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Abstract. Several methods currently exist for solving fuzzy linear fractional programming problems under
non negative fuzzy variables. However, due to the limitation of these methods, they cannot be applied for
solving fully fuzzy linear fractional programming (FFLFP) problems where all the variables and parameters
are fuzzy numbers. So, this paper is planning to fill in this gap and in order to obtain the fuzzy optimal
solution we propose a new efficient method for FFLFP problems utilized in daily life circumstances. This
proposed method is based on crisp linear fractional programming and has a simple structure. To show the
efficiency of our proposed method some numerical and real life problems have been illustrated.

1. Introduction

In real world situations, sometimes, the programming models could better fit and give more insights,
if we consider optimization of the ratio between the physical and/or economic quantities. Fractional pro-
gramming (FP) replied to this need and efficiently used in several practical applications like cutting stock
problems, ore blending problems, shipping schedules problems and different fields such as education,
hospital administration, court systems, air force maintenance units, Bank branches, etc., for the past five
decades; see [1–3] for more details. Meanwhile, the linear fractional programming (LFP) problems have
attracted the interest of many researches due to its application in decision making such as production plan-
ning, marketing and media selection, university planning and student admissions, financial and corporate
planning, health care and hospital planning, etc. see [4, 5] and references therein.

In the literature, many researchers have been recommended to solve LFP problems. Isbell and Marlow
[6], first identified an example of LFP problem and solved it by a sequence of linear programming problems.
Charnes and Cooper[5] considered variable transformation method to solve LFP problems. Bitran and
Novaes [7] considered updated objective functions method to solve LFP problems by solving a sequence
of linear programs.Martos[8], Swarup[9],Pandy and Punnen [10], Das and Mandal [11] solved the LFP
problem by various types of solution procedures based on simplex method; see also [12–15] .These methods
are interesting, however, in daily life circumstances, due to ambiguous information supplied by decision
makers, the parameters are often illusory and it is very hard challenge for decision maker to make a
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decision. In such a case, it is more appropriate to interpret the ambiguous coefficients and the vague
aspirations parameters by means of the fuzzy set theory.

The concept of fuzzy set and fuzzy numbers was first introduced [16] and applied efficiently for linear
optimization; see [17-32] and references therein. Furthermore, several researchers have investigated linear
fractional programming problems in the fuzzy framework. For example, Sakawa and Yano[33] proposed a
method to solve multi-objective linear fractional programming (MOLFP) problem under a fuzzy satisfied.
Dutta et al.[34] established the sensitivity analysis in fuzzy linear fractional programming (FLP) problem.
Some authors solved the FLFP problems by fuzzy goal programming approach [35–37, 39, 48]. De and
Deb [40] considered a fuzzy linear fractional programming problem using sign distance ranking method
where all the terms are triangular fuzzy number. Younesset al.[41] imported a design to finding bi-level
multi-objective fractional integer programming problem consists of fuzzy numbers in the right-hand side
of the constraints. Pop and Minasian[42], proposed a method for solving fully falsified linear fractional
programming problems where all the parameters and variables are triangular fuzzy numbers. In [43, 44],
they considered the same problem of [42] for solving fully fuzzy linear fractional programming problem.
Veeramani and Sumathi [45] proposed solution procedure for solving fuzzy linear fractional programming
problem by using fuzzy mathematical programming approach. Very recently, a number of papers have
exhibited their interest to solve the FLFP problems [46-51].

In this paper, we consider a new type of fuzzy arithmetic for triangular numbers in which the coefficients
of the objective function and the constraints were represented by triangular fuzzy numbers with inequality
constraints utilized in daily life problem. The proposed technique is very easy and less mathematical
calculation. The rest of our work is organized as follows: In Section2, we review some concept and
arithmetic between two triangular of fuzzy numbers. In Section 3 formulation of FFLFP problems and use
of ranking function are discussed. The new method for solving FFLFP problems is affirmed in Section 4.
In Section 5, the numerical examples and the obtained results are given for illustrating the new method. In
Section 6, advantages of the proposed method are discussed. Finally, the conclusion is given in Section 7.

2. Preliminaries

In this section, the basic definitions involving fuzzy sets, fuzzy numbers and operations on fuzzy
numbers are outlined. For detailed information on fuzzy set theory, we refer the interested reader to
[20, 52].
Definition 2.1[20] Let X denote a universal set.Then a fuzzy subset Ã of Xis defined by its membership
function µÃ : X → [0, 1]; which assigned a real number µÃ(X) in the interval [0,1], to each element
x ∈ X,where the value of µÃ(X) at x shows the grade of membership of x in Ã. A fuzzy subset Ã can be
characterized as a set of ordered pairs of element x and grade µÃ(X) and is often written Ã=(x, µÃ(X)) : x ∈ X
is called a fuzzy set.
Definition 2.2[20] A fuzzy number Ã =(b, c, a) is said to be a triangular fuzzy number if its membership
function is given by

µÃ(X) =


(x−b)
(c−b) , b ≤ x ≤ c,
(x−a)
(c−a) , c ≤ x ≤ a,
0, else.

Definition 2.3[46] A triangular fuzzy number (b, c, a) is said to be non-negative fuzzy number iff b ≥ 0.
Definition 2.4[46] Two triangular fuzzy number Ã=(b, c, a) and B̃=(e, f , d) are said to be equal iff b = e, c =
f , a = d.
Definition 2.5[46] A ranking is a function R : F(R) → R, where F(R) is a set of fuzzy number defined on
set of real numbers, which maps each fuzzy number into the real line, where a natural order exists. Let
Ã=(b, c, a) is a triangular fuzzy number then R(Ã)= b+2c+a

4 .
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Definition 2.6[46] Let Ã=(b, c, a),B̃=(e, f , d) be two triangular fuzzy number then:
i.Ã + B̃=(b, c, a) + (e, f , d)=(b + e, c + f , a + d),
ii.Ã − B̃=(b, c, a) − (e, f , d)=(b − d, c − f , a − e),
iii.Let Ã=(b, c, a) be any triangular fuzzy number and B̃ =(e, f , d) be a non negative triangular fuzzy number
then

Ã × B̃ =


(be,cf,ad), b ≥ 0
(bd,cf,ad), b < 0, a ≥ 0
(bd,cf,cd), c < 0

Definition 2.7 Let Ã=(b, c, a),B̃=(e, f , d) be two triangular fuzzy numbers. We say that Ã is relatively less
than B̃, if:
i. c < f or,
ii. c = f and (a − b) > (d − e) or,
iii.c = f , (a − b) = (d − e) and (a + b) < (d + e).
Note: It is clear from the Definition 2.7 that Ã = B̃ if c = f , (a − b) = (d − e) and (a + b) = (d + e) .

3. Linear Fractional programming (LFP) problem

In this section, the general form of LFP problem is discussed. Furthermore, Charnes and Cooper’s linear
transformation is summarized.

Max Z(x) =
c j

t x j + p

d j
t x j + q

(1)

subject to
{x ≥ 0, Ax ≤ b ⇒ G (x) > 0.}

where j = 1, 2, .....,n,A ∈ Rm×n, b ∈ Rm, c, d ∈ Rn, p, q ∈ R.For some values of x, G(x) may be equal to zero.
To avoid such cases, one requires that either {x ≥ 0, Ax ≤ b → G (x) > 0} or {x ≥ 0, Ax ≤ b → G (x) < 0}.
For convenience, assume that LFP problem satisfies the condition that

{x ≥ 0, Ax ≤ b → G (x) > 0} (2)

Remark 3.1 [3]
The problem 1 is said to be standard concave –convex programming problem, if F(x) is concave on S

with F(ζ) ≥ 0 for some ζ ∈ S and G(x) is convex and positive on S.
Definition 3.1 [3]

The two mathematical programming problem (i)MaxF(x), subject to x ∈ S,(ii)MaxG(x), subject to x ∈ U
will be said to be equivalent if there is a one to one map f of the feasible area of (i), on to the feasible area
of (ii), such that F(x) = G( f (x)) for all.
Theorem 3.1 [3] Assume that no point (z, 0) with (z, 0) is feasible for the following linear programming
problem.

Max ctz + pt
Subject to

dtz + qt = 1,
Az − bt = 0,
t > 0, z ≥ 0, z ∈ Rn, t ∈ R.

(3)

Then, with the condition of relation 2, the LFP problem 1 is equivalent to the linear programming
problem model 3.



S. K. Das et al. / Filomat 34:15 (2020), 5073–5084 5076

Now, consider the two related problems

Max tF( z
t )

Subject to
A( z

t ) − b ≤ 0,
tG( z

t ) = 1,
t > 0, z ≥ 0

(4)

and

Max tF( z
t )

Subject to
A( z

t ) − b ≤ 0,
tG( z

t ) ≤ 1,
t > 0, z ≥ 0

(5)

Where model (4) is obtained from model (1) by the transformation t = 1
G(x) , z = tx, and model (5) differs

from model (4) by replacing the equality constraints tG( z
t ) = 1 by an inequality constraints tG( z

t ) ≤ 1.
Theorem 3.2 [3] Let for some ζ ∈ S,G(ζ) ≥ 0,if model (1) reaches a (global) maximum at x = x∗,then model
5 reaches a (global) maximum at a point (t, z) = (t∗, z∗) where ( z∗

t∗ = x∗) and the objective functions at these
points are equal.
Theorem 3.3 [3] If model (1) is a standard concave-convex programming problem which reaches a maximum
at a point x∗ , then the corresponding transformed problem model (5) attains the same maximum value at
a point (t∗, z∗) where ( z∗

t∗ ) = x∗ . Moreover model (5) has a concave objective function and a convex feasible
set. Suppose that:

Max Z(x) =
F(x)
G(x)

(6)

subject to
{x ≥ 0, Ax ≤ b ⇒ G (x) > 0.}
Where F(x) is concave and negative for each x ∈ S and G(x) is concave and positive on S, then
Maxx∈S

F(x)
G(x) ⇐⇒ Minx∈S

−F(x)
G(x) ⇐⇒ Maxx∈S

G(x)
−F(x)

where −F(x) is convex and positive. Therefore, the problem (6) is converted into standard concave-
convex programming problem transformed to the following linear programming problem:

Max tF( z
t )

Subject to
A( z

t ) − b ≤ 0,
tG( z

t ) ≤ 1,
t > 0, z ≥ 0

(7)

4. Fully fuzzy linear fractional programming and Innovation for its solution

Consider the following fully fuzzy linear fractional programming (FFLFP) problem. We are going
to approach m fuzzy equality constraints and n fuzzy variables where all the terms are triangular fuzzy
numbers.

Max Z = c̃t x̃+ α̃
d̃t x̃+ β̃

Subject to
Ã × x̃ ≤ b̃,

x̃ ≥ 0

(8)
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Where c̃t = [̃c j] is 1 by n matrix; d̃t = [d̃ j] is 1 by n matrix; x̃ = [x̃ j] is n by 1 matrix; Ã = [Ãi j] is m by n
matrix; b̃ = [̃bi j] is a m by 1 matrix; α̃=[α̃ j] and β̃=[β̃ j] are the scalars. Here all the parameters c̃ j,d̃ j ,̃x j and ãi j
are set of fuzzy numbers.

Mention: Let x̃ a fuzzy optimal solution of FFLFP problem. If there exists a fuzzy number ỹ where it
satisfies the following conditions:
i.ỹ is a non-negative fuzzy number,
ii.Ã × ỹ ≤ b̃,
iii. <(̃ct

× x̃)=<(̃ct
× ỹ),

iv. <(d̃t
× x̃)=<(d̃t

× ỹ),
then ỹ is also an exact optimal solution of the problem (8) and is called a substitute optimal solution.

Consider the model (8) and let x̃∗ = (x∗, y∗, z∗) be an optimal solution of this FFLFP.
Furthermore, let all the parameters x̃, c̃, α̃, β̃, d̃, b̃ and z̃ are represented by triangular fuzzy numbers
(x, y, z), (p, q, r), (α1, α2, α3), (β1, β2, β3), (u, v,w), (b1, b2, b3) and (z1, z2, z3) respectively. Then we can rewrite the
mentioned FFLFP as follows:

Max(z1, z2, z3) =
(p,q,r)t

×(x,y,z)+(α1,α2,α3)
(u,v,w)t×(x,y,z)+(β1,β2,β3)

Subject to
(b, c, a) × (x, y, z) ≤ (b1, b2, b3),

(x, y, z) ≥ 0.
Therefore, by definition 2.6 it i easy to say that x∗, y∗, z∗ are the optimal solutions of the following crisp

problems:

(P1) Max z1 =
px+α1

ux+β1

Subject to bx ≤ b1
x ≥ 0.

(P2) Max z2 =
qy+α2

vy+β2

Subject to cy ≤ b2
y ≥ 0.

(P3) Max z3 = rz+α3
wz+β3

Subject to az ≤ b3
z ≥ 0.

Hence, from above demonstrations, the steps of our method can be written as follows:
Step 1.Write the FFLFP problem as follows:

Max z̃ =
c̃ jx̃ j+α̃

d̃ jx̃ j+β̃

Subject to:
ãi jx̃ j ≤ b̃i

x̃ j ≥ 0.
Step 2.If all the terms represent the triangular fuzzy numbers, then write the FFLFP problem as follows:

Max z̃ =
(p j,q j,r j)×(x j,y j,z j)+(α1,α2,α3)
(u j,v j,w j)×(x j,y j,z j)+(β1,β2,β3)

Subject to:
(bi j, ci j, ai j) × (x j, y j, z j) ≤ (bi, 1i, hi)
(x j, y j, z j) ≥ 0.
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Step 3. To determine the optimal value of the above problem, transform both the objective function and
constraints into its equivalent crisp problem. Then, the problem may be written as in the form of three
separate problems (P1), (P2) and (P3) of crisp linear fractional programming problem.
Step 4. Start with the problem (Pn);(n = 1, 2, 3) go to Step 5.
Step 5. Set n = 1.
Step 6. The above problems are crisp linear fractional programming problem, which can be solved by
conventional method which was discussed in Section 3.
Step 7. If n = 3, go to Step 8, otherwise n = n + 1, go to Step 6.
Step 8. Write the solution of FFLFP problems in the form of x̃ and obtain the optimal solution as z̃ = (z1, z2, z3).
Step 9. Finally, by using Definition 2.7, compare the results.

5. Application of our proposed method

In this section, we take some real life problems and proved ability of our proposed method:
Example 5.1. In TATA Hospital Jamshedpur, India has two nutritional experiments (Vitamin A and Calcium)
with two products Milk (glass) and Salad (500mg) with profit around 6 dollars and around 2 dollars per
unit respectively. However, the cost for each one unit of the above product is around 1 and around 1 dollars
respectively. Consider that a fixed cost of around 2 dollars as added to the cost function. Determine the
maximum profit of these two products. Here, the environmental coefficients such as profit (due to market
situations), cost (due to market conditions), vitamin A and calcium (due to the presents of the suppliers) are
imprecise numbers with triangular possibility distributions over the planning horizon due to incomplete
information. For example, the profit of the product A is (4, 6, 8) dollars. Similarly, the other parameters
and variables are assumed to be triangular fuzzy numbers. Hence, above problem can be formulated as
the following FFLFP problem:

Table 1: Information of Example 5.1

Nutrient Milk (glass) Salad (500mg) Min nutrient re-
quired

Vitamin A 1 1 7
Calcium 2 3 17

Solution: In this case, let x1 and x2 to be the amount of units of Vitamin A and Calcium to be produced.
Then the above problem can be formulated as:

Max z̃ = 6̃x̃1+̃2x̃2

x̃1+x̃2+̃2
Subject to:

x̃1 + x̃2 ≤ 7̃
2̃x̃1 + 3̃x̃2 ≤ 1̃7

x̃1, x̃1 ≥ 0.

Let us we take x̃1 = (y1, z1, x1), x̃2 = (y2, z2, x2), z̃ = (z1, z2, z3).Now we consider the coefficients
7̃ = (3, 7, 11), 1̃7 = (7, 17, 27), 6̃ = (4, 6, 8), 2̃ = (1, 2, 3), 3̃ = (2, 3, 4) and 1̃ = (0, 1, 2).The problem can be
written as follows:

Max (z1, z2, z3) =
(4,6,8)(y1,z1,x1)+(1,2,3)(y2,z2,x2)

(0,1,2)(y1,z1,x1)+(0,1,2)(y2,z2,x2)+(1,2,3)
Subject to:

(0, 1, 2)(y1, z1, x1) + (0, 1, 2)(y2, z2, x2) ≤ (3, 7, 11)
(1, 2, 3)(y1, z1, x1) + (2, 3, 4)(y2, z2, x2) ≤ (7, 17, 27)

y1, y2, z1, x1, x2 ≥ 0.
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The fully fuzzy linear fractional programming problems (P1), (P2) and (P3) will be:(
p1

)
Maz z1 =

4y1+y2

1
(
p2

)
Maz z2 = 6z1+2z2

z1+z2+2
(
p3

)
Maz z3 = 8x1+3x2

2x1+2x2+3
s.t. y1 + 2y2 ≤ 7 s.t. z1 + z2 ≤ 7 s.t. 2x1 + 2x2 ≤ 11

y1, y2 ≥ 0 2z1 + 3z2 ≤ 17 3x1 + 4x2 ≤ 27
z1, z2 ≥ 0 x1, x2 ≥ 0

The problems (P1), (P2) and (P3) are crisp LFP problems, which can be solved by the classical methods
discussed in Section 3.
Then, we obtain the fuzzy optimal solution as:
x̃1 = (y1, z1, x1) = (5.5, 7, 7) and x̃2 = (y2, z2, x2) = (0, 0, 0).
and the optimal value of the problem as:
Z̃1 = (ZL,ZM,ZU) = (3.14, 4.6, 28).
In Veeramani and Sumathi methods [51] the optimal value of the problems are:
Z̃2 = (ZL,ZM,ZU) = (3.14, 4.4, 22).
In Stanojevic and Stancu method [54], the fuzzy optimal values are:
Z̃3 = (ZL,ZM,ZU) = (3.2, 4.5, 28).
By comparing the results of the proposed method with two existing methods [51,54], based on ranking
function and the ordering by Definition 2.5, we can conclude that our result is more effective, because:
Z̃1 = 10.08 > Z̃3 = 10.05 > Z̃2 = 8.48
By comparing proposed method results with existing method [51,54], based on Definition 2.7, we conclude
that our result is more efficient than other existing method.
3.14 = (ZL)(proposed method) = (ZL)(method of[51]) < (ZL)(method of [54])
7.74 = (ZL + ZM)(proposed method) > (ZL + ZM)(method of [54]) = 7.7 > (ZL + ZM)(method of [51]) = 7.54
(3.14, 4.6, 28) = (Z̃1)(proposed method) > (Z̃2)(method of [54]) = (3.2, 4.5, 28) > (Z̃3)(method of [51]) = (3.14, 4.4, 22)
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Figure 1: Membership function of the optimal solution for proposed method and existing method
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In figure 1, we compare the membership function for the proposed method and the existing methods
[51, 54]. Graph (Fig. 1) show that the modified technique yields better values of most of the membership
functions and individual objective functions in comparison of existing methods [51,54]. It is clear that
both the approaches are close to one another but the modified methodology is efficient and requires less
computation than earlier technique in terms of considering the solution preferences by the decision maker
at each level. In the Fig. we mention Z is a objective function and Zπ is a membership functions.
The following real life problem which considered by Veeramani and Sumathi [51] is used to demonstrate
the solution procedures and clarify the effectiveness of the proposed approach.

Example 5.2: Dali Company is the leading producer of soft drinks and low-temperature foods in Taiwan.
Currently, Dali plans to develop the South-East Asian market and broaden the visibility of Dali products
in the Chinese market. Notably, following the entry of Taiwan to the World Trade Organization, Dali plans
to seek strategic alliance with prominent international companies and introduced international bread to
lighten the embedded future impact. In the domestic soft drinks market, Dali produces tea beverages to
meet demand from four distribution centers in Taichung, Chiayi, Kaohsiung, and Taipei, with production
being based at three plants in Changhua, Touliu, and Hsinchu. According to the preliminary environmental
information, Table.2 summarizes the potential supply available from the given three plants. The forecast
demand from the four distribution centers as is shown Table 3. The profit of the company gained by
each route is presented in Table 4. Table 5 summarizes the unit shipping cost for each route for the
upcoming season. The environmental coefficient and related parameters generally are imprecise numbers
with triangular possibility distributions over the planning horizon due to incomplete or unobtainable
information. For example, the unavailable supply of the Changhua plant is (7.2, 8, 8.8) thousand dozen
bottles, the forecast demand of the Taichung distribution center is (6.2, 7, 7.8) thousand dozen bottles, profit
per dozen bottles for Changhua to Taichung is (8, 10, 10.8) dollars and the transportation cost per dozen
bottles for Changhua to Taichung is (8, 10, 10.8) dollars. The management of Dali is initiating a study to
maximize the profit as much as possible.

Table 2: Supply of the plants

Source Changhua Touliu Hsinchu
Supply(thousand
dozen bottles)

(7.2,8,8.8) (12,14,16) (10.2,12,13.8)

Table 3: Demand of the destinations

Destination Taichung Chiayi Kaohsiung Taipei
Demand(thousand
dozen bottles)

(6.2,7,7.8) (8.9,10,11) (6.5,8,9.5) (7.8,9,10.2)

The real world problem can be modeled to the following FFLFP problem:

Maz z =


(8, 10, 10.8) x11 + (20.4, 22, 24) x12 + (8, 10, 10.6) x13 + (18.8, 20, 22) x14+
(14, 15, 16) x21 + (18.2, 20, 22) x22 + (10, 12, 13) x23 + (6, 8, 8.8) x24+
(18.4, 20, 21) x31 + (9.6, 12, 13) x32 + (7.8, 10, 10.8) x33 + (14, 15, 16) x34


(1.5, 2, 2.5) x11 + (4, 5, 6) x12 + (1.3, 2, 2.5) x13 + (3, 4, 5) x14+
(2.5, 3, 4) x21 + (2, 3, 4) x22 + (2.3, 3, 4) x23 + (1.5, 2, 2.5) x24+
(3, 4, 5) x31 + (2, 3, 4) x32 + (1.5, 2, 2.7) x33 + (2, 3, 4) x34


Subject to:
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Table 4: Profit of the company

Source Destination
Taichung Chiayi Kaohsiung Taipei

Changhua (8,10,10.8) (20.4,22,24) (8,10,10.6) (18.8,20,22)
Touliu (14,15,16) (18.2,20,22) (10,12,13) (6,8,8.8)
Hsinchu (18.4,20,21) (9.6,12,13) (7.8,10,10.8) (14,15,16)

Table 5: Shipping costs

Source Destination
Taichung Chiayi Kaohsiung Taipei

Changhua (1.5,2,2.5) (4,5,6) (1.3,2,2.5) (3,4,5)
Touliu (2.5,3,4) (2,3,4) (2.3,3,4) (1.5,2,2.5)
Hsinchu (3,4,5) (2,3,4) (1.5,2,2.7) (2,3,4)

x11 + x12 + x13 + x14 ≤ (7.2, 8, 8.8)
x21 + x22 + x23 + x24 ≤ (12, 14, 16)
x31 + x32 + x33 + x34 ≤ (10.2, 12, 13.8)
x11 + x21 + x31 ≤ (6.2, 7, 7.8)
x12 + x22 + x32 ≤ (8.9, 10, 11.1)
x13 + x23 + x33 ≤ (6.5, 8, 9.5)
x14 + x24 + x34 ≤ (7.8, 9, 10.2)
xi j,where i = 1, 2, 3; j = 1, 2, 3, 4.

We solved the above problem by using our proposed method. The transformed linear programming
problems are solved by classical methods and we get the fuzzy optimal value of the problem as:

Z̃1=(ZL,ZM,ZU)=(2.26, 4.64, 9.48).

In Veeramani and Sumathi methods [51] the optimal value of the problems are:
Z̃2=(ZL,ZM,ZU)=(2.2, 4.35, 7.39).

In Stanojevic and Stancu methods [54], the fuzzy optimal values are:
Z̃3=(ZL,ZM,ZU)=(2.3, 4.54, 7.96).

By comparing the results of the proposed method with two existing methods [51,54], based on ranking
function and the ordering by Definition 2.5, we can conclude that our result is more effective, because:
Z̃1 = 5.25 > Z̃3 = 4.83 > Z̃2 = 4.57
By comparing proposed method results with existing method [51,54], based on Definition 2.7, we conclude
that our result is more efficient than other existing method.
2.3 = (ZL)(method of [54]) > 2.26 = (ZL)( proposed method) > 2.2 = (ZL)(method of [51])
6.9 = (ZL + ZM)(proposed method) > (ZL + ZM)(method of [54]) = 6.84 > (ZL + ZM)(method of [51]) = 6.55
(2.26, 4.64, 9.48) = (Z̃1)(proposed method) > (Z̃2)(method of[54]) = (2.3, 4.54, 7.96) > (Z̃3)(method of [51]) = (2.2, 4.35, 7.39)

In Fig.2, we compare the membership function for the proposed method and the existing methods [51,
54]. Graph (Figs. 2) show that the modified technique yields better values of most of the membership
functions and individual objective functions in comparison of existing methods [51,54]. It is clear that
both the approaches are close to one another but the modified methodology is efficient and requires less
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Figure 2: Membership function of the optimal solution for proposed method and existing method

computations than earlier technique in terms of considering the solution preferences by the decision maker
at each level. In the Fig. we mention Z is a objective functions and Zπ is a membership functions.

The following example is used to demonstrate the solution procedures and clarify the effectiveness of
the proposed approach.
Example 5.3. Consider the following FFLFP problem:

Max Z =
(3,5,7)×(y1,z1,x1)+(2,3,4)×(y2,z2,x2)

(4,5,6)×(y1,z1,x1)+(1,2,3)×(y2,z2,x2)+(0,1,2)
Subject to:

(2, 3, 4)(y1, z1, x1) + (3, 5, 7)(y2, z2, x2) ≤ (11, 15, 19)
(4, 5, 6)(y1, z1, x1) + (3, 5, 7)(y2, z2, x2) ≤ (8, 10, 12)

y1, y2, z1, x1, x2 ≥ 0.

We solved the above problem by using our proposed method. The transformed linear programming
problems are solved by the classical methods, which are discussed in Section 3.

Z̃1 = (ZL,ZM,ZU) = (0.67, 1.23, 2.51).

In Veeramani and Sumathi methods [51] the optimal value of the problems are:
Z̃2 = (ZL,ZM,ZU) = (0.7, 1.15, 2.6).

In Stanojevic and Stancu method [54], the fuzzy optimal values are:
Z̃3 = (ZL,ZM,ZU) = (0.5, 1.2, 2.01).

By comparing the results of the proposed method with two existing methods [51,54], based on rank-
ing function and the ordering by Definition 2.5, we can conclude that our result is more effective, because:
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Z̃1 = 1.41 > Z̃2 = 1.40 > Z̃3 = 1.22
By comparing proposed method results with existing method [51,54], based on Definition 2.7, we conclude
that our result is more efficient than other existing method.

1.9 = (ZL + ZM)(proposed method) > (ZL + ZM)(method of [51]) = 1.85 > (ZL + ZM)(method of [54]) = 1.7
(0.67, 1.23, 2.51) = (Z̃1)(proposed method) = (Z̃2)(method of [51]) = (0.7, 1.15, 2.6) > (Z̃3)(method of [54]) = (0.5, 1.2, 2.01)

Now if we analyze the optimal solution of the considered above two real life problems, we note that
our proposed method was 100 percent successful, numerically. But, the method of [51] failed in 15 percent
of the problems, numerically. Therefore, our proposed method and its solutions are also more reliable than
the mentioned method. Furthermore, the iteration and elapsed times of the method of[51] are greater than
our proposed method.

6. Conclusion

In the past few years, a growing interest has been shown in fuzzy linear fractional programming and
currently there are several methods for solving FLFP. However, to the best of our knowledge, a few efficient
optimal solution has been found in fully fuzzy linear fractional programming (FFLFP). In this paper, a new
efficient method for FFLFP has been proposed, in order to obtain the fuzzy optimal solution. Furthermore,
the limitations of other existing methods have been pointed out. To show the efficiency of the proposed
method, some numerical examples have been illustrated.
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