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ABSTRACT 

On-line Partial Discharge (PD) monitoring is being increasingly adopted in an effort 
to improve asset management of the vast network of MV and HV power cables. This 
paper presents a novel method for autonomous recognition of PD patterns recorded 
under conditions in which a phase-reference voltage waveform from the HV 
conductors is not available, as is often the case in on-line PD based insulation condition 
monitoring. The paper begins with an analysis of two significant challenges for 
automatic PD pattern recognition. A methodology is then proposed for applying the K-
Means method to the task of recognizing PD patterns without phase reference 
information. Results are presented to show that the proposed methodology is capable 
of recognising patterns of PD activity in on-line monitoring applications for both 
single-phase and three-phase cables and is also effective technique for rejecting 
interference signals. 
 

   Index Terms — Autonomous Pattern Recognition, K-Means, Partial Discharge, 
Phase Resolved Pattern, Cable Condition Monitoring. 

 
1  INTRODUCTION 

 PARTIAL Discharge (PD) is a localized electrical 
discharge, due to inability of the insulation to withstand the 
local electrical stress. PD is initiated by a strong electric field 
and is governed by applied voltage [1]. When the applied 
voltage is such that it generates an electrical stress greater than 
local insulation can withstand, breakdown occurs. The 
localized weakness could be a cavity inside insulation material 
or surface defect in gaseous insulation, etc (a fuller discussion 
of defect types can be found in the literature). In the case of 
internal discharges in a cavity within solid insulation, PD 
current pulses occur in both the positive and negative half 
cycles of the applied voltage [2], which is normally a 50 Hz or 
60 Hz sinusoid in standard AC electrical transmission and 
distribution systems. The characteristic patterns of PD activity 
from different types of defect allow them to be distinguished. 
For decades, Phase Resolved Pattern (PRP) identification (the 
distribution of PD pulse amplitude with respect to 
instantaneous phase of the applied voltage) has been one of 
the key tools for PD based insulation diagnostics [3-5]. With 

the development of computer technology and mathematical 
theory, various methods for PD pattern recognition have been 
developed. At the end of 1960s, CIGRE working group 21.03 
published a classic summary of PD recognition [4]. This work 
addressed factors involved in recognition, diagnosis of PD 
origin of discharge and identification of external disturbances. 
Twelve types of typical PD patterns and four additional 
interference patterns were described in terms of distribution of 
discharges in each part of the AC cycle and in variation in 
magnitude with testing voltage and application time. In the 
1990s, Krivda introduced a procedure for automated 
recognition of PD [3], which contained measurements of PD 
pattern, feature extraction, classification of the pattern and 
decision process. Cluster analysis and neural networks were 
applied, based on fundamental feature extraction and database 
construction. In the 21st century, novel PD pattern recognition 
methods have continued to develop, including inductive 
inference algorithm [5], neuro-fuzzy network [6], fractal 
image compression [7], genetic optimization [8], support 
vector machine [9] and knowledge-based system [10]. Most of 
these methods have been applied only within laboratory-based 
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experimental settings. No work, as far as the present authors 
are aware, has reported applying autonomous PD pattern 
recognition methods in on-line cable PD monitoring systems. 
Autonomous PD pattern recognition, having the potential to 
displace expert-based PD diagnostics through automatic 
diagnostics, is key to future development of on-line PD 
monitoring. 
In this paper, a novel K-Means based pattern recognition 
technique is presented. The proposed algorithm aims to 
provide an automatic pattern recognition method when PD 
is recorded without voltage phase information. The method 
is applicable to PDs in single and 3-phase cables, i.e. where 
electric field at the PD site is influenced by voltages in 
more than one phase of a 3-phase system. The method is 
also effective for rejecting interference signals when PD-
like interference signals are extracted from noisy raw data. 
Validation of the proposed algorithm is carried out using 
data acquired from cable monitoring systems but it is 
expected that the algorithm will also be applicable to on-
line PD monitoring of other high voltage apparatus such as 
transformers, motors, generators and switchgear. 

 
2 TECHNICAL CHALLENGES 

PD pattern recognition, along with steps of data acquisition, 
data denoising, PD localization and criticality assessment are 
essential to the success of on-line PD monitoring. In practical 
on-line situations, two significant challenges must be 
overcome when attempting autonomous PD pattern 
recognition in cable condition monitoring. These are 
addressed in A) and B) below. 
A)  No voltage phase information 

The first challenge is that a voltage phase reference is 
difficult to obtain. In power systems, a load-dependent phase 
shift usually exists between the voltage and current sinusoids. 
Consequently, the reference phase obtained for current using 
current transformers or magnetic probes will differ from the 
voltage phase. For experiments in the laboratory, it is possible 
to set up a high voltage (HV) coupling capacitor to obtain 
phase information. However, for on-line applications there are 
safety and operational constraints which usually prevent 
connection to a live terminal. Most of the commercial on-line 
monitoring systems use the phase voltage of the low voltage 
power supply as a reference, with data acquisition being 
triggered at the 0° (positive zero-crossing) point of the low 
voltage (LV) power supply. Although this LV zero-crossing 
provides a synchronized reference for data capture, an 
unknown phase shift will exist relative to the system HV 
waveform. 

Figure 1 shows an example of a set of data acquired from 
an on-site, in-service measurement of a single core cable 
feeding a pump motor. The measured raw data is shown in 
Figure 1 (a); the PD pulses are shown in Figure 1(b), which 
are extracted by the denoising software developed by the 
present authors [11, 12]. Given that the PD pulses are 
expected to be symmetrical in position on the AC cycle 

waveform, it can be seen that the PD pulses are phase shifted, 
indicating that data acquisition is not triggered at the 0° point 
of the cable voltage. Hence a method of assessing Phase 
Resolved Patterns from this type of phase-shifted data is 
required. 
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Figure 1 A set of cable PD monitoring data, captured using low voltage 
supply as trigger. (a) Raw data (b) Extracted PD pulses. 
 
B) PD patterns in three-phase cables 

Most pattern recognition methods have been developed 
from situations where only a single phase of a system is 
energised. The second challenge is, therefore, that many 
on-line systems monitor 3-phase components. In this 
situation the PD generated can be influenced by the 
electrical field produced by two or three phase voltages. 
Analysis of the electric field distribution in a 3-phase cable 
under a 3-phase symmetrical supply in [11] demonstrates 
that the fault location determines whether the electrical 
field stress result from voltages in more than one phase. 
Figure 2, which shows an example of measured PD pulses 
from an 11 kV 3-phase Paper Insulated Lead Cable (PILC) 
cable, illustrates the challenge, which in this case is to 
automatically extract identifiable patterns where the PD 
sources may have resulted from the action of 1, 2 or all 3 
phase voltages. 
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Figure 2. PD activities in an 11kV three-phase PILC cable captured using 
low voltage supply as trigger. (a) Raw data (b) Extracted PD pulses. 
 

3 THE K-MEANS METHOD 
K-Means is an unsupervised clustering algorithm that is 
applied in many fields, including pattern classification, 
multimedia analysis and information retrieval [12-14]. It is 
a method commonly used to automatically partition a data 
set into a defined number (K) of groups [15]. The aim of 
the K-Means algorithm is to separate a number of data 
points (M) from a set with many dimensions (N) into K 
clusters so that the within-cluster sum of squares is 
minimized [16] [17]. The algorithm requires as its input a 
matrix of M points in N dimensions and a matrix of K initial 
clusters, also in N dimensions [16]. The flowchart of the K-
Means algorithm is divided into 4 steps, which are outlined 
below. 

Step 1: Initialisation of cluster centres. 
Following the method in [16], the points are first ordered 

by their distances to the overall Mean of the sample. Then, 
for cluster L (L = 1, 2, … , K), the {1+(L-1)×[M/K]}th point 
is chosen to be its initial cluster centre. In effect, some K 
sample points are chosen as the initial cluster centres. This 
initialization process guarantees that no cluster is empty 
after initial assignment in the subroutine [16]. Other 
initialisation methods can be found in [17]. 

Step 2: Assign each point to nearest ‘Means’ 
In this step, each point is assigned to the nearest ‘Means’ 

which are identified in step 1. 
Step 3: Move ‘Means’ to centre of its cluster 
In this step, the centroid of each cluster is calculated: this 

will be established to be the new ‘Means’. 
Step 4: Convergence judgement 
The K prototypes (w1, … , wk ) are initialised to one of 

the n input data (i1, … , in). Therefore, wj=il, j∈{1, … , K}, 
l∈{1, … , N}, Cj is the jth cluster whose value is a disjoint 
subset of input data. The quality of the clustering is 
determined by the following error function [18]: 
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Steps 2 and 3 are repeated until E is within defined limits 
or cluster membership no longer changes, which indicates 
that the clusters are established and stable. Further details 
and examples of the method can be found in [19]. 

4  K-MEANS BASED PD PATTERN RECOGNITION 
Within the thousands of sets of PD data that the authors 

have examined, during on-site testing and from on-line 
monitoring data, PD pulses demonstrate cluster 
characteristic in the time-domain. As K-Means is a simple 
and effective clustering methodology it has been 
investigated as a tool for identifying PD patterns in the 
data. 

The basic flowchart of K-Means based PD pattern 
recognition (which contains a coordinate transform, K-
Means based clustering, ‘Means’ overlaying and PD pattern 
judgement) is shown in Figure 3. Signal pre-processing, 
including data denoising [2] [11] [20] is adopted to extract 
individual PD-like pulses from noisy raw data. The 
individual pulses are the input of K-Means based PD 
pattern recognition. It is to be noted that, in addition to PD 
pulses, this data may contain impulsive noise signals that 
resemble PD pulses in the time-domain. 

 

 
Figure 3. Flowchart for K-Means based PD pattern recognition. 

 

4.1 COORDINATE TRANSFORM 
The data set shown in Figure 2 is used in this section to 

illustrate the process of applying the proposed method to 
PD pattern recognition. As shown in Figure 4, the step of 
“coordinate transform” turns the time domain 
representation to one in a polar coordinate where all 
positive magnitude PD pulses are slotted in area A, B, C 
and D, all negative magnitude pulses are drawn in areas E 
to H. The reason for projecting positive and negative pulses 
into separate areas during the mapping is to maintain 
polarity information during transformation. Coordinate 
transformation overcomes the first challenge that was 
discussed in Section 2. This method groups PD in the 
elliptical system on magnitude and relative phase. If PD 
pulses exist at the beginning of the collection period then 
they will be related to those at the end 0°. 

 



 

 
Figure 4. (a) PD pattern in the time-domain, taken from Figure 2; (b) Polar 
coordinate representation following coordinate transform. Regions A – D 
represent PD pulses with positive polarity, while E – H represent those 
with negative polarity. 

From the observation of on-site test data, when PD exists 
there are often only a few PD pulses in one set of data. To 
ensure that statistical relationships are valid, several sets of 
data are overlaid so that the PD pulses included represent 
activity over a number of cycles. Effective clustering is 
difficult to achieve when there are few points in the data set. 

4.2 K-MEANS BASED CLUSTERING 
To first step to address the second challenge discussed in 

Section 2 of the paper uses the procedure given in Figure 5. 
 

Initial ‘means’ is 
randomly selected

Assign each point 
to nearest ‘means’

Move ‘means’ to 
centre of its cluster

Convergence ?

Clustering results

Yes

No

Initialization of K 
( K=1,2,4,6)

Calculate the 
Euclidean distance 

(Di, i=1,2,4,6)

K=6 ?
No

Yes

Min(D1, D2, D4, D6, )

K=k, optimal cluster 
identified

 
Figure 5. Flowchart of K-Means based clustering. 

 

In Figure 5, the identified optimal cluster K is related to 
the type of fault. Therefore, if the optimal cluster is 1, the 
data is representative of corona discharge; if the optimal 
cluster is 2, data represents internal or surface discharge 

from one phase voltage; if the optimal cluster is 4, this 
indicates internal or surface discharges from two phase 
voltages and an optimal cluster of 6 indicates internal or 
surface discharge from all three phases voltage. Then the 
K-Means method was employed to calculate the number of 
clusters in the data set selected. The Euclidean distances 
between the clusters are calculated using (1). After all 4 
Euclidean distances (D1, D2, D4 and D6) are available, the 
minimum distance will be computed, from which the 
optimal number of clusters K can be determined. 

4.3 PATTERN FORMATION 
After K-Means based clustering, the next stage of PD 

pattern recognition (shown in Figure 3) is carried out, based 
on the angles between different ‘means’. Before judgement, 
positive and negative ‘means’ will be overlaid to enable 
patterns to be formed. The principle of ‘means’ overlaying 
is shown in Figure 6. The original data is shown in Figure 
6(a), ‘means’ in regions A, B, C and D are combined with 
those in regions E, F, G and H respectively. The result of 
‘means’ overlaying is shown in Figure 6(b). In Figure 6(c), 
the area is divided equally into 6 sub-regions where the 
angle from 0° to 60° is labelled 1 for ease of reference and 
subsequent 60° segments are labelled sequentially. Note 
that the numbering used here is arbitrary. 

 

 
Figure 6. (a) Before ‘means’ overlaying (b) After ‘means’ overlaying (c) 

The area is divided into 6 sub-regions labelled  - . 
 

4.4 AUTONOMOUS PD PATTERN JUDGEMENT 
After the process above is complete, the following five 

criteria are used for PD pattern recognition. Figures 7-10 
illustrate the time-domain distribution of PD pulses and 



 

their respective diagnoses following processing using the 
proposed method. 

 
Criterion 1: If K=1, is the data represents a corona 
discharge.  
Criterion 2: If K=2 and angles of ‘means’ between areas is 
180° ± 10%, e.g. areas 1 and 4, an internal or surface 
discharge due to the effect of one phase voltage is 
identified. 
Criterion 3: If K=4 and angle between neighbouring 
‘means’ is either 60° ± 10% or 120° ± 10%, internal or 
surface discharge due to the effect of two phase voltages is 
identified. 
Criterion 4: If K=6 and angle between neighbouring 
‘means’ is 60° ± 10%, internal discharge or surface 
discharge due to the effect of all three phase voltages is 
identified. 
Criterion 5: No PD pattern exists if criteria 1-4 are not 
satisfied.  
It can be argued that when K is 2, it can indicate corona 
from 2 phases and when K is 3 it may be due to corona 
from 3 phases. However the degree of separation will help 
to distinguish between PDs and corona. 
 

 
Figure 7. (a) A typical corona discharge in time domain, and (b) its K-

Means clustering result. 

 

 
Figure 8. (a) A typical internal discharge or surface discharge affected 

by one phase voltage, and (b) its K-Means clustering result. 

 

 
Figure 9. (a) A typical internal discharge or surface discharge affected 

by two phases voltage (b) K-Means clustering result. 
 

 
Figure 10. (a) A typical internal discharge or surface discharge affected 

by three phases voltage (b) K-Means clustering result. 

5  APPLICATION EXAMPLES 

Five examples, taken from on-site PD measurements in 
substations using portable PD capturing systems or from 
on-line PD monitoring systems, are presented to evaluate 
the proposed autonomous PD pattern recognition algorithm. 
Signals from 4 examples are successfully identified by the 
method to be PD patterns, i.e. corona discharge, PD 
resulting from one phase voltage, PD from 2 phase voltages 
and PD from 3 phase voltages. One example of regular 
interference signals is successfully identified as non-PD, 
which demonstrates another significant functionality of the 
method, further interference signals rejection. 

 

5.1 CORONA DISCHARGE (K=1) 
The first example was acquired from an on-site testing of 

Cross-Linked Polyethylene (XLPE) cable system. For the 
signals shown in Figure 11(a) are raw data; signals shown 
in Figure 11 (b) are the extracted PD pulses. Figure 11(c) 
shows the result of 4 sets of data combined. Corona 
discharge has been recognised as the number of means K is 
determined as 1. 
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Figure 11. (a) Raw data (b) Extracted PD pulses (c) K-Means based 

clustering recognition of 4 sets of data. 
 

5.2 PD FROM A MOTOR (K=2) 
An example of PD from a motor, which was acquired 

from an on-site testing of an Ethylene Propylene Rubber 
(EPR) cable circuit, to which the motor is connected at the 
far end, is shown in Figure 12. The raw data and extracted 
PD pulses are those shown earlier in Figure 1. There is a 
phase shift between the low voltage with which the zero-
crossing was used to trigger the data acquisition system, 
and the 11 kV supply in the cable. Figure 12 shows that the 
number of means, K, has been determined as 2. Using the 
criteria presented in the last section of the paper, the PD 
activity is due to either an internal discharge or a surface 
discharge emanating from a single phase. 
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Figure 12. K-Means based clustering recognition in processing of a set 
of cable PD monitoring data in a power station. 
 

5.3 INTERNAL DISCHARGE (K=4) 
Another example of internal discharge, which was 

acquired from a PILC cable on-line monitoring system, is 
shown in Figure 13. Raw data is shown in Figure 13(a). 
Extracted PD pulses are shown in Figure 13(b). Figure 13(c) 
shows the results of one set of data, 4 clusters are 
calculated. Figure 13(d) shows the result of 4 sets of 
overlapped data and the number of means, K, has been 
determined as 4. 
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Figure 13. (a) Raw data (b) Extracted PD pulses (c) K-Means based 
clustering recognition of data set of cable monitoring data (d) K-Means 
based clustering recognition of 4 sets of data. 
 

5.4 INTERNAL DISCHARGE (K=6) 
An example of an internal discharge, which was acquired 

from a PILC cable on-line monitoring system, is shown in 
Figure 14. Raw data is shown in Figure 14(a). Extracted PD 
pulses are shown in Figure 14(b). Figure 14(c) shows the 
results of one set of data, no cluster is calculated. Figure 
14(d) shows the result of 4 sets of overlapped data, for 
which 6 clusters are identified. 
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Figure 14. (a) Raw data (b) Extracted PD pulses (c) K-Means based 

clustering recognition of data set of cable monitoring data (d) K-Means 
based clustering recognition of 4 sets of data. 
 

5.5 REGULAR INTERFERENCE SIGNAL 
An example of a regular interference signal, recorded 

during on-site testing of the EPR cable system, is shown in 
Figure 15. Raw data is shown in Figure 15(a). Extracted PD 
pulses are shown in Figure 15(b). Figure 15(c) shows the 
results of one set of data, no cluster has been recognised, 
which indicates that the signals are interference, not PD. 
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Figure 15. (a) Raw data (b) Extracted PD pulses (c) K-Means based 

clustering recognition. 
 

The proposed K-Means based PD pattern recognition 
algorithm has been tested against 85 sets of on-line 
monitoring data. Without signal overlaying, 68 sets of data 
were recognized successfully, giving a recognition 
accuracy rate of 80%. However, when signals were 
overlayed from a minimum of 5 AC cycles of monitoring 
data, the success rate improved to 100%. 

6 CONCLUSIONS 
A novel, K-Means based, autonomous phase resolved 

PD pattern recognition method has been presented and 
demonstrated to have the following advantages: 

 
• The method can automatically recognise PD patterns 

when phase information is not available. 
• A recognition rate of 80% was achieved when the 

algorithm was tested on 85 sets of on-line monitoring 
data, when signal overlaying is not employed. However, 
accuracy increased to 100% when overlaying of 5 
cycles of data records, demonstrating that the method is 
highly effective. 

• The method is applicable to three phase cable systems 
when PD patterns can be the result of voltages from a 
single phase, two of the three phases or all three phases. 
It is capable of recognising various PD patterns. 

• The method is effective for further rejection of PD-like 
pulse-shaped interference signals. However, effective 
denoising is required, prior to application of the method,  
to remove continuous radio signal interference and 
white noise. 

 
Also, the method is not without limitations, and further 

work is required to develop a capability to distinguish 
between internal discharge and surface discharge and to 
recognise patterns associated with multiple sources of PD. 
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