them to the receiver. Transmission of theG vector is
less costly than for theF vector, sincen3 log2m bits must
be transmitted instead ofn3 log2n bits. The inversion vec-
tor generated by the adaptive scheme will have at mostt
(t<m) values different from the inversion vector generated
by the method described earlier.

The receiver having the first occurrences oft different
gray values can easily simulate the behavior of the trans-
mitter. Figure 3 presents an adaptive recovery method for
the receiver. In Fig. 4, whenever a new gray element is
seen, the transmitter inserts the value of the index variable
into the ILB vector, copies the newly seen gray value into
theG vector, and increments the value of the index variable
by 1. The receiver uses the value of the index variable to
determine whether a gray value has been previously seen,
or to access into theG vector and retrieve a new gray value
that has not been seen. A new gray value fromG is re-
trieved if the inversion value is equal to the index value.
Otherwise, the inversion value is less than the index value.
This implies that the value has been seen and should be in
the setS. The gray values inSare maintained in decreasing
order from left to right to simulate the ‘‘left bigger’’ prop-
erty.

The inversion vector that will be generated by the trans-
mitter, will have at mostt elements that will be different
from those in the inversion vector generated by the LB
method described earlier. However, the transmission over-
head is less while the worst case time complexity is the
same@O(t21n)#. Experimental results on our test images
showed that the results of the JPEG and BJPEG predictive
schemes on the inversion vectors generated by the de-
scribed adaptive method is almost the same as the results
presented earlier.

6 Discussion

We see that viewing an image as a multiset permutation,
and applying inversions to it, can improve the performance
of JPEG-like prediction schemes on some images. Conven-
tional prediction schemes such as JPEG or BJPEG, are
simple and useful, but in some cases, e.g., the ‘‘x-ray’’
image, the entropy of prediction error becomes greater than
that of the original image data. Using inversions on multiset
permutations cures this problem by generating a more com-
pact representation. It reduces the gap between neighboring

Fig. 3 Algorithm to adaptively generate a multiset permutation from
its inversion vector.

Table 2 Entropy of best JPEG and BJPEG predictor on inversion vectors of images.

Image H (Image) JPEG JPEG on ILB BJPEG BJPEG on ILB

‘‘Couple’’ 5.96 4.27 3.95 4.05 3.79
‘‘Lady’’ 5.37 3.81 3.80 3.60 3.59
‘‘Moon’’ 6.71 5.11 5.07 5.14 5.10
‘‘Sat1’’ 7.31 5.89 5.88 5.81 5.87
‘‘Tree’’ 7.41 5.49 5.49 5.36 5.40
‘‘USC-girl’’ 6.42 4.82 3.94 4.72 3.85
‘‘x ray’’ 5.21 5.17 4.35 5.86 4.34
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pixel elements. This process effectively reduces the range
of prediction error by curing the sparse-histogram problem.
Hence, it is logical to expect a lower entropy. But, as
shown by Table 2, this does not happen for all the images,
even though all test images we are using have less than 256
gray values. Location of gray values and their relationship
to the neighboring gray values affects the prediction error
in the image. Some pixel elements may preserve their ab-
solute gray differences between neighboring elements.

Memon and Ray4 posed the question of exchanging gray
values and the effect of this on the entropy. They formu-
lated the problem as optimal linear ordering of gray values
and suggested two algorithms to attack the problem. Kuroki
et al.3 reported similar results, where the authors are per-
forming simple gray-level conversion. The later method is
also suggested by Wang.12 The methods just mentioned re-
quire two passes. For example, the gray-level conversion
method requires a prescan of the image to determine the

gray values. It then does a gray-level conversion before
decorrelating the data with predictive operators. Optimal
linear ordering also requires two passes and has a much
higher time complexity requirement. In the first pass, it
constructs the adjacency matrix of the gray values of an
image data. It then determines the optimal linear ordering
of the gray values, and finally decorrelates the data. How-
ever, inversions on multiset permutations can operate with
one pass. Also, our algorithms have a linear time complex-
ity with respect to the size of the image and are suitable for
multiprocessing or parallel processing. While the current
portion of the image data is being processed, previously
operated data can be sent to another process or processor to
apply predictive operators onto the processed data. This
speeds up the operation and reduces the total compression
time, especially when parallel processing is employed.

We have not yet established whether any further gain
can be achieved by applying our method of inversions in
addition to an optimal linear ordering. It is worth investi-
gating whether applying optimal linear ordering to each of
the inversion sequences will yield any gain.
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Fig. 4 Algorithm to adaptively convert a multiset permutation to its
inversion vector.
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