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Application of KBc Subalgebra in String Field Theory

Syoji Zeze∗)

Yokote Seiryo Gakuin High School, Yokote 013-0041, Japan

Recently, a classical solution of open cubic string field theory (CSFT) which corresponds
to the closed string vacuum is found by Erler and Schnabl. In their work, a very simple
subalgebra of open string star algebra — called KBc subalgebra — plays a crucial role. In
this talk, we demonstrate two applications of the KBc subalgebra. One is evaluation of
classical and effective tachyon potential. It turns out that the level expansion in the KBc
subalgebra terminates at a certain level, so that analytic evaluation of effective potential
is available. The other application is regularization of the identity based solutions. It is
demonstrated that the Okawa-Erler-Schnabl type solution naturally includes gauge invariant
regularization of identity based solutions.

§1. Introduction

Since its birth in ’70s,1),2) string field theory (SFT) has been expected to explain
nonperturbative phenomena which cannot be addressed easily in the traditional con-
formal field theory approach of string theory. Most remarkable feature of SFT is that
one can ‘write down’ the action and equation of motion for string field at nonper-
turbative level. In particular, Lorentz invariant classical solutions of Witten’s cubic
string field theory3) are investigated extensively according to Sen’s conjecture4) for
tachyon condensation and unstable D-branes. First, let us focus on technical aspects
of such classical solutions. Witten’s action is given by

S[Ψ ] =
1

4π2
Tr
[
1
2
ΨQBΨ +

1
3
Ψ3

]
, (1.1)

where Ψ is the open string field, QB is the BRST charge. The star product between
string fields is omitted. The symbol Tr stands for the inner product of string fields. In
general, the star product mixes each component of string fields in a nontrivial way.
The mixing coefficients (called Neumann coefficients) can be calculated explicitly
component by component. Thus, after suitable gauge fixing, the action (1.1) for
Lorentz invariant string field reduces to

S(t0, t1, . . . ) =
1

4π2

∞∑
m,m,p=0

[
1
2
tm(QB)mntn +

1
3
Vmnptmtntp

]
, (1.2)

where ψn is a component of string field, which is independent of momentum or center
of mass coordinate of a string. (QB)mn and Vmnp are Neumann coefficients. The
equation of motion for a field ψp is simply given by

∞∑
m,n=1

((QB)pntn + Vmnptmtn) = 0. (1.3)
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Application of KBc Subalgebra in SFT 57

These are just quadratic equations. A trouble is that components of string field
and Neumann coefficients does not terminate at finite level. Finding an nontrivial
solution of (1.3) has been a challenging problem since string field and Neumman
coefficients does not terminate at finite n in standard expansion of string field such
as level expansion in Siegel gauge. The breakthrough has been brought by Schnabl.5)

His solution is given by

ΨSc = lim
N→∞

[
ψN −

N∑
n=0

∂nψn

]
, (1.4)

where ψn is particular excitation above so-called ‘wedge state’ which represents in-
sertion of a worldsheet of width n/2π. The existence of isolated piece ψN , called
phantom piece, forces us to take delicate limit of large N in the evaluation of physical
quantities such as classical action. After some yeas later, Erler and Schnabl found
the classical solution without phantom term,

Ψ = c(1 +K)Bc
1

1 +K
. (1.5)

Here, K, B and c is central ingredients of their formalism.

1.1. KBc subalgebra

Now let us briefly review the notation used in 6)–9) which will be extensively
used in this talk. The KBc subalgebra is a subalgebra of star algebra which is
defined as

{B, c} = 1, [B,K] = 0, {B,B} = 0, {c, c} = 0. (1.6)

The action of the BRST charge on these elements is given by

QBc = cKc, QBB = K, QBK = 0. (1.7)

In this notation, the star multiplication between elements is understood. The BPZ
inner product of elements is denoted as ‘trace’. The main formula in this talk is a
generalization of (1.5) to arbitrary function of K as

ΨNR = cFBc

(
α− K

F

)
, (1.8)

where α is a free parameter which can be absorbed into definition of F . This solution
does not satisfy the reality condition of string field. However, the real form of the
solution is easily obtained by ‘global’ symmetry of string field

ΨR = fΨNRf
−1 = fc

K

α− f2
Bcf, (1.9)

where f =
√
α−K/F is another function of K. This form of solution was first

presented by Okawa.6) The form (1.8) is extremely useful for explicit calculations.
In this talk, we would like to demonstrate two topics which can be explored by the
KBc formalism — one is the tachyon potential10) and the other is regularization of
identity based solutions.11)
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58 S. Zeze

§2. Tachyon potential

The classical action of open cubic string field theory (1.2) has long been studied
in the context of tachyon condensation. While equation of motion is solved, the
complete form of effective potential for the tachyon field t0 is not yet known. The
effective potential V(t0) can be obtained by solving all equations of motion of the
classical potential V (t0, t1, . . . ) = S(t0, t1, . . . ) except for t0, and plugging them back
to the classical potential V (t0, t1, . . . ). In general, it is not so easy to get closed form
of V(t0). However, the simplicity of the KBc subalgebra enables us to find analytic
expression of V(t0).

We choose the gauge in which the Erler-Schnabl solution belongs to:

1
2
B−

0 [Ψ(1 +K)]
1

1 +K
= 0, (2.1)

where B−
0 = B0 −B†

0 is a derivation of the star product. The general form of a string
field in this gauge is given by

Ψ = cf(K)Bc
1

1 +K
, (2.2)

if we restrict ourselves within KBc subalgebra. Each component of the string field
is given by a coefficient of taylor expansion of f(K) as

f(K) = t0 + t1K + t2K
2 + · · · . (2.3)

Note that the above expansion corresponds to level expansion with respect to eigen-
value of L which is obtained by anticommuting QB with the gauge condition (2.1).
The crucial difference between the expansion in (2.3) and the traditional level ex-
pansion in Siegel gauge or B0 gauge is that the expansion (2.3) terminates at finite
level. More precisely, the expansion stops at level 3 so that there are only for fields
(t0, t1, t2, t3).10) This is simply because the classical action becomes divergent for a
field higher than level 4.∗) An explicit form of the potential is

V (t0, t1, t2, t3) =
1
π2

(
15

64π2
t30 −

15t1
16π2

t20 +
1
16
t1t

2
0 +

15
16π2

t2t
2
0 −

1
4
t2t

2
0 −

1
12
π2t3t

2
0

+
1
2
t3t

2
0 −

3
32
t20 +

15
16π2

t21t0 −
1
16
t21t0 −

15
4π2

t22t0 + t22t0 +
3
4
t2t0 − 1

6
π2t1t3t0

− 15
2π2

t1t3t0 +
3
2
t1t3t0 +

4
3
π2t2t3t0 +

30
π2
t2t3t0 − 10t2t3t0 + π2t3t0 − 3t3t0

+
15
π2
t1t

2
2 − t1t

2
2 −

15
4π2

t21t2 +
1
4
t21t2 −

1
3
π2t21t3 +

15
π2
t21t3 − 2t21t3

)
. (2.4)

2.1. Classical solutions

It is not so difficult to solve equations of motion ∂t1V = 0 for the potential (2.4).
Although a solution can be obtained analytically, it is more convenient to present

∗) Here we do not consider a possibility of regularization of this divergence.
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Application of KBc Subalgebra in SFT 59

Table I. Stationary points of the classical potential.

t0 t1 t2 t3 V

0.2703 −0.3928 −0.8194 −0.0358 −0.0306

0.2175 0.1770 −0.9237 0.3032 0.0078

0.1195 0.1593 −0.9076 0.3569 0.0081

1.0000 1.0000 0.0000 0.0000 −0.0507

numerical result only since it contains many square roots. Table I is a list of real
valued solutions. The last solution is nothing but the Erler-Schnabl solution which
corresponds to f(K) = 1 + K. An interesting observation can be obtained from
eigenvalues of the Hessian matrix

Hij =
∂2V

∂ti∂tj
. (2.5)

If one of eigenvalues of Hij for particular solution is negative, it means that the
potential is unstable around a solution. It is found that all solutions in Table I have
negative eigenvalues and hence are unstable.

Physical interpretation of four solutions is also of our interest. In our case, we
do not necessarily depend on the analysis in terms of power expansion in K such as
(2.3) since equation of motion can be analytically solved. Using ansatz (2.2) we find
an analytic solution

f(K) =
K(1 +K)

λK + (λ− 1)
, (2.6)

where λ is a free parameter. One can easily see that this solution only falls into a
polynomial if and only if λ = 0, 1. λ = 1 gives the Erler-Schnabl solution which
appears in the last row of Table I. The other case λ = 0 does not appear as a
solution of level expanded equation of motion. This solution is irregular since it does
not satisfy equation of motion contracted with itself.

Tr[Ψ(QBΨ + Ψ2)] = 3
(
−15
π4

+
1
π2

)
. (2.7)

In summary, the Erler-Schnabl solution is only physically acceptable solution in the
level truncation and others should be discarded.

2.2. Effective potential

Since our potential depends on only finite number of fields, it is possible to get
explicit form of V(t0) by solving equation of motion for t1, t2 and t3. This requires
choice of brunch. We again have four real brunches which connect with solutions
in Table I. The explicit form of the potential can be obtained analytically but too
complicated to display here. A result is shown in Fig. 1. Only the brunch 2 is physical
since it connects with the closed string vacuum solution. It is impressive that all
brunches starts exactly from the origin. The reason is simply because the potential
become complex valued in negative real axis, due to the brunch cut singularity around
the origin. It is in sharp contrast with earlier results in terms of level truncation in
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60 S. Zeze

Fig. 1. Four branches of the effective potential V. We find local minimum in branches 2 and 4.

Branch 3 consists of two disconnected curves.

Siegel gauge whose potential has runaway direction towards negative axis and stops
at particular point. Our result has no such inconsistency and one need not to worry
about runaway direction of the tachyon potential.

§3. Regularization of identity based solutions

Identity based solutions, which are constructed upon the identity string field,
have been considered since early days of string field theory.12)–14) More elaborated
versions have been investigated15)–26) according to Sen’s conjecture. Even after Schn-
abl’s discovery of the analytic solution,5) it had been recognized that an identity
based string field is useful to construct regular solutions.7),8),27),28) Typically a
solution takes form of

Ψ = CI, (3.1)

where C is certain linear combination of ghost number one operators and I is the
identity string field, a surface state which represents an open string worldsheet of
vanishing width. The advantage of identity based solutions to other solutions which
are given by superposition of infinitely many wedge states is its simplicity. However,
even though much effort has been done in the past, identity based solutions have not
yet been widely accepted as a regular solution. Here we would like to demonstrate
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that the solution (2.2) can be naturally considered to be gauge invariant regulariza-
tion of an identity based solution.

Here we focus on the identity based solution within the KBc form of (1.8). We
simply require both of F and α − K/F are identity based, i.e. polynomials in K.
This requirement leaves only two choices

1. F (K) is constant. If we set F (K) = β, the solution (1.8) becomes

Ψ = αβc− cK. (3.2)

2. F (K) is proportional to K. If we set F (K) = βK, we have

Ψ =
(
αλ− 1
λ

)
cKBc. (3.3)

This solution is BRST exact and considered to be trivial pure gauge solution.
We consider the case 1. as nontrivial identity based solution. The solution c− cK,
which corresponds to setting αβ = 1 in (3.2), is the the identity based solution found
in 9) and discussed in in 29). Surprisingly, A very simple gauge transformation on
this solution brings it to the form which is very convenient for regularization. The
gauge transformation is given by

Uλ = 1 + λcBK, (3.4)

and the solution becomes

Ψλ ≡ UλQBU
−1
λ + Uλ(c− cK)U−1

λ (3.5)

= c(1 + λK)Bc
1 + (λ− 1)K

1 + λK
, (3.6)

which is nothing but a solution of the form (1.8) with F (K) = 1 + λK. This is
no more identity based solution and evaluation of gauge invariant quantity such as
D-brane tension and closed string tadpole are carried out without encountering any
trouble.

3.1. D-brane tension

According to Sen’s conjecture, the value of classical action should match with
the D-brane tension. Since we are dealing with a solution of equation of motion, we
only need to evaluate the kinetic term. The whole procedure is completely parallel
with that of Ref. 9). The result is

Tr[ΨλQBΨλ] = − 1
2π2

∫ ∞

0
due−u

{
λ2u3 + 6l(1 − λ)u2 + 6(1 − λ)2u

}
(3.7)

= − 1
2π2

(6λ2 + 12λλ(1 − λ) + 6(λ− 1)2) (3.8)

= −3
x
π2. (3.9)

The value −3/π2 exactly matches with an expected answer in our convention. Note
that entire process can be carried out even in λ → 0 limit where the solution ap-
proaches to identity based configuration.
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62 S. Zeze

3.2. Closed string tadpole

Another gauge invariant quantity — the closed string tadpole — can be eval-
uated similarly. It is expressed as Tr[V Ψ ] where V = cc̄Vmatter is on-shell closed
string vertex operator at the midpoint of the string vertex. Evaluation is again quite
similar to that performed in 9).

Tr[V Ψλ] = Tr[V cΩ] ×
∫ ∞

0
dte−t(1 − λ+ tλ) (3.10)

= Tr[V cΩ] × 1 (3.11)
= 〈V(i∞)c(0)〉C1

, (3.12)

where Ω is a wedge state of width π/2 and the last line is a one point function of
closed string vertex operator evaluated on the cylinder of width π/2, as expected.
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