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Abstract
By determining the hydraulic flow units (HFUs) in the reservoir rock and examining the distribution of porosity and perme-
ability variables, it is possible to identify areas with suitable reservoir quality. In conventional methods, HFUs are determined 
using core data. This is while considering the non-continuity of the core data along the well, there is a great uncertainty in 
generalizing their results to the entire depth of the reservoir. Therefore, using related wireline logs as continuous data and 
using artificial intelligence methods can be an acceptable alternative. In this study, first, the number of HFUs was determined 
using conventional methods including Winland R35, flow zone index, discrete rock type and k-means. After that, by using 
petrophysical logs and using machine learning algorithms including support vector machine (SVM), artificial neural network 
(ANN), LogitBoost (LB), random forest (RF), and logistic regression (LR), HFUs have been determined. The innovation 
of this article is the use of different intelligent methods in determining the HFUs and comparing these methods with each 
other in such a way that instead of using only two parameters of porosity and permeability, different data obtained from 
wireline logging are used. This increases the accuracy and speed of reaching the solution and is the main application of the 
methodology introduced in this study. Mentioned algorithms are compared with accuracy, and the results show that SVM, 
ANN, RF, LB, and LR with 90.46%, 88.12%, 91.87%, 94.84%, and 91.56% accuracy classified the HFUs respectively.
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MRGC​	� Multi-Resolution Graph-Based Clustering
ML	� Machine Learning
NPI	� Normalized Porosity Index
PMR	� Pore to Matrix Ratio
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Introduction

As hydrocarbon reservoirs have heterogeneity in macro-
scopic and microscopic scales, an accurate description 
requires a full study of reservoir uniformity. One of the most 
popular techniques used to describe the characteristics and 
reservoir heterogeneity is to determine the number of flow 
units. In drilling, production and reservoir studies, determi-
nation of reservoir rock types, and the number of flow units 
are very important. Hydraulic flow units are part of a reser-
voir with unique characteristics that have a significant role 
in fluid flow in reservoir. They may be interacting with other 
flow units. The reservoir quality and the rock type are deter-
mined by this feature and the relationship between porosity 
and permeability. More accurate estimation of porosity and 
permeability requires correct classification of flow units. 
(Ebanks Jr 1987, Amaefule et al. 1993, Guo et al. 2005, 
Tiab and Donaldson 2015; Elnaggar 2018, Sharifi-Yazdi 
et al. 2020).

Flow units are mainly used to describe the hydrocarbon 
reservoir. Flow units determination is necessary for accurate 
reservoir petrophysical modeling (Hosseini Bidgoli et al. 
2014). The rock types are determined to a reservoir classi-
fication into separate units that have deposited with similar 
diagenetic changes or have the same geological status. To 
have a more accurate estimate of the relevance between per-
meability and porosity and more realistic simulation results, 
the flow units must be determined correctly (Guo et al. 2005, 
Zargari et al. 2013).

In order to determine hydraulic flow units (HFUs) of res-
ervoirs, Amaefule et al. introduced a new technique using 
the Kozeny-Carman equation and the medium hydraulic 
radius. This technique creates a line with a fixed slope for 
each hydraulic unit in the Reservoir Quality Index (RQI) 
versus Pore to Matrix Ratio (PMR) diagram. The inter-
section point of the line created by the Normalized Poros-
ity Index (NPI) with line PMR = 1 is called the FZI. This 

parameter indicates a unique HFU. After that the correlation 
of permeability and FZI could by calculated by regression 
models (Amaefule et al. 1993). Using RQI and FZI, Gunter 
et al. show that the rock type is extremely beneficial in per-
meability and initial water saturation modeling which are 
used in geological modeling and reservoir simulations. They 
introduced acceptable graphical methods and used them to 
identify the rock type and analyze the flow unit in carbon-
ate and sandstone reservoirs (Gunter et al. 1997). However, 
although the method used in that study led to acceptable 
results, determining the rock types in sandstone reservoirs 
still requires a more comprehensive method.

Abnavi et al. identified the number of gas reservoir flow 
units in southern Iran using histogram analysis methods 
and normal probability diagrams. The result of the study 
shows that the normal probability diagram is a more reliable 
method for detecting HFUs (Abnavi et al. 2018). Shalaby 
et al. study, using core data (porosity and permeability) 
of Qasr field, various methods were used to analyze and 
describe the sandstone of the Khatatba Formation. In their 
study, the number of flow units has been defined by the 
RQI, FZI, and NPI. The Winland R35 equation was used 
to describe the geometry of the pores and the diameter of 
the pore throat, which eventually led to the classification of 
sandstones into three classes of flow units and three differ-
ent rock types (Shalaby 2021). Moghtadar et al. used the 
concept of hydraulic flow units and electric current units to 
describe and evaluate the sandstone reservoir of the Nubia 
Formation in Gebel Abu Hassle. They also determined the 
number of flow units and the rock type using RQI and Win-
land R35 methods (El-Sayed et al. 2021). Nayak et al. col-
lected porosity and permeability data from 32 core samples 
of the calcareous field from four different Mumbai regions. 
The porosity range of these samples was from 0.3% to 
20.5%, and the permeability range was from 0.002 to 1.484 
millidarcy, and the depth was 1618.86 to 1634.14 m. Using 
the obtained data, the FZI is calculated, and the HFUs are 
determined. The least squares regression (LSR) method has 
been used to determine the flow units (Nayak et al. 2021).

In the meantime, many researchers have also used 
machine learning knowledge in their studies. In 2020, Kha-
dem et al. developed a system for detecting the rock type and 
the HFUs of detrital reservoirs with uniform pores. The sys-
tem is being implemented on an oil field in the Persian Gulf. 
First, physical models, classify field rocks into three types 
with different characteristics. Then, using the core data, the 
number of flow units was calculated and expanded the infor-
mation obtained by using simultaneous inversion and the 
rock physics models throughout the reservoir (Khadem et al. 
2020). Sengel et al. developed a dynamic model to predict 
the future performance of the Germik reservoir in southeast-
ern Turkey. At the first, the hydraulic flow units instead of 
the reservoir facies model were determined in cored wells, 
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and then using artificial neural networks (ANN), the flow 
units for the other wells and through the model were esti-
mated. The results are used to build a reservoir permeabil-
ity model. Finally, the results show that the date-simulated 
model can be safely used for enhanced oil recovery (EOR) 
screening (Sengel and Turkarslan 2020). In 2021, Abnavi 
et al. determined the number of flow units in the hydro-
carbon field in the south of Iran using the core data by the 
FZI method. Then, using an artificial network fuzzy infer-
ence system (ANFIS), permeability of the studied well was 
estimated. ANFIS estimates the permeability with an error 
of 1.83%. This algorithm estimates the permeability of non-
cored wells with a 21.5% error (Abnavi 2021). A summary 
of some of the articles studied is given in Table 1.

Based on studies of the literature and previous stud-
ies in this field, the importance of studying flow units is 
determined. Such cases are very important in the studies 
of enhanced oil recovery. In order to study more about the 

issue, it is referred to the studies of Wu et al. (2018) and Wu 
et al. (2016). It is obvious that in most studies, conventional 
methods have been used to determine the rock types, and 
studies on new methods of machine learning (ML) in this 
field need more research. Conventional methods for clas-
sifying the number of flow units require direct core test data 
such as porosity and permeability. This is even though cor-
ing, operations in reservoir formations are carried out in 
a limited number of field wells due to their high cost and 
time-consuming nature, and it is not possible to access the 
cores of different parts of a reservoir in the oil field. This 
causes the conventional methods of classifying flow units to 
work with fewer input features and so not provide accurate 
and acceptable results. As an alternative, machine learning 
methods can be used for this purpose since they use well log 
data besides core data (given that petrophysical log data are 
available in most wells and contain information from well 
columns).

Table 1   Summary of some of related articles studied in HFU determination

No Input data Used methods Output Year (refs)

1 - Porosity
- Permeability

- FZI - HFUs
- Estimated permeability

Amaefule et al. (1993)

2 - Porosity
- Pore size distribution
- Water saturation

- Iterative multi-linear regression 
(IMLR)

- HFUs
- Estimated permeability

Al-Ajmi and Holditch (2000)

3 - Petrophysical logs
- Production data

- DRT
- LLNFM

- HFUs
- Rock types

Ghadami et al. (2015)

4 - Porosity
- Permeability

- ANN
- MRGC​

- HFUs
- Estimated permeability

Nouri‐Taleghani et al. (2015)

5 - Porosity
- Permeability

- FZI
- MICP

- HFUs
- Rock types

Nabawy et al. (2018)

6 - Porosity
- Permeability

- Histogram analysis
- Normal probability plot

- HFUs Abnavi et al. (2018)

7 - Porosity
- Permeability

- Rock fabric number (RFN)
- Winland R35—FZI
- BVW -SMLP
- MLP—SFP

- HFUs
- Location of HFUs
- Quality of the reservoir
- Reservoir heterogeneity analysis

Riazi (2018)

8 - Permeability
- Pressure,
- Oil water contact

- ANN
- FZI

- HFUs
- Estimated permeability

Sengel and Turkarslan (2020)

9 - Petrophysical logs
- Seismic data
- Porosity
- Permeability

- Inversion - HFUs Khadem et al. (2020)

10 - Porosity
- Permeability

ANFIS, FZI - HFUs
- Estimated permeability

Abnavi (2021)

11 - Porosity
- Permeability

- Winland R35 - HFUs
- Quality of the reservoir

Shalaby (2021)

12 - Porosity
- Permeability

- Winland R35 - HFUs and EFUs
- Quality of the reservoir

El-Sayed et al. (2021)

13 - Porosity
- Permeability

- FZI,
- LSR

- HFUs Nayak et al. (2021)
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In this study, HFUs have been classified by using well 
log data and machine learning methods. If most of the pre-
vious studies have used core data for this issue, considering 
that there is no core data for the entire length of the well 
and access to core data is very costly and time-consuming, 
replacing petrophysical log data with core data is a suit-
able method for classifying HFUs. For this purpose, the well 
log and core data have been collected. Then, the number of 
HFUs was determined using the conventional methods of 
Winland R35, FZI, DRT, and k-means. Machine learning 
methods including ANN, support vector machine (SVM), 
LogitBoost, logistic regression, and random forest (RF) have 
been studied and used to classify HFUs considering the clas-
sification calculated from the FZI method as the optimal 
classification of HFU reservoir. Finally, the performance of 
these methods has been compared. According to the machine 
learnings’ performance in the classification of flow units, 
this method can be extended to the entire length of the well 
and the flow units of points of the well that lack core data 
can be predicted. Among the innovations of this research is 
the use of various applied machine learning methods in the 
classification of HFUs and the comparison of these methods 
and their performance in the Kazhdumi Formation, which 
has sandy shale facies (only in some southwestern fields of 
Iran).

Case study and available data

The studied field is located in the coastal part of the Per-
sian Gulf sedimentary basin called the Khark Romeyle. 
The Persian Gulf is an epi-continental and marginal 
sedimentary basin that is in multiple sedimentary 

environments (Siebold 1969). The Persian Gulf is part of 
the Arabian plate, at the intersection of the Arabic and 
Eurasian lithosphere plates. The time of its formation in 
the current situation is the Late Miocene and dates back 
to the formation of the Zagros Mountains. The tectonics 
of this basin is similar to the tectonic conditions of the 
foreland basin on the edge of the Zagros Mountains. The 
deepest part of the Persian Gulf basin, from the Middle 
Jurassic to the Lower Cretaceous, is located the north-
western corner of the Persian Gulf (Rabbani 2013). The 
Persian Gulf basin can be introduced as one of the richest 
hydrocarbon basins in the world since more than 50% of 
the world’s gas and oil are located in the Persian Gulf 
basin (Rabbani 2007). The studies field is an anticline trap 
with an almost NS trend which is located in NW of the 
Persian Gulf (Fig. 1). The reservoir formation of this field 
is Kazhdumi which is deposited in Early Albian to Mid-
dle Albian. Although this formation is often known as the 
source rock in the Zagros sedimentary basin with lithol-
ogy of shale, the middle parts of this formation in the NW 
of the Persian Gulf include sandy sequences which could 
act as a high-potential reservoir rock (Motiei 1995). The 
Kazhdami reservoir in the Khark Romeyle basin is depos-
ited in a shallow marine and deltaic environment. The 
lithology of this formation is composed of fine to coarse 
sandstone and has a highly faulted reservoir (Nairn and 
Alsharhan 1997).

The stratigraphic column of the NW of the Persian 
Gulf basin is shown in Fig. 2. In the studied area, from 
surface to depth, formations are Bakhtiari, Aghajari, 
Gachsaran, Asmari, Jahrom, Tarbour and Gurpi, Sarvak, 
Kozhdami, Darian Gadvan, Fahlian, and Heath Anhydrite, 
respectively.

Fig. 1   Location of the south-
western Iran oil and gas fields 
(Zargar et al. 2020)
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In this study, in order to classification of rock type, 
212 core sample data including porosity and permeability 
and petrophysical well logs of an oil field in southwest 
if Iran have been used. The available logs were RT, DT, 
HCAL, NPHI, RHOZ, and PEFZ. The range of each input 

parameters such as porosity, permeability, and depth is 
reported in Table 2.

Methodology

Conventional methods

FZI method

As mentioned, reservoir rocks can be divided into sev-
eral different flow units from a geological or engineering 
point of view to describe how they behave during different 
production applications (Gomes et al. 2008). Since the 
FZI depends on the geological properties and the geom-
etry of the different rock types and is also a function of 
the reservoir quality and porosity ratio, it is a desirable 
parameter to determine hydraulic flow units (HFU) (Abed 
2014). Each HFU has a specific value of FZI which is 
determined by log analysis (porosity and permeability 

Fig. 2   Stratigraphic column 
of the studied area (Mohebian 
et al. 2013)

Table 2   Value range of available data

Data Unit Max Min Mean

Depth M 2393.2 2157 2309.091
Porosity % 34.1 2.1 20.94366
Permeability mD 9944.3 0.1 1298.154
RT Ohm.m 19.63894 0.50193 4.103192
CGR​ API.GR 46.18848 4.79701 27.24397
DT Us 120.627 57.58504 93.93078
HCAL In 17.506 12.15448 13.36917
NPHI Fraction 0.84436 0.11115 0.449366
RHOZ gm/cc 2.79749 1.53385 2.320674
PEFZ Barns/electron 9.77355 2.76304 5.624213
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logs) and calculated from the RQI and normalized poros-
ity (Yi et al. 2021):

where K and �e are the permeability and effective porosity of 
the rock, respectively. The normalized porosity is obtained 
from Eq. 2 which is used in the FZI calculations (Amaefule, 
Altunbay et al. 1993):

Finally, the FZI is obtained by Eq. 3:

By applying mathematical operations, Eq.  4 can be 
deduced:

In the log(RQI) vs. log
(
�Z

)
 diagram, all the FZl samples 

with similar values are placed on a straight line with the 
same slope. The points placed on a straight line have similar 
pore properties (Fig. 3). The constant FZI value could be 
obtained from the intersection point of the unit slope with 
�Z=1(Amaefule et al. 1993). To identify all the distribu-
tions presented in the original data, it is necessary to create 
a histogram of log(FZI) . Since the FZI is multiple of all 
logarithmic normal distributions, the log(FZI) histogram 
represents n number of normal distributions for n-flow units. 
In situations where the clusters are distinctly separated, the 

(1)RQI = 0.0314

√
K

�e

(2)�z =
�e

1 − �e

(3)FZI =
RQI

�Z

(4)log (RQI) = log
(
�Z

)
+ log (FZI)

histogram can intelligibly identify apiece HFUs (Al-Ajmi 
and Holditch 2000; Abed 2014).

The normal probability diagram is used to evaluate the com-
pliance of a set of data with a standard bell-shaped curve. To 
calculate the normal probability graph, log(FZI) data should 
be sorted. After that, percentiles with uniform distances from 
the normal distribution could be determined (Nouri‐Taleghani 
et al. 2015). Since the FZI mean values cannot be reached 
from the probability plot, the FZI instance value of each HFU 
is obtained by averaging all the FZI values in the correspond-
ing HFU range. It should be noted that the overlap effect may 
vary or deform straight lines in the probability plot (Al-Ajmi 
and Holditch 2000).

Winland R35 method

Winland defined his equation using 300 samples from the 
Spindle field. In 1972, by examining different mercury satu-
rations, he showed that the best value for mercury saturation 
is 35% for calculating the pores radius which show the best 
path for fluid flow (Winland 1972). The performance of this 
method is based on capillary pressure curves (Soleymanzadeh 
et al. 2019).

Winland calculated the most appropriate curve at 35% mer-
cury saturation by regression analysis to establish an equation 
between porosity, permeability and the size of the pore throat 
which leaded to Eq. 5 (Winland 1972; Kolodzie 1980):

By this equation, the data can be categorized and the qual-
ity of the reservoir determined based on the size of the pore 
throats (Spearing et al. 2001).

DRT method

Using the Winland equation, the continuous values of FZI 
are converted to discrete ones. Following the discretization 
of the FZI values, using Eq. 6, the core data are classified into 
separate categories. The equation mentioned by Chakani and 
Kharat in 2012 was used for carbonate reservoirs (Chekani 
and Kharrat 2012):

It should be noted that this equation is also used to pre-
dict permeability in reservoir static modeling. FZI values are 
determined in the reservoir grid blocks, and the obtained DRT 
values from Eq. 6 are propagated through the model. Accord-
ing to the relation between porosity and permeability in each 
DRT set, a certain amount of permeability is assigned to each 
reservoir grid blocks (Chekani and Kharrat 2012).

(5)log (R35) = 0.735 + 0.588log(k) − 0.864log(�)

(6)DRT = Round(2 log (FZI) + 10.7)

Fig. 3   Support vector machine hyper-plane
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K‑means method

K-means is an unsupervised algorithm that can easily divide 
a data set into several separate subsets (MacQueen 1967). 
This method can be introduced as a complement to other 
clustering methods. In addition, this method can optimally 
reduce the number of class members and classify large data-
sets. This method can be considered a complement to other 
clustering approaches. In addition, this method can reduce 
the size of the data set by applying previous classifications, 
although large data sets can also be clustered (Zahmatkesh 
et al. 2021). The k-means method is known for its relatively 
simple implementation and acceptable results. However, a 
direct algorithm of the k-means method requires significant 
time to product the number of vectors and clusters per itera-
tion, especially for large data sets. The k-means algorithm, 
despite being a simple classification method, shows an 
acceptable performance. (Sidqi and Kakbra 2014).

K-means can be considered as an optimization issue to 
reduce the clustering error of a target. The purpose of the 
k-means algorithm is to optimize and minimize the objective 
function, which represents the square error function (Mac-
Queen 1967):

where J , k, n, X, and C is the objective function, the number 
of clusters, the number of data points, the data points, and 
the center of clusters, respectively. In this method, the data 
subsets are identified by a center, and the data points are 
assigned to clusters based on their similarities (Euclidean 
distance from their center of mass) which are often deter-
mined after data partitioning(McCreery and Al-Mudhafar 
2017).

Machine learning methods

The use of neural networks in various branches of engineer-
ing is increasing, so that knowing how it works and how to 
use it is essential for petroleum engineers. In the following, 
while introducing the structure and operation of some of 
the most important machine learning methods, some of its 
applications in petroleum engineering are mentioned.

Several studies have presented the use of artificial intelli-
gence in the petroleum engineering (Dougherty 1972; Bras-
well 2013, Kuang et al. 2021). In the oil upstream industry, 
the use of machine learning and optimization methods could 
be divided into the following three categories:

a)	 Exploration

(7)J =

k∑
j=0

n∑
i=0

|||X
(j)

i
− Cj

|||
2

	 i.	 Determination of petrophysical parameters 
(Kiran and Salehi 2020, Mohammadian et al. 
2022)

	 ii.	 Geophysical processing and interpretation 
(Wang et al. 2018)

	 iii.	 Determination of geomechanical parameters 
(Ebrahimi et al. 2022, Syed et al. 2022)

	 iv.	 Determination and interpretation of well survey 
charts and wireline logs (Bestagini et al. 2017, 
Akinnikawe et al. 2018)

	 v.	 Constructing a static and geological model of 
the reservoir (Bai and Tahmasebi 2020, Otchere 
et al. 2021)

	 vi.	 etc.

b)	 Development and knowledge of reservoir and field

	 i.	 Upscaling (Menke et al. 2021, Wang et al. 2022)
	 ii.	 Preparation of (Sircar et al. 2021), and well 

operation (Junior et al. 2022)
	 iii.	 Improving drilling operations (Bello et al. 2015; 

Noshi and Schubert 2018)
	 iv.	 Improving reservoir simulation (Wang et al. 

2020, Samnioti et al. 2022)
	 v.	 History matching (Jo et al. 2021, Srinivasan 

et al. 2021)
	 vi.	 Characterizing reservoir fluid (Ramirez et al. 

2017; Onwuchekwa 2018)
	 vii.	 Enhanced oil recovery screening (Cheraghi et al. 

2021, Pirizadeh et al. 2021)
	 viii.	 etc.

c)	 Field production

	 i.	 Improvement of extraction operations (Teixeira 
and Secchi 2019, Pandey et al. 2021)

	 ii.	 Maintenance of down hole pumps (Bangert and 
Sharaf 2019; Bangert 2021)

	 iii.	 Improvement of artificial lift system (Syed et al. 
2022)

	 iv.	 Improvement of injection operations (Artun 
2020, He et al. 2021)

	 v.	 Improvement of well stimulation operations 
(Wang and Chen 2019, Liu et al. 2022)

	 vi.	 Improvement of hydraulic fracturing operation 
(Morozov et al. 2020)

	 vii.	 Arranging the pipelines (Soomro et al. 2022)
	 viii.	 Smart well completion operation and well pat-

tern (Castiñeira et al. 2018)
	 ix.	 etc.
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Data-driven methods show engineers a path that enables 
them to quickly confirm well and field performance in a 
very short period of time. Machine learning models such as 
artificial neural networks are definitely not a substitute for 
conventional methods such as numerical simulation; instead, 
a hybrid approach of machine learning modeling can provide 
more reliable results.

SVM method

The SVM method, which originates from statistical theory, 
is one of the supervised learning methods. This method is 
used for classification and regression (Noble 2006). The 
goal of this method is to find the hyper-plane that has the 
greatest distance from the data of the two classes (Reynolds 
2001). This goal is achieved by training the SVM algorithm 
by means of a set of data (VAPNIK et al. 1998).

Support vectors are essentially a set of points in the 
n-dimensional space on which the boundary of the classes 
is determined. That is, by moving one of them, the output 
of the classification may change (Üstün et al. 2005). If each 
data is represented by xi and has the number of D attributes 
which are labeled with specific values of yi , Eq. 8 can be 
written as follows (Boser et al. 1992):

The purpose of this algorithm is to find the equation 
between input and output data, which is defined in Eq. 9:

where W and b are weight vectors and bias values, respec-
tively. The SVM is a linear regression whose dimensions are 
the number of data attitudes. This algorithm tries to reduce 
the complexity of the model by minimizing ||W||2. In this 
algorithm, the objective function is defined by Eqs. 10 and 
11:

where �i and �∗
i
 are ineffective variables for target values 

which are less and greater than � , respectively. C is used to 
balance model complexity and training error (Alonso et al. 
2013, Mehdizadeh et al. 2014). Figure 3 shows the SVM 
hyper-plane for a sample data.

(8)D =
((
xi, yi

)|x ∈ Rd, yi ∈ R, i = 1, 2,… , n
)

(9)f (x) = WT .�(X) + b

(10)min
1

2
WTW + C

N∑
i=1

(�i + �∗
i
)

(11)

⎧⎪⎨⎪⎩

yi −
�
WT .�(X) + b

�
≤ � + �i�

WT .�(X) + b
�
− yi ≤ � + �∗

i

�i, �
∗
i
≥ 0, i = 1, 2,…N

LogitBoost method

Boosting algorithms was originally proposed to combine 
several weak classifiers together to improve the classifica-
tion performance. LogitBoost is additive logistic regression 
model. This algorithm, which is a subset of the meta-learn-
ing algorithm, is a modified model of the AdaBoost algo-
rithm. This algorithm is introduced by Friedman et al. which 
uses incorrect classifications of previous models and creates 
a new classification class with higher accuracy (Friedman 
et al. 2000, Peng and Chiang 2011, Fakhraei et al. 2014). 
The AdaBoost algorithm uses a binomial probability loga-
rithm to change the number function linearly. For this rea-
son, it has limitations in noise management. The LogitBoost 
model is like the Ada Boost model. The main idea behind 
LogitBoost is to apply boosting in building a Logitmodel. 
The LogitBoost algorithm is designed to solve this problem 
(Friedman et al. 2000). The AdaBoost algorithm is more 
popular for classification, but the LogitBoost algorithm per-
forms better in outbound data. Readers are referred to study 
of Friedman et al. for further reading on classification steps 
in LogitBoost algorithm.

LogitBoost is designated as a “weak” or “basic” learn-
ing algorithm. LogitBoost iteratively takes different training 
examples because the base learning algorithm generates a 
new weak prediction rule, which causes many rounds, and 
the subsequent boosting algorithm must transform these 
weak rules into a strong prediction rule, which is usually 
much more accurate than weak prediction (Friedman et al. 
2000).

ANN method

The structure of ANN is similar to the biological network 
of the human body. This network can extend to imitate the 
function of the human brain in some way (Shepherd 1990). 
This algorithm is made up of artificial neurons which are 
the smallest unit of data processing (Sengel and Turkarslan 
2020).

ANN are usually composed of several layers, which are 
known as input, hidden, and output layers. This network fol-
lows complex mathematical equations. These mathematical 
equations make connections between neurons and weights. 
It also optimizes network weights to achieve an optimal out-
put. Each of the neurons processes the inputs to produce the 
outputs (Rezrazi et al. 2016).

In this algorithm, a random weight is determined for cal-
culating the output for each neuron:

where Xi and Wij are the input and the weight, respectively. 
The output of neurons is the corresponding neuron input 

(12)Outputi = WijXi



1427Journal of Petroleum Exploration and Production Technology (2023) 13:1419–1434	

1 3

in the next layer. After generating the first output layer, the 
activation function is applied to all of them. There are dif-
ferent types of activation functions, but the most common 
in classification is the sigmoid activation function, which is 
calculated by Eq. 13 (Okon et al. 2021):

where F(Outputi) is the value of the sigmoid function and 
Outputi is the output layers. The result of this activation 
function is 0 or 1, which indicates whether each neuron is 
active or inactive. By this way, the classification of data is 
done. Figure 4 represents a multilayer neural network.

RF method

The RF algorithm was developed by Breiman in 2001. 
The RF algorithm has been extensively used in prediction 
and classification. It is a hybrid machine learning algo-
rithm and tree-based classifier (Breiman 2001, Liu et al. 
2012, Biau and Scornet 2016). This algorithm consists 
of a combination of tree predictors. Each tree makes a 
single choice for the most desirable classification in com-
bination with a set of classified trees, and then the final 
result is given by combining these results. RF fits many 
classification trees to a data set, and then combines the 
predictions from all the trees. This algorithm, due to its 
high precision in classification, detects remote well data 
and separates it from the original data. RF algorithm is 
consist of a set of structured tree classifiers h(x,k), which 
is not dependent on random distribution vectors and each 
tree gives a single choice for the most desirable classifi-
cation at the x input (Kumar et al. 2016). The kth tree is 
shown as θk, and each tree is set and distributed evenly 
and independently based on a set of training samples and 
a random variable in the Breiman RF model. Therefore, 

(13)F
(
Outputi

)
=

1

1 + e−Outputi

to create a classification of more than one system of clas-
sifier h (x, θk) in which x is the input vector after k load, 
the classifier sequences h1(x), h2(x)…,Hk(x) is obtained. 
The final result of this system is chosen by a majority 
vote. The decision function is shown in Eq. 14 (Liu et al. 
2012):

where (x),hi , Y and I(hi(x) = Y) is a combination of the 
classification model, decision tree model, output variable, 
and pointer function, respectively. In the RF algorithm, 
selecting the best classification result for a given input 
variable is such that each tree has the right to vote for the 
most desirable outcome. Figure 5 shows the schematic of 
RF method structure.

Logistic regression method

A statistician named Galton used regression for the first 
time to describe his observations in the nineteenth cen-
tury. Carl Pearson developed regression as a mathemati-
cal basis and used it to express the relationship between 
two quantities (Anderson et al. 2003). Logistic regres-
sion expresses the odds ratio of a variable in the presence 
of several explanatory variables. Multivariate logistic 
regression is a statistical technique that is used to estimate 
the probability of the output of variables. For example, 
the presence or absence of death (Sperandei 2014). Inde-
pendent variables affect the probability of occurrence of 
the dependent variable (Anderson et al. 2003). The loga-
rithm of chance is modeled as shown in Eq. 15 (Sperandei 
2014):

(14)H(x) = argmax

k∑
i=1

I
(
hi(x) = Y

)

(15)Log
(

�

1 − �

)
= �0 + �1x1 + �2x2 +… . + �mxm

Fig. 4   Artificial neural network

Fig. 5   Schematic of RF method structure
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where � is the probability of an event, �i are the regression 
coefficients associated with the reference group and the 
explanatory variables xi . The reference group is denoted 
by �0, and �0 is formed by the members that represent the 
reference level of each of the variables(x1...m) . In addition 
to the above explanations, the logistic regression equation 
is presented in another form, which is shown in Eq. 16 
according to the article (Cramer 2002).

P is similar to the density distribution function sym-
metric to the midpoint of zero, Z is an integer, and the P 
value is between 0 and 1.

Application of machine learning 
and optimization methods in petroleum 
engineering

Comparison of machine learning algorithms

As mentioned, the algorithms used in this study include 
SVM, LogitBoost, ANN, RF, and logistic regression. 
These algorithms are among the most common algorithms 
used in petroleum engineering. Table 3 summarizes the 
advantages and disadvantages of each method.

(16)P(z) =
exp(Z)

1 + exp (Z)

Results and discussion

Petrophysical properties of the reservoir have been collected 
using 212 core data and several petrophysical well logs in 
an oil field southwest Iran. In this oil field, the reservoir 
porosity and permeability are varied from 2.1% to 34.1% and 
0.1 to 44.3 mm at depth of 2157 to 2393.2 m, respectively. 
The field flow units are estimated using conventional meth-
ods including Winland R35, FZI, DRT, and k-means. These 
methods determine the number of flow units using core data 
(porosity and permeability).

By implementing the FZI method on the used data, the 
studied field has four flow units. Figure 6 shows FZI points 
that are on a line and have similar pore characteristics. 

Table 3   Summary of the advantages and disadvantages of each of the methods used in this article (Haghighat et al. 2013; Mohamed 2017; Kour 
and Gondhi 2020)

Method Advantages Disadvantages

SVM - High accuracy
- Working well in high-dimensional space
- Using a subset of learning points, thus using much less memory

- Having a long learning time
- Not suitable in practice for large data sets
- Do not work well if there is overlap in classes

LogitBoost - Boosting is basically a group model, so its predictions are easy 
to interpret

- Strong predictive power
- Resistant to the overfitting

- Sensitive to noises
- Difficult in scaling

ANN - High efficiency in performing activities
- Fast learning tasks
- Storing information on the entire network
- Ability to provide the data to be processed in parallel

- Hardware dependence
- Difficulty of showing the problem to the network
- Requiring high processing time for big neural networks

RF - Reducing the overfitting in decision trees and help to improve 
accuracy

- flexible to both classification and regression problems
- Automating the missing values in the data
- Normalizing of data is not required

- Requiring the much computational power and 
resources

- Building numerous trees to combine their outputs
- Requiring much time for training
- Suffering from interpretability and failing in determine 

the significance of each variable
Logistic regression - Easy to implement, interpret, and very efficient to train

- Very fast at classifying unknown records
- Less inclined to overfitting
- Very fast at classifying unknown records

- Nonlinear problems cannot be solved with logistic 
regression

- Can overfit in high-dimensional datasets
- Using only to predict discrete functions
- Assume the linearity between the dependent variable 

and the independent variables

Fig. 6   RQI diagram in �
Z
 for all sampled areas
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Figure 7 shows four set of data represented by a multidimen-
sional distribution for case study data. By plotting the cumu-
lative probability diagram, the number of flow units could be 

determined by data trend breaks. According to Fig. 8, four 
flow units were obtained by this diagram.

Based on this study, the Winland R35 method indi-
cates the presence of four HFUs in the Kazhdumi reservoir 
(Fig. 9).

The results of the DRT method on the studied field data 
are shown in Fig. 10 which suggests four HFUs for the 
Kazhdumi reservoir.

Fig. 7   FZI logarithm histogram

Fig. 8   Cumulative probability diagrams to determine FZI boundaries

Fig. 9   Kazhdumi HFU classification results based on Winland R35 
method

Fig. 10   Kazhdumi HFU classification results based on DRT method

Fig. 11   Reduction in sum square error by increasing the number of 
clusters

Fig. 12   Kazhdumi HFU classification results based on k-means algo-
rithm
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Results of applying k-means on available data show that 
the minimum square error decreases with increasing number 
of categories. However, increasing the number of catego-
ries by more than four has no significant effect on reducing 
the minimum square error. Figure 11 shows the process of 
reducing the least squares of error. As a result, four HFUs 
were considered for the studied reservoir by this method 
(Fig. 12).

Access to core data (porosity and permeability) is only 
possible through the core and in the laboratory. Also, the 
core data is not available for all wells and at all depths. To 
overcome this issue, in this study, petrophysical logs data 
which are available in most wells including RT, DT, HCAL, 
NPHI, RHOZ, and PEFZ have been used as input parameters 
to machine learning methods. Using artificial intelligence 
algorithms, the number of flow units could be calculated.

For this purpose, the number of flow units calculated by 
the FZI method is considered as target values. Log data cor-
responding to the data depth used in the FZI method is pre-
processed as input data. SVM, LogitBoost, ANN, RF, and 
logistic regression algorithms are trained by 70% of the input 
data, and 30% of the data is used for testing. The number of 
field flow units is classified by petrophysical log data. The 
accuracy of the algorithms used is measured according to 
Eq. 17:

To select the best number of training data, the perfor-
mance of different algorithms was measured in different 
percentages of train/test data, and finally, 70% was selected 
as the optimal number of training data. The performance of 
the algorithms is shown in Fig. 13.

Based on available data in this study, at the first, the data 
is normalized, then divided into two categories of train and 
test with ratio of 70/30. The SVM algorithm with linear 
kernel function classified all data (including train and test 
data) with 90.46% accuracy. The confusion matrix of this 
algorithm for test data is shown in Fig. 14 with accuracy 
of 85.94%.

(17)accuracy =
TP + TN

TP + FP + FN + TN

Applying the LogitBoost method to available data in this 
study for 70/30 ratio of test to train data shows 94.84% and 
95.31% accuracy for the classification of all data and test 
data, respectively. Figure 15 illustrates the confusion matrix 
of classification.

The result of ANN algorithm in this study for 70/30 
ratio of test to train data shows 88.12% and 73.44% accu-
racy for the classification of all data and test data, respec-
tively. Figure 16 demonstrates the ANN confusion matrix 
classification.

In this study, RF algorithm shows 91.87% accuracy in 
classification using 70% and 30% of all data as train and 
test, respectively. It also shows 90.63% accuracy for the 

Fig. 13   Accuracy of the algorithms with different percentages of 
training data
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Fig. 14   Confusion matrix of support vector machine algorithm 
applied to data
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Fig. 15   Confusion matrix of LogitBoost algorithm applied to data
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classification of test data. The confusion matrix of this algo-
rithm is shown in Fig. 17.

Logistic regression algorithm has reached 91.56% accu-
racy with 30% test data and 70% training data in this study. 
Figure 18 shows the confusion matrix of logistic regression 
algorithm. Based on this confusion matrix, logistic regres-
sion algorithm shows 95.31% accuracy for the classification 
of test data.

Finally, machine learning methods are compared to select 
the best method used. The results obtained from the best 
performance of each algorithm are shown in Fig. 19. As 
shown in this figure, the LogitBoost method performed 

better than other algorithms in classification with an accu-
racy of 94.84%.

Conclusions

In this article, a variety of conventional methods and 
machine learning algorithms were investigated in determin-
ing hydraulic flow units (HFUs), and the performance of 
each method was evaluated. The following results, which 
also flesh out the innovative nature of the work, are as 
follows:
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Fig. 16   Confusion matrix of ANN algorithm applied to data
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Fig. 17   Confusion matrix of random forest algorithm applied to data

Class 1 Class 2 Class 3 Class 4

A
c
tu

a
l 

c
la

s
s
e
s C

la
s
s
 1

7 0 0 0

C
la

s
s
 2

1 30 0 0

C
la

s
s
 3

0 0 16 0

C
la

s
s
 4

1 1 0 8

Predicted classes

Fig. 18   Confusion matrix of logistic regression algorithm applied to 
data

Fig. 19   Accuracy of different machine learning algorithm used in this 
study
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–	 The k-means method and the use of sum of squares error 
(SSE) operate independently of the user and show an 
effective performance for determining the optimal num-
ber of HFUs, and it is also fully consistent with the Flow 
Zone Index (FZI) method.

–	 Conventional methods determine flow units only by using 
porosity and permeability parameters obtained from core 
analysis, while these data may not be available along the 
entire length of the reservoir. Therefore, the use of intelli-
gent data-driven methods that use petrophysical log data 
can be a suitable alternative to conventional methods, 
especially in wells where core data is not available.

–	 In this article, support vector machine (SVM), artificial 
neural network (ANN), random forest (RF), LogitBoost 
(LB), and logistic regression (LR) machine learning 
methods were used to determine flow units using petro-
physical logs. The results showed that among the dif-
ferent machine learning algorithms used in this study, 
the LB method has the best performance in determining 
HFUs. After that, RF, LR, SVM and ANN methods have 
the best accuracies, respectively.
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