
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
3
7
5
0
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
8
.
2
0
2
2

Application of Local Rank Tests

to Nonparametric Regression

Lutz Dümbgen
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Abstract. Let ( ) with given covariates , an

unknown regression function and independent random errors with median zero. It is shown

how to apply several linear rank test statistics simultaneously in order to test monotonicity of in

various regions and to identify its local extrema.
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1 Introduction

Suppose that one observes , where are given

real numbers, and the are independent random variables with continuous distribution functions

. With we call increasing on an interval if

whenever and

Here means that is stochastically smaller than , that means, pointwise.

Analogously we call decreasing on if for with .

A special case of this setup is the standard nonparametric regression model, where

(1.1)

with an unknown regression function and independent random errors having continuous

distribution function and mean or median zero. Then , whence is

increasing or decreasing on , provided that is monotonically increasing or decreasing on ,

respectively.

Our goal is to identify intervals on which is very unlikely to be decreasing or increasing.

In other words, we aim at finding intervals on which a monotone trend in the data is significant.

This is similar to Chaudhuri and Marron’s (1998) approach. A major difference is that instead of

linear kernel estimators we use local rank tests. Because of this modification we don’t need any

further distributional assumptions. Another difference is that in the model (1.1) we always inter-

pret our results in terms of the function , whereas Chaudhuri and Marron focus on the convolution

of with a Gaussian kernel with varying bandwidth.

Here is the definition of the local rank tests: For integers let be the

rank of among the numbers , i.e.

A monotone trend of the latter observations is quantified via the linear rank statistic

where are functions on such that

and for

and are non-decreasing on
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For later purposes we define for . All these local rank statistics

are considered simultaneously. We define the multiscale test statistic

with arbitrary nonnegative numbers . Specific suggestions for these normalizing constants

are given later. Here is a key observation:

Theorem 1.1 Let and be defined as and , respectively, where the local rank

is replaced with

and are independent random variables with uniform distribution on . Then

for arbitrary , the probability of the event

and is decreasing on

and is increasing on

is not greater than .

In other words, let be the -quantile of the distribution of and define

Then with probability at least the following conclusion is correct: is neither decreasing

on any interval in nor increasing on any interval in .

Let us consider the special model (1.1) with a continuous regression function . The local

rank tests imply confidence bounds for the number and location of local extrema of . Namely, let

Then with probability at least any interval in contains points such that

. More precisely,

if

if
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This procedure implies a lower -confidence bound for the number of local extrema of .

As shown by Donoho (1988), a nontrivial upper confidence bound for this number cannot exist.

The remainder of this paper is organized as follows. Section 2 proposes special constants

and provides asymptotic properties of . Section 3 gives some results on the asymptotic

power of our procedure in case of the Wilcoxon score function, , and the standard

model (1.1). An algorithm for the computation of in steps in case of

is provided in Section 4. Explicit computer code in ‘MatLab’ is available from the

author via the internet. Finally, we illustrate our methods in Section 5. Some useful inequalities for

linear rank statistics, some of which are new and potentially of independent interest, are compiled

in Section 6. All proofs are deferred to Section 7.

Remark on ties. For the sake of simplicity we assume pairwise different values and con-

tinuous distribution functions . In general, if merely , one can proceed as

follows:

(i) Replace with the average of over all indices

such that .

(ii) Redefine

(iii) Consider only for pairs such that (or ) and (or ).

One can show that this leads to confidence sets with asymptotic confidence level at least as

tends to infinity.

2 Normalizing constants

So far we have not specified the constants . It is well-known from the theory of linear

rank tests that in case of ,

where

for any function on the real line. For the number is close to , where

Thus we define
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with arbitrary constants such that . As for the additive correction terms ,

recent results of Dümbgen and Spokoiny (1999) about multiscale testing in gaussian white noise

models suggest

with

see also Proposition 7.1.

In order to reduce the computational burden and to increase sensitivity on smaller intervals

one may restrict one’s attention to pairs with for some integer in . Thus

we define generally

with

The test statistics and are defined in the same way with uniform random variables in place

of the . In the definition of the index pairs are restricted accordingly.

The test statistic has a nondegenerate limiting distribution as tends to infinity, provided

that the functions and satisfy the following additional requirements:

is bounded with(2.1)

is convex on with(2.2)

for all(2.3)

(2.4)

Theorem 2.1 Suppose that Conditions (2.1–2.4) are satisfied. Let be defined with

for some fixed . Then it converges in distribution, as , to the random variable

where is a standard Brownian motion on . Moreover, almost surely.

Remark 1. Theorem 2.1 does not require monotonicity of . The conclusion remains true if

has just bounded total variation. As for the stochastic integral in the definition of , the present

assumptions about imply the existence of a finite signed measure on the unit interval such that

and for all but at most countably many . Then it follows

from partial integration that

Remark 2. Conditions (2.2–2.4) on the score function are satisfied in the following three

cases:
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Wilcoxon score function. Let . Thus is the quantile function of the uni-

form distribution on with variance . Its moment generating function equals

.

“Triangular” score function. Let

. This is the quantile function of the distribution with triangular density

, variance and moment generating function

.

Van der Waerden score function. Let , the standard Gaussian quantile function. Here

equals one, and .

The inequalities involving and can be deduced from the corresponding series ex-

pansion. The Wilcoxon and the triangular score function satisfy Condition (2.4) because they

are Hölder-continuous with exponent and , respectively. The proof of (2.4) for the van der

Waerden score function is more involved and deferred to Section 7.

3 Asymptotic power

We study the performance of our procedure in case of the Wilcoxon score function

and the standard regression model (1.1) with equidistant design points . As for

the error distribution function , we assume that

(3.1)

This condition is satisfied whenever admits a Lebesgue density.

Theorem 3.1 Suppose that for some constants and ,

(3.2)

Further let be monotone on and on for some . Then, as ,

where .

Note that Theorem 3.1 holds for arbitrary fixed levels . Thus we detect any local ex-

tremal point of satisfying (3.2) with asymptotic probability one, and we can estimate with

precision . In case of we end up with the rate .

This is close to the familiar optimal rate for estimating the mode of a density;

cf. Khas’minski (1979).
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4 Computational aspects

Since is a maximum of single random variables its computation is necessarily expensive.

But even devising an algorithm requiring steps (quadratic complexity) is far from trivial. A

naive algorithm would compute the local ranks first, using some advanced sorting routine

requiring steps. Then the computation of requires another

steps. Since we are dealing with such pairs, we would end up with steps.

The problem of the naive approach is that it does not utilize the fact that many of our index

intervals overlap. When sorting and ranking values in a certain interval of indices, this

information should be utilized somehow for larger intervals. Although this is a natural demand, it

is not obvious how to fulfill it.

Now we treat the special case of the Wilcoxon score function and . For this case we

present an algorithm avoiding the computation of ranks at all. It computes in

steps, which seems to be disastrous at first glance. But the computation of all local rank statistics

together requires steps as well. Note first that by Proposition 6.7,

where

Given these values , the computation of

requires steps, where and, for instance,

. Thus we only need an algorithm with quadratic complexity for the com-

putation of all numbers together. Basic recursion formulae are:

with

Here is a suitable algorithm utilizing these recursions. One easily verifies that it does return all

numbers in steps:

ALGORITHM
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FOR TO DO

FOR DOWNTO DO

END

END

This implementation is easy to understand but would require storing all numbers .

Representing and storing the set is an additional problem. We propose to replace

with the set of itsminimal elements. An interval in is called ‘minimal’ if

contains no proper subset of . The set contains at most intervals because their left

endpoints are pairwise different and contained in . Here is an algorithm for the

computation of and in steps. It utilizes two vector variables

and an integer variable with the following purpose: For ,

ALGORITHM

FOR TO DO

FOR TO DO

IF ( ) AND ( ) THEN
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END

END

END

Given , one can easily compute the minimal elements of as well as the minimal

elements of with steps.

5 Numerical examples

Again we consider the special case and let . At first we demonstrate

the distribution of . Figure 1 shows three realizations of the stochastic processes as

well as the additive correction function . Apparently the normalizing constants and

work well.

Figure 1 around here

Now we consider and with . We estimated the distribution function of

in 9999 Monte-Carlo simulations; see Figure 2. The vertical lines highlight selected estimated

quantiles: , and .

Figure 2 around here

Figure 3 depicts simulated data , , from the standard model (1.1) with errors

having logistic distribution. The underlying regression function, shown as gray line, has two

local maxima and one local minimum in .

Figure 3 around here

The corresponding stochastic process is shown in Figure 4. Its maximum clearly exceeds

the critical value which is indicated by a horizontal line.

Figure 4 around here

Figures 5a and 5b show minimal intervals in and , respectively. Each such

interval is represented as a horizontal line segment. Both families reflect

the fact that the underlying regression function is bimodal. Note also the different lengths of the

intervals.

Figure 5a around here
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Figure 5b around here

The resulting family contains ten minimal intervals:

The family contains one minimal interval, namely . Since there are two

non-overlapping intervals in while is nonvoid, one can conclude with 95

percent confidence that the regression function has at least two local maxima and at least one

local minimum in .

6 Auxiliary results for linear rank statistics

Throughout this section let with the quantile function

of . By continuity of , its quantile function is strictly increasing. In partic-

ular, if we ignore events with probability zero, then and

define random variables , with values in the set all

permutations of . The random permutation is uniformly distributed on . Here

we consider linear rank statistics

where are some vectors in . For notational simplicity we write ,

and for vectors .

In order to formulate our first inequality let us define a partial order relation on . For

and define via

if

if

if

For we write if there exist finitely many permutations

in such that for , where and

. The following two inequalities are the key to Theorem 1.1.

Proposition 6.1 Suppose that . Then .

Proposition 6.2 Let with . Then
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The subsequent inequalities are required for the proof of Theorem 2.1.

Proposition 6.3 Let such that or . Then for arbitrary ,

Proposition 6.4 Let such that . Then

Proposition 6.3 is essentially Corollary 1 (a) of Dümbgen (1998), while Proposition 6.4 is due

to Hájek (1961).

Proposition 6.5 Suppose that the function satisfies (2.2). Then and for

arbitrary ,

Proposition 6.5 implies exponential inequalities for linear rank statistics with Wilcoxon, trian-

gular or van der Waerden scores:

Corollary 6.6 Suppose that the function satisfies (2.2–2.3). Then for arbitrary vectors

and ,

For the proof of the results in Section 3 we need an elementary bound for linear rank statistics

using Wilcoxon scores.

Proposition 6.7 For any ,

where
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7 Proofs

Proof of Theorem 1.1. As in Section 6 let . It follows from Propositions 6.1

and 6.2, applied to in place of , that if is increasing

on . Symmetry considerations show that if is decreasing on .

Consequently, is an upper bound for the maximum of

is decreasing on

and

is increasing on

Proof of Proposition 6.1. For let

if

if

Then almost surely, and , . Thus it suffices to show that for

any fixed .

Note that for , that for , and that the tupel

has the same order as . Thus

and have the same order(7.1)

for(7.2)

and have the same order(7.3)

If , let be the index such that equals .

Let be the index such that . This index is smaller than . For if

it would follow from (7.3) that

a contradiction to the definition of . Conditions (7.1–7.3) remain valid with in place of

. Moreover, and

(7.4)

If the lefthand side of (7.4) equals zero, then . Otherwise one may replace

with and repeat the preceding considerations. After finitely many steps we arrive at ,

whence .
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Proof of Proposition 6.2. It suffices to consider the case with and

. Then

by isotonicity of and .

Proof of Condition (2.4) for van derWaerden scores. Here is the standard normal quantile

function. It follows from the smoothness of and symmetry considerations that (2.4) is equivalent

to

Denoting the standard normal density and distribution function with and , respectively, it is

wellknown that equals as . This implies that, as ,

whence

Since has derivative , assertion (2.4) is equivalent

to

But on , whence

Here is a key ingredient for the proof of Theorem 2.1. It is a consequence of Theorem 6.1 of

Dümbgen and Spokoiny (1999).

13



Proposition 7.1 Let be a stochastic process on a subset of having

continuous sample paths. Suppose that the following inequalities hold for real constants

and arbitrary , :

(7.5)

(7.6)

where . Then the random variable

is finite almost surely, where . More precisely, there is

a universal function depending only on the constants such that and

.

Proof of Theorem 2.1. Without loss of generality one may assume that . At

first one may apply Proposition 7.1 to the Gaussian process on

with

(7.7)

cf. Dümbgen and Spokoiny (1999, proof of Theorem 2.1). Since is the maximum of

over all , this implies that almost surely. On the

other hand, for any integer the variables , , are

independent and standard Gaussian. It is a well-known fact that the maximum of these variables

equals as . Since , this

entails that almost surely.

Now we define the grid and the index set

For let

The convergence in distribution of to can be derived from the following two claims:

Claim 2.1 (a). Conditions (7.5) and (7.6) of Proposition 7.1 are satisfied for

with constants and not depending on . Moreover,

(7.8) for all
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Throughout this proof denotes a generic positive constant depending only on , and .

Its value may be different in different expressions.

Claim 2.1 (b). The process , suitably extended to a process on , converges in distribution

to the centered Gaussian process defined in (7.7).

Before proving these two claims let us derive the assertion of Theorem 2.1. Note that

By our assumption that and (7.8),

for any fixed integer

whenever

Consequently it suffices to consider the case , i.e.

Let the latter maximum be attained at a random index . Since the additional factor

in Proposition 7.1 converges to zero as ,

it follows from Claim 2.1 (a) and Proposition 7.1 that for any fixed number ,

Thus one can conclude from Claim 2.1 (b) and the Continuous Mapping Theorem that
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Moreover, for arbitrary ,

In particular, for any . These conclusions entail that converges in

distribution to .

Proof of Claim 2.1 (a). According to Corollary 6.6, for any and ,

(7.9)

Here we utilize the fact that is uniformly distributed on

the set . Moreover, the Cauchy-Schwarz inequality and Proposition 6.5 yield the inequality

(7.10)

Now, for any function on with finite total variation ,

(7.11)

a well-known inequality from calculus. Since , this entails that

(7.12)

Now (7.8) is a consequence of (7.10) and (7.12). The fact that Condition (7.5) holds uniformly in

follows from (7.9), (7.10) and (7.12):

In order to verify Condition (7.6) it suffices to consider pairs and such that

or . For note that
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whence is bounded by

Thus let with or . Because of the special form of our processes it

even suffices to verify (7.6) in the special case

with

provided that the constant we come up with does not depend on . This can be verified by

symmetry considerations and a simple rescaling argument. Thus we have to show that

for all

where

with

with

In order to prove such a tail inequality for we introduce the additional random variable

and verify that for all ,

(7.13)

(7.14)

It follows from Corollary 6.6 that for arbitrary ,

Thus (7.13) would follow from

(7.15)

One can write
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In view of Remark 1 on Theorem 2.1 we utilize only finiteness of . Let be a finite measure

on such that for . Then, by (7.11) and Fubini’s

theorem,

where . But for any , the Lebesgue measure of the set

equals . This

completes our proof of (7.15).

As for assertion (7.14) about , we write , where

Then with one may write

Now Proposition 6.3 is applicable to the conditional distribution of given ,

which is uniform on the set . One easily verifies that for . Thus one

can apply Proposition 6.3 as follows:

which is (7.14). The latter displayed inequality is a consequence of (2.4). For
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is nondecreasing in and nonincreasing in , whence

if

if

Thus

Proof of Claim 2.1 (b). It follows from Claim 2.1 (a) and standard chaining inequalities that

the sequence is stochastically equicontinuous in the sense that

as

cf. van der Vaart and Wellner (1996, Chapter 2.2). Hence it suffices to prove weak convergence

of the finite-dimensional distributions of . Precisely, for any integer and points

, , we have to show that

(7.16)

as and for .

Since is bounded one can apply Proposition 6.4 with in place of in order to show

that , where and

Finally, if

then

where

as

The latter claim follows from Scheffé’s theorem and the following two facts:

by Corollary 6.6

by continuity of
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Thus one may replace in (7.16) with . But then the assertion is a simple consequence of

the multivariate version of Lindeberg’s Central Limit Theorem.

Proof of Theorem 3.1. By symmetry it suffices to consider the case . Let

. We consider two special intervals, for , where

and

and

with some constant to be specified later. Then

and

Thus it follows from Condition (3.2) and continuity of that

Hence Proposition 6.7 implies that

On the other hand, Condition (3.1) implies that

20



where denotes the limes inferior in (3.1), and

Analogously one can show that

Hence

or

provided that

Proof of Proposition 6.5. Let be the order statistics of , so that

. Then it follows from Jensen’s inequality that

where

Moreover

Now we consider the conditional distribution of given the two-point sets
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Let with . Conditional on , the pairs

are stochastically independent with

Since ,

Analogusly, , whence

Since on the proof of Proposition 6.5 is complete when we have shown that

(7.17) for

In order to prove (7.17) note that the distribution of is a Beta-distribution with parameters

and . It has a unimodal density on . Thus it can be

represented as a mixture of uniform distributions on intervals :

where stands for Lebesgue measure. Elementary considerations show that the midpoint

of is not smaller than . Therefore, since ,
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by Jensen’s inequality. For fixed let with

and . Then

where denotes the –derivative of on . For without loss of generality let be

non-decreasing on and symmetric around . Then elementary considerations show that

for and . Consequently,

Proof of Corollary 6.6. Let . For it follows from

Proposition 6.5 applied to in place of that is not greater than

Thus

and Tshebyshev’s inequality yields

Proof of Proposition 6.7. Elementary considerations show that

almost surely. Then
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and . It remains to be shown that the

variance of the latter sum is not greater than , where stands for the maximum

of all numbers . For that purpose we utilize Hoeffding’s decomposition. With

and ,

Moreover, and ,

whence

But , while

Hence is not greater than
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Figure 1. Three realizations of the process
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Figure 2. Estimated distribution function of ( )
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Figure 3. Simulated data and regression function ( )
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Proposition 6.7. For any ,

where

Corrected proof of Proposition 6.7. Elementary considerations show that

almost surely. Then

and . It remains to be shown that the

variance of the latter sum is not greater than , where stands for the

maximum of all numbers . For that purpose we utilize Hoeffding’s decomposition.

With and ,

Moreover, and ,

whence



But , while

Hence is not greater than
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