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APPLICATION OF KHAS'MINSKII'S LIMIT THEOREM TO THE BUCKLING
PROBLEM OF A COLUMN WITH RANDOM INITIAL DEFLECTIONS*

By B. P. VIDEC and J. LYELL SANDERS, JR. (Harvard University)

Abstract. An approximate asymptotic expression is obtained for the buckling load
of an imperfect column resting on a nonlinear elastic foundation. The result holds for
a large range of imperfection shapes, which are assumed to be stationary random func-
tions of position. The asymptotic analysis is based on application of Khas'minskii's
limit theorem to equations for the slowly varying part of the deflection of the column.
Previous results obtained for Gaussian imperfection shapes are shown to be valid also
for the larger class of random imperfections considered here.

Introduction. In this paper the buckling behavior of a uniform column resting on
a softening nonlinear foundation will be studied. The imperfect column to be considered
will have small stress-free initial deflections which are stationary random functions of
position.

In earlier studies of this imperfection sensitive model structure Fraser and Budiansky
[1], and Amazigo, Budiansky and Carrier [2] obtained asymptotic expressions for the
buckling load by means of both equivalent linearization and truncated-hierarchy methods.
In a subsequent study [3] Amazigo used a perturbation scheme to arrive at a slightly
different result for the buckling load. In each of these studies the initial deflection was
assumed to be a stationary Gaussian random function of position.

The asymptotic analysis presented here is based upon a limit theorem due to
Khas'minskii [5], The shape of the imperfection is assumed to belong to the class of
random functions considered in [5]. The asymptotic results found in [3] for the buckling
load of columns with Gaussian imperfection shapes are shown to be valid also for the
larger class of random functions considered here.

Differential equation. The differential equation governing the nondimensionalized
lateral displacement iv(x) of a column of length 21 on a softening nonlinear elastic founda-
tion is [2, 3]

w"" + 2 Xiv" + w — w3 = —2\tw0" —l<x<l (1)

where ( )' = d/dx( ). The column, which is subjected to the dimensionless axial load \,
is restrained against lateral displacement by a restoring force per unit length w — w3.
The stress-free initial displacement w0{x) is a bounded, zero mean, stationary random
function of position and e is a small imperfection parameter. The column is taken to be
hinged (simply supported) at both ends with boundary conditions: w = w" = 0 at

* Received October 6, 1974. This work was supported in part by the Air Force Office of Scientific
Research under Grant AFOSR-73-2476, in part by the National Science Foundation under Grant
GP-34723, and by the Division of Engineering and Applied Physics, Harvard University.



NOTES 423

x = ±1. Note that in the differential equation the additional displacement w{x) is
assumed to be small enough that the nonlinear terms resulting from the kinematic
conditions can be neglected.

The solution of the nonlinear, nonhomogeneous equation (1) would provide a relation
between the load parameter X, the displacement w and the imperfection parameter e.
For the branch of solutions satisfying the condition w = 0 for X = 0, the load X is expected
to reach a maximum value X, which is the buckling load of the nonlinear, imperfect
structure.

Slowly varying part of the deflection. For e —> 0 the buckling load % for the im-
perfect structure is expected to approach the buckling load X0 of the perfect structure.
The buckling load X0 is the lowest eigenvalue of the homogeneous linear problem with
solutions

Xo = + v0~2), f0 = nir/l, w = sin v0x

where n is the integer that minimizes X0 . For simplicity the length I is taken to be equal
to Mr, which corresponds to X0 = 1 and v0 = 1.

Let X = 1 — 52/2, and since the buckling load X will approach X0 = 1 for e —> 0,
assume 5 <5C 1. Then rescaling the displacement w = 5w, and using X = 1 — 52/2 leads to

w"" + 2w" + w = h2w" + «V - 2e\8'1w0"(x),

w = w" = 0, for x = ±nit. (2)

If one assumes ecT1 « 1 in the neighborhood of the buckling load, then Eq. (2)
suggests that the solution w will be sinusoidal on a length scale 1, with corrections that
vary on a length scale much larger than 1. A set of Bogoliubov-type transformations [6]
will be used to obtain equations for the slowly varying part of w. Let

w = Ui(x) cos x + u2(x) sin x (3)

where ut and u2 are new unknown variables. Impose on u, and u2 the condition

Ui cos x + m2' sin x — 0 (4)

and introduce the variables u3 and w4

Mi' sin x — u2' cos x = 5(m3 sin x — ut cos x) (5)

which satisfy

u3' sin x — uj cos x = 0. (6)

Then the expressions for w', w" and w'" are devoid of derivatives of u{ . Substitution
of (3) into (2) produces a fourth equation in it/, in addition to Eqs. (4), (5), and (6).
Solving these four equations for u/ leads to a system of first-order equations of the form

e\8 2Fiia)[w0"(x), sin x, cos a;] + 5F,(1)[u, sin x, cos x] + 0(52)|

i = 1, • • • , 4, Mi = ut = 0 at x = zbmr.J
(7)

This system of equations indicates that u,' is proportional to a small parameter, and
that Ui will be a slowly varying function of x, if e8~2 <5C 1.
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If the imperfection w0"(x) were deterministic and periodic, one could proceed now
and use averaging methods [6, 7] to arrive at approximate equations for m, . For example,
with w0"(x) — sin x, a constant first approximation of «, follows directly by averaging
the right-hand sides of (7) over x. The buckling load X associated with this first approxi-
mation is given by

(1 _ x)3/2 = 2~5/29Xe (8)

which agrees with the asymptotic results found in [2] by different methods. From (8) it
also follows that X« = 0(53), which verifies the initial assumption eX5~2 « 1.

Application of Khas'minskii's limit theorem. In [4] and [5] Khas'minskii extended
the method of averaging to a class of random initial value problems. In [8] explicit
relations are formulated between the probability density functions of boundary-value
problems and corresponding initial-value problems. Using these relations, assuming
existence of probability density functions for the displacement, one can show that
Khas'minskii's limit theorem is also applicable to the boundary value problem (7), if
the right-hand sides of (7) satisfy the appropriate conditions listed in [5].

Guided by the results obtained in [1, 2, 3], assume tentatively that in (7) eX = 0(S5/2)
for X = X and e —> 0, and write

eX = p55/2; V = 0(1) for X = X.

Then the slowly varying part of the displacement w, satisfies the system of stochastic
differential equations (7), which is now of the form

dUi/dx = bi/zFi(u, x), (9)

Fi(u, x) = FiW)[io0"(x), sin x, cos x] + 51/2F,-(1)[u, sin x, cos z] + 0(53/2).
Let w0"(x) be a bounded stationary random function with zero mean and correlation

(iVo(x)w0(y)) = R(x — y) and power spectrum

S(co) = f R(x) exp (— iwx) dx.
Ztt J— eo

In addition, let w0"(x) satisfy the conditions specified in [5], which imply that the shape
of the imperfection of the column is statistically independent over sufficiently large
distances. Then, m, converges for 5 —» 0 to the slowly varying process u,<0>(£) with
£ = Sx, defined by

dUil0)/d£ = $,(u<0)) + trimgm(£), £ = Sx, m = 1, • ■ • , 4

«i(0) = Ui0) = 0, for £ = ±5mr (10)

where gm{£) are independent Gaussian white noise functions with (gm) = 0, and
= Sm„5(£ - ■>)). The quantities <I\[u<0>] and <rim are given by

$i(u) = limy [ (F/V(u, x)) dx, (11)
L—*oo -L/ J o

ffimGjm ) (12)

«„■ = lim \ (Fim(x)Fiw(y)) dxdy.
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Performing the averaging operations of (11) and (12), one finds for (10)

dur/dt = wo),
du2 (0)M = 3^4<0),

du3m/dt = iWl<0)[l - f(V°" + u2<0,a)] + 2pk>S(l)]I/2ff3©, (13)

dur/dt = i«2(0,[ 1 - KV0>" + «2<0)1)] +

Mi<0> = w4<0) =0 for £ = =t5n7r.

Note that in this asymptotic set of equations for u, the process w0"(x), which is uncor-
related over long distances x, is replaced by a Gaussian process which is delta-correlated
on a length scale £ = Sx. This result can best be understood if Khas'minskii's limit
theorem is seen as a generalization of the classical central limit theorem to processes
that are functional of asymptotically independent processes defined via differential
equations [9].

Also note that u,depends on the imperfection shape w0"(t) only through the power
spectrum evaluated at unity. This corresponds to the buckling mode of the perfect
structure which has a wave number unity.

The replacement of the random functions w0"(x) in (9) by Gaussian forcing functions
in (13) opens the possibility of applying equivalent linearization or perturbation tech-
niques used in [1, 2, 3] to obtain approximate asymptotic results for the maximum load X.

Maximum load. A first approximation for the maximum load X is obtained by using
a perturbation scheme which is similar to the one used by Amazigo [3] for the case of
Gaussian imperfection shapes. Forced X, the coefficient p = t\8~5/2 in (13) goes to zero
for e —> 0. Then according to (13), also it,- will approach zero for e —> 0 and X < X.

Write p(27T(S(l))1/2 = eq, and restate the system of equations (13) for the approximate
boundary-value problem in terms of two coupled integral equations for it/0' and m2<0):

Wift) = L_1(£, 77){2~>/2eq g3(v) — (3/1%1(^)[mi2(„) +m22(»?)]}, ^

u&) = L~\i, rj){2-1/2eg ?4(„) - (3/16KW[V(tj) + u2\v)]\.
In these equations the superscripts zero have been dropped. For convenience the length
of the column will be chosen large enough that the influence of the boundary conditions
on the maximum load can be neglected. Thus, the operator L ~l is defined as

L'1 ft, „){ } = f Gft,- „){ }dv
J—co

where the Green's function G(£) is the bounded solution of the linear problem

d'G/dt - \G = 5ft). (15)
Expand uk and u2 in powers of tq according to

«. = E M2n-1a»(a
(16)

= E (<g)2"~'W£).
n= 1

Substituting these expansions into the integral equation (14) and equating powers
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of eq gives
= 2-1/2L-1[g3}, 6, = 2~1/2L~1{gi],

a2 = -(3/16)L-l{ai3 + aM2}, b2 = -(3/16)L-'{&i3 + b.a2}, (17)

etc. etc.

According to (17) and the definition of the white noise functions gm(0> ai(0 and bi(£)
are two equal but independent Gaussian random functions with correlations

faGKO,)) = (brm^v)) = 11 G(t- V')G(V - r,') dn',
(18)

(di^b^v)) = o.
Furthermore, from (16) and (17) it follows by induction that Ui and u2 are orthogonal
with correlations

<Ui(«)«iO»)> = M&Uziv)), (u,(t)u2(v)) = o. (19)

Let A2 be the mean square of the deflection w(x); then, according to (19),

A2 = (w2) = ((«i cos x + u2 sin x)2) = (u2),

and using the series expansions (16)

A2 = (a2)(tq)2 + 2(a,ia2)(eq)4 + ((a2') + 2(aia3))(«g)6 + 0(e8g8). (20)

Since q is a function of X, Eq. (20) gives a relation between X, e and A2. The expansion
is expected to converge asymptotically for e —> 0 and X < X. However, A2 is a multivalued
function of X and this representation for A2 breaks down for X > X. In Fig. 1 the expected
behavior of (eq)2 is sketched as a function of A2.

As in [3], the singularity of A2 at X = X is avoided by considering the inverse problem
which gives X or (tq)2 as analytic functions of A2 in the neighborhood of X = X (see Fig. 1).

(tq)2 = ftA2 + ft A4 + ftA6 + 0(A8). (21)

Substituting (21) into (20) and equating powers of A2 leads to expressions for the coeffi-
cients ft . In particular, we have

ft = (a.2)"1, ft = —2(a1a2)(a2y3. (22)
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Fig. 1. (eg)2 versus mean square displacement.
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Use of Eq. (21) and the definitions q = (2irS)1/2S~5/2\ and 8 = [2(1 — A)]1/2 gives X as
a function of A2, e and $(1):

(1 _ x)5/4 = [/(A2)]_1/22~5/4[2ir(S(l)]I/2«X (23)

where /(A2), which is independent of e, X, and S(l), is given by the right-hand side of (21).
The maximum load X then follows by maximizing / with respect to A2. For a first

approximation of X retain only two terms in the expansion for /(A2). Setting df/dA2 = 0
and using (22) leads to

7 ~ (dl2)/8(d1a2). (24)

According to (17),

((hdi) = -(3/16) f G(£ - v){(ai\v)a1(£)) + (d1(ri)d1(g)bil(rj))} dij.
J — CO

Since di and 6, are two equal but independent Gaussian random variables, it follows that

(ai\y)a ,(£)} = 3(a12)(a1(?;)a1©), (a^^d^b2^)) = <a12)(o1()7)a1(|)).

The right-hand side of (24) can now easily be calculated, using (18) and the definition
of the Green's function (15). Substitution of the resulting value for the critical / into (23)
gives for the maximum load X

(1 - X)5/4 ~ 3(2r3/4[27nS(l)]1/2«X. (25)

This approximate asymptotic result for the buckling load X as a function of the amplitude
€ and the spectral density S( 1) of the imperfection, is the same as found in [3] for Gaussian
imperfections. It also varifies the initial assumption e\ = 0(S5/2) at X = X.

Discussion of the results. Eq. (13) for the slowly-varying part u, of the deflection
of the column is asymptotically exact. One may expect also that Eq. (23), which relates
the load parameter X to the imperfection parameter e and <S(1), is asymptotically exact
for t —»0 and given /(A2). The result (25) for the buckling load X, however, is approximate
in the sense that the accuracy of the two-term approximation used to calculate the
critical coefficient X does not improve for e —> 0. Because of the asymptotic nature of the
analysis and the rapid escalation of the algebra involved, no attempt has been made to
improve on the first approximation (24) through retention of more terms in the expansion
for /(A2) in (22). As reported in the analogous analysis [3], a three-term approximation for
the case of Gaussian imperfection shapes did not significantly change the coefficient
in (24).

Comparing (23) and (25) with (8) leads to the conclusion that for a large range of
random imperfection shapes the deterioration of the buckling strength, as measured by
the dependence on «, is less severe for random than for sinusoidal imperfections.
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