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Abstract

A numerical method for solving nonlinear Fredholm integro differ-
ential equations of the second kind is presented. The method is based
upon Lagrange functions approximation. Quadrature rule and colloca-
tion points are utilized to reduce the main problem to nonlinear system
of algebraic equations. Illustrative examples are included to demon-
strate the validity and applicability of the technique.
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1 Introduction

Modeling and analysis of physical phenomena in applied sciences often gener-
ates nonlinear mathematical problems. Nonlinearity may be an inner feature
of the model, i.e., evolution equations with nonlinear terms, or of the problem,
i.e., nonlinear boundary conditions. The interplay between applied sciences
and mathematics then leads to the development of initial and/or boundary
value problems for nonlinear partial differential or integral or integro differ-
ential equations modeling real physical systems. The theory and application
of integral and integro-differential equations is an important subject within
applied mathematics. Integral and integro-differential equations are used as
mathematical models for many and varied physical situations, and also occur
as reformulations of other mathematical problems. Since many physical prob-
lems are modeled by integral and integro-differential equations, the numerical
solutions of such equations have been highly studied by many authors. In
recent years, numerous works have been focusing on the development of more
advanced and efficient methods for integro-differential equations such as Haar
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wavelets, homotopy perturbation method, lagrange functions, Taylor polyno-
mials, Chebyshev polynomials, sine-cosine wavelets, Tau method, Adomian
decomposition method, hybrid Legendre and Block Pulse functions and so
on.(for further details see [1-10]) In this study, we use Lagrange interpolation
for solving nonlinear Fredholm integro differential equation of the form{

u′(x) =
∫ 1

0
k(x, t)ψ(t, u(t))dt+ g(x), 0 ≤ x ≤ 1,

u(0) = u0,
(1)

where, k ∈ L2[0, 1)2, g ∈ L2[0, 1) are known functions and u(x) is the unknown
function. we define

F (t) = ψ(t, u(t)), (2)

since

u(t) =

∫ t

0

u′(x)dx+ u0, (3)

by using (1)-(3) we obtain

F (t) = ψ

(
t,

∫ t

0

u′(x)dx+ u0

)

= ψ

(
t,

∫ t

0

(∫ 1

0

k(x, t)F (t)dt+ g(x)

)
dx+ u0

)

= ψ

(
t,

∫ t

0

∫ 1

0

k(x, t)F (t)dtdx+

∫ t

0

g(x)dx+ u0

)
. (4)

Now we approximate F (t) as

F (t) ≈
n∑

i=0

fiLi(t), (5)

where,

Li(t) =
n∏

j=0,j �=i

(
t− tj
ti − tj

)

and fi = F (ti). Also, Li(tj) = δij where δij is the Kronecker delta.
We approximate the integral of f on [a, b] as:

∫ b

a

f(t)dt ≈
k∑

r=0

wrf(tr),
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In this work we take k = n. Hence,

∫ 1

0

k(x, t)F (t)dt =
n∑

r=0

wrk(x, tr)F (tr)

=
n∑

r=0

wrk(x, tr)fr. (6)

By substituting (6) into (4) we get

F (t) = ψ

(
t,

∫ t

0

n∑
r=0

wrk(x, tr)frdx+

∫ t

0

g(x)dx+ u0

)

= ψ

(
t,

n∑
r=0

wrfr

∫ t

0

k(x, tr)dx+

∫ t

0

g(x)dx+ u0

)
. (7)

Collocating (7) at the points tj , j = 0, 1, ..., n gives

fj = ψ

(
tj ,

n∑
r=0

wrfr

∫ tj

0

k(x, tr)dx+

∫ tj

0

g(x)dx+ u0

)
, (8)

now we take z = x
tj
, therefore (8) yields

fj = ψ

(
tj , tj

n∑
r=0

wrfr

∫ 1

0

k(tjz, tr)dz + tj

∫ 1

0

g(tjz)dz + u0

)
, (9)

system (9) gives n + 1 nonlinear equations which can be solved for fj , j =
0, 1, ..., n by Newton iterative method. We note that the integrals in (9) may be
evaluated numerically. So, by using quadrature rule u′(x) can be approximated
as

u′(x) =

∫ 1

0

k(x, t)F (t)dt + g(x)

=
n∑

r=0

wrfrk(x, tr) + g(x). (10)

Also, we get the desired approximation for u(t) as follows

u(t) =

∫ t

0

u′(x)dx+ u0

=
n∑

r=0

wrfr

∫ t

0

k(x, tr)dx+

∫ t

0

g(x)dx+ u0. (11)
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2 Illustrative Examples

Now for numerical implementation of the presented method, we choose five
numerical examples, for which the exact solution is known for comparison
with the approximate solution.

Example 1.

{
u′(x) = 5

4
− 1

3
x2 +

∫ 1

0
(x2 − t)(u(t))2dt,

u(0) = 0,

with the exact solution u(t) = t.

Example 2.

{
u′(x) = −1

2
ex+2 + 3

2
ex +

∫ 1

0
ex−t(u(t))3dt,

u(0) = 1,

with the exact solution u(t) = et.

Example 3.

{
u′(x) = g(x) +

∫ 1

0
cos(x− t)(u(t))2dt,

u(0) = 0,

with the exact solution u(t) = sin(t).
Also, g(x) = cos(x) − 2

3
sin(x) + 1

2
sin(x− 1) + 1

4
sin(x+ 1) − 1

12
sin(x− 3).

Example 4.

{
u′(x) = 1 − 1

3
x3 +

∫ 1

0
x3(u(t))2dt,

u(0) = 0,

with the exact solution u(t) = t.
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Example 5. {
u′(x) = 1 − 1

2
x+ x

2e
+
∫ 1

0
xte−(u(t))2dt,

u(0) = 0,

with the exact solution u(t) = t.

Table 1 shows the computed error |e| = |uexact(t)−un(t)| with Simpson quadra-
ture rule for examples 1-5 with n=6.

Table 1
t Example 1 Example 2 Example 3 Example 4 Example 5

0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 6 × 10−6 2 × 10−6 0.0 1 × 10−7

0.2 0.0 1 × 10−5 6 × 10−6 0.0 7 × 10−7

0.3 0.0 2 × 10−5 1 × 10−5 0.0 1 × 10−6

0.4 0.0 3 × 10−5 1 × 10−5 0.0 3 × 10−6

0.5 0.0 4 × 10−5 2 × 10−5 0.0 4 × 10−6

0.6 0.0 5 × 10−5 2 × 10−5 0.0 7 × 10−6

0.7 0.0 6 × 10−5 3 × 10−5 0.0 9 × 10−6

0.8 0.0 7 × 10−5 4 × 10−5 0.0 1 × 10−5

0.9 0.0 9 × 10−5 4 × 10−5 0.0 1 × 10−5

1.0 0.0 1 × 10−4 5 × 10−5 0.0 1 × 10−5

3 Conclusion

In this paper, Lagrange interpolation and Simpson quadrature rule were used
to solve nonlinear Fredholm integro differential equations. The presented ap-
proach leads to solve nonlinear system of equations which may easily be solved
by Newton iterative method. Numerical results state that the method has
good accuracy and remarkable performance. Also, approximate solutions may
be more accurate using larger n and more precise quadrature rules.
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