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Over the years, the scientific importance of nanoparticles for biomedical applications

has increased. The high stability and biocompatibility, together with the low toxicity

of the nanoparticles developed lead to their use as targeted drug delivery systems,

bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm

to 1µm, as well as their optical properties, allow them to be studied using microscopy

and spectroscopy techniques. In order to be effectively used, the physicochemical

properties of nanoparticle formulations need to be taken into account, namely, particle

size, surface charge distribution, surface derivatization and/or loading capacity, and

related interactions. These properties need to be optimized considering the final

nanoparticle intended biodistribution and target. In this review, we cover light scattering

based techniques, namely dynamic light scattering and zeta-potential, used for the

physicochemical characterization of nanoparticles. Dynamic light scattering is used to

measure nanoparticles size, but also to evaluate their stability over time in suspension,

at different pH and temperature conditions. Zeta-potential is used to characterize

nanoparticles surface charge, obtaining information about their stability and surface

interaction with other molecules. In this review, we focus on nanoparticle characterization

and application in infection, cancer and cardiovascular diseases.

Keywords: nanoparticles, dynamic light scattering, zeta-potential, antimicrobial peptides, anticancer peptides,

cardiovascular diseases

INTRODUCTION

Nanotechnology research and development have increased over the last three decades. The concern
about the bioavailability and efficacy of conventional therapeutics by their suboptimal results on
targeted cells and high toxicity in normal cells have lead the scientific community to reshape the
vision of drug development (Geszke-Moritz and Moritz, 2016). Nanoparticles (NPs) have been
developed to overcome the problems of targeting and efficiency, with reduced toxicity. In the last
decade, their applicability has been focused on the biomedical and pharmaceutical fields, used as
drug delivery systems, diagnostic tools, and implants (Zhang, 2015; Geszke-Moritz and Moritz,
2016; Alegret et al., 2017; Jurj et al., 2017; Ramos et al., 2017; Wong et al., 2017). Nanoparticles can
be made of different materials, organic or inorganic, such as metal, polymers, carbon nanotubes,
and liposomes (Liu et al., 2016). The use of nanoparticle-based drug delivery systems has increased
due to their controlled release of reservoir content, leading to a decrease in undesirable side effects
(Cosco et al., 2011; Mahmoodi et al., 2016; Jurj et al., 2017; Panahi et al., 2017; Singh et al., 2017).
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At the same time, the use of nanoparticles in drug development
reduces the usage of additional components on the formulation
to protect therapeutics from degradation and increase circulation
time.

Nanoparticle formulation requires full characterization of
its size, surface charge, shape, and distribution (Oberdörster,
2010). It is often technically challenging to obtain reproducible
suspensions of nanoparticles with low polydispersion and desired
shape and size. The tight control of mixing and separation
of particles is crucial to obtain a homogeneous nanoparticle
suspension (Cosco et al., 2015b). Usually, only a small fraction
of the nanoparticles injection dose (<0.7%) reaches the target
(Schmidt and Storsberg, 2015). This shows that NPs have some
organism barriers to overcome, such as unspecific distribution,
interstitial fluid pressure, cellular internalization, and drug
efflux pumps, before achieving therapeutic effect (Park and Na,
2015).

Nanoparticles have size-related properties influencing their
mode of action and in vivo lifetime. The optimal size for
drug delivery systems is considered to be broadly between
10 and 1000 nm (Ramos et al., 2017). Low sizes allow
NPs to cross cell membranes and avoid detection by the
reticuloendothelial system (RES), increasing the drug circulation
lifetime (Schmidt and Storsberg, 2015; Hare et al., 2017;
Jahan et al., 2017). However, they must not be too small,
in order to avoid rapid distribution into lymph nodes,
being eliminated by fast renal clearance. On the other hand,
nanoparticles larger than 100 nm are more prone to accumulate
at the site of injection or trapped by the spleen, lung,
and liver macrophages (Jurj et al., 2017). In conclusion,
size must be optimized taking into account the amount
of cargo to be delivered and the desirable biodistribution
(Figure 1).

In terms of surface charge, neutrality may lead to nanoparticle
instability, with aggregation and precipitation after long-term
storage. The surface charge characterization is an important
parameter to measure in a NPs suspension, because the first
interaction is with the body fluids before reaching a target.
In physiological media, the nanoparticle is covered by plasma
proteins leading to surface charge alterations and, concomitantly,
changing its biological activity and affinities (Ramos et al.,
2017). Positive surface charges may facilitate the binding of
nanoparticles to cell membranes and might promote unspecific
binding to normal tissues, promoting platelet accumulation
and hemolytic events (Licciardi et al., 2016; Jahan et al.,
2017; Jurj et al., 2017; Jiang et al., 2018; Peretz et al.,
2018).

The unique physicochemical properties and nanoscale effects
have drawn interest on nanoparticle as drug delivery systems
for the treatment of diseases such as cancer, cardiovascular
diseases, pathogenic infections, and diabetes. Despite the
raised interest in nanoparticle development, not so many
have been approved for therapeutic use (Wang et al., 2017).
Here, we will focus on the light scattering approaches to
characterize nanoparticle suspensions and their applicability on
nanoparticle development against infectious and cardiovascular
diseases.

LIGHT SCATTERING TECHNIQUES

Dynamic Light Scattering
The detection of the light scattered from the interaction of
light with matter gives information related to the physical
characteristics of the sample. Typically, in light scattering
experiments, a monochromatic beam is directed to the sample
and then a detector records the scattered light at a certain
angle. Early light scattering experiments started in late nineteenth
century, with John Tyndall’s research in colloidal suspensions
(Tyndall, 1868). Lord Rayleigh (John William Strutt) reported
another important effect of the light scattering by particles
smaller than its wavelength, by explaining the blue color of the
sky and the effect of the atmospheric particles (Strutt, 1871). For
larger particles relative to the wavelength of light, Gustav Mie
developed a theory to study the light scattering from absorbing
and non-absorbing particles, considering particle shape and the
difference in refractive index between particles and the medium
where they are dispersed (Mie, 1908). Taking into account the
differences of the light scattering at different angles of detection
from large particles (Mie theory) with the more homogeneous
light scattering at each angle for small particles (Rayleigh theory),
we hereby use the Rayleigh particle for theoretical purposes.

In static light scattering, the intensity of the light detected is
averaged over time, and from this we can obtain information
about the molecular weight of the particle and its radius of
gyration (Rg). On the other hand, dynamic light scattering (DLS),
by measuring over time the fluctuations of the light intensity, due
to particle Brownian motion, allows to determine the diffusion
coefficient (D), which relates to the hydrodynamic radius (Rh) of
the particle through the Stokes-Einstein equation (Pusey, 1974),

D =
kbT

6πηRh
(1)

where κb is the Boltzmann constant (1.380 × 10−23

kg.m2.s−2.K−1), T is the absolute temperature, and η is the
viscosity of the medium.

As it shows up in Equation (1), the particle diffusion depends
on the temperature, viscosity of the media and size of the particle.
DLSmeasures the intensity of the light scattered over time.When
the intensity is correlated at several time points, in the beginning
the scattered intensities are similar, losing this similarity over
time due to particle’s movement. Then, for small particles, the
diffusion is much faster, photon correlation is lost faster and
the correlation decays at early time points of the measurement
(Figures 2A,B). However, as large particles diffuse more slowly,
the similarity of the intensities over time persists for longer
periods, leading to a longer time for the photon correlation
to decay (Figures 2C,D). A digital correlation measures the
intensity fluctuation and their correlation in respect to time
frames (on the ns and µs timescale). The measured parameter
is a normalized integration of the intensities at the beginning and
a delayed time τ (Chu, 1974),

g2 (τ ) =

〈

I (t) . I(t + τ )
〉

〈

I(t)2
〉 (2)
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FIGURE 1 | Comparison of capillaries and different nanoparticles size described in literature for different therapeutic applications. Nanoparticles were designed in

terms of size and material considering the therapeutic target desired, with the size being determined by dynamic light scattering.

FIGURE 2 | Dynamic light scattering intensity signal and correlation function

for small (A,B) and large particles (C,D). The scattering intensity signal over

time is obtained directly from the particle’s Brownian motion. The correlation

function is obtained from the intensity fluctuation in the respective time frames.

Small particles (A,B) diffuse faster, with the correlation decaying at early time

points. Large particles (C,D) diffuse more slowly, which implies a longer time

for the photon correlation to decay.

However, the measurement of each particle position in the
scattered volume is not possible under the experimental
apparatus. For this reason, there is a measurement of the
normalized electrical field generated by the volume of the
particles under an incident beam (Berne and Pecora, 1976),

g1 (τ ) =

〈

E (t) . E(t + τ )
〉

〈

E(t)2
〉 (3)

The normalized intensity integration is correlated with the
normalized electrical field measured by the Siegert relation
(Siegert, 1943),

g2 (τ ) = B+ β|g1(τ )|
2 (4)

where, B is the baseline (∼1) and β is the coherence factor,
which depends on detector area, optical alignment and scattering
properties of macromolecules or supramolecular aggregates.
Considering a monodisperse sample, the normalized intensity
integration decays exponentially and is dependent on a decay
constant, Γ , for macromolecules undergoing a Brownian motion
(Einstein, 1905, 1906),

g2 (τ ) = 1+ βe−2Ŵτ (5)

where Γ is related to diffusion coefficient of the sample particles,
D, by (Berne and Pecora, 1976),

Ŵ = Dq2 (6)

where q is the scattering vector, directly proportional to the
refractive index, n0, and inversely proportional to the wavelength,
λ (Harding, 1997),

q =
4πn0

λ
sin (θ/2) (7)

where θ is the angle of the detector’s position. However, when
considering a polydisperse sample, the normalized intensity
integration cannot be described by a single exponential decay
(Briggs and Nicoli, 1980). Instead, there is a sum of exponential
decays rates G (Ŵ) corresponding to each particle in the sample
(Berne and Pecora, 1976),

g2 (τ ) = 1+ β

(∫ ∞

0
G(Ŵ)e−ŴτdŴ

)2

(8)

Data can be analyzed from the fitting of the correlation
function. However, it is possible to distinguish two types
of methods of fitting: assuming a monomodal distribution
or a non-monomodal distribution. The common monomodal
approach is the cumulants fitting, where a Taylor expansion
with a mean decay rate is fitted to the correlation function,
obtaining a mean diffusion coefficient (Koppel, 1972). From
the relation of the second cumulant to the mean decay
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rate, it is possible to obtain the polydispersity index (PDI),
informing about the monodispersity tendency of the sample.
Regarding non-monomodal distribution methods, the fitting
of the correlation function is based on multiple decay rates,
which is more suitable for polydisperse samples. The common
methodologies are non-negative least squares (NNLS), where the
decay rates are constants from the list of G(Ŵ) in a determined
range, but spaced linearly or logarithmically (Morrison et al.,
1985). The exponential sampling uses the decay rates in a
determined range but spaced exponentially. The most common
methodology applied to non-monomodal distribution is the
constrained regularization method for inverting data (CONTIN)
(Provencher, 1982a,b). The CONTIN method is similar to
NNLS, but instead of the minimization of residuals in the
NNLS methodology, it works by the minimization of regularized
residuals and an appropriate weighing function. For more details
on the mathematical approach used in the methods, please refer
to Fischer and Schmidt (2016) and Stetefeld et al. (2016).

Zeta-Potential
The zeta-potential is the potential measured at the slipping
plane of a particle under an electrical field. It reflects the
potential difference between the electric double layer (EDL)
of electrophoretic mobile particles and the layer of dispersant
around them (aqueous or organic environment) at the slipping
plane (Figure 3) (Montes Ruiz-Cabello et al., 2014). The EDL
surface of a particle in solution develops instantaneously and
is formed of two layers. The inner layer, the so-called Stern
layer, is composed of opposite charged particles tightly coupled
to the core of the central particle. The second and outermost
layer is a diffusive layer consisting of both opposite and same
charged ions/molecules. When an electrical field is applied
to the sample, the particles move to the opposite electrode.
Within the diffuse layer there is a hypothetical plane that
acts as the interface between the moving particles and the
layer of the surrounding dispersant while in the electrical field.
This plane is the characteristic slipping/shear plane and zeta-
potential is the potential at this particle-fluid interface (Kaszuba
et al., 2010; Bhattacharjee, 2016). The zeta-potential is measured
by the electrophoretic mobility of charged particles under an
applied electric field. The electrophoretic mobility (µe) of the
particles is calculated by Henry’s equation (Kaszuba et al.,
2010),

µe =
2εrε0ζf (Ka)

3η
(9)

where εr is the relative permittivity/dielectric constant, ε0
is the permittivity of vacuum, ζ is the zeta-potential value,
f (Ka) is the Henry’s or Helmholtz-Smoluchowski function,
and η is the viscosity at the experimental temperature.
Depending on the solvent where the particles are dispersed,
the value of f (Ka) is assumed to be 1 or 1.5, for organic
medium or aqueous medium, respectively (Domingues et al.,
2008).

FIGURE 3 | Schematic representation of the double layer that surrounds the

nanoparticle in aqueous medium, considering that it has negative charge. The

nanoparticle represented as example is composed by negatively charged

phospholipids, implying a first layer (Stern-potential) mainly composed by

positively charged counterions after application of an electric field. The second

layer (zeta-potential) is a diffusive layer that consists of both counterions and

ions of the same charge as the nanoparticle, which contact the organic or

aqueous environment.

NANOPARTICLES IN THERAPEUTICS

Nanoparticles are widely used in biomedical sciences for
different therapies, due to their high biocompatibility and
chemical stability, either by direct activity or by encapsulating
poorly soluble drugs/surface incorporation (Arakha et al., 2015;
Elzoghby et al., 2015). Among the most notorious examples are
magnetic nanoparticles, with a metal core of Zn, Ni, Cu, Ag,
or Au, synthetically obtained or naturally isolated (Bilal et al.,
2017; El-Batal et al., 2018). Some of these were shown to have
antimicrobial activity, and were considered perfect candidates
for magnetic resonance imaging techniques, presenting a dual
activity: therapeutic and diagnostic (Niemirowicz et al., 2015;
Dinali et al., 2017). Their use in bandages, implants or prostheses
is already becoming common, but overproduction of reactive
oxygen species (ROS) in long-term usage has raised concerns
regarding the toxicity of magnetic NPs (Bilberg et al., 2012;
Casciaro et al., 2017). Different authors have explored this issue,
even in polymeric-coatedmagnetic NPs, which were consider less
toxic than the uncoated, but high dosages during a larger period
of time increase cytotoxic and genotoxic effects on macrophages
(Jena et al., 2012; Mohanty et al., 2012). With nanoparticles
activity being dependent of their physicochemical properties,
namely size, shape, and surface, their toxicity toward cells is
also dependent of these properties (Bera et al., 2014; Sun et al.,
2014; Rajchakit and Sarojini, 2017). A strategy followed to deal
with these problems has been the development of different types
of nanoparticles, including polymeric nanoparticles, micelles, or
liposomes, with the advantage of being possible to shape their
properties to increase the efficacy in targeting or drug delivering
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(Xie et al., 2014; Bilal et al., 2017; Solairaj et al., 2017). With
the objective of reducing toxicity without reducing NP activity,
another adopted strategy was the incorporation or surface
derivatization with different ligands, such as antibodies, small
organic molecules, or proteins/peptides (Chen et al., 2012; Gao
et al., 2017). This last hypothesis was shown to reduce toxicity,
improving peptide properties/activity, and enhancing solubility,
leading to a general improvement of the pharmacokinetic profile
and therapeutic index (Molinaro et al., 2013; Gao et al., 2014,
2017; Cosco et al., 2015a; Libralato et al., 2017). As a matter
of fact, different proteins have already been tested for different
activities, including albumin, casein or elastin-like polypeptides,
exploring either an active targeting (direct activity on target cells)
or a passive targeting (prolonged blood circulation and activity)
(Sneharani et al., 2010; Zhao et al., 2010; Bachar et al., 2012; Kratz,
2014; MacEwan and Chilkoti, 2014). With different possibilities
of surface modification, these protein nanoparticles rapidly
evolved to peptide nanoparticles, due to an easier manufacture
process and reduced production costs (Elzoghby et al., 2015).

Peptide therapeutics is a field that is fast growing since the
beginning of the century, with a large number of scientific
papers exploring their potential use in healthcare (Albericio and
Kruger, 2012). Moreover, with resistance increase in different
pathologies, including infectious diseases and cancer, the urgency
for new alternatives has promoted a significant number of
studies aiming at improving the efficacy of peptides as drugs
or applied in diagnostic techniques (Hamilton et al., 2015;
Gomes et al., 2018). Several in vitro and in vivo studies have
been published focusing on the efficiency of particular peptide
classes, namely antimicrobial and anticancer peptides (AMPs
and ACPs, respectively), due to their promising applications
as drugs in the market (Hancock et al., 2016; Felício et al.,
2017). Even so, downsides of their use have been pointed
out, including low enzymatic stability, low permeability across
biological barriers, low solubility, rapid metabolic excretion,
and high toxicity (Tam et al., 2002; Rajchakit and Sarojini,
2017; Serna et al., 2017). Strategies to overcome these peptide
therapeutic applicability problems include in silico structure
design (considering their sequence, using natural and non-
natural amino acids), peptidomimetics, lipidation and, naturally,
nanoparticle conjugation, which will be further explored
(Rajchakit and Sarojini, 2017; Primavera et al., 2018).

Nanoparticles With Antimicrobial Activity
As mentioned above, an increase in multiresistant pathogens
(bacteria, fungi, and viruses) has been reported on the last
decades, with several reasons already explored being held
responsible for this (Dickey et al., 2017; Llewelyn et al., 2017).
The World Health Organization has inclusively pointed out
different bacteria strains where researchers should focus on, due
to the high incidence of resistance in patients (World Health
Organization, 2015). AMPs are considered one of the major
promises to overcome this growing public healthcare problem.
Due to this, studies on their isolation, purification, design, and
applicability, both in vitro and in vivo, have increased in recent
years (Dias et al., 2017; Unubol et al., 2017). These peptides
are usually characterized by a short amino acid sequence (less

than 50 amino acid residues), high amphipathic and hydrophobic
content, and a positive net charge (de la Fuente-Núñez et al.,
2017; Haney et al., 2017). Their mechanisms of action, frequently
at the membrane level, are not well-defined, but it is clear
that their physicochemical properties are essential for the
peptide-membrane interaction (Neelay et al., 2017). Initially,
they were thought to target specifically different pathogens but,
nowadays, it is clear that their action is more complex than that,
participating in the recruitment of immune cells to the site of
infection, or modulating the immune response by promoting
pathogen cell death (Hancock et al., 2016). Also, they have a
broad-spectrum activity (Vigant et al., 2015), being active toward
bacteria (including biofilms), fungi or viruses, with properties
of the target membrane driving the interactions (Ribeiro et al.,
2016). Even so, their limitations became also notorious in a
large number of studies, limiting their potential as therapeutic
molecules (Gomes et al., 2018).

At the same time, nanotechnology (particularly using
nanoparticles) has also focused its research in these applications,
having reached a higher success in clinical applications.
With the advantage of the possible use of different metals,
magnetic nanoparticles with intrinsic antimicrobial activity were
developed and medically applied (Bilal et al., 2017; Dinali et al.,
2017; Pham et al., 2018). The fact that these NPs have in
their core a metal predisposing to electrostatic interactions,
promotes their attachment to bacterial membranes, leading
to the loss of integrity and bacteria cell death (Fang et al.,
2015; Bilal et al., 2017). A high number of systems have been
tested with reported activity toward pathogens, using different
antibiotic molecules conjugated either on the surface or by
encapsulation (Park et al., 2011; Gaspar et al., 2016; Morales et al.,
2017). An important example is silver nanoparticles (AgNPs)
conjugated with polymixin B or gold nanoparticles (AuNPs)
conjugated with vancomycin, both showing a synergistic effect,
with improved activity (Fayaz et al., 2011; Park et al., 2011).
Metal nanoparticles chosen for antibiotic conjugation include
titanium, zinc or cooper, and as for antibiotic molecules,
gentamicin, streptomycin, cecropin-melittin, among others, have
shown improved activity (Gu et al., 2003; Birla et al., 2009;
Allahverdiyev et al., 2011; Lai et al., 2015). However, as already
stated, the use of metals for nanoparticle development raised
some doubts due to inherent toxicity toward healthy cells, forcing
researchers to find alternatives. An example was testing NPs
for local/topic applications, lowering the dosage amount and
toxicity effects (Gao et al., 2014; Arakha et al., 2015; de Oliveira
et al., 2017). In a pH-sensitive system, Pichavant et al. developed
antibiotic (gentamicin sulfate and/or vancomycin) functionalized
nanoparticles that were covalently grafted into titanium surfaces
(Pichavant et al., 2016). The nanoparticle characterization was
achieved using nuclear magnetic resonance (NMR) and dynamic
light scattering measurements, confirming their size and stability
in different media (Pichavant et al., 2011, 2012). Besides the
enhanced antimicrobial activity, these NPs also presented other
advantages, such as the possibility to be used in other surfaces
and promoting an increase in the target tissue/cell drug density
(Pichavant et al., 2011, 2012). Another study, by Di Francesco
et al. showed the advantages of using pH-sensitive nanoparticles
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as a fusogenic drug delivery system (Di Francesco et al., 2017).
The nanoparticles were formulated according to their target
cells, and physicochemical properties were measured by DLS and
fluorescence spectroscopy.

The application of nanolipid systems (like liposomes or
micelles) or polymeric NPs (chitosan based or conjugated
with polyethylene glycol, PEG) had special success (Hann and
Prentice, 2001; Allen and Cullis, 2013; Cosco et al., 2014;
Paolino et al., 2017). These NPs have the advantage of being
more biocompatible, with the effects toward healthy cells being
reduced and having an improved targeted-oriented activity
(Solairaj et al., 2017). Water et al. developed poly(lactic-co-
glycolic acid) nanoparticles (PLGaNPs) that were used as drug
delivery system for plectasin, an antibiotic specific for airway
Staphylococcus aureus infection (Water et al., 2015). They used
DLS and zeta-potential measurements to assure that plectasin
was efficiently loaded on the NP. Other authors used chitosan-
sodium phytate NPs and tested them against Gram-negative and
Gram-positive bacteria, showing a high antimicrobial activity,
with the advantage of these NPs could also be used for drug
delivery, combining their efficacy with an antibiotic (Yang et al.,
2017). In order to identify the optimal chitosan/sodium phytate
ratio for their activity, DLS and zeta-potential measurements
were performed to determine the NPs size, surface charge, and
stability at different pH values. As for liposomes, other authors
have developed lipid NPs composed of phosphatidylcholine
(zwitterionic phospholipid) and phosphatidylserine (negatively
charged phospholipid), intercalated with Pluronic-P85 (HLB 16),
a polymer that favors the uptake of the NP (Fidler, 1988; Zhang
et al., 1998). By incorporating gentamycin in their core, this
system was tested for drug delivery, with a high efficiency rate
(Xie et al., 2014).

Despite all the strategies studied along the years, one
has gained special attention nowadays, when conventional
therapeutic molecules are facing a new resistance paradigm. This
strategy consists in the combination of nanoparticles (liposomes,
polymeric, or metallic) with antimicrobial peptides, either for
peptide delivery or for a direct action toward the target cells
(Niemirowicz et al., 2015; Water et al., 2015). The objective was
to overcome the limitations on AMPs application, but, later on,
it was stated that the nature of nanoparticle-AMP interaction
is essential for the system activity (Pal et al., 2016). Actually,
weaker interactions between the AMP and the nanoparticle
promote a decrease in NP toxicity and, at the same time,
increase AMP activity, because it allows the peptide to adopt
favorable structure and/or charge properties essential for the
interaction with biomembranes (Liu et al., 2013; Rajchakit and
Sarojini, 2017). These AMP-NP complexes also allow a higher
concentration of the drug in the site of action, with a selective
activity, including a differential interaction between the complex
and the outer and inner-membranes of the target bacterial
pathogens, implying a drug-delivery and direct activity system
(Park et al., 2017; Rajchakit and Sarojini, 2017).

Different AMP-NP complexes have been tested throughout
the years, trying to establish one with high activity toward the
target pathogens, without having a significant toxicity for the
other cells, a common flaw for AMPs and metal NPs (Galdiero

and Gomes, 2017). Different metals were tested, as already
described, such as iron oxide, coupled with LL-37, a natural host-
defense peptide with antimicrobial activity (Niemirowicz et al.,
2015). Other examples include silver nanoparticles surrounded
by AMPs, or gold NPs with bactenecin molecules on their surface
(Allahverdiyev et al., 2011; Golubeva et al., 2011). All these
systems were shown to have less toxicity and higher efficiency,
including against clinical isolated multiresistant pathogens,
but their pharmacokinetic and pharmacodynamic profiles still
need to be improved (Ruden et al., 2009). Considering this
scenario, methods to improve these properties were designed,
including the use of natural isolated nanoparticles from biomass
(Mohanty et al., 2013). Their biogenic AgNPs combined with
two different AMPs (NK-2 and LLKK-18), characterized by
DLS and zeta-potential, were shown to have synergistic effect
and improved applicability in clinical scenarios (Mohanty et al.,
2013). In another study, polymeric nanoparticles (chitosan-
alginate polyelectrolyte complex NPs) combined with pexiganan
(a synthetic AMP) had an improved profile for therapeutic
application (Zhang et al., 2015). Another strategy tested was the
use of PEG: nanoparticle surface was covered with PEG and
AMPs, increasing biocompatibility and antimicrobial properties
(Pal et al., 2016; Casciaro et al., 2017). Zeta-potential was used
to confirm that the peptide was attached to the NP surface
after coupling synthesis, with an overall charge increase after
interaction with positive peptides such as AMPs.

Besides antimicrobial peptides, nanoparticles can also be
combined with cell-penetrating peptides (CPPs) (Guidotti et al.,
2017). There is not a rigid boundary between these two classes
of peptides, with reported AMPs having a CPP function, as
well as CPPs with described antimicrobial activity, besides the
capacity to deliver cargo into different cells (Bahnsen et al.,
2015; Kristensen et al., 2016). One example is the combination
of micelles with TAT, a HIV-derived CPP with antimicrobial
activity, conjugated with cholesterol, a spacer and six arginine
residues (Liu et al., 2009). These self-assembly micelles, besides
enhanced activity and low toxicity, were able to cross the blood
brain barrier, which introduced a great advantage for brain
infection diseases (Liu et al., 2009). On another study from
the same authors, they used the same CPP, with a spacer of
three glycine and six arginine residues, but conjugated to colloid
AgNPs surface (Liu et al., 2013). Improved antimicrobial activity
and reduced hemolysis were observed. In both cases, DLS and
zeta-potential were essential to characterize the NPs, regarding
size and surface charge, but also to assess colloidal stability (Liu
et al., 2009, 2013).

It is important to refer that these complexes of AMPs/CPPs-
NPs have high potential for the treatment of bacterial infection,
including those leading to biofilm formation (Ribeiro et al.,
2016). Biofilms are complex pathogen aggregates, encased in a
matrix composed of extracellular polymeric substances (EPS),
that normally tend to form when bacteria faces stress adaptation
(Flemming et al., 2016). Due to this matrix, AMPs efficient
against planktonic (free) bacteria can be ineffective against
biofilms (Batoni et al., 2016). Nanoparticles by themselves
have small size, with an enormous surface area and easy
penetrability properties, including on biofilms. These properties
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and association with AMP introduce advantages to tackle biofilm
infection, and should be considered in future works (Qayyum
and Khan, 2016).

The use of peptides in nanotechnology has been largely
increasing, as described above. At this level, other structures
with promising results are self-assembling peptide NPs, which
are formed by small peptides that self-aggregate, forming
clusters, or oligomers (Serna et al., 2017). The idea came from
dendrimeric peptides, small nanosystems with a size range from
2 to 50 nm, with great advantages in terms of biocompatibility,
structural/functional versatility and drug delivery efficiency
(Tam, 1988; Tam et al., 2002; Serna et al., 2017). These
systems are characterized by a hyper-branched and almost
perfect geometrical 3D architecture, that grow from the core
into a globular shape, with reported activity against infectious
pathogens and cancer cells (Tam et al., 2002; Ionov et al., 2013;
García-Gallego et al., 2017). Examples of systems already studied
are diverse, with each author exploring different mechanisms to
promote the assembling or activity toward the target cells. They
include AMPs conjugated to the N-terminal of histidine-tagged
proteins, forming oligomers with antimicrobial activity (Serna
et al., 2017). As the synthesis of self-assembly NPs starts with
small aggregates, DLS was used to determine the evolution of
the size distribution, confirming the oligomers formation (Serna
et al., 2017). Lipidation of AMPs, besides the increased activity
already explored, can also promote the formation of dendrimeric
peptide NPs (Siriwardena et al., 2018). Using parental systems,
these authors developed a new one, with higher antimicrobial
activity and pro-angiogenic properties in biological burn-wound
bandages, named TNS18 (Siriwardena et al., 2018). Finally, other
authors recently focused in self-assembling peptide nanoparticles
that only act on the target cell after activation, using for that
specific characteristics of the target tissue, such as overexpressed
membrane proteins or enriched proteases concentration (Yu
et al., 2018; Zhang et al., 2018). This field is now expanding
and, therefore, more research is needed to understand how this
strategy can benefit current therapies relative to other systems
that are easier to manipulate.

Nanoparticles With Anticancer Activity
Therapies to deal with cancer have evolved in response to
the human need, but resistance to therapy is a public health
concern (Arnold et al., 2015). Nanotechnology has for long
tried to fight this burden, by improving the pharmacokinetic
and pharmacodynamics of the chemotherapeutic agents that
target solid tumors. For that, drug encapsulation was studied
and tested in vivo, with the first molecules being FDA approved
in the middle of the 1990s, namely Doxil and DaunoXome
(Eertwegh et al., 2006). Both therapeutics consist of liposomes
with encapsulated drugs, doxorubicin (DOX) and a mixture of
anthracycline and daunorubicin, respectively (Eertwegh et al.,
2006; Allen and Cullis, 2013). Cancer drugs face diverse
challenges, creating the need of developing new drugs according
to the type of target: solid tumors or circulating cancer cells
(Pearce et al., 2012). For solid tumors, evading the mononuclear
phagocyte system (MPS) and remaining in the tumor tissue is
essential for drug efficacy, while for circulating cancer cells there

is the need for the drug to be internalized to ensure its action at
the target site (Stylianopoulos and Jain, 2015).

Considering the current scenario, different strategies have
been followed trying to overcome these limitations. Metal
nanoparticles with gold or silver core have been tested and
showed to have natural anticancer activity, either in vitro or
in vivo against tumors and cancer cells (Shanmugasundaram
et al., 2017; Shmarakov et al., 2017). Following the improvements
on the development of nanoparticles, combinations of copper
and chitosan were also tested, with observable anticancer
activity and less toxic effects (Solairaj et al., 2017). DLS was
used here not only as a mere characterization technique, but
as a tool to identify metal structures with higher colloidal
stability and better size distribution (Shmarakov et al., 2017).
Di Francesco et al., using non-ionic surfactant vesicles (NSVs)
loaded with DOX, developed nanosystems with different ratios
of Tween21/Tween80, promoting a pH-responsive approach
with anticancer properties (Di Francesco et al., 2017). These
NSVs showed a fusogenic behavior and an increased targeting
efficiency, which translated in higher anticancer activity.
Nanoparticles with direct activity can also be used as drug
carriers, as mentioned before. Zakerzadeh et al. designed silica
NPs with encapsulated tetrazole, a cyclic/aromatic molecule with
antimicrobial, antifungal and anticancer activity (Zakerzadeh
et al., 2017).

Despite previous advances, improvements in the targeting
were still necessary. As in infection therapies, also here the
use of peptides was considered, either to increase activity or
to promote specific targeting to cancer cells and solid tumors
(Pearce et al., 2012). As an example, Chang et al. designed
NPs that were able to bind to the tumor mass (oral, breast,
lung, colon, or pancreatic tumors) by coating them with the
small antimicrobial peptides PIVO-8 and PIVO-24 (also acting
at the vascularization process), which are significantly increased
around tumors (Chang et al., 2009). To confirm NP coating
with both peptides, authors used DLS, evaluating afterwards the
differences in activity (Lee et al., 2004). Also targeting tumors,
iron oxide NPs coated with an heptapeptide that recognize
fibrin-fibronectin complexes or chitosanNPswith antiangiogenic
peptide endostatin (ES) improved anticancer activity by targeting
the vascularization of the tumor (Agemy et al., 2010; Xie et al.,
2017). Coating nanoparticle surfaces with two or more different
peptides was also reported (Colombo et al., 2002; Marchiò et al.,
2004). Even so, ideally, anticancer therapies would be able to
eliminate tumors and malignant cancer cells, including those
that are no longer associated with the main tumor, without
toxicity toward healthy cells. NPs that act as drug carriers (for
drugs like doxorubicin, 5-fluororacil or cisplatin), with good
pharmacokinetic and pharmacodynamic profiles (using PEG
on their surface or polymer NPs), specific (by using small
peptides) and with enhanced cellular uptake would be the desired
candidates (Safra, 2003; Paolino et al., 2013; Ribeiro et al., 2016;
Gomes et al., 2018). For this system, the missing point is the
enhanced uptake, which was possible with the attachment of
CPPs to the nanoparticle surface, besides the AMPs necessary
for their activity. Authors tested the use of TAT, the HIV-1
derived CPP, by coupling it to NPs with PEG on their surface,
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and demonstrated the improved cellular uptake (Kuai et al.,
2010, 2011). Besides the CPP, these authors also tested the
possible applicability of different PEG molecules, due to their
concern for increasing NPs distribution near the tumor, but
loss of internalization ability (Kuai et al., 2010). Using DLS and
zeta-potential measurements, Kuai et al. studied the optimal
proportion of cleavable PEG to maintain their accessibility
and activity. Takara et al. also tested the incorporation of a
CPP (STR-R8) on the nanoparticle surface, that was already
coated with NGR motif peptides (recognizes CD13 presence in
endothelial tumor cells) and PEG, showing that a synergic effect
between all the molecules incorporated occurred (Takara et al.,
2010). For that, DLS and zeta-potential were used to evaluate
the best CPP amino acid residue to use for the anchoring,
considering that size should be stable, and that surface charge
is essential for NP targeting membrane interaction. Recently,
Xia et al. further increased the complexity with a high efficiency
construct: using seleniumNPs, which have advantages in terms of
dosage, biocompatibility, toxicity, and drug delivery, they coated
them with an anticancer peptide (RGDFC heptapeptide) and
incorporated DOX and siRNA (anti-Nanog, a human homeobox
protein that is essential for cancer cell proliferation) (Xia et al.,
2018). This SeNPs@DOX/siRNA system showed to be very
effective on the targeting and treatment of cancer, presenting
a new hypothesis as synergistic system. Nevertheless, regarding
cancer therapies, there is a lot to improve in terms of targeting
and efficiency of cancer eradication in vivo, because most of the
systems tested in vitro have been failing on clinical trials (Pearce
et al., 2012).

Nanoparticles in Cardiovascular Diseases
Although areas like cancer and antimicrobial resistance draw
most of the attention from the public and scientific community,
cardiovascular diseases (CVD) are the major epidemic of the
modern era, claiming a higher number of deaths than cancer,
malaria, AIDS, or tuberculosis. Indeed, CVD remains the most
common cause of death worldwide (Park et al., 2008). Just in
Europe, CVD are responsible for 45% of all deaths, reaching 4
million deaths per year (Townsend et al., 2015). Coronary heart
disease is the most common single cause of death, resulting
in 19% of deaths in men and 20% of deaths in women, much
higher than breast cancer in women (2%) and lung cancer in men
(6%) (Townsend et al., 2015). Most conventional therapeutics
and clinical approaches are outdated, and researchers are putting
their efforts into fast employing all the potential of “nano” in the
CVD management, approaching strategies for both imaging and
treatment of these conditions.

Developing New Agents for CVD Imaging
Conventional medical tools still fail on the detection of
atherosclerotic lesions and plaque rupture, while interventions
with a catheter ultrasound or magnetic resonance imaging
(MRI) give purely morphological information, without stating
the progression of inflammation and the occurring of functional
changes (Park et al., 2008). New imaging techniques and
agents are in high demand. Contrast agents incorporating
nanoparticles and peptides have significantly evolved and are

now capable of detecting and quantifying microthrombus.
Nonetheless, they mainly consist of hard particles, which present
excretion difficulties and slow or inexistent metabolization. The
tendency is to look for more compliant particles, like self-
assembling and small molecules, capable of flowing through the
microvasculature of clearance organs (Pan et al., 2009), with low
toxicity, good biodegradability, and biocompatibility (Park et al.,
2008). There have been advances in the development of fibrin-
specific manganese nanocolloids, that successfully reach the low
nanomolar range of detection and present a high relaxitivity
(Pan et al., 2009). These results are directly compared to the
micromolar range only of the mostly used gadolinium-based
agents.

In recent years, some approaches previously used mainly for
oncology imaging have been adapted to cardiovascular imaging,
as it is the case of iron oxide nanoparticles, especially in the form
of ultra-small supermagnetic iron oxide (USPIO) nanoparticles
(<50 nm) (Ploussi et al., 2015). Early use of these NPs for medical
imaging was described as a solution for the limiting factor in
MRI, the background signal produced by the host tissue, but
they can also be used for magnetic particle imaging (MPI), being
capable of providing a higher sensitivity and a better spatial
resolution (Gleich and Weizenecker, 2005). Due to the high
interest in these particles, several variations of superparamagnetic
iron oxide nanoparticles (SPIONs) can be found, as well as
the characterization of their behavior in different situations.
Park et al. have subjected three formulations of SPIONs to pH
variations (5, 7, 9, and 11) and time progression (30 days) (Park
et al., 2012). By light scattering analysis at pH 11, a significant
increase in hydrodynamic diameter was observed, leading to the
conclusion that nanoparticle aggregation is occurring, especially
when PEG was one of the components (Figure 4A). Under
further analysis, authors concluded that the PEG coating was
desorbed from the surface, leading to an unstable NP suspension
and triggering aggregation. At pH 7, there were no alterations in
measured sizes for the particle.

SPIONs can have multiple coating options. Thus, authors
can play with either PEG or other biocompatible molecules,
like chitosan. Szpak et al. studied the stability of iron oxide
nanoparticles coated with a thin layer of charged chitosan
derivatives (Szpak et al., 2013). Performing DLS measurements,
they concluded that the diameter for the negatively charged NPs
was slightly smaller, indicating an effect of the charge in the
behavior of its milieu. Further characterization of the coating
charge was performed by zeta-potential measurements. Authors
emphasized that, for biological applications, SPIONs must be
resistant to adsorption of biomacromolecules and that chitosan
might be the ideal candidate for facilitating several degrees of
physical properties manipulation, such as the tailoring of surface
charge. Another study has analyzed the stability of SPIONs at
37◦C, but this time with a dextran coating (Oberle and Lüdtke-
Buzug, 2013). The nanoparticles were stable at pH 7.2 for as
long as 6 weeks, while at pH 6.2 the hydrodynamic diameter
strongly increased, denoting particle aggregation, also visible by
precipitation (Figure 4B). This strongly suggests that dextran is
not only a biocompatible polymer, but also an excellent solution
to keep a SPION formulation stable at physiological conditions.
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FIGURE 4 | Example of dynamic light scattering applications to study

nanoparticle stability at different pH values (A,B) and temperatures (C). (A) Iron

nanoparticles (FeNPs) aggregation stability studied over time at four different

pH values. At the top, FeNPs without surface polymer; in the middle FeNPs,

coupled with PEG2000 and at the bottom FeNPs couple with PEG5000.

Adapted with permission from Park et al. (2012). Copyright 2018 American

Chemical Society. (B) SPIONs aggregation stability studied over time at two pH

values. Adapted from Oberle and Lüdtke-Buzug (2013). (C) Perfluoropentane

(PFP) micelles size stability studied at different temperatures. Micelles were

prepared with different percentages of PFP (Rapoport et al., 2007).

Iron oxide agents have been tested for the detection of
abdominal aortic aneurism (Richards et al., 2011; Sadat et al.,
2011), atherosclerotic plaques (Schmitz et al., 2001; Kooi et al.,
2003), and acute myocardial infarction (Alam et al., 2012;
Yilmaz et al., 2012, 2013a,b). Tang et al. also extensively studied
the use of ferumoxtran-10 for imaging carotid plaques (Tang
et al., 2009a,b), carotid stenosis (Tang et al., 2006) and carotid
atheromas (Tang et al., 2007, 2008). Moreover, several of these
tests are basically giving a new use for ferucarbotran (Resovist),
an agent firstly used to detect either benign or malign hepatic
lesions (Namkung et al., 2007). The particles usually have a
core of magnetite (Fe3O4)/maghemite (γFe2O3) coated with
carboxydextran, and an overall hydrodynamic diameter of 62 nm
(Reimer et al., 1995). By 2015, only Resovist was available in very
limited countries, with other agents being stopped for further
development. This is the case of ferumoxtran-10 (Sinerem), also
widely tested in the cited studies for cardiovascular conditions,
although initially developed for lymph node imaging. Here, the
core is a crystalline inverse spinel structure of magnetite, coated
with dextran, with 20 nm diameter (Shen et al., 1993).

At the same time, the field is also actively looking for new
disease biomarkers and intensively exploring agents involved in
the inflammatory response in CVD. In an effort to provide better

quantitative macrophage imaging in vascular tissue, Keliher et al.
developed a class of modified polyglucose nanoparticles, with a
size below the limit for renal excretion (Keliher et al., 2017).
When macrophages fail in removing cholesterol deposits from
the arterial wall, an inflammatory response is triggered, with
recruitment of more cells, which enhances inflammation and
compromises blood flow and tissue integrity. Animal studies
succeeded in detecting atherosclerotic regions with practically no
interaction with other lymphocytes. The same happened when
using mice with permanent coronary ligation (Keliher et al.,
2017).

With CVD prevention being the focus of significant attention
from the scientific community, and studies pointing to new
disease biomarkers steadily reaching publications (Hijazi et al.,
2016; Walters et al., 2016), some authors explored CVD
relationship with other medical conditions (Gerdes et al.,
2014; Pavo et al., 2015). Following the work on screening
for a peptide to bind to atherosclerotic plaques (Hong et al.,
2008), other authors have carried out its incorporation as a
targeting moiety in chitosan nanoparticles (Park et al., 2008).
After working on hydrophobic modified glycol chitosan (HGC)
nanoparticles as cancer imaging probes (Park et al., 2007) and
for other therapeutic purposes (Kwon et al., 2003; Park et al.,
2004; Kim et al., 2006), the team was able to conjugate the
peptide on the NP surface and detect the selective binding to
atherosclerotic plaques in vivo, by adhering to the IL-4 receptor
on endothelial cells, macrophages and smooth muscle cells (Park
et al., 2008). The authors highlighted that these 270 nm self-
assembled nanoparticles have a long residence time even in
flow conditions. In fact, the fluorescence in the aortic arch
of the Ldlr−/− mice exhibited a more prominent fluorescence
signal than the aortic arch of healthy mice, even after 6 h from
intravenous administration.

Drug Delivering Nanoparticles for CVD Treatment
The delivery of a therapeutic drug through a nanoparticle
vehicle allows high drug concentrations in the intended local
environments, while the total drug concentration and side effects
are significantly reduced (Chen et al., 2015). In CVD, the
introduction of these therapeutic agents can be done either
with surgical intervention or through systemic administration.
In cases of coronary artery disease, a common approach
is a percutaneous coronary intervention. This procedure is
performed under local anesthesia and involves the insertion
of a guidewire into the aorta, to then pass other therapeutic
tools, such as inflatable balloons, stents, and catheters (Chen
et al., 2015). An usual side effect is restenosis, which is a
narrowing of the artery, either by remodeling and recoiling of
the vessel lumen, or by proliferation of smooth muscle cells in
response to the injury caused by the inserted devices (Cyrus
et al., 2008). The insertion of a stent is indicated to prevent
the situation, but it may itself be a trigger to a proliferative
response, and also a vehicle for cell migration, decreasing the
internal diameter of the treated vessel. For this reason, it is
important to develop modified coatings. The real advantages of
using nanoparticle infused polymers are still under evaluation,
with some studies concluding that the use of drug-eluting stents
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has a risk for thrombosis at least as great as with bare-metal
stents, showing no significant effect in long-term survival and a
reduction in the need for re-intervention (Kastrati et al., 2007).
Other authors have shown that although successfully preventing
restenosis, drug-eluting stents have a major impact delaying
endothelial healing (Cyrus et al., 2008). That occurs because the
coatings are made using cytostatic agents, like sirolimus and
paclitaxel (Brito and Amiji, 2007). Nonetheless, despite growing
expertise in manipulating surfaces, structures and materials
containing nanoparticles, it is also important to keep in mind
that the nanotopography also plays a role in promoting cell
mobility, adhesion, and differentiation (González-Béjar et al.,
2016).

The increased variety of innovative materials for stent
manufacture as also raised some awareness to determine, not
only which have a better drug releasing performance, but
also which are the safest to use in in vivo magnetic particle
imaging. Wegner et al. explored the heating patterns of stents
made from stainless steel, nitinol, platinum-chromium, and
cobalt-chromium, from several diameters and lengths (Wegner
et al., 2018). The study concluded that temperature increase
is a real concern in larger stents, with diameter playing a
leading role. In addition, the authors suggest that a combination
of geometries, and conductive and non-conductive materials
would most probably prove to be the best approach for stent
design.

On another approach, we can also find the direct targeting of
blood clots by vehiculation of thrombolytic agents. Recombinant
tissue plasminogen activator (tPA) or streptokinase are
administered in case of ischemic events, despite frequent
complications, such as severe hemorrhage. Both agents act by
activating plasmin, which will then lyse the fibrin from the clot
structure. By directing the action to the specific clot site, it is
possible to diminish the administered doses, maintaining or even
improving the outcome, and avoiding a systemic effect that leads
to the unwanted symptoms (Elbayoumi and Torchilin, 2008;
Kim et al., 2009; Koudelka et al., 2016).

Perfluorocarbons have long been a target of scientific interest
for their properties of transport and delivery, being firstly
studied for their ability to dissolve oxygen, and later modified
with several less toxic variations to produce emulsions, as
a substitute of blood components (Clark and Gollan, 1966;
Mitsuno et al., 1984; Riess, 1984). Nowadays, perfluorocarbons
are still being explored for their drug carrying properties,
with applications in both prevention and treatment of medical
conditions (Chang et al., 1988; Schad and Hynynen, 2010;
Song et al., 2016; Vemuri et al., 2016). Rapoport et al., for
example, have already studied the influence of temperature
on the stability of PEGylated perfluorochemical formulations
(Rapoport et al., 2007). Following size evolution up to 42◦C,
by DLS, maintaining temperature for 5min and cooling the
sample before size measurements, the authors were able to
observe the transformation of the nanodroplets in microbubbles
within the prepared formulations (Figure 4C). Perfluorocarbon
nanoparticles were also derivatized for fibrin targeting in blood
clot (Lanza et al., 1996). Authors used a biotinylated form of the
emulsion to target the NPs to thrombin. As a way of ensuring

the presence of functional biotin at the surface, they performed
an avidin titration while measuring particle size by DLS. The
method revealed a steady increase in size with increasing
concentrations of avidin, which demonstrates the successful
functionalization of the emulsion. In another application, in vitro
studies have demonstrated the lytic activity of perfluorocarbon
NP formulations directed to clot dissolution. Marsh et al.
successfully conjugated streptokinase on the surface of NPs made
mainly of fluorooctylbromide, egg yolk lecithin, cholesterol
and MPB-PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-[4-(p-maleimidophenyl)butyramide]) for streptokinase
conjugation (Marsh et al., 2007). The in vitro assays showed an
almost complete lysis of the human plasma clots in less than
60min. In fact, Banai et al. demonstrated that the administration
of a nanoencapsulated drug, in this case tyrphostin AGL-
2043, can even be more clinically interesting than its surface
adsorbed or even free form, in reducing in-stent neointimal
formation (Banai et al., 2005). The in vitro characterization of
the particles used by Banai et al. on their studies was previously
studied by other authors (Chorny et al., 2002). These authors
focused on describing a modified nanoprecipitation method
for optimization of the particles’ size, drug recovery yield, and
release kinetics. NPs intended for intravascular delivery must
be developed under optimal conditions. The authors used
DLS measurements to evaluate the influence of the polymer
poly(D,L-lactide) (PLA) concentration and ethanol presence
in production varying sizes of particles. The size of the NPs
increased with the increase of the PLA concentration used
and decreased by increasing the concentration of ethanol.
Ethanol impairs the solubility of PLA, decreasing the time for
precipitation when in contact with an aqueous phase, producing
smaller droplets. Authors also stress the importance of size in
the release of the therapeutic agent, with their data showing
that smaller particles had higher release rates, as a result of
a greater surface area exposed to the medium (Chorny et al.,
2002).

Combining Imaging and First-Line

Treatment—Theranostics
Theranostics is a field of individualized medicine that arises from
combining diagnostics and therapy, being possible due to the
capacity of nanoplatforms to carry cargo and target a specific
agent. Being a major aim on the area of cancer research, on the
specific context of cardiovascular diseases the ultimate goal is to
non-invasively define atherosclerotic burden, to deliver effective
targeted drug at a fraction of previous levels, and to quantify
local response to treatment (Winter et al., 2006). Although still
far from meeting clinical standards, this is fast progressing, with
in vivo studies showing high success. A clot-binding peptide
was already used in the surface of micelles to target blood clots,
both concentrating an imaging dye and specifically delivering
a thrombin inhibitor (Peters et al., 2009). Other authors have
used a formulation with a perfluorocarbon core surrounded by
a lipid coat, which was derivatized with PPACK (phenylalanine-
proline-arginine-chloromethylketone), delivering that thrombin
inhibitor to the kidney (Chen et al., 2015). Due to the
chemical properties of the core of the NP, it was possible
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FIGURE 5 | Schematic representation of nanoparticle application in cancer therapy, considering the different size distribution profiles obtained after surface

derivatization. NPs may have their surface derivatized with different materials, considering their intended purpose. If the coupled NPs do not aggregate, the size

distribution will only reflect an increase corresponding to the coupling material, passing through the blood circulation and acting at the desired targets. Surface

derivatization that promotes NP aggregation will be identified in the size distribution. On the bloodstream, NP aggregates will be recognized by macrophages, which

will be responsible for their elimination.

to run quantitative molecular imaging in vivo with fluorine
MRI, confirming the concentration of particles in the kidney,
thrombin binding, and perfusion recovery. The same combined
approach was used twice, in the first demonstrating that
paramagnetic perfluorocarbon nanoparticles could be used for
the non-invasive detection and delineation of a marker of
aortic plaque angiogenesis, as well as the local delivery of
an effective single treatment of fumagillin, inhibiting plaque
angiogenesis at a dose several orders of magnitude lower than
previously reported (Winter et al., 2006, 2008). This type of
approach becomes especially relevant when the disease severity
is rapidly advancing, as the targeted local administration of
antiangiogenic agents delays plaque progression and enlarges
the window of opportunity for clinical intervention through
other conventional methods. The same authors demonstrated
that αVβ3-targeted fumagillin NPs could also work synergistically

with other therapeutic agents, greatly increasing a continuous
clinically relevant antiangiogenic effect (Winter et al., 2008).

This class of combined-effect NPs are now tailoring the
future of new therapeutics, with most significance in the
administration of therapeutic agents as the disease is being
diagnosed, providing a first line of care to the patient. In fact,
both the NPs mentioned in the imaging and in the treatment
sections may be further manipulated to also acquire the other
applicability.

CONCLUSION

Nanomedicine is considered as, at least, one of the most
relevant paths for the future of therapeutics. This perception has
dramatically increased with the new paradigm of personalized
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medicine. Inserted in this category, NPs with activity toward
the diseases responsible for the major death tolls worldwide
have deserved special attention. A myriad of systems has
been proposed in recent years, some of them described above.
However, just a small number has reached clinical trials.
More studies are necessary to assess the real potential of
these nanosystems, and even different formulations need to be
considered if we want to tackle cardiovascular diseases, cancer,
or multi-resistant infections.

Common to all systems described are the methods necessary
to characterize the proposed nanoparticles. In this field, light
scattering spectroscopy techniques have a considerable number
of roles to play, for different purposes. Regarding DLS, it is
mostly used to determine the size distribution of the NPs,
but some authors use this technique in different ways (Water
et al., 2015; Xie et al., 2017; Xia et al., 2018). Confirm surface
functionalization, characterize long term stability in different
media or pH values, and identification of the aggregation profile
are just examples of other possible applications of this technique
(Figure 5) (Mohanty et al., 2013; Casciaro et al., 2017; Shmarakov
et al., 2017; Zhang et al., 2018). As for zeta-potential, optimization
of peptide anchoring profile to the nanoparticle, confirmation
of surface charge modification, and validation of electrostatic
interaction between the NP and the target cells are some of the
processes where it could be essential (Kuai et al., 2010; Takara

et al., 2010; Pal et al., 2016). In future studies, light scattering
should be essential for the characterization and development of
nanoparticles applied to therapeutics, which do not invalidate the
fact that other techniques should be also used to further confirm
the conclusions obtained.
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