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Abstract 
The authors previously show that NI-RPIM solution of 3D tetrahedral cells [Yavuz and Kanber 
(2015)] includes unstable stress distributions. Therefore, in this study, the fluctuations in stresses 
are attempted to reduce using two different algorithms; Average stress distribution (ASD) in local 
support domain and LSS (least square stabilization) algorithms. NI-RPIM is improved with these 
algorithms to solve 3D solid mechanics problems with higher order Taylor series terms in nodal 
integration. Integration methodology is developed based on the study of [Liu et al. (2007)]. 
Tetrahedral integration cells are used in the solution of 3D elasto-static problems. Order of Taylor 
series terms is used up to 4th order for ASD. Also effects of shape parameters ( cα  and q ) in RBF 
and support domain size (sd) are searched. The results are compared with available analytical 
solutions and discussed in detail. 
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Introduction 

Strain and stress formations are one of the critical design factors and always considered in machine 
design. Besides the working performance, strength and service life are also important in a 
machinery system and must be adjusted in a range of safety. A well designed mechanical system 
has enough strength against working loads. It been also avoided from the usage of excessive parts. 
For this reason, the best and optimum structural designs should be created. 
 
It is needed to investigate the initial designs on stress analysis for optimizations. The critical 
locations must be determined and fixed. In general, the formation of stresses cannot be detected 
easily, especially for complex and non-uniform shapes. Geometry simplifications can be sometimes 
used with respect to analysed model. However, they include differences between analysed real 
model and simplified model, which causes errors. Thus, different numerical and experimental 
techniques have been developed for investigation with including less simplification, especially for 
complex shapes. Experimental techniques show responses of forces directly and reflect considerable 
results. However, investigation of each component or effect of parameter causes to repeat the 
experiment again and again.  
 
Numerical methods can be another alternative way for investigation. On the contrary to 
requirements of experimental setup and apparatus in experimental investigation, numerical 
techniques do not need any experimental preparation, which can give fast and sensible results with 
respect to developed computer technology and used numerical methods. Even if it is mainly used 
approximate solutions, precise results can be achieved with a well-defined model. Different 
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numerical techniques have been developed. FDM (finite difference method), FEM (finite element 
method) and BEM (boundary element method) are widely used. 
 
Unlike other methods, FEM has been very popular and used especially in the solutions of solid 
mechanics problems. The analysed model is divided to small elements, which are called finite 
elements and all solution procedure continues based on these elements. In most of the cases, 
formation of elements has poor shapes especially for complex geometries, which decreases 
accuracy of solutions. Construction of finite elements in smooth structure can consume most of 
analysing time. For this reason, meshfree techniques have been developed for decreasing numerical 
modelling time and effort. It is mainly used in early stages as SPH (smoothed particle 
hydrodynamics) [Gingold and Monaghan (1977); Lucy (1977)] on the solutions of astrophysical 
problems. DEM (diffuse element method) [Nayroles et al. (1992)] is developed at the further 
development stages. Mesh generation is not required, at least for interpolation. It includes MLS 
(moving least square) functions, which is used further development stage of EFG (element-free 
Galerkin) [Belytschko et al. (1994)] method. Partitions of unity [Babuska and Melenk (1996)] are 
developed by using MLS functions. Reproducing kernel particle method (RKPM) [Liu et al. 
(1996)], meshless local Petrov-Galerkin (MLPG) [Atluri and Zhu (1998)], point interpolation 
method (PIM) [Liu and Gu (2001)] and radial point interpolation method (RPIM) [Wang and Liu 
(2002a)] have been developed. Radial basis functions (RBF) are widely used in meshfree 
approximations, which are also used for development of BKM (boundary knot method) [Chen and 
Tanaka (2002)]. Also some of these methods are used in different integration methods. PIM and 
RPIM are further used with different methods and integration schemes; linearly conforming point 
interpolation method (LC-PIM) [Liu et al. (2005)], nodal integration radial point interpolation 
method (NI-RPIM) [Liu et al. (2007)], NS-PIM (node-based smoothed point interpolation method) 
[Zhang et al. (2007)], edge-based smoothed point interpolation method (ES-PIM) [Liu and Zhang 
(2008)] and CS-RPIM (cell-based smoothed radial point interpolation method) [Liu and Zhang 
(2009)] are available in literature.  
 
Different techniques and methods can be combined for increasing the applicability of these 
methods. One of the integration schemes; nodal integration schemes can increase applicability and 
be effective for compact usage inside of RPIM, which is explained in detail in the study of Liu et al. 
(2007). This method uses Taylor series expansion in integration and the solution results are mainly 
affected with the used order of Taylor expansion. It is used for tetrahedral background cells [Yavuz 
and Kanber (2015)] on the solution of 3D elasto-static problems for increasing applicability. Each 
node in the model has its own tetrahedral integration cells. However it is observed that stress results 
include fluctuations and high values when compared with available analytical and FEM solutions. 
In literature, behaviour of nodal integration includes instabilities in some cases. Initially Biessel and 
Belytschko (1996) include additional a stabilization term on potential energy function of element-
free Galerkin (EFG) method for nodal integration. It achieves instability problems of nodal 
integration in weak form formulations. Chen et al. (2001) also focus on instability of direct nodal 
integration and observe that integration constraints include errors in direct nodal integration and 
they cannot be satisfied enough in Gaussian integration at irregular discretization. They eliminate 
this problem with including a strain smoothing stabilization. Zhou et al. (2003) include square 
residual of equilibrium equation into potential energy function in stabilized nodal integration 
scheme. The used Voronoi diagram with supporting Delaunay triangles increases accuracy of 
volume assignment of nodal integration. Van et al. (2007) use conforming nodal integration into 
finite element formulation of laminate plates, which prevents shear locking. Han (2010) uses 
stabilized conforming nodal integration method on elasto-plastic analysis of metal forming process. 
Nodal integration with strain smoothing stabilization is used, which prevents instabilities of 
integration of Galerkin weak form formulations. Elmer et al. (2012) use a stable nodal integration 
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method on nearly incompressible solids. Xu (2014) uses stabilized nodal integration for cracking 
particles method (CPM), which supports stability and computational efficiency. Duan and 
Belytschko (2008) mention and compare 3 different stabilization techniques; which are least-square 
stabilization (LSS) [Biessel and Belytschko (1996); Fries and Belytschko (2007)], Taylor series 
expansion based stabilization (TEBS) [Liu et al. (1985); Nagashima (1999); Liu et al. (2007)] and 
the finite increment gradient stabilization (FIG) [Bonet and Kulasegaram (2000)], which can adjust 
stress instabilities. 
 
In the previous study of Yavuz and Kanber (2015), it is observed that the nodal integration of radial 
point interpolation method (RPIM) based on Taylor series terms with tetrahedral background cells 
causes some fluctuations in stress results. Therefore, in this study, it is attempted to stabilize 
stresses using average stress distributions for local support domain of each node and least square 
stress stabilization method. RBF includes different shape parameters and their effects [Wang and 
Liu (2002b); Kanber et al. (2013); Bozkurt et al. (2013)] are also searched in some studies. They 
can affect solution results and suitable parameters must be searched before their usage. Effects of 
shape parameters ( cα  and q ) in RBF and support domain size (sd) are searched. The results are 
compared with available analytical solutions. 
 

RPIM Shape Functions 

Construction of shape functions forms an important section for FEM and meshfree methods. High 
qualified shape functions gives better results and includes less errors. The shape functions are 
mainly occurred with interpolations and a suitable interpolation method must be used for increasing 
accuracy. 
 
Relation between nodes in meshfree methods is mainly obtained with interpolations. Various 
interpolation methods are available in literature. RPIM [Wang and Liu (2002a)] is one of 
interpolation technique and widely used. It includes PIM [Liu et al. (2001)] with radial basis 
functions. When shape functions have been constructed, a field function ( )xu  is created and given 
as in Eq. (1), which is consist of polynomial and basis functions.  
 
 ( ) ( ) ( ) ( ) ( ) bxPaxRbxPaxRxu TTm

j jj
n

i ii                 
11

×+×=×+×= ∑∑ ==
 (1) 

 
( )xRi  and ( )xPj  represent radial basis and polynomial basis functions, respectively. ia  and jb  are 

related constants, n  is the number of field nodes in the local support domain and m  is the number 
of polynomial terms. Interpolations between nodes are mainly accomplished within the local 
support domain for each node or point of interests. 
 
Various RBF [Liu and Gu (2005); Liu (2009)] are available in literature, like multi-quadrics (MQ), 
the Gaussian (Exp), the thin plate spline (TSP) and logarithmic radial basis functions. MQ is [Liu 
and Gu (2005); Dinis et al. (2007)] used as radial basis function in Eq. (2). 
 
 ( ) ( )( )qccii drxR 22       ×+= α  (2) 
 
where cd  is usually set as average nodal spacing near the point of interest at x ; cα  and q  are 
shape parameters. It is [Liu and Gu (2005); Liu (2009)] recommended to use q  as 1.03 and cα  as 
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3.00 for MQ basis function. The radial distance is given in Eq. (3) for 3D cases. Also the 
polynomial terms are given in Eq. (4) which are mainly derived from binomial expansion.  
  

 ( ) ( ) ( ) ( )222             iiii zzyyxxxr −+−+−=  (3) 

 
 ( ) { },...,,,,,,,,,1  222 zxzyzyxyxzyxxpT =  (4) 
 
Interpolation is applied in a support domain for point of interest. Different support domain 
geometries can be used, like circular, elliptical, triangular or rectangular. A circular local support 
domain is used and its covered area is given by radius of circle ( sd ), which is given in Eq. (5). 
 
 css dd     ×=α  (5) 
 
where cd is average nodal spacing and sα  is a positive real number of dimensionless size of the 
local support domain. Its value [Liu and Gu (2005); Dinis et al. (2007)] is commonly used between 
2.00 and 3.00. The unknown constants of field function of ia  and jb  in Eq. (1) can be determined 
by enforcing the field function to pass through all n  field nodes in the local support domain. At the 

thk  point or last point in a local support domain, field function can be written as: 
 
 ( ) ( ) ( )∑∑ ==

×+×=
m

j jkkkj
n

i ikkkikkk ,..n,k=bzyxPazyxRzyxu
11

21        ,,    ,,  ,,  (6) 

 
The matrix form of Eq. (6) can be expressed as 
 
 { }T

nmqe uuubPaRU ...            21=×+×=    (7) 
 
where eU  is the vector of function values at the nodes in the local support domain. qR  is the 
moment matrix of RBF and mP  is the polynomial moment matrix [Liu and Gu (2005)], which are 
given in Eq. (8) and (9), respectively. 
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a  and b  are vectors of unknown coefficients for radial and polynomial basis functions 
respectively. They are given in Eq. (10) and (11). 
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 { }n
T aaaa ...    21=  (10) 

  
 { }n

T bbbb ...    21=  (11) 
 
For solution of field function, unknown parameter a  in Eq. (7) must satisfy in polynomial function, 
 

 ( )∑ =
=×=×

n

j
T

miij aPaxp
1

0           j=1,2,..,m (12) 

 
Combination of Eq. (7) and Eq. (1) yields the following equations in the matrix form: 
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where 
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Unique solution is obtained if inverse of matrix G exists: 
 

 eUG
b
a

a ~      1
0 ×=









= −  (15) 

 
Substituting Eq. (15) into Eq. (1), interpolation with respect to field function can be expressed as, 
 
 ( ) ( ) ( ){ } ( ) ee

TT UxUGxPxRxu ~ ~~        1 ×=×××= − ϕ  (16) 
 
Finally [Liu and Gu (2005); Dinis et al. (2007)], RPIM shape functions for the corresponding n  
field nodes can be obtained as 
 
 ( ) ( ) ( ) ( ){ }xxxx n

T ϕϕϕϕ  ...  21=  (17) 
 
The approximation function can be written as 
 

 ( ) ( ) ∑
=

×=×=
n

i
iie

T uUxxu
1

        ϕϕ  (18) 

 
The derivatives of ( )xu  can be easily obtained as 
 
 ( ) ( ) e

T
kki Uxxu     ,, ×=ϕ  (19) 

 
where k  denotes the coordinates x , y  or z . Partial differentiation is taken with respect to that 
defined coordinated by k .  
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3D Nodal Integration with Taylor Series Expansion 

The approximated solution must be adapted to equilibrium equation with respect to applied 
boundary conditions. General form of equilibrium equation [Liu and Gu (2005); Liu et al. (2007)] 
and natural and essential boundary conditions are given in Eq. (21), (22) and (23), respectively. 
  
 0      =+× bLT σ  (20) 
 
 iontn tσ       =⋅  (21) 
 
 uonuu τ      =  (22) 
 

TL  is [Liu and Gu (2005)] differential operator, σ  is the stress vector, u is the displacement vector, 
b is the body force vector, t  is prescribed traction on the natural boundaries, u  is prescribed 
displacement on the essential boundaries and n  is the vector of unit outward normal on the natural 
boundary. TL ,σ , u  and b are given in Eq. (23), (24), (25) and (26) respectively.  
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Equilibrium equation and natural and essential boundary conditions are represented with respect to 
weak form formulation in RPIM. Hence, the equilibrium equation, Eq. (20) can be defined as in 
Galerkin weak formulation in Eq. (27), 
 
 ( ) ( ) ( ) ( )∫∫∫ =Γ×−Ω×−Ω×××× 0            dtudbuduLDuL TTT ddd  (27) 
 
D  matrix is material coefficient matrix and it is given for isotropic solids as;  
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where E  is Young’s modulus and ν  is Poisson’s ratio [Liu and Gu (2005)]. When substituting the 
approximated function in Eq. (18), into Eq. (27), general form of stiffness and force matrices are 
obtained.  
 
 fuK     =×    (29) 
 
In Eq. (30), stiffness matrix formulation is represented. Force matrix formulation is given in Eq. 
(31). In addition, strain matrix, which includes derivatives of shape functions, is given in Eq. (32).  
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A suitable integration method is needed to solve these equations. Various integration techniques are 
available. In NI-RPIM [Liu et al. (2007)], a series integration scheme is used with Taylor series. 
Series are widely used in mathematical operations, especially in numerical studies. An unknown 
value of a valid function can be estimated with a known value with series operations. One of the 
series is Taylor series and it is widely used in computational fluid dynamics with respect to finite 
difference method (FDM). An example of value estimation from 0x  to hx +0  can be defined serial 
expansion of functions and it is given in Eq. (33). nR  is the total error between value of )( 0 hxf +  
and its Taylor expansion results. In general, the degree of used terms in FDM increases the 
accuracy. In Eq. (33), Taylor series are expanded and derived to thn  order. 
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Equations of integrations are expanded with respect to Taylor series expansion as Eq. (33). Stiffness 
matrix is set as approximate function as ( )zyxf ,, , which is given in Eq. (34), 
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The nodal integration of Eq. (34) can be written as Eq. (35), 
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If Eq. (35) is separated and arranged, the following form can be obtained, 
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In Eq. (37), 0xx −  represents x∆ , 0yy −  represents y∆  and 0zz −  represents z∆ . The distance is 
calculated from midpoint of related field node and integration cell, which is called Taylor 
integration cells. Ωd  is equal to volume of Taylor integration cell. Each Taylor integration cell for 
each field node includes a volume that does not interact with other field nodes of Taylor integration 
cells. 
 

Integration with Tetrahedral Shaped Taylor Integration Cells 

It is required in NI-RPIM [Liu et al. (2007)] to construction of integration domains for each node in 
the analysed model. These domains should not coincide with each other and must be fully 
integrated. Taylor integration domains are constructed with irregular tetrahedral geometries for 
irregular distributed nodes. These irregular domain construction supports to more flexible domains, 
rather than hexahedral cells. Delaunay triangulation method is used for creating tetrahedral cells 
between nodes by using MATLAB.  
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Figure 1. Sub-division of tetrahedral background cell for each node. 

 
In Fig. 1, a tetrahedral background cell is given. The cell which is formed by field nodes of P1 
(x1,y1,z1), P2 (x2,y2,z2), P3 (x3,y3,z3) and P4 (x4,y4,z4) is further divided into 6 different integration 
cells (ic I, II...). So, the total number of integration cells for a field node can be calculated by 
multiplying 6 by the number of tetrahedral cells that are connected to the field node. P12, P13, P14, 
P23, P24 and P34 are centre point of each side line of tetrahedral cell. P123, P124, P134 and P234 are 
centre points of surface areas. O is the centre point. 

Table 1. Components of edges for subdivided Taylor Integration cells for each node. 

 integration 
cell (ic) 

components of 
edges  integration 

cell (ic) 
components of 

edges 

N
od

e 
I (

P1
) 

I P1 P12 P123 O 

N
od

e 
II

I (
P3

) I P3 P13 P123 O 
II P1 P123 P13 O II P3 P123 P23 O 
III P1 P124 P12 O III P3 P134 P13 O 
IV P1 P14 P124 O IV P3 P34 P134 O 
V P1 P13 P134 O V P3 P23 P234 O 
VI P1 P134 P14 O VI P3 P234 P34 O 

N
od

e 
II

 (P
2)

 I P2 P123 P12 O 

N
od

e 
IV

 (P
4)

 I P4 P124 P14 O 
II P2 P23 P123 O II P4 P24 P124 O 
III P2 P12 P124 O III P4 P14 P134 O 
IV P2 P124 P24 O IV P4 P134 P34 O 
V P2 P234 P23 O V P4 P234 P24 O 
VI P2 P24 P234 O VI P4 P34 P234 O 

             

P1 

O 

P13 

P14 

P12 

P123 
P23 

P24 
P34 

P4 

P3 

P2 

P124 

P134 P234 

P1 

O 

P13 
P123 

P1 

O 

P12 

P123 

P1 

O 

P14 

P134 

P1 

O 

P12 

P124 

P1 

O 

P14 

P124 

P1 

O 

P13 

P134 

ic II (node I) 
ic V (node I) 

ic I (node I) 

ic III (node I) 

ic VI (node I) 

ic IV (node I) 



11 
 

Subdivision of tetrahedral integration cell components for each node is tabulated in Table 1. 
Subdivision of tetrahedral cell can cause negative volumes [Toron (2004); Kovalev (2005)]. 
Therefore, the orientation of subdivided cell nodes is placed with an order of preventing negative 
volume results. 
 
In Eq. (37), the integrations ∫ Ωd1 , ( )∫ Ω∆ dx , ( )∫ Ω∆ dy , ( )∫ Ω∆ dz , ( )∫ Ω∆ dx2 … must be calculated 
for tetrahedral background cells. The first integration represents the volume of tetrahedron and can 
also be calculated as determinant of edge distances [Bhowmick and Shontz (2012)] in Eq. (38).  
 

 

141312

141312

141312

6
1

zzzzzz
yyyyyy
xxxxxx

Volume
−−−
−−−
−−−

⋅=  (38) 

 
However, integration of volume in terms of ,...,,, 2xzyx   includes complex operations for irregular 
tetrahedral shapes. Hence, geometry can be transformed into natural coordinates by using Jacobian 
transformation. In Fig. 2, the transformation of tetrahedron geometry from global to natural 
coordinates is shown for ic II of field node I. P1', P123', P13' and O' represent the transformed natural 
coordinates from global coordinates of P1, P123, P13 and O points, respectively. Also for other 
integration cells, P1', P123', P13' and O' in Fig. 2 correspond to second, third, fourth and fifth columns 
in Table 1 respectively.  
 
The bounds of integral starts from zero to upper natural coordinate. Hence P1, P2, P3 and P4 are 
placed at P1’ in integral calculations. This condition can provide to no usage of parallel axis 
theorem to carry integration results to related edge node. Hence, x1, y1 and z1 in Eq. (39), (40) and 
(41) are assigned x, y and z coordinates of P1, P2, P3 and P4 in related integral node calculation. 
 

 
 

Figure 2. Transformation of an integration cell (ic II in Fig.1) from global (a) to natural (b) 
coordinates. 

 
The transformation of coordinates is given in Eq. (39), (40) and (41) [Bhowmick and Shontz 
(2012)]. η , ξ and ζ are natural coordinates. 
  
 ( ) ( ) ( ) ζηξ ⋅−+⋅−+⋅−+= 1413121 ξξξξξξξξ  (39) 
  
 ( ) ( ) ( ) ζηξ ⋅−+⋅−+⋅−+= 1413121 yyyyyyyy  (40) 
 

(1,0,0) 
P123' 

P13' 

O' 

P1' 

ξ
 

η
 

(0,0,1) 

(0,1,0) 

(0,0,0) 

O ((x1+x2+x3+x4)/4, 
     (y1+y2+y3+y4)/4,      
     (z1+z2+z3+z4)/4) 
 

P13 ((x1+x3)/2, 
      (y1+y3)/2, (z1+z3)/2) 
 

P123  
((x1+x2+x3)/3, 
(y1+y2+y3)/3, 
(z1+z2+z3)/3) 
 

ζ
 

y 
x 

z 

(a) (b) 

  P1  
(x1,y1,z1) 
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 ( ) ( ) ( ) ζηξ ⋅−+⋅−+⋅−+= 1413121 ζζζζζζζζ  (41) 
 
Determinant of Jacobian (J) transformation matrix are given in Eq. (42). 
 

 Volume

zzz

yyy

xxx

JDET ⋅=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

= 6)(

zηx

zηx

zηx

 (42) 

 
The transformation of integration of uniform geometry in natural coordinates is given in Eq. (43). 
Its application to tetrahedron geometry is given in Eq. (44). Hence integration in terms of 

,...,,, 2xzyx  can be easily calculated as follows:  
 
 ( ) ( ) ( ) ( )[ ] ( )∫∫ Ω=Ω '*,,,,,,,,,, dJDETzyxfdzyxf zηxzηxzηx  (43) 
 

 ( ) ( ) ( ) ( ) ( )[ ]∫∫∫∫
−−−

=
ηξξ

ζζηξζηξζηξηξ
1

0

1

0

1

0

,,,,,,,,*,, dζyξfddJDETdDζyξf
D

 (44) 

 
Even if suitable orientation is used in Table 1, in some cases node coordinate orientations can be 
changed with respect to construction of tetrahedral cells in Delaunay triangulation technique. Its 
symptoms can be determined with negative value of determinant of Jacobian matrix. For this 
reason, upper integration bounds in Eq. (44) are updated with respect to where the subdivided 
tetrahedral cell exists, which are given in Table 2. 

Table 2. Direction of tetrahedral cell and used bounds of integral in natural coordinates. 

 12x∆  13y∆  14z∆  ∫
[]

0

],,[ ζdζyxf
 
∫
[]

0

],,[ ηdzyxf
 
∫
[]

0

],,[ ξdzyξf
 

I + + + ηξ −−1  ξ−1  1+  
II + + - ( )ηξ −−− 1  ξ−1  1+  
III + - + ηξ +−1  ( )ξ−− 1  1+  
IV + - - ( )ηξ +−− 1  ( )ξ−− 1  1+  
V - + + ηξ −+1  ξ+1  1−  
VI - + - ( )ηξ −+− 1  ξ+1  1−  
VII - - + ηξ ++1  ( )ξ+− 1  1−  
VIII - - - ( )ηξ ++− 1  ( )ξ+− 1  1−  

  
Where 12x∆ is the sign of difference between 12 xx − , 13y∆  is the sign of difference between 13 yy −  
and 14z∆  is the sign of difference between 14 zz −  for each sub-divided integration cell. The signs of  
η , ξ  and ζ  in Eq. (39), (40) and (41) is also regulated with respect to signs of 12x∆ , 13y∆  and 

14z∆ . 
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These calculations are applied for each tetrahedral cell and the results are summed for the 
corresponding field node. Hence, a node includes more than one tetrahedral integration cells, which 
looks like a polyhedron geometry. However, all main structure of integrations is carried on each 
subdivided tetrahedral cells for related nodes.  
 

Application of Stress Stabilizations 

The application of nodal integration is fast and suitable for complex geometries. However, in the 
previous study of Yavuz and Kanber (2015), the stress results of pure/unstabilized nodal integration 
include high fluctuations. Even if two close nodes are selected, their stress results can be highly 
different. Hence application of different methods is investigated for trying to decrease the stress 
fluctuations. 

Average Stress Distribution for Each Local Support Domain 

In the previous study [Yavuz and Kanber (2015)], it is observed in nodal integration that high stress 
fluctuations occur at far away from application locations of force and boundary conditions. It is not 
expected that formation of these high fluctuations occur at that conditions with respect to Saint 
Vernant’s principle.  
 
For decreasing the fluctuations, average stress distributions are taken for each local support domain. 
The stresses of nodes in a local support domain of a related node is summed and averaged for 
number of nodes in that support domain. 

Stiffness Effect on Boundary Locations 

In the previous study [Yavuz and Kanber (2015)], some stress peak points are observed, especially 
on the application location of boundary conditions. Hence local stiffness matrix of nodes on 
boundary condition locations are changed for decreasing stress peak points. Its effects are 
investigated. 

Least Square Stabilization 

In order to decrease fluctuations, least square stabilization method (LSS) [Biessel and Belytschko 
(1996), Fries and Belytschko (2007), Duan and Belytschko (2008)] is used in nodal integration 
scheme. This method adds two equations ( γK  and γf ) in Galerkin weak form of governing 
equation for providing stress stabilization. The main governing equation is previously given in Eq. 
20. Addition of stress stabilization equations and detail transformation operations about governing 
equations can be reached from the study of Duan and Belytschko (2008). The simplified equation is 
given in Eq. 45. γK  and γf  equations are given in Eq. 46 and 47. 
 
 ( ) ( )PP fffdKKK ββ γγ ++=++  (45) 
 
 ( ) ( ) Ω= ∫

Ω

DDLNLDLNLK TTTγγ  (46) 

 
 ( ) Ω−= ∫

Ω

DbDLNLf TTγγ  (47) 
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γ  is the stabilization parameter and it is given in Eq. 48. 
 

 
E

lcs
22αγ =  (48) 

 
sα  is the dimensionless stabilization parameter and used as 0.3 in this study. cl  is used as nodal 

spacing, which is nearly equal to 0.04*L/100. 
  

Solution and Discussion 

A cantilever beam problem is examined for investigation of stress stabilization methods. The nodal 
integration of RPIM is mainly prepared with respect to the study of Liu. et al. (2007). The solutions 
of formulations, creation of tetrahedral integration cells and subdivision calculations are 
accomplished with MATLAB.  
 
The geometry and meshfree model is given in Fig. 3. The used beam has a length of 1.0 m with 
square section of 0.1m× 0.1m. The used meshfree model has 878 irregularly distributed nodes.  
 

 

Figure 3. The used cantilever beam model geometry and meshfree model 

 
The used material properties have linear elastic behaviour with a Young’s Modulus of 200 GPa and 
Poisson’s ratio of 0.0. The selection of Poisson’s ratio as 0.0 is aimed for providing similar 
conditions as analytical solutions. Applied force (P) is used as 29000 N and other side of force 
application location is determined as application of boundary condition location. This location is 
fixed.  
 
Vertical deflection equation [Beer et al. (2009)] of cantilever beam is given in Eq. 49. Where P  is 
applied force, x  is distance from fixed support location, E  is Young’s Modulus and  I  represents 
inertia of beam. 
 

 ( )xL
IE

xPy −×
××

×
= 3

6

2

 (49) 

 
The bending stress at upper and lower surfaces of beam is given as; 

x 

y 

z 

P  



15 
 

 
I

cM ×
=σ  (50) 

 
c  is the distance between upper/lower surface and natural axis of the beam. In meshfree solutions, 

cα is used as 3.00, dimensionless support domain size ( sα ) parameter is used as 1.30 and q is used 
as 1.03 as default parameters. 
 

 

Figure 4. Comparison of deflection results of cantilever beam for analytical and pure nodal 
int. technique. 

 
Deflection results of cantilever beam is shown in Fig. 4 for NI-RPIM with 0th, 1st, 2rd, 3rd and 4th 
order Taylor terms. It is observed that 0th and 4th order terms give the best results when they are 
compared with analytical solution. There is no fluctuation occurs on deflection results of these order 
terms. However the used other terms includes less accuracy and small distortions at the results. 
 

 

Figure 5. Comparison of bending stress results of cantilever beam for analytical and 
pure/unstabilized nodal int. technique. 

 
The bending stress results are given in Fig. 5 for pure/unstabilized nodal integration, which include 
highly fluctuation results. The best results achieved with 0th order terms, when results of all terms 
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are compared with each other. The stress results of 1st and 4th order terms include high stress values 
at the application locations of boundary conditions.  
 

 

Figure 6.  Comparison of bending stress results of cantilever beam for analytical and nodal int. 
technique with ASD. 

 
The formation of stress results are given in Fig. 6, when averaged stress distribution (ASD) of local 
support domain method is applied for each node. It is observed that fluctuations of stress results are 
decreased. The best accuracy is achieved with the usage of 0th order term. However, results of 
higher terms without 0th order term have poor accuracy and include fluctuations.  

 

Figure 7. Comparison of bending stress results of cantilever beam for analytical and nodal int. 
technique of 0th order term with ASD and LSS. 

 
In Fig.7, only the usage of 0th order term results of NI-RPIM are compared with unstabilized, ASD 
and LSS methods. It is observed that the usage of both stress stabilization methods decreases 
fluctuations in the results.  
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Figure 8. Comparison of bending stress results of cantilever beam for analytical and nodal int. 
technique of 0th order term with ASD/ASD+BC Stiffness E. 

 
NI-RPIM results of 0th order term have a difference from analytical solution at the application 
location of boundary conditions (BC). NI-RPIM results have less stress values than analytical 
solution at BC. Hence, the stiffness values are decreased about %30 at this location for achieving 
same results at BC. 

 

Figure 9. Comparison of effect of sd on bending stress results of cantilever beam for nodal int. 
with ASD (0th order term). 

 
Effect of support domain (sd) size is shown for 0th order term results of NI-RPIM with ASD. When 
sd value of 3.9*L/100 is used, there is high fluctuation occurs about at a beam length of 0.6 m. sd 
size of 4.42*L/100 gives better stress results, which is used default in other solutions in this study. 
The average number of nodes in the local support domains is approximately equal to 44. When sd is 
increased, the accuracy begins decreasing. 
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Figure 10. Comparison of effect of alfc ( cα ) on bending stress results of cantilever beam for 
nodal int. with ASD (0th order term). 

 
Effect of alfc ( cα ) results are given in Fig. 10. The only dominant effect is shown at BC and its 
near locations. Different alfc ( cα ) results have similar characteristics.  

 

 

Figure 11. Comparison of effect of q on bending stress results of cantilever beam for nodal int. 
with ASD (0th order term). 

 
Effect of q results is given in Fig. 11. Nearly all the results of different q values have same values. 
 

Conclusions 

Tetrahedral background cells are used for the nodal integration of RPIM. The fluctuation problem 
in stress results of nodal integration is investigated with application of different methods. Averaged 
stress distribution (ASD) on local support domain and least square stabilization (LSS) methods are 
used. Effect of orders of Taylor terms, support domain size and RBF terms are investigated at NI-
RPIM with ASD. 
 
Results can be summarized as follows: 

- The usage of various orders of Taylor terms directly affects deflection and stress results.  
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- There is no fluctuation on deflection results of 0th and 4th order terms, which gives good 
accuracy with respect to analytical solution. 
- Less fluctuated stress values are obtained with the usage of 0th order Taylor series terms in 
NI-RPIM when no stabilization method is used.  
- Fluctuations on stress results are decreased with the usage of ASD and LSS methods.  
- 0th order term results of NI-RPIM with ASD gives the best stress results and less fluctuation 
values in the solutions.  
- High stress fluctuations on boundaries where essential boundary conditions are applied can 
be decreased with changing local stiffness values of corresponding nodes. 
- Support domain size (sd) can affect stress results of NI-RPIM with ASD method.  
- Changes of alfc ( cα  ) with ASD method do not have significant effect on NI-RPIM stress 
results in the regions where the essential boundary conditions are not included. Different values 
of q show similar stress distribution characteristics on NI-RPIM with ASD method. 

References 

Atluri, S. N. and Zhu, T. (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, 
Computational Mechanics 22, 117-127. 

Babuska, I. and Melenk, J. (1996) The partition of the unity finite element method: basic theory and applications, 
Comput. Methods Appl. Mech. Engrg. 139, 289-314. 

Belytschko, T., Lu, Y. Y. and Gu, L. (1994) Element-free Galerkin methods, Int J Numer Methods Eng 37, 229-256. 
Beer, F. P., Johnston-Jr, E. R., Dewolf, J. T. and Mazureket, D. (2009). Mechanics of Materials. (5th edn.) McGraw-Hill 

Press, Singapore. 
Bhowmick, S. and Shontz, S. M. (2012) Towards high-quality, untangled meshes via a force-directed graph embedding 

approach. Procedia Computer Science, 1, 357–366. 
Biessel, S. and Belytschko, Y. (1996) Nodal integration of the element-free Galerkin method, Comput. Methods Appl. 

Mech. Engrg. 139, 49-74. 
Bonet, J. and Kulasegaram, S. (2000) Finite increment gradient stabilization of point integrated meshless methods for 

elliptic equations, Communications in Numerical Methods in Engineering 16, 475–483. 
Bozkurt, O. Y., Kanber, B. and Asik, M. Z. (2013) Assessment of RPIM shape parameters for solution accuracy of 2D 

geometrically nonlinear problems, International Journal of Computational Methods 10(3), 1-26. 
Chen, J., Wu, C., Yoon, S. and You, Y. (2001) A stabilized conforming nodal integration for Galerkin mesh-free 

methods, International Journal for Numerical Methods in Engineering 50, 435-466. 
Chen, W. and Tanaka, M. (2002) Meshless, integration-free, and boundary-only rbf technique, Computers and 

Mathematics with Applications 43, 379-391. 
Duan, Q. and Belytschko, T. (2008) On the stabilization of stress-point integration in the Element Free Galerkin 

method, Meshfree Methods for Partial Differential Equations IV Lecture Notes in Computational Science and 
Engineering 65, 47-68. 

Elmer, W., Chen, J. S., Puso, M. and Taciroglu, E. (2012) A stable meshfree nodal integration method for nearly 
incompressible solids, Finite Elements in Analysis and Design 51, 81–85. 

Fries, T. and Belytschko, T. (2007) Convergence and stabilization of stress-point integration in mesh-free and particle 
methods, International Journal for Numerical Methods in Engineering 74(7), 1067-1087. 

Gingold, R. A. and Monaghan, J. J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical 
stars, Monthly Notices of the Royal Astronomical Society 181, 375-389. 

Han, K. (2010) Efficient meshfree analysis Using stabilized conforming nodal integration for metal forming simulation, 
Journal of the Korean Society of Marine Engineering 34(7), 943-950. 

Kanber, B., Bozkurt, O. Y. and Erklig, A. (2013) Investigation of RPIM shape parameter effects on the solution 
accuracy of 2D elastoplastic problems, International Journal for Computational Methods in Engineering Science 
and Mechanics 14, 354–366. 

Kovalev, K. (2005) Unstructured hexahedral non-conformal mesh generation. PhD thesis, Faculty of Engineering Vrije 
Universiteit Brussel, Belgium. 

Liu, G. R. and Gu, Y. T. (2001) A point interpolation method for two-dimensional solids, International Journal for 
Numerical Methods in Engineering 50, 937-951. 

Liu, G. R. and Zhang, G. Y. (2008) Edge-based smoothed point interpolation methods, International Journal of 
Computational Methods 5(4), 621-646.  

Liu, G. R. and Zhang, G. Y. (2009) A normed G space and weakened weak (W2) formulation of cell-based smoothed 
point interpolation method, International Journal of Computational Methods 6(1), 147-179.  



20 
 

Liu, G. R., Zhang, G. Y., Dai, K. Y., Wang, Y. Y., Zhong, Z. H., Li, G. Y. and Han, X. (2005) A linearly conforming 
point interpolation method (LC-PIM) for 2D solid mechanics problems, International Journal of Computational 
Methods 2(4), 645–665. 

Liu, G. R., Zhang, G. Y., Wang, Y. Y., Zhong, Z. H., Li, G. Y. and Han, X. (2007) A nodal integration technique for 
meshfree radial point interpolation method (NI-RPIM), International Journal of Solids and Structures 44, 3840-
3860. 

Liu, W. K., Chen, Y., Chang, C. T. and Belytschko, T. (1996) Advances in multiple scale kernel particle methods, 
Comput Mech 18, 73-111. 

Liu, W. K., Ong, J. S. and  Uras, R. A. (1985) Finite element stabilization matrices - a unification approach, Computer 
Methods in Applied Mechanics and Engineering 53, 13–46. 

Lucy, L. B. (1977) A numerical approach to the testing of the fission hypothesis, The Astronomical Journal 82(12), 
1013-1024. 

Nagashima, T. (1999) Node-by-node meshless approach and its applications to structural analysis, Int. J. Numer. Meth. 
Engrg. 46, 341–385. 

Nayroles, B., Touzot, G. and Villon, P. (1992) Generalizing the finite element method: diffuse approximation and 
diffuse elements, Comput Mech 10, 307-318. 

Nguyen-Van, H., Duy, N. M. and Tran-Cong, T. (2007) A simple and accurate four-node quadrilateral element using 
stabilized nodal integration for laminated plates, CMC 6(3), 159-175. 

Tonon, F. (2004). Explicit exact formulas for the 3-D tetrahedron inertia tensor in terms of its vertex coordinates. 
Journal of Mathematics and Statistics, 1(1), 8-11. 

Wang, J. G. and Liu, G. R. (2002a) A point interpolation meshless method based on radial basis functions, International 
Journal for Numerical Methods in Engineering 54, 1623-1648. 

Wang, J. G. and Liu, G. R. (2002b) On the optimal shape parameters of radial basis functions used for 2-D meshless 
methods, Comput Methods Appl Mech Engrg 191, 2611–2630. 

Xu, S. (2014) Stable cracking particles method based on stabilized nodal integration and updated Lagrangian kernel, 
Mathematical Problems in Engineering 2014, 1-10. 

Yavuz, M. M. and Kanber, B. (2015) On the usage of tetrahedral background cells in nodal integration of RPIM for 3D 
elasto-static problems, International Journal of Computational Methods (Accepted for publication). 

Zhang, G. Y., Liu, G. R., Wang, Y. Y., Huang, H. T., Zhong, Z. H., Li, G. Y. and Han, X. (2007) A linearly conforming 
point interpolation method (LC-PIM) for three dimensional elasticity problems, International Journal for Numerical 
Methods in Engineering 72, 1524-1543. 

Zhou, J. X., Wen, J. B., Zhang, H. Y. and Zhang, L. (2003) A nodal integration and post-processing technique based on 
Voronoi diagram for Galerkin meshless methods, Comput. Methods Appl. Mech. Engrg. 192, 3831–3843. 

 
 
 


	*M.M. Yavuz¹ and †B. Kanber2
	Abstract
	Keywords: Nodal Integration, RPIM, Tetrahedral Background Cells, Least-Squares Stabilization

	Introduction
	RPIM Shape Functions
	3D Nodal Integration with Taylor Series Expansion
	Integration with Tetrahedral Shaped Taylor Integration Cells
	Application of Stress Stabilizations
	Average Stress Distribution for Each Local Support Domain
	In the previous study [Yavuz and Kanber (2015)], it is observed in nodal integration that high stress fluctuations occur at far away from application locations of force and boundary conditions. It is not expected that formation of these high fluctuati...
	For decreasing the fluctuations, average stress distributions are taken for each local support domain. The stresses of nodes in a local support domain of a related node is summed and averaged for number of nodes in that support domain.
	Stiffness Effect on Boundary Locations
	In the previous study [Yavuz and Kanber (2015)], some stress peak points are observed, especially on the application location of boundary conditions. Hence local stiffness matrix of nodes on boundary condition locations are changed for decreasing stre...
	Least Square Stabilization
	Solution and Discussion
	Figure 3. The used cantilever beam model geometry and meshfree model
	Figure 4. Comparison of deflection results of cantilever beam for analytical and pure nodal int. technique.
	Figure 5. Comparison of bending stress results of cantilever beam for analytical and pure/unstabilized nodal int. technique.
	Figure 6.  Comparison of bending stress results of cantilever beam for analytical and nodal int. technique with ASD.
	Figure 7. Comparison of bending stress results of cantilever beam for analytical and nodal int. technique of 0th order term with ASD and LSS.
	Figure 8. Comparison of bending stress results of cantilever beam for analytical and nodal int. technique of 0th order term with ASD/ASD+BC Stiffness E.
	Figure 9. Comparison of effect of sd on bending stress results of cantilever beam for nodal int. with ASD (0th order term).
	Figure 10. Comparison of effect of alfc () on bending stress results of cantilever beam for nodal int. with ASD (0th order term).
	Figure 11. Comparison of effect of q on bending stress results of cantilever beam for nodal int. with ASD (0th order term).
	Conclusions
	References

