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No. 32. The contract was monitored by Dr. Robert E. Smith Jr. of the Analy-

sis and Computation Division (Computer Application Branch), NASA Langley
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APPLICATIONS OF LAGRANGIAN BLENDING FUNCTIONS FOR

GRID GENERATION AROUND AIRPLANE GEOMETRIES *

Jamshid S. Abolhassani t

Ideen Sadrehaghighi*

Surendra N. Tiwari §

Abstract

A simple procedure has been developed and applied for the grid generation around

an airplane geometry. This approach is based on a transfinite interpolation with La-

gvangian interpolation for the blending functions. A monotonic rational quadratic

spline interpolation has been employed for the grid distributions.

In order to study the flow-field around any aerodynamic configuration, a system

of nonlinear partial differential equations must be solved over a highly complex ge-

ometry. Regardless of the computational approach, the domain of interest should be

discretized into a set of points (for the finite difference methods) or a set of dements

(for the finite element methods). This step is commonly referred to as grid generation.

Selection of the grid topology is the first step in the generation of structured grid.

In this step, orientation of the computational coordinates must be selected relative
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to the physical coordinates.For complexgeometries,one mayhaveto selectdifferent

computational coordinate systemsfor different regionsof the physical domain. In

this case,one physical domain is mapped into severalcomputational subdomains,

and each subdomain is referred to as a block. Therefore, it is possible to have a

boundary-fitted coordinate systemfor a highly complexconfiguration. The objective

of this study is to present a simple procedurefor generatinga relatively orthogonal

grid for a genericairplane geometry.

Topology of an Airplane

In order to estabhsh a grid topology for any geometry, it is essential to exam-

ine each component separately [1]. A typical airplane geometry has two important

components: the fuselage and the wing. A fuselage has a circular like cross-section

which suggests a natural O-type grid. This topology produces a nearly orthogonal

grid with one line of polar singularity at the nose. In the streamwise direction, it is

possible to have either a C- or an H-type grid. If the fuselage has a small slope near

the nose, then it is better to use an H-type grid in the streamwise direction. The

other choice is to have a C-type grid in the streamwise direction which is good for

the fuselage with a blunt-nose. If the nose is sharp, C-type topology may generate

a slightly skewed grid near the nose. In short, the use of an O-H or an O-C topol-

ogy will result in a nearly orthogonal grid with one line of polar singularity at the nose.

In general, a wing possesses its own natural coordinate system which may not be

compatible with the fuselage's coordinate system. However, it is possible to generate

an H-, O- or a C- type grid in the streamwise direction, and a C- or an H-type in the

crosswise direction. It is conceivable to generate a single-block grid about these two

components, but this grid will be skewed for any practical applications. In order to

maintain a minimum of C o continuity at the interfaces, it is essential to select a corn-



patible topology for the wing and the fuselage.A dual-block grid possesses much less

skewness than a single-block grid. The dual-block grid consists of two large blocks,

one covering the top part of the physical domain, and the other block covering the

bottom part of the physical domain. The dual-block topology is a direct result of us-

ing an H-type grid for the wing. For higher continuity (6 '1 and above), an oscillatory

transfinite interpolation can be used to generate the interior grid. Then, it is possible

to ensure the orthogonality at the interface as well.

If the wing-tip has a finite area, then the topology of the grid needs to be changed

accordingly. This change may create additional blocks which is not desirable. Further-

more, addition of vertical and horizontal tail surfaces may also change the topology

of the grid. These changes depend on the geometry of the tails and the required grid

topology. If the leading and the trailing edges of the tails are sharp, then it is a good

idea to use an H-type grid around them. This will not change the dual-block topol-

ogy. However, there would be one singular line emanating from the leading and the

traihng edges of each tail surface. These singular lines are located on the boundaries

of the computational domain which will not have a dramatic effect on the flow code.

It is also possible to have an O- or a C-type grid around the tails, this choice will

result in creation of additional blocks.

Once the grid topology ha8 been selected, then the grid on the boundary surfaces

can be generated. This step depends on how a surface is defined. A surface can

be defined either by a set of analytical functions or by a set of cross-sections. The

former requires no interpolation and the latter requires some sort of bi-directional

interpolation. In this study, the fuselage surface is given by analytical functions and

the wing and tails by their cross-sections. More details of the geometry is given in

appendix A.
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Diseretization of a Curved Line

Before generating the surface grid, one needs to compute the grid-point distri-

bution along the entire or part of the boundary edges. This distribution must be

monotonic in the parameter space, and it can be computed by an analytical function

or by a numerical approximation. Analytical functions are generally limited to sim-

ple curves. However, a complex curve can be decomposed into several sections, and

analytical functions can be used for each section [2]. The advantages of analytical

functions are their simplicity and the guaranteed monotonicity.

Similarly, a numerical approximation can be used to compute the grid-point dis-

tribution on a curve. This approach is widely used and care must be taken to insure

monotonicity and high accuracy. For example, the natural cubic spline is C 2 continu-

ous, and it can generate smooth grid-point distribution. If the data has a high second

derivative, the result may not be monotonic. The cubic spline can be modified to

control monotonicity [3] and still be C 2 continuous. However, this scheme may not

reproduce the initial data. This method has been applied for two-boundary grid gen-

eration with much success [2]. The other option is to use a lower order polynomial (e.

g. C a) with guaranteed monotonicity. For instance, a Monotonic Rational Quadratic

Spline interpolation (MRQS) is always monotonic [4] and smooth. Figure 1 shows

results from a cubic spline and a monotonic rational quadratic spline. It can be seen

clearly that the MRQS can generate a monotonic grid distribution unlike a cubic

spline. The MRQS scheme is an explicit scheme and does not require any matrix

inversion. The disadvantage of MRQS scheme is its accuracy (C1). The algorithm

for this method can be found in [4].



Surface Grid Generation

Once the grid is generated on the boundary edges, the surface grid can be gen-

erated by analytical functions or by an appropriate bi-directional interpolation. Sur-

faces are either a physical surface (solid) or a nonphysical surface (fictitious). Figure

2 shows the grid on the physical surfaces of a typical airplane geometry. The next

step is to generate grid points on the remaining surface portions (nonphysical). For

example, the symmetry surface in x-y plane (Fig. 3) is surrounded by a number of

lines. This region can be divided into a number of subregions as shown in Fig. 3. In

this case, it is divided into five subregions. This subdivision is arbitrary; however, it is

a good idea to subdivide along a computational coordinate direction (e. g. constant

As it was mentioned before, each subregion may be defined by two or more grid

lines. For each subregion, grid points can be generated by either an algebraic or a dif-

ferential method. An extensive discussion of both methods can be found in [5]. Most

algebraic methods are either based on a transfinite [6,81 or a multi-surface method [7].

In this investigation, a transfinite interpolation has been used with the application of

a Lagrangian interpolation for the blending functions. A significant extension of the

original formulation by Gordon and Hall [6] has made it possible to generate grids for

highly complex geometries with a high degree of local control [8].

If the coordinates of some part of a surface [F(_, 7/)] with their derivatives are

known, then it is possible to generate the interior grid by a transfinite interpolation.

In general, a two-step transfinite interpolation (or multi-variant interpolation) for

curved surfaces can be expressed as

5



P(_,,)={x(_,,), y(_,,), z(_,,)} r, (la)

L P

g=l n=O

(lb)

t=l n=O

where the A_' and B_' are the known coordinate fines on the surface with their deriva-

tives,

o-P
-gT:(6,,) = XT(,), (ld)

g=l,2,...,L, n=0,1,...,P,

0-._(_,,,) = _;,(_),
07/"

(le)

l=1,2,...,M, n=0,1,...,Q,

and a_")(_) and #_")(T/) are the univariant blending functions.

subjected to the following Cardinal conditions

These functions are

Or/-_
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Theseconditions allow the input boundariesto be reproduced.

Selectionof the blending function dependson the number of specifiedbound-

aries. If only two boundariesare defined in one computational direction, then the

Lagrangian interpolation would convert to a simple linear interpolation,

(6 - _) _(_) _ (¢- 6)
otl(_)- (_2- _1)' (_2- _1)" (3)

This works if the boundaries do not contain sharp discontinuities. Otherwise, these

discontinuities will propagate into the interior regions. One way to alleviate this

problem is to construct a blending function that has a very small value away from

the boundaries. For example, the following blending functions have these criteria [8].

eg_ -- 1

o_,(_) = eK - 1 ' (4a)

eK_ - 1 (4b)
O_2(_) = eK - 1

where K is a negative number greater than one. The larger the K the less the dis-

continuity will propagate. A similar blending function can be constructed for the 77

direction.

The other choice for the blending function is the Lagrangian interpolation which

satisfies the Cardinal conditions. For example, if the lines in the _-direction are given

at _1, _2, ..., _,, then the blending function c_t(_) can be defined as,

(_- _)
_(() = fI (_t - _j)"

j=l
j_t

(5)



For n=2, this equation will reduce to Eq. (3). For a surface which is defined by

several lines, one can use the general definition in Eq. (5).

In Fig. 3, lines AC, AM, DE, FH, EH, IJ, KL, JL, and MP are known. In Region

I, the interior grid can be generated by using two lines at DE, and one line at AB and

AD, and the normal derivative at AB. Line BE is computed as a part of the solution.

Regions II and III can be generated in the same way. The grid in Region IV can be

generated by using two hnes at the interface (GJLN), two lines at GH, and one line

at NO. Then, the HO interface is computed as a part of the solution. By using two

lines at the interface (GJLN), the grid lines are C 1 continuous across the interface.

Lastly, the grid for Region V can be generated by using two lines at the interface

(BEHO), and hnes OP and BC. Therefore, it is possible to generate grids that are

C 1 continuous at the interfaces without specifying the interfaces or their derivatives.

A general purpose subroutine is written for Eqs. (1) and (5) which can be found

in Appendix B. Some results of this procedure are shown in Figs. 3 and 4, and a

nonphysical surface can be generated in a similar fashion. The outer boundary and

the outflow boundary are shown in Figs. 5 and 6, respectively. The sohd hnes show

the grid on the solid surfaces, and the dotted lines show the grid on the nonphysical

boundaries.

Interior Generation Procedure

In general, decomposition of the physical domain produces several blocks. Each

block is usually defined by six sides, and each side can be defined by either a surface,

plane, line, or a point. If one side of a block collapses to a line or a point, then

there would be a singularity in the block. In some instances, a block may have been

defined by less than six surfaces. Once the surfaces are defined, the interior grid can



be computed by any standard grid generationtechnique. In this study, a transfinite

interpolation hasbeenusedto generatethe interior grid points.

Oncethe boundary surfaces(ff(_, r/, ()) are known, then it is possible to generate

the interior grid by a transfinite interpolation. The three-step transfinite interpola-

tion can be expressed for the vector b_(_,r/, _) as

_(_,,, ¢) = {x(_,,,¢), v(_,,, ¢), z(_,,,¢)} r (6a)

L P

_,(_,., ¢)= Z Z _")(¢)_")(,, ¢), (6b)
I----I n-----O

t=l n=O
_-_.(_,_,,¢) , (6c)

N R

/=1 n=O
0-Y2 ]C_-)(_,r/) _-g (_,r/,_t) , (6d)

where the/_',/_[' and C_' are the known surface locations and their derivatives.

In this study, the interior grid points are generated based on the definition of six

surfaces, and the derivatives at the boundary are not included. Equations (4a-4b)

are used for the blending functions in all directions. The method described here

has been used to write a computer code which is capable of generating a grid over

an airplane with fuselage, wing and tails. Some of these results are shown in Figs. 7-9.



Results and Conclusions

A computer program has been developed to generate a multi-blockgrid around an

airplane geometry. The technique is based on a three-dimensional transfiniteinter-

polation with Lagrangian interpolationfunction for the blending functions. By using

a Lagrangian interpolation,itis possible to enforce continuity across the interfaces

without the derivativeinformation. This procedure isproven to be very simple and

effective.Itisalsopossibleto controlthe grid spacing by using a monotonic rational

quadratic splineinterpolation.

10



Acknowledgements

The authors would like to thank Ms. Joan I. Pitts of NASA Langley (Computer

Application Branch) for her technical assistance. Authors were partially supported

by a Grant from NASA Langley Research Center (NCCI-68). The authors would like

to thank Dr. Joseph Shang of Wright Research and Development (Flight Dynamics

Lab) for initiating this investigation.

11



References

[1] Abolhassani, J. S., Smith, R.E., " Three-Dimensional Grid Generation About

a Submarine, "Numerical Grid Generation in Computational Fluid Me-

chanics, Edited by S. Sengupta, et. al., Pineridge Press Limited, Swansea, United

Kingdom, pp. 505-515, 1988.

[2] Smith, R. E., Wiese, M. R., "Interactive Algebraic Grid Generation," NASA Tech-

nical Paper TP-2533, March, 1986.

[3] Reinsch, C. H., "Smoothing by Spline Functions," Numerical Mathematics,

Volume 10, No. 3, pp. 177-183, 1967.

[4] Gregory, J. A., Delbourgo, R., "Piecewise Rational Quadratic Interpolation to

Monotone Data," IMA Journal of Numerical Analysis, Volume 2, pp. 123-

130, 1982.

[5] Thompson, J. F., Warsi, Z. U. A., Mastin, C. W., Numerical Grid Generation:

Foundations and Applications, North-Holland, New York, 1985.

[6] Gordon, W. J., Hall, C. A., "Construction of Curvilinear Coordinate Systems

and Applications to Mesh Generation," International Journal of Numerical

Methods in Engineering, Volume 7, pp. 461-477, 1973.

[7] Eiseman, P. R., "Grid Generation for Fluid Mechanics Computations," Annual

Review of Fluid Mechanics, Vol. 17, 1985, pp. 487-522.

[8] Smith, R. E., Eriksson, L. -E., "Algebraic Grid Generation," Computer Meth-

ods in Applied Mechanics and Engineering, Volume 64, pp. 285-300, 1987.

12



Appendices

A. Solid Surfaces

All solid surfaces are generated by analytical functions. In the present study,

solid surfaces are composed of fuselage, wing, horizontal and vertical tail surfaces.

The fuselage consists of a cylindrical section and a nose. The nose is either sharp or

blunt. A sharp nose is approximated by rotating a parabola about the center line.

This parabola can be expressed as,

y = ax 2 + bx + c.

Similarly, a quarter of an ellipse is used for the blunt nose.

In Eqs. (A.1-A.2), constants a, b, and c are selected such that the surface is con-

tinuous (at least C 1) at the intersection of the nose and the cylindrical section. In

the streamwise direction, the grid points are generated using a monotonic rational

spline. In the crosswise direction, the grid points are generated using an exponential

function.

Surfaces of the wing and tails are described by several cross-sections using stan-

dard four digit NACA airfoil. The wing has a NACA-0010 for a cross-section with

closed wing tip. The grid points are concentrated more toward the leading and trail-

ing edges. In the cross-wise direction, grid points are concentrated near the fuselage.

The intersection of the wing and fuselage are generated analytically. Grid points for

the vertical and horizontal tails are generated in a similar fashion. The cross-sections

of horizontal and vertical tails are NACA 0006 and 0005, respectively.

13



B. Computer Code for a Transfinite Interpolation

This subroutine is based on a transfinite interpolation with a Lagrangian blending

function (Eqs. 1 and 5). The following section describes the subroutine arguments.

F Grid position (x, y, or z)

IL, JL Number of grid points in i and j-directions, respectively.

II(i), JJ(j) This array stores the locations of known grid lines in i- and j-directions,

respectively (1 for known grid lines).

IS, IE, JS, JE Starting and ending of region (computational) of interest.

IMAX, JMAX Array dimensions.

Example: Consider surface IV in Fig. 3. In this case, five grid lines are known: two

lines at GH, two lines at GJLN, and one line at NO. The size of the grid is 95 in the

i-direction and 50 in the j-direction. Point G is at (70,15) and point O is at (95,25).

ILffi95

JLffi50

II(i)ffiOexcept i=69, 70, and 95,

JJ(j)=O except j=14, and 15,

IS=Z0

IE=95

JS=I5

JE=25

IMAX-95

14



JMAX--95

CALL TRANS2D(F, IL, JL, II, JJ,IS, IE, JS, JE,

IMAX, JMD,X)

C

100

C

SUBROUTINE TRANS2D(F,IL,JL,II,JJ,IS,IE,JS,JE,IMAX,JMAX)

PARAMETER(NMAX=95)

DIMENSION F(IMAX,JMAX),II(NMAX),JJ(NMAX)

DIMENSION PH(NMAX,NMAX),SI(NMAX,NMAX),III(NMAX),JJJ(NMAX)

IF (IL. OT. NMAX. 0R. JL.GT.NMAX) THEN

WRITE(*,*) 'THE PARAMETERS ARE

STOP

END IF

NM-0

DO i00 I-I,IL

IF(II(I) .NE.0) THEN

NM,,NM+1

III(_)lI

END IF

CONTINUE

SMALL, STOP IN SUB TRANS2D'

MM-0

DO 110 J-1,JL

IF(JJ(J) .NE.0) THEN

MM-MM+ 1

JJJ(MM),,J

END IF

15



110 CONTINUE

C

C ..... SETUP THE BLENDING

C

DO 200 N=I,NM

DO 210 I=I,IL

PH(N,I)=I.0

DO 220 NIfI,NM

FUNCTIONS (LAGBANGIAN INTEBP0LATION)

220

210

200

C

IF(NI.EQ.N) GOTO 220

PH (N, I)=PH (N, I)*FLOAT (I-III (N1))/FLOAT (III(N)-III (NI))

CONTINUE

CONTINUE

CONTINUE

320

310

300

C

DO 300 M=I,MM

DO 310 J=I,JL

SI(M,J)=I.0

DO 320 MI=I,MM

IF(M1.EQ.M) GOTO 320

SI(M,J)=SI(M,J).FLOAT(J-JJJ(MI))/FLOAT(JJJ(M)-JJJ(MI))

CONTINUE

CONTINUE

CONTINUE

C ..... COMPUTE THE TRANSFINITE INTERPOLATION

C

DO 1000 J=JS,JE

16



1200

C

1300

C

1500

1400

1100

1000

C

IF(JJ(J).NE.O) GOT0 1000

DO 1100 I=IS,IE

IF(II(I).NE.0) GOT0 1100

F(I ,J)=O.

DO 1200 N=I,NM

F(I, J)=F (I, J)+PH (N,I)*F (III (N) ,J)

CONTINUE

DO 1300 M"I,MM

F (I,J),,F(I, J)+SI (M.J)*F (I,JJJ (M))

CONTINUE

DO 1400 N=I,NM

DO 1500 M=I,MM

F (I, J) -F (I, J) -PH (N, I) *SI (M, J) *F (III (N), JJJ (M))

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

17
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