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APPLICATION OF LAPLACE TRANSFORM TO THE
FREE VIBRATION OF CONTINUOUS BEAMS

WEN H.B. !, ZENG T.2, HU G.Z.}

Laplace Transform is often used in solving the free vibration problems of structural beams. In existing research,
there are two types of simplified models of continuous beam placement. The first is to regard the continuous beam
as a single-span beam, the middle bearing of which is replaced by the bearing reaction force; the second is to divide
the continuous beam into several simply supported beams, with the bending moment of the continuous beam at
the middle bearing considered as the external force. Research shows that the second simplified model is incorrect,
and the frequency equation derived from the first simplified model contains multiple expressions which might not
be equivalent to each other. This paper specifies the application method of Laplace Transform in solving the free

vibration problems of continuous beams, having great significance in the proper use of the transform method.
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1. INTRODUCTION

Continuous beam structure is very common in construction work, often as continuous beam bridges,

beams of buildings, heat exchange tubes in heat exchangers, principal axis in machine tools, and

others. As the basis of anti-vibration design, the dynamic characteristic analysis of the structure is

indispensable in the design of continuous beam structures.

In order to obtain the dynamic characteristic parameters of continuous beam structures, scholars
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both at home and abroad have conducted a great deal of research on the topic. Based on the mode
superposition method and the direct integration method, Dugush [1] used the exact element method
to deduce the frequency and vibration mode equation of any and all cross sections of multi-span
beams. Li [2] adopted Laplace Transform to deduce the frequency equation of continuous beams, and
obtained the frequency equation and vibration mode equation of a two-span simple bearing beam
with the same span length. Based on the Bernoulli-Euler beam and Timoshenko beam theories, He
[3] took advantage of the dynamic stiffness method to systematically study the vibration of various
continuous beams. Yang [4] applied the transfer matrix method to deduce the free vibration modal of
continuous beams, then provided a method of acquiring its eigenvalue, and stated the relationship
between the bearing number and stiffness and their influences on the inherent frequency of the
continuous beams. After the deduction of the vibration equation of double-fold line external
prestressed continuous composite beams, Jiao[5] also adopted Laplace Transform to deduce the
frequency equation. Different from Reference [2], he divided continuous beams into a symmetric
vibration mode and an antisymmetric vibration mode. Cai [6] conducted a field vibration test on a
two-span prestressed concrete continuous box girder bridge, and obtained the frequency, damping
ratio, and vibration mode of the bridge. Zheng [7] carried out a parameterized experiment with the
offset distance of the middle bearing as the variable, and then analyzed the first 3-order frequency
and vibration mode changes of two-span continuous beams with different span ratios. Wang [8] also
used Laplace Transform to deduce both the frequency equation and the vibration equation of
continuous beams. However, Wang’s method is different from References [2, 5]. References [2, 5]
transformed the statically indeterminate system of a continuous beam into an equivalent static system,
meaning a single-span beam with bearing reaction force; while Wang conducted segment treatment
on the continuous beams, deducted the vibration equation of each segmental beam, and then
established an equation set based on the continuous conditions between each segment and deducted
the frequency equation. Shi [9] employed the segmented combination method to establish the
vibration equation set of three-span prestressed continuous beams, then gained the analytical solution
of the frequency equation and verified the results through the finite element method and real bridge
test. Jia [10] studied the influence of a damping oblique angle and span length on the frequencies of
anomalous continuous beam bridges through Midas Civil software, and revised the vibration
frequency equation in the bridge standards according to the calculated results.

These research achievements improved the theoretical level regarding continuous beam vibration and

enhanced the application of continuous beam structures in construction projects. To effectively direct
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practical construction work, the theoretical method should possess the features of simplicity and
accuracy.

In the above methods, Laplace Transform is worthy to be noted for its high efficiency and
practicability regarding the vibration of beams. The application of Laplace Transform is simple and
unique for cases of single-span beam vibration. However, as stated by References [2, 5, 8], the
application method has some differences regarding continuous vibration. In order to specify the
application of Laplace Transform to case of continuous beam vibration, it is quite necessary and

encouraged to carry out related studies on the application method.

2. APPLICATION METHOD OF LAPLACE TRANSFORM IN SOLVING

CONTINUOUS VIBRATION

According to References [2, 5, 8], there are two types of application methods of Laplace Transform
in solving continuous beam vibration. The first type is based on single-span beam model. The exact
method involves treating the continuous beam as a single-span beam and regarding the reaction force
on the middle bearing as an unknown external force on the beam (which has the same frequency as
the natural vibration of the beam), and then use Laplace Transform to deduce the frequency equation
and vibration function of the continuous beam. The second application method is based on the
segmented beam model. Specifically, the method treats the continuous beam in segments and employs
the Laplace Transform to deduce the frequency equation and vibration function based on the presence

of equivalent corners at the adjacent joints of the two spans.

3. ANALYSIS OF THE APPLICATION METHOD BASED ON A SINGLE-SPAN

BEAM MODEL

3.1. VIBRATION EQUATION OF CONTINUOUS BEAMS

According to References [2, 5], the statically indeterminate system of the continuous beam with »
bearings in the middle can be transformed into a single-span with 7 bearing reaction force (As shown
in Figure 2). Thereby, the dimensionless vibration equations of single-span and multi-span continuous

beams can be uniformly expressed as
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Fig. 1. Multi-span continuous beam system.  Fig. 2. Equivalent system of multi-span continuous beam.

The corresponding constraints are:

1n(0,7)=0, n(é,r):O(i:1,2,3,...,n), (2a)
n(,7)=0,n"(0)=0, 7"(1)=0, (2b)

where, the following dimensionless variables are same as Reference [11].

3.2. DEDUCTION OF CONTINUOUS FREQUENCY EQUATION

During the free vibration of the beam, the frequencies of the middle bearing reaction force and the

lateral displacement are the same. In the following equation

(&) =Re[W (&) |, p,(r)=Re[ P |. (3)
Assume o is the dimensionless frequency and Q is the continuous beam frequency, the relationship

between w and Q will be:

12
0= (Mj Qr . 4)
EI
Substitute (3) into (1), we gain:
W””*k“W:ZES(g*gI), (5)
i=1

where, &*=w?.

Conduct Laplace Transform on (5), we gain:

w(s) ! [ e %+ 5 (0)+5"W(0)+sW"(0)+ W7 (0)]. (6)

=1 ;4
st —k

i=1

Conduct Laplace inversion on (6), we obtain the algebraic equation form of a differential equation

5):
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o . h & k
W (€)= 3 L [sinh k(£ & ) -sink(£-& ) i (£~ & )+ SXRAELOKE g

i=1
. . _ . @)
+ sinh kg;;{- sinké& W'(O) + cosh kgk—zcos k& W"(O) + sinh kik—ssm k& W"'(O).

For single-span beams, the first item on the right of (7) is 0. According to the constraints at the two

ends of the beam, we can get:

sinh k +sink sinh k —sink
N
k(sinhk —sink) sinhk+sink || W"(0)]| [0
2 2k

Assuming the coefficient determinant of (8) is 0, the frequency equation of the single-span beam will
be:

sink = 0. Q)
All the frequencies of the single-span beam can be acquired through frequency equation (9).
Substitute each frequency into (8), the ratio of related #'(0) and W"(0) can be obtained. When

substituting the ratio into (7), each vibration function of the single-span beam will then be:

_sinké

w ()=

(10)

Regarding continuous beams, » equations can be established according to the constrains provided in

(2). The matrix form is:

All AlZ Aln E

e gl p
14.21 A.ZZ .Zn .2 :0’ (11)
Anl AHZ o Ann R1

where,

Ay =H(&-&, ) sinhk(& - ¢, )-sink(& —fj.)}+smki(nl]:§j)sink§i

hk ° (12)
inhk(1-¢,
_Smsin(hkgf)sinhkf,.. (i,j=12,3,...,n)
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Li [2] took the two-span continuous beams with equivalent lengths as an example, and assuming the
coefficient determinant in equation (11) is 0, the frequency equation of the two-span continuous spam

will be:

sin’ K sinhzﬁ
Fl(k)szvhkzzo, (13)
or
Fz(k):sinhk-sin2%—sink-sinhzgzo. (14)

Jiao [5] studied the frequency of two-span external prestressed continuous beams with equivalent
lengths, and considered the left part of (11) as the product of two items, where any of them can be 0.
When the vibration of the continuous beam is asymmetric, the reaction force of the middle bearing is
0, and the frequency equation of the continuous beam is (9); when the vibration of the continuous
beam is symmetric, the reaction force of the middle bearing is not 0, and the frequency equation of

the continuous beam is (13), and sink # 0 and sinhk # 0.

3.3. FREQUENCY EQUATION AND FREQUENCY ANALYSIS OF CONTINUOUS BEAMS

To investigate the differences between Reference [2] and Reference [5], and to understand the
characteristics of the frequency equation deducted by Laplace Transform, analysis was conducted in
the aspects of equivalent and inequivalent span lengths of continuous beams. The theoretical
calculated results are tested by ANSYS software. The main parameters of the continuous beam are
shown in Table 1. In the ANSYS simulation, the subspace iteration method is selected to calculate
the first six-order frequency of the continuous beam, Unit beam3 to simulate the continuous beam.

Table 1. Main parameters of the continuous beam.

Structure parameter E (Pa) 1 (m*) A (m?) p (kg/m®)
Parameter value 2x10" 4.5%10% 6x10* 7800

3.3.1. CONTINUOUS BEAMS WITH EQUIVALENT SPAN LENGTH

According to Reference [5], when the vibrations of two-span continuous beams with equivalent span
lengths are asymmetric, their frequency equations are the same as those of single-span beams. As

shown in Figure 3, the frequency and vibration mode can be obtained from (9) and (10). Based on the
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vibration mode of the single-span beam, the second-order and fourth-order vibration modes are also
two-span continuous beam modes with equivalent span lengths; the third-order vibration mode is a
three-span continuous beam mode with equivalent span length; the fifth-order vibration mode is a
five-span continuous beam mode with equivalent span length.

With the vibration mode of the single-span beam, only an asymmetric vibration mode and related
frequencies can be obtained. Other frequencies have to be rooted from equation (13). As conditions
of sink # 0 and sinhk # 0 are present, the rooting scope should be (nz, nz + ), (n =0, 1,2, ...). As
shown in Table 2, the first four-order dimensionless frequency of the continuous beam with

equivalent span lengths can be obtained.

Fig. 3. The first fifth-order vibration mode of single-span beam.

Based on Reference [2], the frequencies of two-span continuous beams with equivalent span lengths
can be solved according to equation (13) and equation (14). Both the numerator and denominator of
the first item sin?(k/2)/sink of F1(k) are sine functions. When k approaches nz (» is even), sin?(k/2)/sink
approaches 0 as sin’(k/2) << sink; when k approaches nz (n is odd), sin(k/2)/sink approaches infinite.
So the rooting scope of equation (13) is (0, ) U (nx, nw + 27), (n =1, 3, 5, ...). As shown in Table 2,
the first four-order frequency of the continuous beam can be obtained according to equation (13). The
change law of Fi(k) with k is seen in Figure 4. The change law varies periodically, and nz (n is odd)

is the infinite discontinuity point.

10 10

5 50

0 0

-5 1 -5f
103 4 5 6 7 8 9 10 10 11 12 13 14 15 16

(a) Change law of F'i(k) around w; point. (b) Change law of Fi(k) around > point.
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(c) Change law of F'i(k) around w3 point.

(d) Change law of F)(k) around w4 point.

Fig. 4. Change law of F(k) with £.

The rooting scope of equation (14) is (0, +o0), and the first four-order frequency of the continuous

beam can be obtained (as seen in Table 2). The change law of F>(k) with k is shown in Figure 5. With

the increase of k, the vibration range of F>(k) has a magnitude of increase; on the curve, the wave

peak and valley appear alternately. The F(k) values of adjacent wave peak or wave valley have a

magnitude of change.

50 1x10°
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(a) Change law of F»(k) around w; and w>.

(b) Change law of Fx(k) around w3 and ws.

Fig. 5. Change law of F»(k) with k.

Table 2. The first four-order frequency of two-sp.

an continuous beams with equivalent span lengths.

Frequency Calculgted according Calculated.according Calculated‘according ANSYS ) Relative
to Jiao (2011) to equation (13) to equation (14) value difference (%)
o) (27)? 7.8532% (2m)? 39.4738 0.01
[ 7.85322 14.13722 7.85322 61.6671 0.01
3 (4n)? 20.4204% (4r)? 157.8541 0.04
[on 14.13722 26.7037> 14.13722 199.7786 0.04

Note: The relative difference in the table is the difference between the theoretical value calculated by Jiao (2011) or

equation (14) and the calculated value by ANSYS.
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According to Table 2, the frequency results calculated by Reference [5] and equation (14) are
comprehensive with high calculation accuracy, and the difference compared with the calculation of
ANSYS can be ignored. However, the results calculated by equation (13) missed the calculation of
the asymmetric vibration mode. Hence, regarding the vibration of the two-span continuous beams
with equivalent span lengths, the method introduced by Reference [5] is applicable but a little
complicated; however, the two frequency equations (equation (13) and equation (14)) deduced by
Reference [2] are not equivalent. Equation (13) can obtain only symmetric vibration mode results,
while equation (14) can obtain all results needed.

Regarding the frequency equation of multi-span continuous beams with equivalent span lengths,
consider the assumption that the determinant of equation (11) is O for the calculation, and convert it
to the form of equation (14). Based on this method, the frequency equation of the three-span

continuous beam with equivalent span lengths can be deduced:

2
Fy(k)= (sinﬁ-sinh%—sin%-sinhﬁ]
’ 3 3 3 3

(15)
. .ok . oak ko k
—| sinh k -sin® = —sin k -sinh”® = |x| sinh ——sin = [=0.
3 3 3 3
Table 3. The first four-order frequency of three-span continuous beam with equivalent span lengths.
Frequency Theoretical value ANSYS value Relative difference (%)
w1 (3z)? 88.8162 0.01
w2 10.66922 113.8223 0.01
3 12.892582 166.2021 0.01
o (6m)° 355.1718 0.04
X 10° oX 10
1
1
0
0
-1
-1 ol
-2 -3
6 8 10 12 14 16 18 20
(a) Change law of F»(k) around w1, w2 and ws. (b) Change law of F»(k) around w3 and 4.

Fig. 6. Change law of F3(k) with k.
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As shown in Table 3, the first four-order frequency can be obtained through equation (15). The change
law of F3(k) with k can be seen in Figure 6. Compared with the results calculated by ANSYS, the
relative difference of the frequency value is very small and can be ignored; the two-order symmetric
vibration mode appeared between the adjacent asymmetric vibration modes; with the increase of &
the wave peak and valley still appear alternately on the F3(k) curve, and the vibration range shows a

magnitude of change.

3.3.2. CONTINUOUS BEAMS WITH INEQUIVALENT SPAN LENGTHS

For the frequency equation of continuous beams with inequivalent span lengths, it is still considered
that the determinant of equation (11) is to be 0 for the calculation basis, and then will be converted to
the form of equation of (14). When looking at the two-span continuous beam with inequivalent span

lengths per the example in Figure 7, the frequency equation can be deduced as
F,(k)=sinhksink(1-¢& )sink& —sinksinhk(1-& )sinh k& =0. (16)

The dimensionless coordinate of the middle bearing is & = 11/( i+ 2). Assuming ¢ is 0.5, equation
(16) will be degenerated to the frequency equation (14) of the two-span continuous beam with
equivalent span length. The frequency of two-span continuous beams with inequivalent span lengths

is shown in Table 4. The relative difference against the results of ANAYS analysis can be ignored.

Fig. 7. Two-span continuous beam system.

For three-span continuous beams with inequivalent span lengths, the dimensionless coordinate of the
middle bearing is & = /1/( i+ b+ 1), & =(1+h)/( i+ b+ 1) (as shown in Figure 8). Assuming that
the coefficient determinant of equation (11) is 0 and is transformed into the form of equation (14),
the frequency equation of the three-span continuous beam will be:
F;(k)=(sink¢ sinh k&, —sin k&, sinh k& ) x [sin k(1-¢&,)sinhk(1-&)
—sink(1-¢)sinhk(1-&,) | —[sinhksink(1-&,)sin k& 17)
—sinksinhk(1-&,)sinh k& | x[sinh k(& —&)—sink(& - &)]=0.
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Assuming that & = 1/3. & = 2/3, equation (17) will be degenerated to be the frequency equation of

the three-span continuous beam with equivalent span length, which is known as equation (15). The

frequency results of three-span continuous beams with inequivalent span lengths are shown in Table

5. The relative difference against the results calculated by ANAYS can be ignored.

Table 4. Frequencies of two-span continuous beams with inequivalent span lengths.

w1 2 w3
Span length i R B
rﬁtio I /glz Thev‘;ﬁfcical ANSYS d[i{fi‘ztel;:e Thi‘;flgcal ANSSY dl‘ffcfzgcce Thi‘;ﬁgcal ANSYS dﬁcﬂl:igr\:cce
(%) (%) (%)
1:9 17.868 | 17.863 | 0.028 58237 |58.236] 0.002 122.114 | 122.109| 0.004
2:8 21328 | 21.329] -0.005 70417 |70.416]  0.001 147.907 [147.907| 0
317 26335 | 26.334]  0.004 86.061 |86.059|  0.002 138.778 | 138.771| 0.005
4:6 33439 [33.438] 0.003 76.876 |76.873|  0.004 127.982 [127.977] 0.004

Table 5. Frequencies of three-span continuous beams with inequivalent span lengths.

1 2 w3
Span length Theoretical Relative Theoretic Relative Theoretical Relative
ratio 1/ b/ I3 ANSYS | difference ANSYS [(difference] ANSYS | difference
value o al value o value o

(%) (%) (%)

2:6:2 46.914 46.914 0 133.754 | 133.748 | 0.005 246.741 | 246.712 0.012

4:2:4 75.483 75.481 0.003 85.316 | 85314 | 0.002 246.74 | 246.712 0.011

2:3:5 50.369 50.368 0.002 145.722 | 145.714 | 0.005 196.542 | 196.535 0.003

2:5:3 61.458 61.457 0.003 133.907 | 133.901 | 0.004 199.829 | 199.816 0.006

EI
X1 X,
}‘—h’}‘—]z’}‘T’{

Fig. 8. Three-span continuous beam system.

Based on the above analysis, when using Laplace Transform to solve continuous beam vibration, it

is possible to simplify the continuous beam into the single-span beam model, but the frequency

equation form should be noted to avoid any misinterpretation of the solution. The frequency equation

of the continuous beam is eventually transformed into the form of equation (14). The frequency

solution is comprehensive with high accuracy, but the left side of the frequency equation vibrates

greatly with the increase of the frequency calculation, which is a magnitude of change.
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4. ANALYSIS OF THE APPLICATION METHOD BASED ON THE SEGMENTED

BEAM MODEL

Proceeding to the continual beam in segment, Laplace Transform was used to deduce the vibration
equation of each segment of beam, to establish the simultaneous equation based on the continuity
condition of each segment, to assume the equation coefficient determinant as 0, and deduce the
frequency equation of the continuous beam. The specified calculation method is shown as Reference
[8]. Analysis showed that this process presents some problems. It used Laplace Transform and inverse
transformation to obtain the algebraic equation (18) of a vibration differential equation of a beam
segment. Then the deducing computation of the two sides of the equation (18) is conducted and

equation (19) can be obtained:

Y (x)=C, sinhkx+C, sinkx + C, cosh kx + C, cos kx + 21\:2’21 [cosh (x—x,)

(18)
M
_cosk(x—xnfl)]u(x—xn7,)+ 2k2;5] x[cosh(x—xn)—cosk(x—x")]u(x—xn),
Y'(x)=Ckcoshkx + C,k coskx + Cyk sinh kx — Ck sin kx + 2]]“111 [sinh(x—x,)+sink (x—x,)]
(19)
xu(x—x,)+ M, [sinh(x—xn71)+sink(x—xH)]u(x—xnfl),

2kEI

where u(-) function is the step function or Heaviside function, which is usually expressed by H().

The value is:
H(x)={" *7° 20)
x)=
0. x<0

As a defined constant, H(x) has no derivative at x = 0 [12], and its relationship with § function is:

5(¢)de = L x>0 21
(r)de= 0, x<0 @b
or

H(x)=35(x). (22)

Hence, the result of the two sides of equation (18) taking a derivative of x should be:
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Y'(x) = Ck cosh kx + C,k cos ko + Cyk sinh kx — C ke sin ko + AZE} [sinh(x—x,_,)+sink(x-x,,)]

2
M, M,
xu(x—x,,)+ 2k2El] [cosh(x—ux, ) —cosk(x—x,)]3(x—x, )+ Tk (23)
I:sinh(x—x”)+sink(x—xn)]u(x—xn)+ 22;1]”5] [cosh(x—x")—cosk(x—xn )]6(x—xn).

According to the definition of 3(x) function, when x—0, (x)—o0, which means (x) has no definition
at x =0 [13]. Therefore, equation (23) is uncertain when x = x,,.1 and x = x,, and the frequency equation
deduction cannot be continued.

The frequency equation of the two-span continual beam can be deducted according to the vibration
equation (equation (7) in the original paper) obtained by Reference [8].

coskl, coshkl,
sinh &/,

coskl, coshkl, _ 0

. . = (24)
sinkl, sinhkl,

sin kl,
Assuming that/y =/», the frequency equation of the two-span continual beam with equivalent lengths

will be:

coskl, coshkl, _
sinkl, sinhkl,

(25)

Assuming that /; = /», substituting into the frequency equation of the three-span continual beam in
Reference [8] (equation (13) in the original paper), the frequency equation of the three-span continual

beam with equivalent span lengths can be deducted as.

1 =0
sinkl, sinhkl,

2 cot kl, — 2cothkl, + (26)

Table 6. Frequencies of two-span continual beam with equivalent span lengths.

Frequency Application method (1) Application method (2) ANSYS
1 (2n)? 7.85322 39.4738
@2 7.8532? 14.13722 61.6671
3 (4n) 20.4204% 157.8541
4 14.13722 26.7037% 199.7786

Note: Application method (1) is based on single-span beam model; Application method (2) is based on segmented

beam model. Similarly hereinafter.

Table 7. Frequencies of three-span continual beam with equivalent span lengths.

Frequency Application method (1) Application method (1) ANSYS
[ (3n)? 10.66922 88.8162
) 10.66922 22.2886% 113.8223
3 12.892582 29.5464% 166.2021
[ (6m)* 41.1395% 355.1718
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It is clearly different from frequency equations (14) and (15) deduced according to the single-span
beam model. The first four-order frequencies of the continual beams obtained from equation (25) and
(26) are shown in Table 6 and Table 7. According to the analysis of the calculation, equation (25) and
(26) can only provide results when the bearing is an asymmetric vibration mode. The reason is that
the bending moment at the bearing is 0, and actually the vibration differential equation of a single-
span beam in Reference [8] has no o function.

Based on the above analysis, when using Laplace Transform to solve the vibration of continuous
beams, the simplification of a continuous beam into a segmented beam model is improper. The reason
is that the bending moment produced at the beam segment is situated at the two ends of a beam
segment. This means §(0) will appear in the equation based on the boundary conditions of the two
sides of the beam, while & function has no definition at x = 0. In the static deformation of the continual
beam, no 5(0) will appear. Hence, this method is proper in solving the static deformations of continual

beams [14].

5. CONCLUSION

This paper presents a comparison of two types of simplified beam models for the free vibration of
continual beams with Laplace Transform, and the main conclusions are as follows:

(1) When using Laplace Transform for the free vibration of a continuous beam, it is improper to
simplify the continuous beam as a segmented beam model, which will give an incomplete solution;
however, this simplified model is suitable for solutions of the static deformation of the beam.

(2) When the beam is simplified into the single-span beam model, Laplace Transform analysis is
feasible. However, the resulting frequency equations will be of different and in-equivalent
expressions. Hence, the frequency equation (14) is recommended for continuous beams, as it is

effective for continuous beams with both equivalent and in-equivalent span lengths.
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ZASTOSOWANIE PRZEKSZTALCENIA LAPLACE’A W WOLNYCH DRGANIACH
CIAGLYCH WIAZEK

Stowa kluczowe: Przeksztalcenie Laplace’a, ciagta wiazka, drganie, dzielona metoda faczenia, czgstotliwo$¢

STRESZCZENIE:

Struktury ciagglej wiazki sa bardzo czgsto spotykane w projektach budowlanych. Przyktady obejmuja: mostki ciaglej
wigzki, stopy budynkow, rury do wymiany ciepta w wymiennikach ciepla oraz wrzeciona obrabiarki. Nieodtaczna czgscia
projektowania struktur ciaglych wiazek jest dynamiczna charakterystyczna analiza konstrukcji jako podstawy projektu
antywibracyjnego. W celu uzyskania dynamicznych charakterystycznych parametréw struktur ciagtych wiazek, uczeni
z kraju i z zagranicy przyjeli w celu poszukiwania rozwiagzan liczne metody, w tym metode elementow skonczonych,
metod¢ sztywnosci dynamicznej oraz metode transferu matrycy. Metoda analityczna, w ktorej wykorzystywane jest
przeksztatcenie Laplace’a, majaca na celu rozwiagzanie problemu wolnych drgan ciagtych wiazek, jest preferowana przez
wielu badaczy i szeroko stosowana do rozwiazywania takich problemoéw w wielu dziedzinach. Niemniej jednak, istnieja
pewne btedy w stosowaniu przeksztalcenia Laplace’a. W zwiagzku z tym, w niniejszej pracy przeprowadzono badania
i analiz¢ dotyczace réznych metod stosowania przeksztatcenia Laplace’a. Ponadto, w niniejszym dokumencie wyjasniono
metodg prawidlowego zastosowania przeksztalcenia Laplace’a podczas rozwiazywania problemu wolnego drgania ciaglej
wigzki. Odpowiednie odniesienia przedstawiaja dwie metody stosowania przeksztatcenia Laplace’a podczas
rozwigzywania problemu drgania ciaglej wiazki. Pierwsza metoda opiera si¢ na modelu jednoprzgstowej wiazki. Ciagta
wigzka jest traktowana jako jednoprzgstowa ciagta wiazka, natomiast przeciwsita elementéw nosnych jest uznawana za
nieznang sit¢ zewnetrzng dzialajaca na wigzke, ktora posiada taka samg czgstotliwo$¢ naturalnych drgan jak wigzki.
Nastepnie, przeksztatcenie Laplace’a jest wykorzystywane do uzyskania rOwnania czgstotliwosci oraz funkcji trybu drgan
cigglej wiazki. Druga metoda opiera si¢ na modelu dzielonej wiazki. Ciagta wigzka jest dzielona pod warunkiem, ze katy
na styku dwoch sasiadujacych przeset sa rowne; przeksztatcenie Laplace’a stuzy do uzyskania rdwnania czgstotliwosci
i funkcji trybu drgan. Rownanie czgstotliwosci ciaglej wiazki otrzymane na podstawie pierwszej metody nie jest unikalne.
Wyniki rozwigzania wskazuja, ze te rézne réwnania czgstotliwosci nie s3 réwnoznaczne, a niektére wyrazenia moga
prowadzi¢ do zaniechania rozwigzan; rOwnanie czgstotliwosci, takie jak wzor (14) przedstawiony w niniejszej pracy, jest
poprawne. Przyjmujac dwuprzgstowa i trojprzgstowa ciagla wiazke jako przyktady, rownanie prawidtowej czgstotliwosci
roznego stosunku przeset uzyskuje si¢ na podstawie pierwszej metody zastosowania przeksztatcenia Laplace’a, natomiast
wyniki czestotliwosci zostaty obliczone. W poréwnaniu z wynikami obliczen oprogramowania skonczonego elementu
ANSYS, metoda ta charakteryzuje si¢ wysoka dokltadnoscia obliczeniowa i wieloma zaletami w parametrycznym
omoéwieniu pewnych czynnikéw ciaglej wigzki. Rygorystyczne obliczenie dowodzi, ze druga metoda jest btgdna. po
podzieleniu ciagtej wiazki, jej rOwnanie czgstotliwosci uzyskane na podstawie przeksztatcenia Laplace’a moze zawieraé
8(0), lecz funkcja Dirac Delta nie jest okreslona na tym etapie, gdzie x jest rowne 0. Traktujac dwuprzgstowe
itrojprzgstowe ciaggle wiazki jako przyktady, rownanie czgstotliwosci uzyskiwane jest za pomoca drugiej metody,
a wyniki czgstotliwosci sa wowczas obliczane. Porownanie tych wynikow z wynikami z pierwszej metody oraz
z oprogramowaniem ANSY'S skonczonego elementu dowodzi, ze druga metoda jest blgdna. Natomiast druga metoda jest
stosowana podczas rozwigzywania problemu statycznych odksztatcen ciaglych wiazek, ze wzgledu na brak 8(0)

W procesie rozwiazywania problemu.
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Podsumowujac, podczas rozwigzywania problemow drgan ciaglych wigzek nasuwaja si¢ nastepujace wnioski dotyczace
stosowania przeksztatcenia Laplace’a:

(€]
Podczas stosowania przeksztalcenia Laplace’a dla swobodnego drgania ciaglej wiazki, niewlasciwe jest uproszczenie
ciaglej wiazki jako modelu podzielonej wigzki, ktory stanowi niekompletne rozwiazanie; jednakze, ten uproszczony
model sprawdza si¢ w przypadku rozwiazan dotyczacych statycznego odksztatcenia wiazki.

@
Po uproszczeniu wigzki w modelu jednoprzgstowej wiazki mozliwe jest zastosowanie przeksztalcenia Laplace’a.
Jednakze, rownania czgstotliwosci beda stanowié rézne i nierbwnowazne wyrazenia. Dlatego tez, rGwnanie czestotliwosci
(14) opisane w niniejszej pracy jest zalecane dla ciagtych wiazek. Jest ono skuteczne dla obu ciaglych wiazek, zaréwno

z rbwnowaznymi i nierownowaznymi dtugosciami przgset.



