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Abstract

In this paper, the mathematical models for flow and heat-transfer analysis of a
non-Newtonian fluid with axisymmetric channels and porous walls are analyzed. The
governing equations of the problem are derived by using the basic concepts of
continuity and momentum equations. Furthermore, artificial intelligence-based
feedforward neural networks (ANNs) are utilized with hybridization of a generalized
normal-distribution optimization (GNDO) algorithm and sequential quadratic
programming (SQP) to study the heat-transfer equations and calculate the
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available at the end of the article approximate solutions for the momentum of a non-Newtonian fluid. Legendre
polynomials based Legendre neural networks (LNN) are used to develop a
mathematical model for the governing equations, which are further exploited by the
global search ability of GNDO and SQP for rapid localization convergence. The
proposed technique is applied to study the effect of variations in Reynolds number
Re on the velocity profile (f) and the temperature profile (g). The results obtained by
the LeNN-GNDO-SQP algorithm are compared with the differential transformation
method (DTM), which shows the stability of the results and the correctness of the
technique. Extensive graphical and statistical analyses are conducted in terms of
minimum, mean, and standard deviation based on fitness value, absolute errors,
mean absolute deviation (MAD), error in the Nash-Sutcliffe efficiency (NSE), and root
mean square error (RMSE).

Keywords: Non-Newtonian fluid; Porous media; Heat and mass transfer; Weighted
Legendre neural networks; Hybrid soft computing; Generalized normal-distribution
optimization; Sequential quadratic programming; Machine learning

1 Introduction

In recent years, the problems of non-Newtonian fluid flow have been a topic of discus-
sion for many researchers. The fundamental reason for this high level of interest was its
numerous applications in various engineering domains, particularly the interest in non-
Newtonian fluid-flow and heat-transfer problems such as cooling, hot rolling, lubrica-

tion, and drag reduction. Debruge [1] in 1972 extends the applications of heat-transfer
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flow [2—-4] and investigates the problem through a porous channel. There was interest
in increasing the resistance of the blades to the hot stream around the blades for cool-
ing. However, the cooling process leads to excess energy consumption, which essentially
leads to a reduction in turbine performance [5]. Some accomplished work is listed, pro-
viding a brief review of heat and mass transfer in carbon-nanotube nanofluids [6], the
Eyring—Powell model [7], and Walter’s B-fluid model [8]. Most real-world phenomena
arising in engineering and fluid dynamics are generally presented by highly nonlinear dif-
ferential equations, and finding exact solutions to nonlinear problems is difficult. In the
last decade, many numerical and perturbation techniques have been developed to solve
difficult mathematical models. Sheikholeslami investigates the effect of heat transfer in
the flow of nanofluids over a permeable stretching wall and by using the perturbation
method [9, 10]. The authors of [11] used a shooting method to study the stagnation-point
flow of an EMHD micropolar nanofluid with mixed-convection and slip-boundary con-
ditions. Umair [12-14] studied the effect of (Ag and TiO2)/water nanoparticles shape ef-
fect on heat transfer using a homotopy analysis method (HAM). Ganji [15, 16] uses the
homotopy perturbation method (HPM) to study the heat transfer of Cu—water nanoflu-
ids between parallel plates. The Adomain decomposition method (ADM) [17, 18], the
Hyers—Ulam stability approach [19], the B-spline collocation method [20, 21] and opti-
mal homoptopy perturbation (OHAM) [22, 23] methods were also developed to study
the numerical solutions of heat and mass transfer of the fluid models. Recently, Sepas-
gozar [5] in 2017 implemented a differential transformation method to study the effect
of heat and mass transfer of a fluid in a porous channel. The basic idea of DTM has
been presented in previous papers [24—26]. Analysis of these numerical methods demon-
strates that they are deterministic and require prior information about the problem [27-
29].

In recent times, artificial neural networks (ANNs) based on unsupervised metaheuris-
tic algorithms are developed to solve various nonlinear difficult mathematical models.
Some recent applications include the numerical solution of multiterm variable-order
fractional differential equations [30, 31], countercurrent imbibition phenomena in sec-
ondary oil-recovery processes [32, 33], modeling and identification of heat-exchanger
processes [34], solution of Bratu and nonlinear Emden—Fowler differential equations
[35, 36], diabetic retinopathy classification using fundus images [37], the wire-coating
process [38], temperature profile of porous and longitudinal fin models [39-41], chem-
ical processes [42] and chaos-based secure communication (CBSC) systems [43]. The
above methods motivated the authors to develop a soft-computing technique based
on the hybridization of a function approximating the ability of Legendre neural net-
works and the global search ability of the generalized normal-distribution optimization
(GNDO) algorithm and local search mechanism of sequential quadratic programming
(SQP).

In this study, our aim is to design and implement a gradient-free soft-computing tech-
nique that can handle the real-world problems like heat- and mass-transfer problems in a
porous channel with ease of implementation, accuracy;, reliability, and with fewer arbitrary
parameters required to set up the method. To examine the robustness and stability of our
proposed algorithm, we performed multiple simulations. The outcomes of our designed

algorithm are summarized as:
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+ Flow- and heat-analysis models of a non-Newtonian viscoelastic fluid are formulated
using the basic concepts of continuity and momentum equations in cylindrical
coordinates. The problem is further reduced to ordinary differential equations.

« Series solutions based on Legendre polynomials are constructed for different cases of
heat- and mass-transfer analysis of fluid flow in a porous channel. The unknown
parameters of the LeNN in fitness functions based on mean square error are
minimized by using hybridization of the generalized normal-distribution optimization
(GNDO) algorithm and sequential quadratic programming (SQP).

+ The approximate solutions obtained by the LeNN-GNDO-SQP algorithm are
compared with the differential transformation method (DTM) that validates the
accuracy of the design algorithm. Moreover, the design algorithm is executed for 100
independent runs to study the convergence of solutions. For this purpose, various
performance indicators are defined in terms of mean absolute deviation (MAD),
Theil’s inequality coefficient (TIC), root mean square error (RMSE), and
Nash—Sutcliffe efficiency. The results of these indicators approaches to zero shows the
perfect modeling of solutions and efficiency and robustness. Finally, analyses based on
the computational complexity of the proposed algorithm are conducted that represent
the speed of convergence of the LeNN-GNDO-SQP algorithm in solving difficult

nonlinear real-world problems.

2 Formulation of the problem

2.1 Flow analysis

In this section, the mathematical model for flow and heat transfer is developed for a non-
Newtonian viscoelastic fluid on a turbine disc for cooling purposes. Figure 1 represents
the schematic view of the problem. The surface of a disc is along the r-axis and normal
to the z-axis. The disc in a porous channel is at a distance z = L. Non-Newtonian fluid is
injected uniformly along the z direction to cool the heated wall that coincides with the
r-axis. From Fig. 1 it can be seen that the cooling problem with injection is considered as

stagnation-point flow. In cylindrical coordinates, asymmetric, steady and non-Newtonian

[ External Gas Flow ]

Figure 1 Schematic view of the physical system
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fluid flow can be written as
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where, 7/, T, T, and ., are stress components. The boundary conditions for the above

analytical model are

u=u,=0 atz=0, (4)

u,=0,u,=-V atz=1, (5)

here, V is the velocity of the injected fluid, #, and u, are the velocity components along
the z and r directions, respectively, p denotes density and pressure is represented by P. For

the special case of a viscoelastic fluid, Rivlin [44] showed that if at a point x; and a time

Sam
Sxy

(m,n =1,2,3) and the velocity gradient ‘;"TZ’ (m,n =1,2,3), and in addition if the medium

t the stress components are assumed to be polynomials in the acceleration gradient
is also isotropic, then the stress matrix can be written as
151l = ol + PrA + 2B + p3A> + -+ -, (6)

where, ¢, (k = 1,2,3) are polynomials in 4, B and A2, respectively. Also, I denotes a unit

matrix, and A and B are symmetric matrices defined as

Sv; v

A= ‘ AUIRA/Y )
ij 896,’

B= ‘ % % 8Vm % (8)
ij 596,' Sxi 59(?1‘

Now, the stress components can be given as [5]

T = Q1A + ¢2A3r + 3B, 9

T2z = ¢1Azz + ¢2A§z + ¢3BZZ! (10)

Too = P1Ave + $2AJy + $3Bsp, (11)

T = 1A, + ¢2Afz + ¢3B,;. (12)

In order to find a solution for the problem shown in Fig. 1, a stream function is defined

that identically satisfies the continuity equation

v =V f(n), (13)

Page 4 of 32
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where 1 = 7, the velocity components in the r and z directions are defined as

= %f/(n), (14)
. = ~2VF (). (15)

Using Egs. (13)—(15) in governing equation of motion Eq. (2) and Eq. (3) that reduces to

L2 3P ¢ o ‘
12 "o /// 111 12 _ v
fr=2A = pV2ir or pVLf pL? (f =27 ) (f 2ff )» (16)
! —L2 op 1" 11 g1
afr =~ Vias " pVLf <l4ff —ff )

4 o3 117" 1" 7’2 11 o111 (17)
2 (g L)

To eliminate the terms representing pressure, Eq. (16) is differentiated with respect to z

and Eq. (17) with respect to r. The resultant equation after subtraction is given as:

2" = f— —Ki(4f"f" + 2 f") = Ka (4" + 2f f7 + 2fF), (18)
where, K; = L2 , Ky = L2 are the injected Reynolds number. Putting K, = 0, Eq. (18) re-
duces to

SY+2Reff” — Ky Re(4f"f" +2f'f") =0 (19)

subjected to boundary conditions

f(O):O, f/(O)ZO!
fM=1  f@-=o.

(20)

2.2 Heat-transfer analysis

The nondimensionless form of the energy equation with viscous dissipation is given by

oT oT -
oClu,— +u,— | =kV*T + ¢, (21)
ar 0z
ouy U, ou, ou, Ju,
=Ur— - 22 rz\ 5_ ’ 22
g=t 8r+r99r+r 8z+t<82+8;’) @2)

where, P, p, T, k and C are pressure, density, temperature, coefficient of fluid and specific
heat, respectively, ¢ denotes the dissipation function. The temperature distribution at the

blade wall (z = 0) can be written as

(o] n
T, = T0+ZCH<£) . (23)
n=0



Khan et al. Advances in Continuous and Discrete Models (2022) 20227 Page 6 of 32

From [1] the fluid temperature has the form

T=To+y, C<£) (), (24)
n=0

here, Ty denotes the incoming coolant temperature. The following equation, along with
the boundary conditions, is obtained after neglecting the dissipation effect:

q' -PrRe(f'q - 2f7') =0, (25)
q(0)=1, ¢(1)=0. (26)

3 Proposed methodology

The proposed methodology for solving the governing mathematical model of heat and
mass transfer of a non-Newtonian viscoelastic fluid consists of two phases. In the first
phase, Legendre polynomials based Legendre neural networks are designed. In the second
phase, the designed network is used in an unsupervised manner to calculate the fitness
value by optimizing unknown weights in the LeNN structure.

3.1 Design of LeNN model
Figure 2 depicts the structure of a single-layer Legendre Neural Network (LeNN), which
consists of input and one output layer and a functional expansion block based on Legendre
polynomials. The hidden layer is eliminated by transforming the input pattern to a higher-
dimensional space using Legendre polynomials [45]. They are orthogonal on [-1,1] and
constitute the set of orthogonal polynomials. The first ten Legendre polynomials are given
in Table 1.

High-order legendre polynomials are generated by using the recursive formula that is
given as

L(n) = ﬁ [@n+ DgLu() - nLy1()]. (27)

The series solution is constructed for the mathematical model of the problem in terms
of input, hidden, and output layers. The architecture for the solution f(1) and its higher

Unknewn Parameters
Lm
z
2.

2

Activation Function

k
Z Pilm(Wi + B)
i=1

LeNN -
Output

Optimization using an
unsupervised algorithm
such-as GNDO-SQP.

LAGRANGE EXPANSION

Figure 2 Structure of Legendre Neural-Network model
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Table 1 Legendre polynomials

n Ln(n)

0 1

1 n

2 PIELEE))

3 1(5n° -3n)

4 £357* -30n% +3)

5 £(63n° =700 +15n)

6 =(2317° =315 + 10592 - 5)

7 (42977 -693n° + 315> - 357)

8 25(643505 - 12,0120° + 6930n* - 12609 + 35)

9 =5(12,1557° = 25,7400 + 18,0187° — 4620n° + 315n)
10 72(46,189n'% — 109,3951° + 90,0907° - 30,0301 + 34657 - 63)

derivatives can be written as

k
F) =" dillwm + B), (28)
i1
R k
Sf'(n) = Z oil (win + i), (29)
i1
R k
Sf"(n) = Z@LU(G)M + Bi), (30)
i1
R k
S"(n) = Z@L/”(wm + i), (31)
i1
A~ k 3
f() = Z ¢iL" (wim + Bi). (32)
i1

Here, ¢ = [¢1,$2,¢3,-. ., P, © = (w1, w0, w3, ..., @] and B = [B1, B2, B3, - .., Bm] are real-
valued vectors and are bounded, L represents Legendre polynomials, # denotes the order
of polynomials and i represents the number of neurons in the LeNN structure.

3.2 Formulation of fitness function
An unsupervised fitness or objective function is formulated for the problem and its bound-

ary conditions in the form of mean square error are given below
Minimize e = &; + &3, (33)

where & is an error function of the differential equation and &; corresponds to the error
function of the boundary conditions.

The fitness function for the governing equation of the model representing flow analysis
of the non-Newtonian fluid is given as

1 X 7i T pm 21 pm 21 Zivy\2
o= ;(f,ﬁf +2Reffl — Ky Re(4fof +2f0f2))°, (34)
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1, 7 7 7
£ = E((f(o))z +(f) -1)%+ (7(0)" + (F' (1)) (35)
Also, the fitness function for the heat-transfer analysis of the fluid is given as
Minimize € = €1 + &y + €3 + &4, (36)

where £; and &, are defined as

1= & Lol + 2Refuf " — K ReW 1 + 2, /i)

1 <68 (ay 2 A PPN (37)
&2 = N Zm:%(qm - PrRe(fmqm - 2fmqm)) .
Also, the corresponding boundary conditions are defined as
£3= H(FO)2 + (F1) = 12 + (F(0)) + F/(D)), o)

ea = 5(((0) - 1)* + (4(1) - 0)?).

The intension of formulating fitness functions for the problem of heat- and mass-transfer
analysis is to obtain appropriate weights in the LeNN structure that would minimize the
error. The parameters for which the value of the fitness function approaches to zero then
consequently the exact solution for the problem is approximated accurately by the pro-

posed method.

3.3 Training of neurons

In this section, the procedure adopted for training of weights in a feedforword LeNN
model for optimization of the fitness functions Eq. (33) and Eq. (36) is presented, which
is based on hybridization of unsupervised and supervised learning of GNDO and SQP,

respectively.

3.3.1 Generalized normal-distribution optimization

The generalized normal-distribution optimization (GNDO) algorithm is a novel meta-
heuristic technique presented by Yiying Zhang [46] inspired by generalized normal-
distribution theory. The GNDO algorithm is widely used for parameter extraction of
the model. Unlike other metaheuristic algorithms, the GNDO is easy to implement, as
it requires the essential population size and termination criteria. The GNDO has a sim-
ple structure in which the position of each individual is updated by using a normal-
distribution curve. The working strategy of the GNDO algorithm is subdivided into two

phases, exploitation and exploration. A graphical overview of the GNDO is shown in Fig. 3.

Exploitation Exploitation is a process of finding the best solution around the search
space consisting of the current positions of all individuals. Initially, the model for opti-

mization by a generalized distribution model is given as

vi=j+8xh, i=1,23,..,N, (39)
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- Optimization Network

Generate
a € (0,1)

Significant
progress?

Figure 3 Graphical overview of the LeNN-GNDO-SQP algorithm

where, v, 1, 8; and 7, are trial vector, generalized mean position, generalized standard
variance and penalty factor, respectively. Moreover, 7, 8; and [i; are formulated as

| V/-log(c)) x cos(2mty), ifa<=b,

= (40)
—log(z1) x cos(2mw ¢y + ), otherwise,

S L Z ) 4 (a 7)? ~)2

i = g[(xi—ﬂ) + (¥pese — )"+ (M= )], (41)

R 1

Wi = g(xf +XtBest +M), (42)
N ot

M = 2 i1 Xi ) 3)
N

Here, M is mean position, xfgest is current best so far, a, b, {; and ¢, are random numbers
between 0 and 1. Furthermore, 7),, §; and [i; are discussed in the exploration phase.

Exploration Exploration refers to the searching of the population space to obtain the
best solution. Exploration of the GNDO is based on three randomly selected individuals,

as given below:

vi=xi+ Bx (gl xvi) +(1-B)x (14l x va). (44)

Local information sharing ~ Global information sharing
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Here, v; and v, are trial vectors, f is an adjustment parameter, {3 and ¢4 are random num-
bers between 0 and 1 that are subjected to a standard normal distribution. The trial vectors

are computed as:

v, - x; _Xfw if f(x7) <f(X;1)y

t t
xpl —-X

i

(45)
otherwise ,

t t . L L

X, —x if f(x5,) <f(xE,)

vy= | P2 f pz‘ S g3, (46)
Xf)s - xfﬂ, otherwise,

where pl, p2 and p3 are integers. It is worth mentioning that the GNDO algorithm is
inspired by the relationship between the normal-distribution law and traditional teach-
ing phenomena, the search process of metaheuristics and group-teaching phenomena,
respectively. GNDO has been applied to study the parameter extraction of photovoltaic
models [46].

3.3.2 Sequential quadratic programming

The best performance (weights) obtained by the GNDO algorithm are refined by the
process of hybridization with an efficient local search technique known as sequential
quadratic programming using a MATLAB toolbox setting. SQP is one of the powerful
methods for numerical solution of constrained nonlinear optimization problems. It was
developed in 1963 and further refined in 1970. SQP has been applied to a number of
problems that prove its power, accuracy and efficiency. Nocedal and Wright [47] discuss
SQP in detail and also give a mathematical formulation for various large-scale numeri-
cal optimization problems. Some recent applications of SQP are a numerical solution for
a simple LNG process [48], exploiting convexity in direct optimal control [49], a chaotic
map for ELD optimization [50], short-term hydrothermal coordination [51] and maxi-

mum likelihood-based measurement noise covariance estimation [52].

3.4 Hybrid LeNN-GNDO-SQP algorithm

The necessary details of the procedural steps for the proposed algorithm are given as:
Step 1 Initialization of GNDO: Unknown parameters are generated randomly from the

population space with the number of entries equal to the number of neurons in the LeNN

structure. Mathematically, it can be written as

o1 w1 B
c-lwawp) -7 7, (@7)
Oom Om  Bm

where ¢, w and B are real values from the population space. Parameter setting for the
GNDO algorithm is given in Table 2.

Step 2 Fitness Evaluation: Fitness functions Eq. (33) and Eq. (36) are evaluated to calcu-
late the fitness value for the heat- and mass-transfer problem using the weights generated
in the previous step.

Page 10 of 32
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Table 2 Parameter setting for Generalized normal-distribution algorithm and sequential quadratic

programing
Algorithm Parameters Settings Parameters Settings
LeNN-GNDO Technique Metaheuristic Candidate selection Random search
Max. Iterations 5000 Function tolerance 10718
Bounds (Lb, Ub) 1,1 Fitness Limit 1071
Search agents 70 Other settings Default
SQP Initial weights Best of LeNN-GNDO Function evaluations 200,000
X-Tolerance ‘TolX’ 1.00E-20 Max iterations 3000
Fitness Limit 107 Other settings Default

Step 3 Termination Criterion: The GNDO algorithm stops executing when the following
termination criteria are achieved:

+ Objective value, i.e., ¢ — 10715,

« Function tolerance, i.e.,"Fun’ TOL — 10715,

+ Predefined number of iterations is achieved.

If the stopping criteria are fulfilled, then go to step 5, otherwise continue.

Step 4 Storage: Store the optimal best weight corresponding to the minimum fitness
value of the objective function and the time taken for the execution.

Step 5 Hybridization: SQP starts the process for minimization of Eq. (33) and Eq. (36)
by taking the global best weights of GNDO as initial guesses.

Step 6 Fitness Evaluation: SQP starts the supervised learning, update the weights and
evaluate the fitness function until the following termination conditions are satisfied.

+ Objective value, i.e., ¢ — 10715,

« Predefined number of iterations is achieved.

Step 7 Storage: Store the best weight, minimum fitness value and time taken for the
execution by SQP and the total time by GNDO-SQP in seconds.

Repeat the procedure from steps 1-7 for a sufficiently large number of independent
runs to generate a large data set for reliable statistical analysis. The pseudocode for the
proposed technique is given as Algorithm 1.

The LeNN-GNDO-SQP algorithm has a simple structure and easy implementation be-
cause it only requires essential parameter setting and terminal conditions for execution.
The GNDO algorithm updates the position of an individual using a generalized normal-
distribution formula, and SQP complements its local convergence. Since Legendre poly-
nomials are orthogonal on [-1, 1], the experimental analysis shows that the proposed algo-
rithm converges to the best solutions for a number of real-world problems by training the
weights from the interval [-1, 1]. It has been noted that convergence of the design scheme
is slightly affected by increasing the domain.

4 Performance indices

In this section, to study the performance of the design scheme for solving the mathematical
model of flow and heat analysis due to variations in Reynolds number Re, the performance
indicators in terms of mean absolute deviation (MAD), Theil’s inequality coefficient (TIC),
root mean square error (RMSE) and Nash—Sutcliffe efficiency (NSE) are formulated as
(32, 53].

, (48)

N
MAD = % > ) = fon )
m=1
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Algorithm 1 Pseudocode for the hybridized LeNN-GNDO-SQP algorithm.

Global Search Phase

Generalized normal distribution optimizer: Start

Inputs: Population size N, The Upper and Lower bounds (u,l). Current number of iteration is
t and maximum number of iterations is (Max_iter). Candidate solution with number of
dimensions in each candidate solution are the set of unknown weights involved in ANN
architecture, Weights = C =[¢;, w;, Bil , i=1,23...,n.

Population: Generate populationP of m candidates with the set of random weights
drawn from a normal distributionas:
P=[Cy,C2,Cs,.,Ci',
¢=[¢1r¢2:¢3/-~:4’n]r w=[wy,wp,w3,...,.0n] and /3=[51rﬁ2//33:»--rﬁn]-
Output: Choose the current best solution i.e CoNGOp -
Initializations: Initialize population P.
Fitness evaluation: Calculate the fitness value of each individual CinPand achieve the so far
best solution Xpest.
The iteration is updated as t=t+1.
Main Loop
while (t < (Max_iter)) do
forif i=1:N
p is randomly generated between 0 and 1.
if p > 0.5
Exploitation The current best solution Xpe is selected. ﬁ,(g,ﬁ andMare calculated
using Eqs (40)-(43) to perform exploitation.
else
Exploration The current best solution Xpe: is selected an perform
exploration using Eqs (44)-(46).
end if
end for

The iteration is updated as t=t-+1.
end while

Termination: Stop GNDO if the following termination criteria meets
‘Max_iter’ reached
eFitness € <1015 TolFunc € < 10715
Storage: store CgNGOy,,» Fitness values and Function evaluations.
Generalized normal distribution Optimizer: End
Local Search Phase
Sequential Quadratic Programming: Start
Inputs: SQP starts with CgnGog, @s its starting point
Output: GNDO-SQP best weights i.e., Cgngo-sQp
Initialization: Start-Point as CgnGop, number of iterations, bound constraints.
Termination: Adaption process ends if any of the following conditions meet:
eFitness e:lO’ls, total iterations < 3000
eTolFun < 10715, Tolx < 1072
eTolCon < 107!, MaxFunEvals < to 200,000
while (satisfied the required termination)
Fitness evaluation: Calculate fitness of each weight vector C.
Fine-tuning: Use ‘fmincon’ for SQP. Update parameters of C for each generation of

SQP and calculate fitness of modified C.
Storage: Accumulate weights vector Cgnpo sop, fitness value, iterations and functions

evaluations. )
Sequential quadratic programming: End

Data Generations: Repeat 100 times GNDO-SQP steps to obtain massive data set of the
optimization variables of LeNN to solve non-linear mathematical
model of heat and mass transfer in a porous channel.

\/ LN (fon(n) = fu(6))?

TIC = )
W SN )+ 5 N o))

(49)

1 | Y .
RMSE = — ;(fm(é) —Fu®)%, (50)

DI A ) ) 1N 7
NSE=11- m; ,im(’?) =N Zm:lfm(n): (51)

where, f,, is the analytical solution and fm represents the approximate solution by the pro-

posed algorithm, while N denotes the number of grid points.
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Analysis of Heat and Mass Transfer in a Porous l

Flow Analysis Heat Transfer
— Mathematical model
{ 1

fiv + 2Re ffm

" _PrRe(f'q—2fq) =0
_KyRe (4F7 " + 26 %) = 0 q" —PrRe(f'q - 2fq")

Figure 4 Graphical overview of the model, cases studies and flow chart of the ANN-GNDO-SQP algorithm

5 Numerical experimentation and discussion
In this section, we discuss a different problem with multiple scenarios depending on the
variations in Re on heat and mass analysis of a non-Newtonian fluid. A flow chart of the
problem studied in this paper is presented in Fig. 4.

Problem 1: Flow problem with variations in Reynolds number:

In this problem, the governing equations, Eqs. (33)—(35), of flow analysis are inves-
tigated. Different cases are considered to study the influence of variations in Reynolds
number (Re) on velocity components f(1) and f'(). Case I: Re = 0.5, Case II: Re = 1.0,

Case III: Re = 1.5 and Case IV: Re = 2.0. Fitness functions for each case are given

as
Minimise s - L (¥ +200.5)ffy — Ki(0.5)&ffu + 2 fi))? )
+ 1($n00)? + (£,1) = 1% + (£,(0))* + (£, (1)),
Minimize s - S (Y + 201.0)fy — Ky (LO)Afuf + 2 f)) 53
+ H(Fn(0)? + (Fu(1) = 1) + (1,(0)) + (7,(1)>),
Minimise g | 3 2o+ 208l K (LOYT + 2 )P -
+ H(n00)? + (£,(1) = 1)? + (£,(0))* + (£,(1))2),
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~

SN+ 22.0)fuf — Ki(2.0)AFf + 2f £i))?

R u u R (55)
+ 1 ((5n(0)? + (£u(1) = 1) + (£,(0)* + (£,,(1))°).

Minimize € =

In this problem, the LeNN-GNDO-SQP algorithm is applied to study the effect of vari-
ations in Reynolds number (Re) on the velocity profile. Approximate solutions for the
velocity profile along with absolute errors for each case are given in Table 3 and graph-
ically shown in Figs. 5(a) and 6(a), respectively. It is observed that the velocity profile of
the fluid increases at higher values of the Reynolds number. Table 4 presents the results
for changes in the velocity profile f'. Furthermore, to study the convergence, stability and
robustness of the technique, multiple executions have been carried out. The behavior of
the fitness function, see Eqs. (52)—(55), for each case are shown in Fig. 6. It can be ob-
served that for most of the simulation, the value of the fitness function lies between 107>
to 1077 for each case, which shows the stability of the solutions. Table 5 represents the
statistics of absolute errors in terms of minimum, mean and standard deviations. It can be
seen that the absolute errors for each case of problem 1 lie around 1077 to 1072, 107° to
107!2,107* to 1071% and 1073 to 107°, respectively. The performance of the mean absolute
deviation, Theil’s inequality coefficient and the root mean square error in terms of min-
imum, mean and standard deviations are given in Table 6. The results of MAD, TIC and
RMSE during multiple executions are shown through Fig. 7. Global values of performance
indices are shown in Fig. 8. Global values for fitness functions and performance parame-
ters (MAD,TIC and RMSE) lie around 1072 to 10>, 102 to 1074, 1072 to 10~* and 1072 to
1074, respectively. Values of the unknown parameters in the LeNN structure for obtaining
the best solutions for each case of problem 1 are given in Table 7 and graphically shown
in Fig. 9.

Problem 2: Heat-transfer analysis with variations in Reynolds number:

In this problem, heat-transfer analysis has been carried out by studying the effect of vari-
ations in Reynolds number. The following cases are considered to study the components
of velocity and temperature profile f(n) and g(n), respectively, of the fluid. Case I: Re = 0.5,
Case II: Re = 2.0, Case III: Re = 5.0 and Case IV: Re = 10.0.

~

LY (Y 4 2005)ffy — Ki(0.5)EFfu + 2f )
+ L8 (&)~ PrOS)Fdm — onil))?
+ H((F0)* + (F1) - 1) + (F/(0))* + (F/(1))%)
+ L((F0)* + (F(1) - 1) + (F(0))* + (F' (1)),

Minimize & = (56)

~

LY (Y 4 2Q.0)ff) — Ki(2O)EFfu + 2f, )
+ LY @~ Pr.O) G — 2fnd,))?
+ L((F0)* + (F1) - 1)? + (F/(0))* + (F/(1))%)
+ L((F0)? + (F(1) - 1) + (F1(0))* + (F' (1)),

Minimize & = (57)

~

A Y+ 25.00ffy — Ki(BO)AEuf + 2 fi))?
+ L8 (&)~ PO — onil)))?
+ (0% + (F1) - 1)? + (F/(0))* + (F/(1))%)
+ L((F0)? + (F(1) - 1) + (F1(0))* + (F' (1)),

Minimize & = (58)
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e Casel |
----- Case Il
Case1nl | |
----- Case IV

—&—Casel

—=—Casell |
4 Caselll

—+— Case IV

0.6 0.7 08 0.9 1

(a) Approximate solutions for each case.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.
n

(b) Velocity profile f’ for each case.

Figure 5 (a) Approximate solutions obtained by the LeNN-GNDO-SQP algorithm along with (b) velocity
profile f” for flow analysis of a non-Newtonian fluid due to variations in Re

8 0.9 1

Absolute Errors

0 01 02 03 04 05
n

(a) Absolute Errors.

0.6 07 08 09 1

Number of Independent Runs

[ Case 1 I Case 11 NN C [ Case 1V,

10 107

Fitness Value

(b) Fitness evaluation

Figure 6 (a) Absolute errors in solutions obtained by the proposed technique for each case study. (b) Global
values of fitness function and performance indices obtained during 100 independent runs

Table 4 Results obtained by the proposed technique for the velocity profile (f') of problem 1 due to
variations in Re

n Casell Casell Case lll Case IV
0.0 6.68E-07 4.59E-05 0.00103824 0.00341237
0.1 0.56893208 0.59887542 0.62781236 0.65561053
02 1.00359069 1.04800095 1.08884222 1.12493157
03 130374113 1.34691966 138348182 141118835
04 1.47083591 149913556 1.51812202 1.52501439
0.5 1.50835831 1.51274313 150675218 148783267
0.6 142186482 1.40001299 1.36933399 1.32802523
0.7 1.21873821 1.17616017 1.12879211 1.07548473
0.8 0.90771235 0.85768852 0.80779612 0.75695887
09 049826668 046077349 042633829 0.39358994
1.0 4.36E-07 5.75E-05 0.00058448 0.00064297
L33 (F + 2(10.0)ffr — Ki(10.0)AfLf1 + 2f.fi))>
1 68 A1 21 A AT \2
N + 8 2mess @ — Pr(10.0)(fy,qm — 2fnq),))
Minimize e = N L= et m (59)

+ H(F0)* + (FQ) - 12 + (F(0))* + (F (1))
+ H(F(0)? + (F(Q) - 1)* + (F/(0)* + (F (1)),

In this problem, the proposed methodology is implemented on a non-Newtonian fluid

through a porous channel to study the effect of variations in Reynolds number Re on
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Figure 7 Boxplots for performance evaluation of mean absolute deviation, Theil's inequality coefficient and
root mean square error obtained during 100 independent runs
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Figure 8 Global performance of the fitness function and performance indices for 100 independent execution
by the LeNN-GNDO-SQP algorithm

temperature profile g. Approximate solutions and absolute errors obtained by the LeNN-
GNDO-SQP algorithm are given in Table 8 and graphically presented in Fig. 10. It is ob-
served that increasing the Reynolds number causes the temperature profile of the non-
Newtonian fluid to decrease. Statistical analysis given in Table 9 on absolute errors in
term of minimum, mean and standard deviations shows the accuracy of stability of solu-
tions obtained by the proposed technique. Absolute errors in the solution for each case
lie around 107! to 1073, 1071° to 1072, 107® to 107! and 1078 to 1071, respectively. Ta-
ble 10 shows that minimum values of fitness function, MAD, TIC and RMSE lie around
1.63E-08 to 1.39E-03, 5.33E-05, 1.01E-03, 2.30E-05 and 1.09E-03, 6.12E—-05. The global
performance of the performance measures along with fitness values obtained during 100
independent executions are shown in Fig. 11. The accuracy of the proposed technique
is shown in Figs. 12 and 13 representing boxplots for MAD, TIC and RMSE along with
normal-probability curves of NSE for each case of problem 2. The unknown weights used
for finding the solutions of problem 2 are given in Table 11 and graphically illustrated
through Fig. 14.

Finally, the computational complexity analysis (CCA) is evaluated for the proposed algo-
rithm based on the average time taken to calculate unknown neurons in the LeNN struc-
ture using the GNDO-SQP algorithm. Values of complexity operators for different cases
of heat and mass transfer of a non-Newtonian fluid in a porous channel in terms of mean
and standard deviations of executed time by the system are given in Table 12. The results
show the consistency of the proposed algorithm. All calculations and evaluation for this
research are done on an HP laptop EliteBook 840 G2 with intel(R) Core (TM) i5-5300 CPU
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Range
Range

(a) Case I (b) Case Il (c) Case III (d) Case IV

Figure 9 Trained weights in LeNN optimized by the proposed technique for Case |, II, Il and IV of problem 1

Table 8 Approximate solutions for the temperature profile of a non-Newtonian fluid obtained by
the LeNN-GNDO-SQP algorithm for different cases of problem 2

n Solutions Absolute Errors
Case | Caselll Casellll Case IV Case | Caselll Casellll Case IV
0.0 1 1 0.999998 0.999997 5.23E-11 4.09E-12 1.10E-09 9.76E-10

0.1 0.881513 0.841329 0.787860 0.713456 3.89E-10 1.68E-10 247E-09 1.04E-08
0.2 0.764546 0.688382 0.587179 0462278 7.02E-11 7.72E-10 1.30E-08 3.66E-08
03 0.650527 0.546120 0410369 0.269040 331E-10 5.69E-10 9.47E-10 6.91E-08

04 0.540685 0418361 0.266851 0.138775 8.57E-11 1.95E-11 8.14E-09 7.51E-08
0.5 0435956 0.307555 0.160306 0.062423 3.20E-10 5.29E-10 4.44E-09 3.25E-08
06 0.336948 0.214699 0.088334 0.024060 5.85E-11 3.30E-11 4.15E-11 1.00E-10

0.7 0.243941 0.139411 0.044172 0.007830 2.25E-10 5.54E-10 341E-09 3.04E-08
0.8 0.156936 0.080150 0.019412 0.002121 1.85E-10 7.64E-10 2.98E-09 7.16E-08
09 0.075730 0.034578 0.006487 0.000437 1.37E-11 1.29E-10 9.14E-10 2.72E-08
1.0 1.25E-07 6.00E-10 4.33E-08 -5.33E-07 1.65E-13 4.10E-12 1.27E-10 5.62E-10

—®—Casel
—a—Casell | |

4 Caselll
—+—Case IV 10°F

Absolute Errors
2

= 2. 02

02 L L L L L L L L L 1014
0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
7 n

(a) Temperature profile for each case. (b) Absolute Errors for each case.

Figure 10 (a) Results of the temperature profile for problem 2, obtained by the LeNN-GNDO-SQP algorithm
along with (b) Absolute errors in the solution for heat analysis of a non-Newtonian fluid due to variations in Re

@ 2.30 GHz, 8.00 GB RAM, 64 bit operating in Microsoft Windows 10 Education edition
running the R2018a version of MATLAB.

6 Conclusion
This paper investigates a mathematical model for flow and heat analysis of a non-
Newtonian fluid with an axisymmetric channel and porous wall. We conclude our findings

as follows:
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Figure 11 (a) Global performance of the performance indices and (b) Behavior of the fitness function during
100 independent executions by the LeNN-GNDO-SQP algorithm for problem 2
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Figure 14 Best weights obtained by the proposed algorithm for solutions of different cases of problem 2

Table 12 Computational complexity analysis of the proposed algorithm for different cases of
problems 1 and 2

Problem Cases Time (s) Fitness Evaluation
GNDO SQP LNN-GNDO-SQP
Mean Std Mean Std Mean Std
| 1.148 0.887 0.522 7.05E-03 1.712 0.89405
Il 1.051 0.388 0.532 3.68E-03 1.583 0.39168
Il 2.271 0.945 0.643 8.06E-03 2914 0.95306
Y2 1.263 0.326 0.587 9.90E-03 1.85 0.3359
Il I 1.861 0.996 0.629 1.59E-02 249 10119
Il 1.962 0.849 0.662 1.71E-02 2624 0.8661
Il 1.972 1.012 0.692 6.90E-03 2.664 1.0189
IV 2.025 1.107 0.652 5.66E-02 2677 1.1636

A novel evolutionary algorithm is proposed in which we combine the strength of
Legendre neural networks (LeNNs) with a generalized normal-distribution algorithm
and sequential quadratic programming. It is named the LeNN-GNDO-SQP algorithm.
We studied the flow and heat analysis of a non-Newtonian fluid and the influence of
variations in Reynolds number on velocity and temperature profiles of the fluid. Two
problems are considered, each with 4 cases depending on different values of Re.

A detailed overview of the problems studied in this paper is shown in Fig. 4.
Experimental results obtained by the LeNN-GNDO-SQP algorithm for all eight cases
of problems 1 and 2 are given in Tables 3, 4 and 8. The results show that the
approximate solutions obtained by the proposed technique overlap the analytical and
DTM solutions with absolute minimum errors of the state-of-the-art algorithms.

The performance indicators of mean absolute deviation (MAD), Theil’s inequality
coeflicient (TIC), root mean square error (RMSE), and Nash—Sutcliffe efficiency are
calculated for all cases of problems 1 and 2. The results show the stability and
correctness of the proposed algorithm.

Graphical analysis in terms of boxplots, frequency plots, and normal-probability
curves are presented for 100 independent executions by the proposed technique to

study the convergence of the proposed algorithm.

The above analysis suggests that the LeNN-GNDO-SQP algorithm has calculated better
approximate solutions for the mathematical model of flow and heat analysis of a non-

Newtonian fluid with an axisymmetric channel and porous walls. The proposed technique

can solve several real-world problems without any prior information about the objective

function.
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Appendix
Approximate series solutions obtained by the proposed algorithm for different cases of

problem 1 are given as:

Japprox(1) = —0.0737124 + (-0.9548857n — 0.9853870)(-0.1238116)

(3(—0.0019840;7 +0.8147776) — 1
+
2

(5(—0.999805117 +0.6438451)% — 3(-0.9998051n + 0.6438451))
+
2

) (0.6884827)

x (0.6077218)

(35(—0.277830777 +0.2041020)* — 30(-0.27783077 + 0.2041020)>
+
8

3
+ g) (—0.2521553)

46,189(0.19445997+0.0010385)10-109,395(0.19445997+0.0010385)3
256
+ +90,090(0.19445997+0.0010385)°—30,030(0.19445997+0.0010385)* (—0.6360767)
128 ’
+3465(0.19445997+0.0010385)%—63
128

Japprox(17) = 0.8091081 + (-0.9948947n — 0.0256141)(0.7158744)

(3(0.7556283n ~0.5782535)2 - 1
+

7 ) (—0.6089780)

(5(0.011483277 +0.2832519)% — 3(0.0114832n + 0.2832519))
+
2

x (0.9904232)

(35(0.496766917 —0.7383371)* - 30(0.49676691 — 0.7383371)* 3)
+ + -
8 8

% (0.9915232)

46,189(-0.51626717—0.0931956)10-109,395(0.51626711—0.0931956)8

+

256
+90,090(=0.51626717—0.0931956)°~30,030(-0.51626717—0.0931956)* (0 013523 1)

128
+3465(-0.51626717-0.0931956)-63
128

Japprox(17) = —0.2730144 + (0.8684705n + 1.0063691)(0.5620503)

(3(—0.901022817 -0.4239812)2 -1
+
2

(5(0.965816117 +0.6908204) — 3(0.96581617 + 0.6908204))
+
2

) (0.9907777)

x (~0.2429362)



Khan et al. Advances in Continuous and Discrete Models (2022) 20227 Page 28 of 32

(35(0.0749905n +0.3770240)* — 30(0.07499057 + 0.3770240)> 3)
+ + -
8 8

x (0.5230242)

46,189(0.78835651—0.581578)10-109,395(0.78835657-0.581578)8

256
- 6_ _ 4
+ +90,090(0.788356517-0.581578)°-30,030(0.788356517—0.581578) (00018133)

128
+3465(0.78835657-0.581578)%-63
128

Japprox(11) = —0.0619974 + (-0.4741334n — 0.6304957)(-0.6762624)

(3(1.066955477 -0.3098253)* - 1
+
2

)(—1.14-55986)

(5(—0.403727627 —0.7738522)3 — 3(-0.40372761 — 0.7738522))
+
2

x (~0.2412426)

(35(0.34436337; +0.1349037)* — 30(0.34436337 + 0.1349037)2 3)
+
8 8

x (~1.025366)

46,189(1.12669801-0.6623952)10-109,395(1.12669807—0.6623952)8

256
+ | #90.090(1.12669801-0.6623952)°~30,030(1.12669807-0.6623952)* (0.0001646)

128
+3465(1.12669801—0.6623952)2—63
128

Approximate series solutions obtained by the proposed algorithm for different cases of

problem 2 are given as:

Gapprox (1) = 0.64755958 + (-0.2679917n + 0.32286466)(0.90721203)

(3(—0.0673961;7 +0.51390918) — 1
+
2

(5(—0.1245562n —0.0012954)3 — 3(-0.12455621 — 0.0012954))
+
2

) (—0.2393393)

x (—0.9577063)

(35(0.0685243177 +0.1986130)* — 30(0.068524317 + 0.1986130)?
+
8

3
+ 5 )(0:9999998)

46,189(—0.13283557-0.0916769)10-109,395(-0.132835517-0.0916769)8
256
+ +90,090(-0.13283557—-0.0916769)°—30,030(0.132835517—0.0916769)* (0.9780387)
128 !
+3465(—0.132835517—0.0916769)%—63
128
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Gapprox (1) = 0.61812212 + (-0.41082387 + 0.05008926)(0.23620516)

(3(0.6716320677 +0.24507244)? — 1
+
2

(5(—0.432387117 +0.22474456) — 3(-0.4323871n + 0.22474456)
+
2

) (—0.5340786)

x (~0.4323871)

(35(—0.35671421} +0.28828644)* — 30(—0.3567142n + 0.28828644,)>
+
8

3
+ ) (-0.8603332)

46,189(0.31532917+0.0354934)10-109,395(0.31532917+0.0354934)8
256
+90,090(0.31532917+0.0354934)°-30,030(0.31532917+0.0354934)* (0 361 3739)

+

128
+3465(0.31532917+0.0354934)%-63
128

Gapprox (1) = 0.3229750 + (0.092395257 — 0.0994596)(0.12554559)

(3(—0.499641717 +0.01470355)? — 1
+
2

(5(—0.681028617 +0.03751269)° - 3(—0.68102861 + 0.03751269))
+
2

) (—0.1428369)

x (~0.4226834)

(35(0.5481466777 —0.74199735)* — 30(0.54814667n — 0.74199735)*
+
8

3
+ ) (-0.2088118)

46,189(—0.69898967+0.37562191)10-109,395(-0.69898967+0.37562191)8
256
+90,090(—0.69898967+0.37562191)°-30,030(—0.69898967+0.37562191)* (0 045 13968)

+

128
+3465(~0.69898961+0.37562191)2-63
128

Gapprox (1) = 0.604064054 + (0.048916851n + 0.390702563)(0.14530839)

(3(—0.860052917 +0.947150816) — 1
+
2

(5(—0.500737287] +0.84371031) — 3(-0.500737287 + 0.84371031))
+
2

) (0.00197444)

x (1.00463516)

(35(—0.050194777 +0.83973832)* — 30(~0.05019477 + 0.83973832)?
+
8

3
+5 ) (-0.0271333)
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46,189(0.643929001—0.5282144)10-109,395(0.643929007—0.5282144)8
256
+90,090(0.64:39290017-0.5282144)°-30,030(0.64:3929007-0.5282144)* (0.178138559)
128 : :
+3465(0.643929007—-0.5282144)%-63
128

+
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