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Abstract
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University of Toronto

2014

The impact of dimensionality on three aerodynamic optimization cases is studied to determine

the effect of the number of geometric design variables. The cases investigated are: (1) drag

minimization of an airfoil in transonic inviscid flow, (2) drag minimization through optimizing

the twist distribution of a rectangular wing in subsonic inviscid flow, and (3) drag minimization

through optimizing the twist distribution and section shapes of a wing in transonic turbu-

lent flow. The optimization algorithm achieves significant drag reductions in all three cases.

Valuable insight into the impact of dimensionality is gained, showing that increasing the num-

ber of design variables can provide greater flexibility. This flexibility can come at a cost to

the convergence of the optimization algorithm, whether that be due to an inability to reduce

the optimality significantly, the increased geometric flexibility challenging the mesh movement

algorithm, or the unique aerodynamic shapes being unable to achieve converged flow solutions.
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Chapter 1

Introduction

1.1 Background

Growth in air traffic is driving the need for more fuel efficient aircraft to reduce greenhouse

gas emissions and fuel costs for airlines. In 2009, the International Air Transport Association

(IATA) outlined a set of targets for the reduction of carbon dioxide emissions produced by

commercial aircraft. The goals set forth by IATA require: an improvement in fuel efficiency

of 1.5% per year from 2009-2020; carbon-neutral growth from 2020; and a 50% reduction in

emissions by 2050, compared to 2005 [14]. A four-pillar strategy has been identified as the

means to achieve these ambitious targets:

1. Improved technology

2. Effective operations

3. Efficient infrastructure

4. Positive economic measures

The last three pillars consist of operations changes, infrastructure updates and government

policy. The first pillar, improved technology, is expected to provide the greatest reduction in

fuel burn and emissions. This could include unconventional aircraft, new engine types and the

use of biofuels.
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Aerodynamic shape optimization has emerged to address these issues, motivated by the need

to reduce greenhouse gas emissions and increase fuel efficiency. Combining Computational Fluid

Dynamics (CFD) with numerical optimization methods allows designers to effectively explore

the design space. The use of a computer algorithm allows the designer to focus on defining the

priorities, objectives and constraints for the problem, rather than the aerodynamic shape itself.

Aerodynamic shape optimization has four key components:

1. A geometry parametrization which defines the design variables that control the change in

geometry

2. A mesh movement algorithm that moves the computational grid with the change in ge-

ometry

3. A flow solver

4. An optimization algorithm

Each component has a key role to play in the final solution and how efficiently that final

solution is obtained. There are several different methods that can be used for each component.

The geometry parametrization, for example, can be accomplished using a CAD package, basis

splines, surface mesh nodes, or free-form deformation. When all four component are combined,

an aerodynamic shape optimization algorithm is created. This algorithm can be used to op-

timize airfoils, wings, and more complex blended wing body configurations. It is useful for

optimizing conventional geometries, as well as discovering new unconventional configurations.

1.2 Motivation

The Drag Prediction Workshops were created by the CFD community to allow an assessment

of the performance of different CFD algorithms for practical aerodynamic flows. The aerody-

namic shape optimization community is undertaking a similar endeavour. In doing so, a suite of

increasingly complex benchmark problems is being developed. At present there are four cases

constituting the suite of benchmark problems, which are used to compare different algorithms.
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The first case is drag minimization of a two-dimensional NACA 0012 airfoil in transonic in-

viscid flow. The second case is drag minimization of a two-dimensional RAE 2822 airfoil in

transonic turbulent flow, subject to lift and pitching moment constraints. The third case is drag

minimization through optimizing the twist distribution of a three-dimensional rectangular wing

compromised of NACA 0012 sections in subsonic inviscid flow, subject to a lift constraint. The

final case is drag minimization through optimizing the sections and twist distribution of the

blunt-trailing-edge Common Research Model (CRM) wing in transonic turbulent flow, subject

to lift and pitching moment constraints.

This thesis explores three of the four benchmark cases (all but the two-dimensional RAE

2822 case) using Jetstream, a high-fidelity aerodynamic shape optimization algorithm for three-

dimensional turbulent flows [20, 21, 11]. For each case, a systematic study on the impact of

the number of design variables on optimizer performance is completed. With the method of

geometry parameterization used for this study, the number of design variables increases directly

with the number of points controlling the geometry. As the number of geometric control points

increases, the problem has greater geometric flexibility. However, this comes at a cost to the

efficiency of the optimization algorithm. The optimization algorithm used with Jetstream is

called SNOPT (Sparse Nonlinear OPTimizer), and was developed by Gill, Murray and Saunders

[8]. It is a gradient-based optimizer capable of finding a local optimum for a constrained

optimization problem. The performance of SNOPT is greatly impacted by the choice of design

variables as well as the constraints placed on them. It will perform most efficiently for problems

that have a lower number of design variables and/or relatively few degrees of freedom. Since the

performance of SNOPT can degrade as the number of design variables increases, this suggests

that there is a preferred number of design variables that will allow a significant decrease in the

objective function while still maintaining good performance. The results of this study provide

guidance on how to best parametrize the geometry and set up the optimization problem for the

benchmark cases. The knowledge gained can be applied to more general optimization problems.
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1.3 Literature Review

1.3.1 Impact of Dimensionality

Andreoli et al. [2] developed a free-form deformation technique with Bezier volumes and applied

it to the optimization of a three-dimensional wing in transonic flow. They used two gradient-

free optimization algorithms: the Nelder-Mead simplex method and a genetic algorithm. For

each optimization method, they looked at the impact of gradually increasing the number of

design variables via degree elevation during the optimization. This is accomplished by allow-

ing the optimizer to solve for a given number of iterations, then applying degree elevation to

the geometry at that point and continuing the optimization with the higher number of control

points. They compared this result with that obtained using the finest parametrization only.

They increased the number of control points in the streamwise direction from 6 to 9, increas-

ing by one control point each time, and compared to the results using 9 streamwise control

points initially. For the simplex methods, the degree elevation process produces an improve-

ment in the objective function (the drag coefficient) and an improvement in convergence speed.

When using a genetic algorithm, the effect of the degree elevation is less clear. Gradually in-

creasing the number of control points produces faster convergence, but starting with the finest

parametrization produces a better objective function.

Buckley and Zingg [4] looked at the impact of the number of design variables for multipoint

optimization of an airfoil in subsonic flow conditions. The gradient-based optimizer SNOPT was

used. They increased the number of design variables from 12 to 30, and saw only a slight trend

of better on-design performance as the number of design variables increased. The difference

between the coarsest and finest parametrization results was only 0.6%. As the number of design

variables increased, the computational expense also increased.

Zingg et al. [29] investigated the effect of the number of design variables on the convergence

of a gradient-based and a genetic algorithm. They parameterized a two-dimensional airfoil

with 15, 25, and 45 control points. This corresponds to 9, 19, and 35 design variables, which

includes angle of attack. As the number of design variables increases, the number of function

evaluations required by the optimizer also increases. For the gradient-based algorithm, the

number of function evaluations roughly doubles as the number of design variables doubles. The
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genetic algorithm sees a much higher increase in the number of function evaluations as the

number of design variables increases, but the ratio is not consistent.

Han and Zingg [9] applied an evolutionary geometry parametrization using B-splines and

refined the parametrization through a sequence of optimizations. The idea is similar to the

degree elevation process performed by Andreoli et al., but the use of B-splines does not require

degree elevation to increase the number of design variables. The optimization algorithm used

is again SNOPT. This technique produced an improvement in the objective function, but at

significant computational expense.

Kumar et al. [16], using fourth-order NURBS parameterization, investigated the results

of aerodynamic shape optimization with a changing number of design variables. They used

a gradient-based optimizer to obtain maximum lift at a fixed angle of attack with Reynolds

numbers of 103 and 104. At the lower Reynolds number (103), performing optimization with 13,

39, and 61 control points showed that the highest lift coefficient was obtained using 13 control

points, a lift coefficient of 0.847, compared with 0.275 and 0.284 for 39 and 61 control points,

respectively. They suggest that this is due to multimodality, and that a richer design space

creates more local minima. When they instead progressively increased the design space, using

the optimal shape from the previous parameterization as an initial guess, the lift coefficient

increased each time, from 0.847 with 13 control points to 1.356 with 61 control points. At

the higher Reynolds number (104), they performed optimization with 13, 27, and 39 control

points and used the optimal shape from the previous parameterization as the initial guess for

the higher parameterization. The highest lift coefficient was obtained with 39 control points.

Thokola and Martins [25] applied variable-complexity methods to aerodynamic shape opti-

mization of a two-dimensional airfoil. They employed variable-fidelity and variable-parameterization.

Of interest to this thesis is the variable-parameterization results. Their method involved com-

paring the results of optimizing solely using the highest parameterization to the results of opti-

mizing a problem with a reduced parameterization, and then using that optimized result as the

initial condition for the highest parameterization. They showed that both methods converged

to the same optimum, with the variable parameterization approach taking more computational

time in one case, and less computational time in another. The design space used was small,

with the highest parameterization consisting of 15 design variables.
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1.3.2 Benchmark Problems

The two-dimensional NACA 0012 benchmark case is based on work done by Vassberg et al.

[27]. This work presented the results of a systematic study on the impact of dimensionality.

Using a Bezier curve parameterization, the number of design variables was increased from 0

to 36, and the impact on the final optimized results was analyzed. As the number of design

variables increased, the final drag coefficient decreased from 468.9 drag counts for the initial

geometry to 103.8 drag counts for the final optimized geometry with 36 design variables.

Bisson et al. [3] presented the results of the two-dimensional NACA 0012 and three-dimensional

rectangular wing twist cases. The geometry parametrization is accomplished using B-splines

and the mesh movement using radial basis functions. The flow solver is a cell-centered finite

volume Reynolds-averaged Navier-Stokes (RANS) solver and the optimization algorithm used

is SNOPT. The parametrization and optimization algorithm are similar to those used in Jet-

stream. For the two-dimensional NACA 0012 case, four different geometry parametrizations

were studied: 16, 24, 32, and 48 control points. As the number of control points increased,

a lower optimal drag was obtained. Their results also show the importance of performing a

grid convergence study on both the initial and final geometries. While the initial grid study

showed little difference in drag calculated on the medium and fine grid levels, a final grid study

showed a significant drop in the drag coefficient on finer grid levels. For the three-dimensional

rectangular wing twist case, only a single geometry parameterization was studied. They were

able to produce a near-elliptical lift distribution with the optimized shape. A grid study showed

that the same span efficiency factor was obtained when comparing optimization on a coarse

grid to optimization on a fine grid, with both shapes analyzed by performing a flow solve on

the fine grid.

Carrier et al. [5] analyzed the two-dimensional NACA 0012 and three-dimensional CRM

cases. They used several local, gradient-based optimization algorithms, including a Sequential

Least Squares Quadratic Programming (SLSQP) algorithm that is similar to SNOPT. For

the two-dimensional NACA 0012 case, three different types of geometry parameterization were

used: Bezier curves; B-spline curves; and a full parameterization where the z-coordinate of each

surface mesh node is used as a design variable. An initial analysis comparing the Bezier and B-
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spline parameterizations using 6 control points showed the B-spline parameterization obtained

a significantly lower optimized drag coefficient of 150 drag counts, compared to 350 drag counts

for the Bezier parameterization. When the control points for the Bezier parameterization are

redistributed based on an a posteriori analysis of the results, a better solution of 200 drag

counts is obtained. This shows the location of the control points has a significant impact on

the results, as well as the parameterization method itself. A second analysis used a hierarchy

of parameterizations based on Bezier curves, ranging from 6 to 96 design variables, with the

parameterizations consistent with those from Vassberg et al. [27]. This was first performed using

a conjugate gradient optimization algorithm. As the number of design variables is increased

from 6 to 36, better optimal results are obtained, from 360 to 77.6 drag counts. However, past 36

design variables, a better optimum is not achieved. As the number of design variables increases,

the problem becomes stiffer and the optimizer is not able to improve performance. The three

highest dimension parameterizations (36, 64 and 96 design variables) were analyzed using the

SLSQP algorithm. With this optimization algorithm, increasing the number of design variables

does produce a better optimal result. A third analysis looked at the full parameterization, which

did not produce optimal results as good as those achieved using the Bezier parameterization in

the second analysis. For the three-dimensional CRM case, 6 optimizations were performed with

various chordwise and/or spanwise refinements. As the number of chordwise control points is

increased, the wave drag is decreased. The number of spanwise control sections impacts the

induced drag component, with a fine parameterization required to minimize the induced drag.

These optimizations were performed allowing twist and camber modifications, such that the

internal wing volume remains constant. This differs from the formal problem description,

which only requires the internal volume be equal to or greater than the initial volume, allowing

section changes.

Amoignon et al. [1] analyzed the two-dimensional NACA 0012 case. The geometry was

parameterized using Free-Form Deformation (FFD). As the number of design variables is in-

creased, the final drag coefficient is reduced from 475 drag counts for the initial shape to 113.8

drag counts for the final shape with 41 design variables. However, many of these cases produced

lift coefficients that were non-zero.
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1.4 Objective

The objective of this thesis is to analyze a suite of standard aerodynamic optimization test

cases, looking at the impact of the number of design variables. The results will contribute to

the development of the aerodynamic shape optimization benchmark cases, as well as provide

insight into the impact of dimensionality. Three of the four benchmark cases will be analyzed:

1. Drag minimization of a two-dimensional NACA 0012 airfoil in transonic inviscid flow

2. Drag minimization through optimizing the twist distribution of a three-dimensional rect-

angular wing with NACA 0012 sections in subsonic inviscid flow, subject to a lift constraint

3. Drag minimization through optimizing the sections and twist distribution of the blunt-

trailing-edge Common Research Model (CRM) wing in transonic turbulent flow, subject

to lift and pitching moment constraints



Chapter 2

Algorithm

2.1 Geometry Parameterization and Mesh Movement

Geometric parameterization is employed to have a balance between the number of design vari-

ables and the ability to represent a wide variety of shapes. Numerical optimization algorithms

can only handle a finite set of variables, which requires that a geometry parameterization be

used to reduce the aerodynamic shape to a finite number of design variables. Several differ-

ent geometry parameterization techniques have been used for aerodynamic shape optimization,

each having its advantages and disadvantages. A good parameterization should be able to

approximate a wide variety of aerodynamic shapes while using as few design variables as possi-

ble. The parameterization in Jetstream uses B-spline tensor volumes to approximate not only

the surface, but the entire multi-block structured computational mesh, and was developed by

Hicken and Zingg [11]. As a result, the geometry parameterization is integrated with the mesh

movement scheme. This section will introduce how B-spline curves and volumes are utilized to

fit the surfaces and mesh blocks.

2.1.1 B-Spline Curves

A B-spline curve of order p is composed of a linear combination of control points and basis

functions:

X(ξ) =

N
∑

i=1

BiN (p)
i (ξ) (2.1)

9
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where Bi are the coordinates of the de Boor control points, and N (p)
i (ξ) are the B-spline basis

functions of order p (degree p−1). There are N control points used for a given parameterization.

The number of control points used will affect the accuracy with which the B-spline curve can fit

a given curve, with the minimum number of control points equal to p. A more complex shape

will require a higher number of control points to achieve a certain B-spline fitting accuracy.

The basis functions are defined according to the Cox-de-Boor recursion formula [7]:

N (1)
i (ξ) =















1 if ti ≤ ξ ≤ ti+1

0 otherwise

(2.2)

N (p)
i (ξ) =

ξ − ti

ti+p−1 − ti
N (p−1)

i (ξ) +
ti+p − ξ

ti+p − ti+1
N (p−1)

i+1 (ξ) (2.3)

and the basis functions are defined along a knot vector

T = (t1, t2, ..., tp−1, tp, tp+1, ..., tN−1, tN , tN+1, ..., tN+p) (2.4)

where the knot vector has N + p elements, equal to the number of control points (N) plus the

order of the basis functions (p). The multiplicity of the knots affects the continuity of the curve,

such that a knot with multiplicity m has a continuity of Cp−m−1. If the multiplicity is equal

to the order of the B-spline curve (m = p), the curve has C−1 continuity, or a discontinuity, at

that point. Enforcing this type of multiplicity at the endpoints of the knot vector ensures the

control points coincide with the data points at the beginning and end of the curve.

The order of the basis functions and the definition of the knot vector both affect the B-spline

curve. In this work, all B-spline basis functions are fourth order (p = 4). This means that the

minimum number of control points that can be used is N = 4, and a multiplicity of m = 4 is

enforced at the end points of the knot vector. The knot vector can be defined in different ways.

A uniform knot vector would have evenly spaced knot values, such that ti − ti−1 is constant

for all values of i. With this type of knot vector, enforcing multiplicity of knots is not possible.

Since we wish to have the endpoints of the curve pass through certain control points, it is

necessary to have a nonuniform knot vector.
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2.1.2 B-Spline Curve Fitting

The B-Spline curves presented in the previous section must be expanded in order to be useful

for fitting practical aerodynamic curves and surfaces. In order to fit a surface using a B-

spline curve, the surface must be parameterized and the knot vector must be set. A discrete

parameterization is required, so in place of ξ in the equations above, wj is used. A chord length

parameterization is used

w1 = 0 , wj =

∑j−1
s=1

√
Ls

LT

where j = 2, ..., S − 1 , wS = 1 (2.5)

where S is the total number of airfoil surface points, Ls is the segment length between surface

points, and LT is the total length of all surface points.

A nonuniform knot sequence is used, given by [9]:

ti =































0 if 1 ≤ i ≤ p

1−cos( i−p

N−p+1
π)

2 if p+ 1 ≤ i ≤ N

1 if N + 1 ≤ i ≤ N + p

(2.6)

Once the knot vector and parameterization are set, the B-spline basis functions can be calcu-

lated. In order to determine the locations of the control points, the following must be minimized

min

S
∑

j=1

‖Dj −Xj‖ (2.7)

where Dj are the surface points of the data to be fit, and Xj is the fitted curve, as defined by

equation 2.1. In order to ensure the leading edge of the airfoil is smooth, the control points

closest to the leading edge should be colinear, as shown in Figure 2.1. This can be accomplished

by moving a control point after the minimization, however this will change the fitted shape that

was obtained. Another way to accomplish this is to do a constrained minimization that sets the

colinearity through the least squares solution. In the algorithm, the colinearity is set outside

the minimization, and then the fit is adjusted using parameter correction as described in the

next section.
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Colinear control points at leading edge

Figure 2.1: Example of colinear control points at airfoil leading edge

2.1.3 Parameter Correction

With the parameterization method described in the previous sections, the vectors Dj − Xj

are not perpendicular to the tangent of the fitted curve X
′

j . A better fit can be obtained by

changing the values of the parameters wj through an iterative parameter correction procedure,

such as that suggested by Hoschek [13]

w̄j = wj +∆cj
tN − t1

L
(2.8)

∆cj = (Dj −Xj)Yj (2.9)

where L is the total length of the control polygon defined by connecting the control points, and

Yj is the normalized tangent vector, found by calculating the derivative of the B-spline curve.

In order to demonstrate the effect of the parameter correction, it is applied to the fit of one

half of the symmetrical NACA0012 airfoil and iterated until the residual drops below 10−5, the

maximum number of iterations (1000) is reached, or the residual stops changing.

Figures 2.2 to 2.4 show how the impact of the parameter correction on the quality of the fit

depends on the number of control points. In practice, the parameter correction is implemented

on curves that compose a three-dimensional extruded airfoil or wing. This is done until the

residual drops below a tolerance of 1 × 10−6 or 1000 iterations are performed. An extruded
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Figure 2.2: Comparison of fitting a NACA 0012 airfoil using B-spline curves with 5 control
points, with and without parameter correction
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Figure 2.3: Comparison of fitting a NACA 0012 airfoil using B-spline curves with 9 control
points, with and without parameter correction
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Figure 2.4: Comparison of fitting a NACA 0012 airfoil using B-spline curves with 14 control
points, with and without parameter correction
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Figure 2.5: Plot of fit residual between NACA0012 airfoil and B-spline curve before parameter
correction

airfoil is composed of two curves, one which defines the upper surface and one which defines

the lower surface, that are extruded into space. For a NACA 0012 airfoil, these curves are

symmetrical about the chord. When 5 streamwise control points are used to parameterize each

surface (upper and lower) of the extruded NACA 0012 airfoil, the initial residual is 2.3× 10−2,

and after 1000 iterations of the parameter correction it is dropped to 8.4 × 10−5. When 9

streamwise control points are used, the residual begins at 2.1 × 10−3 and drops to 4.5 × 10−5

after 1000 iterations. Figure 2.5 shows how the initial residual changes with the number of

streamwise control points. As the number of control points is increased, the initial fit residual

decreases.

The parameter correction is limited in how much it can efficiently decrease the residual of

the curve fit. For example, when using 5 streamwise control points, the residual will not drop

much below 1 × 10−4, even if allowed to continue for 100,000 iterations. When 14 streamwise

control points are used, after 100,000 iterations the residual will drop from 3.39 × 10−4 to

5 × 10−6. The parameter correction can only drop the residual approximately two orders of
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magnitude. Using 100,000 iterations does not take much time in this case, because only a single

curve is being fit, but if multiple curves or the entire grid had the parameter correction applied,

it would not be possible to allow it to iterate so long.

Two of the cases investigated in this thesis use the parameter correction for B-spline curve

fitting to improve the initial geometry, as their geometries are composed of an extruded airfoil

in the two-dimensional case and an extruded airfoil with a pinched tip in the three-dimensional

case. The parameter correction is not applied to the more complicated Common Research

Model wing, as it is more costly to apply in three-dimensions.

2.1.4 B-Spline Surfaces and Volumes

The concepts that were explained in the previous sections for B-spline curves can be extended

to produce B-spline surfaces and B-spline volumes. This allows parameterization of the aero-

dynamic surface and the entire computational grid. For a B-spline volume, the curve definition

in equation 2.1 becomes

X(ξ) =

Ni
∑

i=1

Nj
∑

j=1

Nk
∑

k=1

BijkNi(ξ)Nj(η)Nk(ζ) (2.10)

where X(ξ) represents the coordinates of the nodes of the computational mesh as a function

of curvilinear coordinates ξ = (ξ, η, ζ). The basis functions calculated in the ξ direction, while

holding η and ζ constant, are

N (1)
i (ξ; η, ζ) =















1 if ti(η, ζ) ≤ ξ ≤ ti+1(η, ζ)

0 otherwise

(2.11)

N (p)
i (ξ; η, ζ) =

ξ − ti(η, ζ)

ti+p−1(η, ζ)− ti(η, ζ)
N (p−1)

i (ξ; η, ζ) +
ti+p(η, ζ)− ξ

ti+p(η, ζ)− ti+1(η, ζ)
N (p−1)

i+1 (ξ; η, ζ)

(2.12)



Chapter 2. Algorithm 16

with similar expressions for the η and ζ directions. The knot vector, ti(η, ζ), is a spatially

varying function that depends on η and ζ. The basis functions are defined along a knot vector

ti(η, ζ) = (1− η)(1− ζ)ti(0, 0) + η(1− ζ)ti(1, 0) + (1− η)ζti(0, 1) + ηζti(1, 1) (2.13)

where ti(0, 0), ti(1, 0), ti(0, 1) and ti(1, 1) are the edge knot values, which are constant. As with

the B-spline curve, the surface must be parameterized, and a chord-length parameterization is

used. The system is solved using a least-squares fitting, with the block edges fit first, followed

by the surfaces, and finally the internal volume control points. The final B-spline volume

mesh maintains the relative spacing of the original computational mesh, but is several orders of

magnitude smaller. Without this property, areas with high curvature would not be accurately

resolved.

2.1.5 Mesh Movement

In order for aerodynamic shape optimization to occur, geometry changes must be accommo-

dated by both the parameterization and the mesh movement schemes. By fitting the compu-

tational mesh with B-spline volumes, changes in the control points on the B-spline surface can

be propagated through the mesh using a method based on the principles of linear elasticity,

which was adapted from the work of Truong et al. [26] by Hicken and Zingg [12]. Using a

method based on linear elasticity is typically computationally expensive; however, the control

mesh made up of the B-spline volume control points is up to two orders of magnitude smaller

than the full computational mesh, allowing the computational time to be much lower.

The volumes of the control mesh are treated as linear elastic solids that are isotropic and

homogeneous, with a Poisson’s ratio of ν = −0.2 to prevent a high aspect ratio. The Young’s

modulus is proportional to the inverse of the cell volume. To accommodate large shape changes

and improve robustness, the mesh movement occurs in increments. This work uses m = 5

increments, but if mesh movement problems occur, it is possible to use more increments. The

intermediate control points are related to their initial b
(0)
s and final b

(m)
s values using a linear
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relationship

b
(i)
s = i

m
(b

(m)
s − b

(0)
s ) + b

(0)
s , i = 1, ...,m. (2.14)

Equation 2.14 is discretized on the control mesh using a finite-element method. The resulting

linear system is solved using the conjugate gradient method preconditioned with ILU(1) [18],

with the convergence criterion being a reduction in the L2 norm to a relative tolerance of 10−12.

The fine mesh is then updated based on the control mesh using an algebraic approach that is

based on the B-spline volume basis functions.

2.2 Flow Solver

The flow solver is one of the key components of any aerodynamic shape optimization algorithm.

The flow solver should be efficient, accurate and robust. Accuracy is required to allow the

optimizer to use the information from the flow solver to produce an optimum solution. Efficiency

is required as the optimizer will perform many flow solves through the course of an optimization.

Robustness is necessary to accommodate significant geometry changes. This section presents

an overview of the parallel three-dimensional multi-block structured solver used in Jetstream.

The flow solver uses the Newton-Krylov method to obtain high-fidelity flow solutions for use

within the aerodynamic shape optimization algorithm. The flow solver was developed by Hicken

and Zingg [10] for the three-dimensional Euler equations, and by Osusky and Zingg [22] for the

three-dimensional RANS equations. The flow solver algorithm solves the three-dimensional

RANS equations for viscous turbulent flows, and the Euler equations for inviscid flows. The

RANS equations are fully coupled with the Spalart-Allmaras one-equation turbulence model.

The governing equations are discretized using second-order Summation-by-Parts (SBP) opera-

tors. Boundary conditions and block interfaces use Simultaneous Approximation Terms (SATs).

An implicit Euler time marching scheme is applied with an increasing time step, eventually be-

coming an inexact-Newton method, producing a large, sparse system of linear equations that

is solved using flexible GMRES (FGMRES) . An approximate Newton start-up phase is used

to provide the initial iterate for the inexact-Newton phase.
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2.3 Optimization Algorithm

The optimization algorithm used is called SNOPT (Sparse Nonlinear OPTimizer) and was

developed by Gill, Murray and Saunders [8]. It is a gradient based optimizer, capable of finding

a local optimum for a constrained optimization problem of the form

minimize f(x), x ∈ R
n

subject to ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I

where the vector, x, contains the design variables, typically coordinates of the geometric control

points and angle of attack. The objective function, f(x), is often the drag coefficient or the

ratio of drag to lift. The vector, c(x), contains the constraint functions, which can be linear or

nonlinear and are expressed using an equality (i ∈ E) or inequality (i ∈ I).

On large problems, SNOPT performs most efficiently if only some of the variables enter

the problem nonlinearly or if there are relatively few degrees of freedom at a solution (meaning

many of the inequality constraints are at their bounds). For an aerodynamic shape optimization

problem, where the lift and drag coefficients depend on the geometry, all the design variables

will enter the problem nonlinearly, as lift and drag are nonlinear functions of the design vari-

ables. It is therefore reasonable to expect that as the number of design variables increases, the

convergence of the optimizer will be affected, as demonstrated by Zingg et al. [29]. In addition,

the presence of more design variables can impact the convergence of the mesh movement al-

gorithm or produce geometries that cannot achieve a converged flow solution. When either of

these situations occur, SNOPT must find a way back into a region where these functions are

defined by shortening the step length it takes along the search direction. If it is not able to get

back into a region with defined functions (meaning that both the mesh movement algorithm

and the flow solver converge) using this method, the algorithm will terminate.
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2.3.1 Gradient Evaluation

To use a gradient-based optimization method, the gradient must be computed accurately and

efficiently. Using finite differencing is not possible for the problems in question, as there are too

many design variables, and it would be prohibitively inefficient. Pironneau [24] and Jameson [15]

proposed the adjoint method, which allows the gradient to be computed at a cost that is virtually

independent of the number of design variables. The present work uses the discrete adjoint

method, rather than the continuous form. The mesh movement and flow residual equations are

treated as nonlinear constraints that are solved outside of SNOPT. These nonlinear constraints

are linearized analytically to form the adjoint gradient.

The flow Jacobian matrix is formed by linearizing the components of the discrete flow

residual, including the viscous and inviscid fluxes, the numerical dissipation, the turbulence

model, and the boundary conditions. This linearization was completed by Hicken and Zingg

[11] and Osusky [19]. The pressure switch was not linearized in the algorithm developed by

Hicken and Zingg, but was instead treated as a constant in the evaluation of the flow Jacobian.

Osusky introduced the full linearization. The pressure switch is used for capturing shocks,

and is important to use for transonic flows. It was shown that omitting the pressure switch

from the gradient only introduces small errors, which is not problematic for problems that are

shock-free at the final geometry. However, one of the cases investigated in this thesis is inviscid

and transonic, and the geometries produced are not shock-free. For this case, it was found that

if the pressure switch is turned on, but its linearization is not included, the total gradient is

inaccurate and the optimization algorithm cannot converge. If the pressure switch is turned

off, the drag and lift coefficients obtained are inaccurate. Figure 2.6 shows the effect of the

pressure switch on the drag minimization of a two-dimensional NACA 0012 airfoil in inviscid,

transonic flow at zero angle of attack with a lift constraint of zero. This is performed on the

algorithm Optima2D, which does not include the linearization of the pressure switch. In order

to achieve a converged optimization, the pressure switch was turned off to prevent having an

inaccurate gradient. When the final optimized geometries were analyzed by performing a flow

solve with the pressure switch turned on, the drag coefficients obtained were shown to be much

higher than those obtained without the pressure switch, and the lift constraint was no longer
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Figure 2.6: Effect of pressure switch on optimization of inviscid, transonic NACA 0012 airfoil
at zero angle of attack

met.

Figure 2.7 shows a Mach contour for the final optimized shape of the airfoil using 20 design

variables. Without the pressure switch on, this contour looks symmetrical, and the lift con-

straint is met. When this same geometry is analyzed with the pressure switch on, it is clear the

flow is no longer symmetrical across the airfoil chord, and the lift constraint is not met. There

is a shock on the upper surface of the airfoil. Although the airfoil is symmetric, it is producing

a lifting, or non-unique, solution. Ou et al. [23] analyzed four different symmetrical airfoils,

showing that they exhibited non-unique solutions in a range of transonic Mach numbers. The

Mach number, M = 0.85, used for this pressure switch analysis falls within this range. Further

analysis of the non-unique solutions produced by this case is recommended.

In summary, the pressure switch is necessary to accurately capture the flow conditions at

transonic Mach numbers. If the pressure switch is not linearized and included in the flow Jaco-

bian, the resulting gradient may be so inaccurate that it prevents the optimization algorithm

from achieving a converged solution. This inaccuracy is most pronounced for cases where the
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Figure 2.7: Comparison of Mach contours of NACA 0012 airfoil with and without pressure
switch

final optimized geometry is not shock-free. For these cases, it is not possible to perform the op-

timization without the pressure switch, as the optimizer is receiving incorrect flow functionals.

Therefore the only option is to include the pressure switch in the gradient. Osusky [19] looked

at the effect of pressure switch linearization for viscous flows, and concluded the linearization

was necessary for gradient accuracy.

2.3.2 SNOPT Optimization

The linear constraints, typically geometric constraints to group control points, can be satisfied

exactly without performing a flow solve. Examples of nonlinear constraints are constant pro-

jected area, minimum wing volume and constant lift coefficient. The nonlinear constraints are

satisfied to a user-specified tolerance of 10−6. For a typical aerodynamic shape optimization

problem, the objective function is nonlinear, and the constraints imposed are a combination of

linear and nonlinear constraints. For this type of problem, SNOPT applies a sparse sequential

quadratic programming (SQP) method that uses a limited-memory quasi-Newton approxima-

tion to the Hessian.

The SQP algorithm requires both major and minor iterations. The major iterations generate

a sequence of iterates that converge to the optimal solution. The solution of a quadratic

programming (QP) subproblem is used to generate a search direction towards the next iterate,
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which is solved via minor iterations. It is in the solution of the QP subproblem where the

impact of the number of degrees of freedom is seen. The QP subproblem employs a two-phase

active-set algorithm that solves

minimize fk + gTk (x− xk) +
1

2
(x− xk)

THk(x− xk) (2.15)

subject to ck + Jk(x− xk) ≥ 0 (2.16)

where fk is the objective function, gk is the gradient of the objective function, and the vector

x contains the design variables. The matrix, Hk, is a quasi-Newton approximation to the Hes-

sian of the Lagrangian, and is updated after each major iteration using BFGS. The nonlinear

constraints and linear constraints are converted to equalities using slack variables. The non-

linear constraints are then linearized. The second equation represents this linearization of the

nonlinear constraints, where the vector ck contains the nonlinear constraints, and the gradients

of these constraints form the Jacobian, Jk. At each minor iteration the constraints, ck, are

partitioned into basic, superbasic and nonbasic variables:

BxB + SxS +NxN = b (2.17)

The nonbasic variables are frozen at their upper and lower bounds, and therefore made

active and part of the working active set for the minor iteration. An inequality constraint is

considered active at a solution if

ci(x) = 0, i ∈ I (2.18)

meaning the constraint is at its bound. A search direction is sought that moves the superbasic

variables in a direction that will improve the objective function. The basic variables change

to satisfy the constraint equation and the nonbasic variables remain the same. The search

direction then satisfies:

BpB + SpS = 0 (2.19)

The superbasic variables represent the number of degrees of freedom that remain after the
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constraints are satisfied. The search direction is computed using the reduced-Hessian and the

reduced-gradient. The method used to calculate this depends on the number of superbasic

variables. When no more improvement can be found in the objective function, a nonbasic

variable is added to the superbasic variable set, decreasing the working active set. In contrast,

the working active set is increased by one when the step size is too large such that it violates

the bounds of a basic or superbasic variable.

An optimization is deemed successful, or fully converged, when SNOPT is able to satisfy

the KKT conditions to within a specified tolerance. The nonlinear constraints must be satisfied

to within a tolerance of 10−6, referred to as the feasibility tolerance. The gradient of the

Lagrangian must also meet a tolerance, referred to as the optimality tolerance, which is user

specified and can vary from problem to problem, but ranges from 10−5 to 10−7.





Chapter 3

Results

3.1 Case 1: Symmetrical Airfoil Optimization in Transonic In-

viscid Flow

This case involves drag minimization of the NACA 0012 airfoil in transonic, inviscid flow and is

based on work done by Vassberg et al. [27] The number of control points used to parameterize

the airfoil is varied to investigate the effect the parameterization has on the optimization. In

a two-dimensional inviscid flow, the only source of drag, other than numerical error (including

the effect of the finite distance to the far-field boundary), is wave drag. Hence if the shocks can

be eliminated, the drag is strictly a consequence of numerical error.

3.1.1 Optimization Problem

The optimization problem can be summarized as

minimize CD

wrt z

subject to z ≥ zbaseline

where CD is the drag coefficient, z is the vertical coordinate of the optimized geometry, and

zbaseline is the vertical coordinate of the baseline geometry. The geometry is subject to a min-

25
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imum thickness constraint which requires the optimized geometry to be greater in thickness

than the baseline geometry. The thickness constraint is enforced by using 7 nonlinear thickness

constraints at 15%, 20%, 22%, 24%, 26%, 29%, and 35% chord, as done by Bisson, Nadarajah

and Dong [3]. These locations are chosen because the optimizer search direction tries to reduce

the airfoil thickness in this region. The thickness at other chordwise locations will be confirmed

after the final shape is obtained to ensure the thickness constraint is not violated. The use of

nonlinear constraints is preferred in place of linear constraints on the control points, as it is

independent of the initial fit of the airfoil. Since the B-spline fit is not exact, the initial fit of

the NACA 0012 airfoil can vary slightly based on the number of control points used. If the

constraints are placed on the control points, rather than the surface itself, the optimization

problem is changed slightly when the parameterization is changed. Using nonlinear thickness

constraints that constrain the surface ensures that the optimization problem is identical regard-

less of the parameterization. Since the initial airfoil is symmetric, the resulting lift coefficient is

zero, which should be maintained throughout the optimization. The symmetry is enforced by

adding linear constraints to the control points on the upper and lower surfaces that force them

to be equal and opposite in sign. The optimization is given an optimality tolerance of 10−7;

however, not all cases are able to achieve this level of convergence. The feasibility tolerance for

nonlinear constraints is 10−6.

3.1.2 Flow Conditions

The flow is inviscid and transonic with a freestream Mach number of M = 0.85 and zero angle

of attack (α = 0◦).

3.1.3 Initial Geometry

The NACA 0012 airfoil is modified to have a zero thickness trailing edge. The modified airfoil

is defined as

zbaseline = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), x ∈ [0, 1], (3.1)
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Figure 3.1: NACA 0012 extruded airfoil initial geometry

where the modification to the trailing edge occurs via a change in the x4 term. In order

to use the three-dimensional optimization algorithm, the optimization is performed using an

extruded airfoil. The airfoil is extruded one chord length, so it has a chord of one unit and a

span of one unit. The extruded airfoil is composed of an upper and lower patch. Each patch

is parameterized using a variable number of control points in the streamwise direction and a

constant number of control points (five) in the spanwise direction. Figure 3.1 shows the initial

geometry parameterized with fourteen streamwise control points on each surface.

3.1.4 Grid

A structured grid is created around a flat plate with a chord length of one unit and a span of

one unit. The mesh movement capabilities of the algorithm are then used to inflate this flat

plate into an extruded airfoil with the sections determined from the B-spline fit of the NACA

0012 airfoil. Just as the geometry can be thought of as the extrusion of a two-dimensional

airfoil, the grid can be thought of as an extrusion of a two-dimensional grid. There are ten

nodes in the extruded direction, meaning the three-dimensional grid is ten times larger than its

equivalent two-dimensional grid. Three different grid levels are created by starting with a fine

grid and removing every other grid node, except in the extruded direction where the number

of nodes remains constant. The fourth grid level (superfine) is created by refining the fine grid

by doubling the number of nodes in the streamwise and offwall direction. Figure 3.2 shows the

coarse grid level.
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Figure 3.2: Coarse grid level for NACA 0012 extruded airfoil

Grid Study - Initial Geometry

Table 3.1 outlines the number of nodes, the streamwise spacing at the leading and trailing

edges, and the off-wall spacing of the different grid levels. The number of nodes reported is

the two-dimensional equivalent, calculated by taking the total number of nodes in the three-

dimensional grid and dividing by ten (the number of nodes in the extruded direction). A grid

study of the initial geometry is conducted by performing a flow solve on each grid level. The fine

grid is inflated using a parameterization with 48 streamwise control points on the upper and

lower surfaces. A relatively high number of control points is chosen to ensure a highly accurate

B-spline fit of the airfoil. The next two grid levels are created by subsequently removing every

other node in the streamwise and offwall direction. The superfine grid level is created by refining

the fine grid then splitting the blocks. Table 3.2 shows that the medium and fine grid levels are

within 3/10 of a drag count of each other. The fine and superfine grid levels produce the same

drag coefficient of 457.327 drag counts. Vassberg et al. [27] obtained an initial drag coefficient

of 468.9 drag counts, while Bisson et al. [3] obtained an initial drag of 464.2 drag counts on

their finest grid. Carrier et al. [5] obtained a zero mesh size drag coefficient of 471.1 counts.

The initial drag coefficient obtained by Jetstream on the superfine grid is 7 counts below the

lowest value obtained by Bisson et al.
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Table 3.1: Grid parameters for NACA 0012 airfoil grid study

Grid Nodes (2D)
Off-wall
Spacing

Leading-Edge
Spacing

Trailing-Edge
Spacing

Coarse 12760 0.008 0.008 0.008
Medium 49020 0.004 0.004 0.004
Fine 192100 0.002 0.002 0.002

Superfine 768400 0.001 0.001 0.001

Table 3.2: Results of grid study for NACA 0012 airfoil inflated using 48 streamwise control
points per patch

Grid Level Nodes (2D)
Drag Coefficient

(Counts)

Coarse 12760 461.299
Medium 49020 457.598
Fine 192100 457.327

Superfine 768400 457.327

3.1.5 Optimization Results

The results of the optimization using Jetstream can be compared to those obtained by Vassberg

et al. [27] They used a Bezier curve geometry parameterization along with a response-surface

optimization approach. Optimization using Jetstream is performed on the coarse, medium and

fine grid levels. Figure 3.3 shows the results obtained performing optimization using Jetstream

and compares them to those obtained by Vassberg et al. The number of control points used

to parameterize each surface in the streamwise direction is varied from 5 to 13. The leading

and trailing edge control points are fixed, and the movement of the lower surface control points

is constrained to be symmetric to the upper surface control points. The number of design

variables for each case is then equal to the number of streamwise control points per surface,

subtracting the two fixed control points. Therefore, the number of design variables is varied

from 3 to 11. The drag coefficients obtained by Jetstream are significantly lower than those

obtained by Vassberg et al., where the lowest drag coefficient obtained is 103.8 drag counts. One

explanation for this could be grid density. The grid used by Vassberg et al. has 65,536 nodes,

compared to the 2D-equivalent of 192,100 for the fine grid used with Jetstream. However, the

medium grid, which has a similar grid density at 49,020 nodes, is also able to achieve lower

drag values. Another explanation for the lower drag values is the parameterization used. The

Bezier curve parameterization used by Vassberg et al. has very few design variables near the
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Figure 3.3: Comparison of optimization of the NACA 0012 airfoil using Jetstream on fine and
medium grids with Vassberg et al. results [27]
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Figure 3.5: Typical convergence histories for NACA 0012 airfoil optimization

trailing edge, whereas the B-spline curve parameterization has more design variables in this

region. The B-spline parameterization has roughly half of the design variables in the first 50%

of chord length measured from the leading edge, and half in the second 50%. With the Bezier

parameterization, 5/6 of the design variables are within the first 50% of chord length, and 1/6

of the design variables are in the second 50%. Since the majority of the geometry change is

occurring near the trailing edge, the B-spline parameterization is better suited than the Bezier

parameterization, as shown by Carrier et al. [5] Looking at the optimization results on the fine

grid, as the number of design variables increases, the drag obtained decreases. The lowest drag

coefficient is obtained on the fine grid level with 9 design variables: 42.24 drag counts, which

is a reduction of 91% relative to the baseline geometry. However, after 9 design variables, the

drag increases slightly. Figure 3.4 compares the results of optimization using the coarse grid

(with a flowsolve on the final geometry using the fine grid) to optimization using the fine grid.

In all cases the final drag obtained on the fine grid is lower than that obtained on the coarse

grid. Using 3, 4, and 5 design variables, this difference is 2 drag counts or less. With 6 design

variables the fine grid optimization produces a geometry almost 6 drag counts lower than that

from the coarse grid, and with 8 design variables the difference is approximately 60 drag counts.

As the number of design variables increases, the convergence of the optimizer is adversely
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affected. Figure 3.5 shows the optimization history for three cases. With a low number of

design variables, the optimality tolerance of 10−7 is achieved. As the number of design variables

increases, the optimality tolerance is no longer met and only a one order of magnitude reduction

in optimality is achieved. Figure 3.6 shows the airfoil shapes produced for three different

parameterizations. As the number of control points is increased, the airfoil becomes thicker

near the trailing edge. In addition, the thickness increases near the leading edge. The optimizer

maintains the original thickness of the airfoil at approximately 25% chord. Figure 3.7 shows the

distribution of the surface pressure coefficient for the same three parameterizations. The shock

increases slightly in strength but is pushed further downstream. Figures 3.8 and 3.9 show the

Mach and entropy contours for the initial NACA 0012 airfoil and the optimized shape with 9

design variables. The shock is not completely eliminated, but now only extends a small distance

into the flow.
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Figure 3.6: Comparison of final optimized airfoil shapes to initial NACA 0012 airfoil
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(a) Initial NACA 0012 Airfoil (b) Final, 9 Design Variables

Figure 3.8: Comparison of Mach contours for initial NACA 0012 airfoil and final optimized
shape with 9 design variables

(a) Initial NACA 0012 Airfoil (b) Final, 9 Design Variables

Figure 3.9: Comparison of entropy contours for initial NACA 0012 airfoil and final optimized
shape with 9 design variables
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Grid Study - Final Geometry

Tables 3.3 to 3.5 show the results of a grid study on the final geometries for a variety of

parameterizations. Each table is based on the final optimized geometries using the coarse,

medium and fine grids, respectively. The final geometries are analyzed by performing a flow

solve on each grid level. For example, in Table 3.3, the optimization is performed on the coarse

grid, and then the final shape is analyzed using the medium and the fine grid. Unlike the grid

study for the initial geometry, where there is a difference of less than 1 drag count between the

medium and fine grids, the final geometries show a larger difference between the medium and

fine grid levels. For the optimizations run using the medium grid, at higher parameterizations

the flow solve either fails to converge on the coarse or fine grid level, or produces a solution with

a non-zero lift coefficient. The failed flow solves only occur on the fine grid level, suggesting

that the fine grid is resolving difficult flow features that were not present on the coarser grid

levels. Given the presence of non-unique solutions for this case, it is likely that the flow is

unsteady, but further analysis is required. For the fine optimization, fine flow solve case with

10 design variables, the order of accuracy is calculated to be p = 2.46, and the grid converged

value of drag is C∗

D = 46.4 drag counts. Comparing to the grid converged value of drag for the

initial geometry, C∗

D = 457.3 drag counts, this is a reduction of 90%. A grid converged value of

drag for the best case, with 9 design variables, could not be calculated due to the non-unique

solution obtained on the medium grid.
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Table 3.3: Grid study for NACA 0012 airfoil optimization on coarse grid
Drag Coefficient, CD (Counts)

Design Variables Coarse Flowsolve Medium Flowsolve Fine Flowsolve

3 221.34 224.99 228.61
4 217.31 218.72 220.83
5 145.93 124.05 123.8
6 138.87 96.53 93.61
7 143.23 82.48 74.93
8 151.87 108.21 102.03
9 149.98 116.74 FAILED
10 143.64 113.41 111.96
11 136.17 97.46 94.88

Table 3.4: Grid study for NACA 0012 airfoil optimization on medium grid
Drag Coefficient, CD (Counts)

Design Variables Coarse Flowsolve Medium Flowsolve Fine Flowsolve

3 221.09 224.72 228.33
4 216.61 217.28 219.3
5 146.88 122 121.71
6 152.55 91.71 87.82
7 168.94 68.36 NON ZERO LIFT
8 NON ZERO LIFT 60.67 NON ZERO LIFT
9 200.39 68.25 FAILED
10 NON ZERO LIFT 69.64 NON ZERO LIFT
11 NON ZERO LIFT 67.56 FAILED

Table 3.5: Grid study for NACA 0012 airfoil optimization on fine grid
Drag Coefficient, CD (Counts)

Design Variables Coarse Flowsolve Medium Flowsolve Fine Flowsolve

3 220.96 224.58 228.2
4 216.68 217.23 219.22
5 146.42 121.96 121.62
6 143.77 91.86 87.63
7 169.32 68.86 57.74
8 NON ZERO LIFT 58.99 42.39
9 229.38 NON ZERO LIFT 42.24
10 219.25 77.93 52.18
11 244.86 87.14 56.1
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3.2 Case 2: Twist Optimization of a Rectangular Wing in Sub-

sonic Inviscid Flow

The second case investigated is the drag minimization of a rectangular wing with NACA 0012

sections through optimization of the twist distribution about the trailing edge. The number

of design variables is varied to investigate the effect on the optimization. The flow is subsonic

and inviscid; hence the goal is to minimize the induced drag at a fixed lift coefficient. The

optimization should recover a lift distribution that is close to elliptical and a span efficiency

factor close to one. The span efficiency factor is calculated using

e =
C2
L

πΛCDi

(3.2)

where e is the span efficiency factor, CL is the lift coefficient, Λ is the aspect ratio and CDi
is

the induced drag coefficient.

3.2.1 Optimization Problem

The optimization problem is formally described as

minimize CD

wrt twist

subject to CL = 0.375

where CD is the drag coefficient and CL is the lift coefficient. The wing is twisted about the

trailing edge at a finite number of spanwise stations through the use of linear constraints. This is

accomplished by varying the z coordinates, so the projected surface area remains constant. The

span and aspect ratio are also fixed, so the only mechanism to reduce the induced drag coefficient

is through the span efficiency factor, which is related to the spanwise load distribution. The tip

is constrained to be a linear shear of the twist of the last two spanwise stations. This prevents

the optimizer from twisting the tip so drastically that it creates a winglet. The lift constraint

is the only nonlinear constraint implemented. The angle of attack is a design variable, and the
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Figure 3.10: NACA 0012 rectangular wing initial geometry

root section is fixed. The optimization is given an optimality tolerance of 10−6; however, as in

the first case, not all cases are able to achieve this level of convergence. The feasibility tolerance

is 10−6.

3.2.2 Flow Conditions

The flow is invisicid and subsonic. The freestream Mach number is M = 0.5, and the initial

angle of attack is α = 4.4◦.

3.2.3 Initial Geometry

The geometry is a rectangular wing with NACA 0012 sections which have been modified to have

a sharp trailing edge (see Equation 3.1). The wing has a semispan of 3.06 chords, consisting of

3 chords of rectangular planform and 0.06 chords of wing-tip cap. The geometry has sixteen

surface patches, twelve inboard (upper and lower) that have a variable spanwise parameteriza-

tion and four outboard (upper and lower) that have a constant spanwise parameterization to

ensure a consistent tip geometry. Figure 3.10 shows the geometry with 13 streamwise and 11

spanwise control points on each inboard patch.

3.2.4 Grid

The grid has approximately 1.4 million nodes. The off-wall spacing is 0.002 chords, the stream-

wise leading-edge spacing is 0.005 chords, and the streamwise trailing-edge spacing is 0.01
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Y

Figure 3.11: Grid for NACA 0012 rectangular wing at root

Table 3.6: Coefficients for rectangular wing with NACA 0012 sections on optimization mesh
and fine mesh

Initial Geometry Optimized Geometry
Mesh Size (nodes) 1.4× 106 11.2× 106 1.4× 106 11.2× 106

CL 0.375 0.375 0.375 0.375

CD 0.00784 0.00773 0.00761 0.00759

chords. Figure 3.11 shows a close-up of the node distribution around the grid at the root.

Grid Study

A finer grid is created by doubling the number of nodes in each direction, and then splitting

the blocks to ensure a reasonable number of nodes per processor. This grid has approximately

10.2 million nodes, with an off-wall spacing of 0.001 chords, a streamwise leading-edge spacing

of 0.0025 chords and a streamwise trailing-edge spacing of 0.005 chords. Table 3.6 shows the

results of analyzing the initial and final geometry on the finer grid. The final geometry is from

the best case studied, which used 13 streamwise and 11 spanwise control points on each inboard

patch. On the coarse grid, the drag coefficient is reduced 2.3 drag counts from initial to final,

which is 3% of the initial drag. On the fine grid, the drag coefficient is reduced 1.4 drag counts

from initial to final, which is 1.8% of the initial drag. This shows that the improvement in drag

coefficient carries over to finer grid levels.
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Figure 3.12: Effect of change in number of spanwise control points per inboard patch on final
drag coefficient for NACA 0012 rectangular wing twist optimization case

3.2.5 Optimization Results

Figure 3.12 shows how the final drag coefficient changes as the number of spanwise control

points per inboard patch increases. The number of spanwise control points is varied from 5 to

11, and as the number increases, the final drag obtained decreases. The drag coefficient for the

untwisted wing is 78.4 drag counts, and the drag coefficient for the final optimized geometry

with 11 spanwise control points is 76.1 drag counts, which is a reduction of 3%. The difference

between the coarsest parameterization with 5 control points and the finest parameterization

with 11 control points is 0.09 drag counts. Figures 3.13 and 3.14 show how the span efficiency

factor changes as the number of spanwise control points increases. The initial spanwise efficiency

factor for the untwisted wing is 0.951, and the final span efficiency factor varies from 0.979 with 5

spanwise control points to 0.980 with 11 spanwise control points. The increase in span efficiency

is 3% from initial to final.

Figure 3.15 shows the optimization convergence history for two different parameterizations.

Both have very similar convergence histories, and the optimality is decreased four orders of

magnitude to reach the optimality tolerance of 10−6. All cases were able to achieve this required

tolerance. Figure 3.16 shows the lift distribution for the case with 11 spanwise control points.
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Figure 3.13: Effect of change in number of spanwise control points per inboard patch on final
span efficiency factor for NACA 0012 rectangular wing twist optimization case
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Figure 3.15: Typical optimization convergence history for NACA 0012 rectangular wing twist
optimization case

The initial lift distribution, shown in blue, is far from elliptical. The final lift distribution is

very close to elliptical, showing that the optimizer is able to produce a twist distribution that

has reduced the induced drag. Figure 3.17 shows the twist distribution for the cases with 5 and

11 spanwise control points. The twist distributions are very similar, with the exception of the

twist at the root, with the coarser parameterization producing a higher twist angle than the

finer parameterization. The twist distribution is not continuous near the wing root, with the

twist sharply jumping 3 degrees from 0% to 20% span. From 20% span to wing tip, the twist

decreases smoothly. A smooth twist distribution throughout could be enforced by implementing

additional constraints.
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3.3 Case 3: Wing Twist and Section Optimization in Transonic

Turbulent Flow

The final case is the lift-constrained drag minimization of the Common Research Model (CRM)

wing-only geometry in fully turbulent transonic flow. The z-coordinates of the control points

are design variables, allowing for both twist and section shape optimization. Since this flow

is viscous and transonic, all three types of drag are captured by the flow solver: viscous drag,

lift-induced drag, and wave drag.

3.3.1 Optimization Problem

The optimization problem is

minimize CD

wrt twist and section shape

subject to CL = 0.5

CM ≥ −0.17

where CD is the drag coefficient, CL is the lift coefficient, and CM is the pitching moment

coefficient. The planform area, which is fixed throughout the optimization, is 3.407014 squared

reference units, with the mean aerodynamic chord (MAC) used as the reference length. Both

section changes and twist are permitted. This is achieved by allowing control point movement

in the vertical (z) direction and fixing the trailing edge. The planform area is fixed, and the

angle of attack is a design variable. The lift coefficient is constrained at CL = 0.5, and the

pitching moment coefficient is constrained at CM ≥ −0.17. There is a volume constraint such

that the total wing volume is greater than or equal to its initial value. The thickness of the

sections must be greater than or equal to 25% of the initial thickness.

3.3.2 Flow Conditions

The flow is viscous, transonic, and fully turbulent. The Mach number is 0.85, Reynolds number

5 million, and the initial angle of attack 2.2 degrees. The pitching moment is taken about the
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Figure 3.18: Initial CRM wing geometry

point (1.2077, 0, 0.00769).

3.3.3 Initial Geometry

The baseline geometry is the extracted wing from the Common Research Model, which was

used in the Fourth and Fifth Drag Prediction Workshops [28, 17]. The geometry, shown in

Figure 3.18, features a blunt trailing edge. The wing geometry is extracted by deleting the

fuselage from the wing-body geometry, leaving the wing root located at a distance of 120.52

inches from the original symmetry plane. The leading edge of the wing root is translated to

the origin, and all grid coordinates are scaled by the MAC of 275.8 inches. A post-processing

script is applied to all nodes on the symmetry plane to ensure that they are at y = 0.

3.3.4 Grid

Two different blocking structures are used on an identical mesh: one with fewer blocks for

geometry parameterization and one with more blocks for the flow solve. An O-O topology

computational mesh made up of 18 blocks and 3.38 million nodes is used for the parameteriza-

tion of the geometry. Flow analysis is performed on a mesh that is created by subdividing each

block of the parameterization mesh into 8 sub-blocks, resulting in a 144-block, 3.57 million-node

mesh, enabling perfect load balancing on 144 processors. The mesh has an off-wall spacing of

2.56 × 10−6 reference units, resulting in an average y+ value of 1.0. The wing geometry has 9

surface patches: 2 each on the upper and lower surfaces, 2 each along the leading edge and blunt
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trailing edge, and one cap patch at the wing tip. The leading-edge patches (one for the inboard

section and one for the outboard) are required in order to match with the blunt trailing-edge

patches, and also serve as a method of better capturing the curvature of the leading edge.

In her Ph.D. thesis, Osusky [19] analyzed the initial and optimized geometries on a finer

mesh made up of 39.4× 106 nodes and compared the results to those obtained on the 3.6× 106

node mesh. When the analysis is done on the fine mesh, the pitching moment constraint is

violated, however the difference is less than 2%. The drag coefficients are 4 - 7% lower on

the fine mesh as compared to the coarse mesh. This analysis shows that the final geometry

produced reduces the drag relative to the initial geometry, even on a refined mesh.

3.3.5 Optimization Results

As in previous cases, the number of design variables used to parameterize the geometry is

varied to determine the effect this has on the final result. Figure 3.19 shows how the final

drag coefficient changes with the number of design variables. The data points represented by

red circles are parameterized using 5 spanwise control points on each surface patch, and then

the number of streamwise control points per patch is increased from 5 to 9. The data points

represented by blue squares are parameterized using 6 spanwise control points, with the same

pattern applied to the streamwise control points. The black triangle data points have 7 spanwise

control points. The lowest drag coefficient, 192.63 drag counts, is obtained with the coarsest

streamwise parameterization (5 control points per patch) and finest spanwise parameterization

(7 control points per patch). This is almost 20 drag counts lower than the initial drag coefficient

of 212 drag counts, which is a 9% reduction in drag. The drag coefficient decreases as the number

of spanwise control points used increases. As the number of spanwise control points increases,

there is more flexibility for the geometry to achieve an improved twist distribution. The drag

coefficient generally increases as the number of streamwise control points used increases. This

is contrary to the results seen by Carrier et al. [5], however their use of camber and twist

modifications, not section shape and twist modifications, means the problem was constrained

differently. The thickness constraint that requires the section shapes to maintain at least 25%

of the original thickness is imposed on the control points, not the surface itself. This means

that the thickness constraints vary slightly depending on the initial parameterization. It would
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Figure 3.19: CRM wing drag results - all parameterizations

be preferable to use nonlinear thickness constraints that enforce the thickness between surface

points, not between control points.

It is important to note that the optimizer is not fully converging for any of the cases. An

example of a typical convergence history is shown in Figure 3.20 for two cases: 5 streamwise and

5 spanwise control points per patch, and 5 streamwise and 7 spanwise control points per patch.

The optimality is reduced by roughly an order of magnitude overall, with the optimizer unable

to achieve deep convergence. With the number of surface patches required to fit this geometry,

the number of design variables ranges from 150 - 300, depending on the parameterization. The

high number of design variables is making it difficult for the optimizer to fully converge.

Figure 3.21 compares the initial and final lift distribution for the case with 5 streamwise

and 7 spanwise control points. The final distribution is closer to elliptical than the initial

distribution, showing that the optimizer has reduced the induced drag. Surface pressure coef-

ficient distributions and airfoil section shapes are shown in Figures 3.22 and 3.23, respectively.

These compare the initial and final results for the case with 5 streamwise and 7 spanwise con-

trol points. The pressure distributions show that the optimizer has changed the geometry to
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Figure 3.20: Optimization convergence histories for CRM wing optimization - 5 streamwise
control points per patch

weaken or eliminate shock waves, in order to reduce wave drag. The airfoil shapes show that the

leading edge is becoming pointed near the wing tip. This feature is undesirable structurally and

aerodynamically at lower angles of attack, and can be avoided by using geometric constraints

or performing a multipoint optimization with cases at lower angles of attack.
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Figure 3.22: Comparison of initial and final surface pressure coefficient distributions for CRM
wing optimization with 5 streamwise and 7 spanwise control points per patch
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Figure 3.23: Comparison of initial and final airfoil shapes for CRM wing optimization with 5
streamwise and 7 spanwise control points per patch





Chapter 4

Conclusions and Recommendations

4.1 Conclusions

The objective of this thesis is to investigate the impact of the number of design variables on

three standard aerodynamic shape optimization test cases. The goal is to provide insight into

the impact of dimensionality on aerodynamic shape optimization. The three cases investigated

are:

1. drag minimization of a symmetrical two-dimensional airfoil in transonic inviscid flow,

subject to a thickness constraint that requires the airfoil to have thickness greater than

or equal to the NACA 0012 airfoil;

2. lift-constrained drag minimization through optimizing the twist distribution of a rectan-

gular wing with NACA 0012 sections in subsonic inviscid flow;

3. drag minimization through optimizing the twist distribution and section shapes of the

CRM blunt trailing edge wing in transonic turbulent flow subject to lift and pitching

moment constraints.

Due to the thickness constraint imposed for the first case, shock waves cannot be completely

eliminated. The optimizer thickens the airfoil near the trailing edge and is able to weaken the

shocks and move them aft. As the number of design variables increases, the general trend

shows a decrease in the final drag coefficient. However, the decrease is not strictly monotonic,
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and as the number of design variables increases, the optimizer is not able to achieve significant

reductions in optimality. As a result, the drag coefficient begins to increase. The lowest drag

coefficient is obtained with 9 design variables, and is reduced by 91% to 42 drag counts. The

results show that a finer parameterization is required to gain enough flexibility for the optimizer

to reduce the drag significantly; however this comes at a cost to optimization convergence.

For the second case, the optimization algorithm is able to produce a known result, the ellip-

tical spanwise lift distribution due to minimum induced drag for a planar wake. As the number

of spanwise control points increases, the drag coefficient decreases and the span efficiency factor

increases. However, the difference between the coarsest and finest parameterization is small.

The number of spanwise control points has no effect on the convergence of the optimizer, with

all cases able to converge to the required tolerance. The drag is reduced 3% and the span

efficiency factor is increased 3% from the initial geometry.

The third case introduces optimization based on the RANS equations. In contrast to the first

two cases, where most optimizations achieved the required optimality measure, the optimality is

not well converged for any of the parameterizations examined. Nevertheless, the drag coefficient

is consistently reduced. The number of streamwise and spanwise control points is varied from 5

to 9 in the streamwise direction and 5 to 7 in the spanwise direction, for a total of 15 different

parameterizations. The drag coefficient decreases as the number of spanwise control points

increases, and the lowest drag coefficient is seen with the coarsest streamwise parameterization

(5 control points per patch) and the finest spanwise parameterization (7 control points per

patch). The difference between the best and worst cases is 1.7 drag counts. For the best case,

the optimizer is able to achieve a drag reduction of 20 counts, or 9%, on the grid used for

optimization.

The optimization algorithm is able to achieve significant drag reductions in all three cases

studied. Valuable insight into the impact of dimensionality is gained, showing that increasing

the number of control points used to parameterize the geometry can provide greater flexibility

to the optimization algorithm. This flexibility can come at a cost to the convergence of the

optimization algorithm, whether that be due to an inability to reduce the optimality signif-

icantly, the increased geometric flexibility challenging the mesh movement algorithm, or the

unique aerodynamic shapes being unable to achieve converged flow solutions.
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4.2 Recommendations

For the first case, the number of design variables should be further increased beyond 11 to

see what impact increased dimensionality has. Other researchers who examined this test case

used as many as 64 control points (which would equate to 62 design variables). Many of the

final solutions are not in the grid converged region, so further study of the grid convergence of

the final solutions is required. For the second case, it would be preferable to analyze with a

coarser parameterization. Due to the grid created, the rectangular wing has 16 surface patches,

with each patch parameterized with 13 streamwise and 5 to 11 spanwise control points. This

is a relatively fine geometry parameterization. Using fewer surface patches, or decoupling the

number of design variables from the grid blocking, would allow a coarser parameterization to be

used. The optimizer produced a twist distribution with drastic changes in the twist angle near

the root, which is not desirable structurally. Imposing constraints to prevent this or performing

aerostructural optimization is recommended. For the third case, a complete grid convergence

study should be performed, particularly on the final optimized geometries.

The cases would benefit from analysis using free-form deformation (FFD), which would

allow for a larger number of geometric control points to be used while maintaining a manageable

number of design variables for the optimization algorithm. The first case would particularly

benefit from this treatment, as it shows a degradation in optimizer performance as the geometry

parameterization is refined. Chernukhin and Zingg [6] investigated the multimodality of several

types of problems, including an airfoil, wing, and blended-wing-body. It would be interesting

to investigate if any of the 3 cases show multimodality, and particularly if the number of design

variables could impact multimodality.
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