
Application of Machine Learning Algorithms to

KDD Intrusion Detection Dataset within Misuse Detection Context

Maheshkumar Sabhnani

EECS Dept, University of Toledo

Toledo, Ohio 43606 USA

Gursel Serpen

EECS Dept, University of Toledo

Toledo, Ohio 43606 USA

Abstract

A small subset of machine learning algorithms, mostly

inductive learning based, applied to the KDD 1999 Cup

intrusion detection dataset resulted in dismal

performance for user-to-root and remote-to-local attack

categories as reported in the recent literature. The

uncertainty to explore if other machine learning

algorithms can demonstrate better performance

compared to the ones already employed constitutes the

motivation for the study reported herein. Specifically,

exploration of if certain algorithms perform better for

certain attack classes and consequently, if a multi-expert

classifier design can deliver desired performance

measure is of high interest. This paper evaluates

performance of a comprehensive set of pattern

recognition and machine learning algorithms on four

attack categories as found in the KDD 1999 Cup

intrusion detection dataset. Results of simulation study

implemented to that effect indicated that certain

classification algorithms perform better for certain attack

categories: a specific algorithm specialized for a given

attack category . Consequently, a multi-classifier model,

where a specific detection algorithm is associated with an

attack category for which it is the most promising, was

built. Empirical results obtained through simulation

indicate that noticeable performance improvement was

achieved for probing, denial of service, and user-to-root

attacks.

Keywords: Computer security, Machine learning,

Intrusion detection, misuse, KDD dataset, Probability of

detection, False alarm rate

1. Introduction

Literature survey indicates that, for intrusion detection,

most researchers employed a single algorithm to detect

multiple attack categories with dismal performance in

some cases. The set of machine learning algorithms

applied in the literature constitutes a very small subset of

what is potentially applicable for the intrusion detection

problem. Additionally, reported results suggest that much

detection performance improvement is possible. In light

of the widely-held belief that attack execution dynamics

and signatures show substantial variation from one attack

category to another, identifying attack category specific

detection algorithms offers a promising research direction

for improved intrusion detection performance. In this

paper, a comprehensive set of pattern recognition and

machine learning algorithms will be evaluated on the

KDD data set [1], which is one of few public domain such

data, utilizes TCP/IP level information and embedded

with domain-specific heuristics, to detect intrusions at the

network level.

KDD dataset covers four major categories of attacks:

Probing attacks (information gathering attacks), Denial-

of-Service (DoS) attacks (deny legitimate requests to a

system), user-to-root (U2R) attacks (unauthorized access

to local super-user or root), and remote-to-local (R2L)

attacks (unauthorized local access from a remote

machine). KDD dataset is divided into labeled and

unlabeled records. Each labeled record consisted of 41

attributes (features) [2] and one target value. Target value

indicated the attack category name. There are around 5

million (4,898,430) records in the labeled dataset, which

was used for training all classifier models discussed in this

paper. A second unlabeled dataset (311,029 records) is

provided as testing data [3]. Next, a brief and up-to-date

literature survey of attempts for designing intrusion

detection systems using the KDD dataset is presented.

Agarwal and Joshi [4] proposed a two-stage general-to-

specific framework for learning a rule-based model

(PNrule) to learn classifier models on a data set that has

widely different class distributions in the training data.

The PNrule technique was evaluated on the KDD testing

data set, which contained many new R2L attacks not

present in the KDD training dataset. The proposed model

was able to detect 73.2% of probing attacks, 96.9% of

denial of service attacks, 6.6% of U2R attacks, and 10.7%

of attacks in R2L attack category. False alarms were

generated at a level of less than 10% for all attack

categories except for U2R: an unacceptably high level of

89.5% false alarm rate was reported for the U2R category.

Using Kernel Miner tool and the KDD data set [5],

Levin created a set of locally optimal decision trees

(called the decision forest) from which optimal subset of

trees (called the sub-forest) was selected for predicting

new cases. Levin used only 10% of the KDD training

data randomly sampled from the entire training data set.

Multi-class detection approach was used to detect

different attack categories in the KDD data set. The final

trees gave very high detection rates for all classes

including the R2L in the entire training data set. The

proposed classifier achieved 84.5% detection for probing,

97.5% detection for denial of service, 11.8% detection for

U2R, and only 7.32% detection for R2L attack category in

the KDD testing data set. False alarm rates of 21.6%,

73.1%, 36.4%, and 1.7% were achieved for probing, DoS,

U2R and R2L attack categories, respectively.

Ertoz and Steinbach [6] used shared nearest neighbor

(SNN) technique, which is particularly suited for finding

clusters in data of different sizes, density, and shapes,

mainly when the data contains large amount of noise and

outliers. All attack records were selected from the KDD

training and testing data sets with a cap of 10,000 records

from each attack type: there are a total of 36 attack types

from 4 attack categories. Also 10,000 records were

randomly picked from both the training and the testing

data sets. In total, around 97,000 records were selected

from the entire KDD data set. After removing duplicate

KDD records, the data set size reduced to 45,000 records.

This set was then used to train two clustering algorithms:

K-means and the proposed SNN technique, which were

compared in terms of detection rates achieved. K-means

algorithm, with number of clusters equal to 300, could

detect 91.88% of probing, 97.85% of DoS, 5.6% of U2R,

and 77.04% of the R2L attack records. The proposed

SNN technique was able to detect 73.43% of probing,

77.76% of DoS, 37.82% of U2R, and 68.15% of the R2L

records, while noting that no discussion on false alarm

rates were reported by the authors. Results suggested that

SNN performed better than K-means for U2R attack

category. It is important to note that there was no

independent testing data used. Also the results are

evaluated on a relatively small portion of KDD dataset

and not on complete KDD testing dataset. Hence the

reported results show the performance of both algorithms

on the training data set only, which is expected to result in

high detection rates by default.

Yeung and Chow [7] proposed a novelty detection

approach using non-parametric density estimation based

on Parzen-window estimators with Gaussian kernels to

build an intrusion detection system using normal data

only. This novelty detection approach was employed to

detect attack categories in the KDD data set. 30,000

randomly sampled normal records from the KDD training

data set were used as training data set to estimate the

density of the model. Another 30,000 randomly sampled

normal records (also from the KDD training data set)

formed the threshold determination set, which had no

overlap with the training data set. The technique could

detect 99.17% of probing, 96.71% of DoS, 93.57% of

U2R, and 31.17% of R2L attacks in the KDD testing

dataset as intrusive patterns: authors did not report any

information on false alarm rates. As a significant

limitation, it is important to note that this model detects

whether a record is intrusive or not and not if the attack

records belongs to a specific attack category.

Literature survey shows that, for all practical purposes,

most researchers applied a single algorithm to address all

four major attack categories. It is critical to question this

approach that strives to identify a single algorithm that can

detect attacks in all four attack categories. These four

attack categories including DoS, Probing, R2L, and U2R,

have distinctly unique execution dynamics and signatures

[8], which motivates to explore if in fact certain, but not

all, detection algorithms are likely to demonstrate superior

performance for a given attack category. In light of this

possibility, the study presented here will create detection

models using a comprehensive set of pattern recognition

and machine learning algorithms and select best

performing (in terms of probability of detection and false

alarm rates) algorithms for each attack category.

In the event that certain subset of detection algorithms

do offer improved probability of detection coupled with

false alarm rates for a specific attack category, a multi-

classifier system will be attempted to improve the overall

detection performance on the four attack categories as

they exist in the KDD data sets.

2. Simulation study

This section will elaborate the methodology employed

to test various algorithms on the KDD datasets. First

required data preprocessing and tools employed will be

discussed in Section 2.1. Cost matrix measure, which is

employed to select best instances of a given classifier

algorithm, will be presented in the following section.

Parameter settings for various models will be described in

Section 2.3. Results of testing classifier algorithms will

be discussed in Section 2.4.

2.1. Data preprocessing and simulation tools

Attributes in the KDD datasets had all forms -

continuous, discrete, and symbolic, with significantly

varying resolution and ranges. Most pattern classification

methods are not able to process data in such a format.

Hence preprocessing was required before pattern

classification models could be built. Preprocessing

consisted of two steps: first step involved mapping

symbolic-valued attributes to numeric-valued attributes

and second step implemented scaling. Attack names (like

buffer_overflow, guess_passwd, etc.) were first mapped to

one of the five classes, 0 for Normal, 1 for Probe, 2 for

DoS, 3 for U2R, and 4 for R2L, as described in [9].

Symbolic features like protocol_type (3 different

symbols), service (70 different symbols), and flag (11

different symbols) were mapped to integer values ranging

from 0 to N-1 where N is the number of symbols. Then

each of these features was linearly scaled to the range

[0.0, 1.0]. Features having smaller integer value ranges

like duration [0, 58329], wrong_fragment [0, 3], urgent

[0, 14], hot [0, 101], num_failed_logins [0, 5],

num_compromised [0, 9], su_attempted [0, 2], num_root

[0, 7468], num_file_creations [0, 100], num_shells [0, 5],

num_access_files [0, 9], count [0, 511], srv_count [0,

511], dst_host_count [0, 255], and dst_host_srv_count [0,

255] were also scaled linearly to the range [0.0, 1.0]. Two

features spanned over a very large integer range, namely

src_bytes [0, 1.3 billion] and dst_bytes [0, 1.3 billion].

Logarithmic scaling (with base 10) was applied to these

features to reduce the range to [0.0, 9.14]. All other

features were either boolean, like logged_in, having

values (0 or 1), or continuous, like diff_srv_rate, in the

range [0.0, 1.0]. Hence scaling was not necessary for

these attributes.

The KDD 1999 Cup dataset has a very large number of

duplicate records. For the purpose of training different

classifier models, these duplicates were removed from the

datasets. The total number of records in the original

labeled training dataset is 972,780 for Normal, 41,102 for

Probe, 3,883,370 for DoS, 52 for U2R, and 1,126 for R2L

attack classes. After filtering out the duplicate records,

there were a total of 812,813 records for Normal, 13,860

for Probe, 247,267 for DoS, 52 for U2R, and 999 for R2L

attack classes.

The software tool LNKnet, which is a publicly

available pattern classification software package [10],

was used to simulate pattern recognition and machine

learning models. The only exception was for developing

decision tree classifier models. The C4.5 algorithm was

employed to generate decision trees using the software

tool obtained at [11]. All simulations were performed on

a multi-user Sun SPARC machine, which had dual

microprocessors, UltraSPARC-II, running at 400 MHz.

System clock frequency was equal to 100 MHz. The

system had 512 MB of RAM and Solaris 8 operating

system.

2.2. Performance comparison measures

Identifying an optimal set of settings for the topology

and parameters for a given classifier algorithm through

empirical means required multiple instances of detection

models to be built and tested on the KDD datasets. For

instance, more than 50 models were developed using the

multilayer perceptron algorithm alone. Hence a

comparative measure is needed to select the best model

for a given classifier algorithm. One such measure is the

cost per example that requires two quantities to be

defined: cost matrix and confusion matrix.

A cost matrix (C) is defined by associating classes as

labels for the rows and columns of a square matrix: in the

current context for the KDD dataset, there are five classes,

{Normal, Probe, DoS, U2R, R2L}, and therefore the

matrix has dimensions of 5×5. An entry at row i and

column j, C(i,j), represents the non-negative cost of

misclassifying a pattern belonging to class i into class j.

Cost matrix values employed for the KDD dataset are

defined elsewhere in [9]. These values were also used for

evaluating results of the KDD’99 competition. The

magnitude of these values was directly proportional to the

impact on the computing platform under attack if a test

record was placed in a wrong category.

A confusion matrix (CM) is similarly defined in that

row and column labels are class names: a 5×5 matrix for

the KDD dataset. An entry at row i and column j, CM(i,j),

represents the number of misclassified patterns, which

originally belong to class i yet mistakenly identified as a

member of class j.

Given the cost matrix as predefined in [9] and the

confusion matrix obtained subsequent to an empirical

testing process, cost per example (CPE) was calculated

using the formula,

��
= =

=

5

1

5

1

),(*),(
1

i j

jiCjiCM
N

CPE

where CM corresponds to confusion matrix, C

corresponds to the cost matrix, and N represents the

number of patterns tested. A lower value for the cost per

example indicates a better classifier model.

Comparing performances of classifiers for a given

attack category is implemented through the probability of

detection along with the false alarm rate, which are widely

accepted as standard measures.

2.3. Pattern recognition and machine learning

algorithms applied to intrusion detection

Nine distinct pattern recognition and machine learning

algorithms were tested on the KDD dataset. These

algorithms were selected so that they represent a wide

variety of fields: neural networks, probabilistic models,

statistical models, fuzzy-neuro systems, and decision

trees. An overview of how specific instances of these

algorithms were identified as well as their intrusion

detection performance on the KDD testing data set

follows next.

2.3.1. Multilayer perceptron (MLP). Multilayer

perceptron (MLP) [12] is one of most commonly used

neural network classification algorithms.

The architecture used for the MLP during simulations

with KDD dataset consisted of a three layer feed-forward

neural network: one input, one hidden, and one output

layers. Unipolar sigmoid transfer functions were used for

each neuron in both the hidden and the output layers with

slope value of 1.0. The learning algorithm used was

stochastic gradient descent with mean squared error

function. There were a total of 41 neurons in the input

layer (41-feature input pattern), and 5 neurons (one for

each class) in the output layer. Multiple simulations were

performed with number of hidden layer nodes varying

from 40 to 80 in increments of 10. Also for each

simulation a constant learning rate (one of the four values

0.1,0 0.2, 0.3, and 0.4) was used along with 0.6 as the

weight change momentum value. Different simulations

had different learning rates that varied from 0.1 to 0.4 in

steps of 0.1. Randomly selected initial weights were used

that were uniformly distributed in the range [-0.1, 0.1].

Each epoch consisted of 500,000 samples having equi-

probable records from each of the five output categories.

Initially a total of 30 epochs were performed on the

training dataset. Other simulations studied the effect of

changing the number of training epochs: number of

epochs was varied to 40, 50, 60, 100, etc. The final

model, which scored the lowest cost per example value of

0.2393, consisted of 50 nodes in the hidden layer with a

learning rate value equal to 0.1 and 60 epochs for training.

2.3.2. Gaussian classifier (GAU). Maximum likelihood

Gaussian classifiers assume inputs are uncorrelated and

distributions for different classes differ only in mean

values. Gaussian classifier is based on the Bayes decision

theorem [13].

Four distinct models were developed using the

Gaussian classifier: quadratic classifier with diagonal

covariance matrix, quadratic classifier with tilted

covariance matrix, linear classifier with diagonal

covariance matrix, and linear classifier with tilted

covariance matrix. Linear discriminant classifier with full

tilted matrix performed the best on the KDD testing

dataset with cost per example value of 0.3622.

2.3.3. K-means clustering (K-M). K-means clustering

algorithm [13] positions K centers in the pattern space

such that the total squared error distance between each

training pattern and the nearest center is minimized.

Using the K-means clustering algorithm, different

clusters were specified and generated for each output

class. Simulations were run having 2, 4, 8, 16, 32, 40, 64,

75, 90, 110, 128, and 256 clusters. Each simulation had

equal number of clusters for each attack class. For

number of clusters (K) that are not integer powers of 2,

after generating P clusters (P being an integer power of 2)

where P>K, the cluster centers having minimum variance

among its patterns were removed one at a time until the

clusters were reduced to K. An epoch consisted of

presenting all training patterns in an output class for which

centers are being generated. Clusters were trained until

the average squared error difference between two epochs

was less than 1%. During splitting, the centers were

disturbed by � 1% of the standard deviation in each

cluster so that new clusters are formed. A random offset

of � =1% was also added during each split. The model

that achieved the lowest cost per example value (0.2389)

had 16 clusters in each class.

2.3.4. Nearest cluster algorithm (NEA). Nearest cluster

algorithm [13] is a condensed version of K-nearest

neighbor clustering algorithm. Input to this algorithm is a

set of cluster centers generated from the training data set

using standard clustering algorithms like K-means, E & M

binary split, and leader algorithm.

Initial clusters were created using the K-means.

Multiple simulations were performed using different set of

initial clusters in each output class including 2, 4, 8, 16,

32, 40, 64, 75, 90, 110, 128, and 256 clusters using the K-

means algorithm. Euclidean distance was used as the

distance measure. Based on the minimum cost per test

example, the nearest cluster model that performed the best

had 32 clusters in each class during training. The model’s

cost per example for the KDD test data was equal to

0.2466.

2.3.5. Incremental radial basis function (IRBF).

Incremental radial basis function (IRBF) neural networks

[14] can also perform nonlinear mapping between input

and output vectors similar to an MLP.

A total of six simulations were performed using the

IRBF algorithm. Each simulation used initial clusters

created using K-means algorithm: there were 8, 16, 32, 40,

64, and 75 clusters each in different output classes.

Learning rate for change in weights was 0.1 and those for

changes in hidden unit means and variance were 0.01. A

separate diagonal covariance matrix was used for each

hidden unit with minimum variance of 0.000001. A total

of 10 epochs were performed on the training data. During

each epoch, 500,000 records were randomly and

uniformly sampled from each attack class. Mean squared

error cost function was used for these simulations. Initial

weights were randomly selected from a uniform

distribution in the range of [-0.01, 0.01]. For each

simulation using the IRBF, cost per example for the test

dataset was calculated. The model with 40 hidden nodes

for each class performed best with the cost per example

value equal to 0.4164.

2.3.6. Leader algorithm (LEA). Leader algorithm [15]

partitions a set of M records into K disjoint clusters

(where M ≥ K). A rule for computing distance measure

between records is assumed along with a threshold value,

delta. First input record forms the leader of first cluster.

Each input record is sequentially compared with current

leader clusters. If the distance measure between the

current record and all leader records is greater than delta,

a new cluster is formed with the current record being the

cluster leader.

Different clusters were created for different output

classes. Multiple simulations were executed with distance

threshold value, delta, assuming values from the set {0.05,

0.2, 0.4, 0.6, 0.8, 1, 5, 10, 50, 70, 90, and 100}. Records

from each class were randomly presented during training.

As the value of delta was increased, the number of

clusters in each output class kept reducing. Only one

cluster per class was formed when delta was equal to 100.

It was observed that the results were not reproducible as

leader records for each cluster were dependent on the

sequence in which the records were presented. The results

varied tremendously for larger values of delta. Cost per

example for test data was calculated for each simulation.

The model that performed best had delta value equal to

0.05 and cost per example value equal to 0.2528.

2.3.7. Hypersphere algorithm (HYP). Hypersphere

algorithm [16] [17] creates decision boundaries using

spheres in input feature space. Any pattern that falls

within the sphere is classified in the same class as that of

the center pattern. Spheres are created using an initial

defined radius. Euclidean distance between a pattern and

sphere centers is used to test whether a pattern falls in one

of the current defined spheres.

Multiple simulations were performed with different

initial radius, e.g. 0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, and

20.0. The total number of epochs performed was equal to

30. All patterns present in the training dataset were used

during each epoch. Single nearest neighbor classification

was used to classify patterns that were ambiguous or

outside all hyperspheres created. A total of 1066

hyperspheres were formed after 30 epochs in all

categories during training. The Hypersphere model that

performed the best had initial radius equal to 0.05 and

cost per example value equal to 0.2486.

2.3.8. Fuzzy ARTMAP (ART). Fuzzy ARTMAP

(Adaptive Resonance Theory mapping) [18] algorithm is

used for supervised learning of multidimensional data.

Fuzzy ARTMAP uses two ART’s – ARTa and ARTb.

ARTa maps features into clusters. ARTb maps output

categories into clusters. There is a mapping from ARTa

clusters to ARTb clusters which is performed during

training. A constant vigilance value (distance measure) of

0.999 was used for ARTb in all simulations. Vigilance for

ARTa was different for each simulation. Five simulations

were performed using fuzzy ARTMAP algorithm. The

vigilance values for ARTa during training were equal to

0.95, 0.9, 0.85, 0.75, and 0.65, respectively one for each

simulation. And the corresponding testing vigilance for

ARTa was equal to 0.9, 0.9, 0.8, 0.7, and 0.6,

respectively. Different vigilance parameters can be set for

each ART. Fuzzy ART parameters, alpha and beta, were

set to 0.001 and 1.0 respectively. The parameter alpha is

used to define the initial long term memory values in

ART. The value of alpha should be set as small as

possible. The value of beta can vary in the range [0.0,

1.0]. Smaller the value of beta larger is the effect of old

weights during training. Generally beta is set to 1.0 so

that changes in weights should be dependent on current

input patterns. All inputs were normalized to the range

[0.0, 1.0] prior to training. Inputs were complement-

coded so that low feature values do not diminish during

ART training. A total of 20 epochs were performed on

the training data. During each epoch 200,000 records

were sampled from each attack category given by Normal,

Probe, DoS, U2R, and R2L with probabilities of 0.7, 0.08,

0.2, 0.05, and 0.05, respectively. The model that

performed the best with respect to cost per example value

had vigilance parameter equal to 0.95 and 0.9 for training

and testing ARTa. It had 0.999 as vigilance parameter for

ARTb both during training and testing. Cost per example

for this model was equal to 0.2497.

2.3.9. C4.5 decision tree (C4.5). The C4.5 algorithm

[C4.5 Simulator], developed by Quinlan [12], generates

decision trees using an information theoretic

methodology. The goal is to construct a decision tree with

minimum number of nodes that gives least number of

misclassifications on training data. The C4.5 algorithm

uses divide and conquer strategy.

Initial window was set to 20% of the records present in

the KDD training dataset. 20% of records present in the

initial window size were added after each iteration and the

tree was retrained. In all tests, at least two branches

contained a minimum of two records. The cost per

example achieved for the best decision tree classifier

model was equal to 0.2396.

2.4. Classification performance of algorithms on

KDD testing dataset

Best performing instances of all nine classifiers

developed through the KDD training dataset in Section

2.3 were evaluated on the KDD testing data set. For a

given classifier, its probability of detection and false

alarm rate performance on a specific attack category was

recorded. Simulation results are presented in Table 1.

Both probability of detection (PD) and false alarm rate

(FAR) are indicated for each classifier algorithm and each

attack category.

Table 1 shows that a single algorithm could not detect

all attack categories with a high probability of detection

and a low false alarm rate. Results also show that for a

given attack category, certain algorithms demonstrate

superior detection performance compared to others.

MLP, GAU, K-M, NEA, and RBF detected more than

85% of attack records for probing category. For attack

records in DoS category, MLP, K-M, NEA, LEA, and

HYP scored a 97% detection rate. GAU and K-M, the

two most successful classifiers for U2R category, detected

more than 22% of attack records. In case of R2L

category, only GAU could detect around 10% of attack

records. Once the promising algorithms for each attack

category are identified, the best algorithm can be chosen

also considering the FAR values. Hence, MLP performs

the best for probing, K-M for DoS as well as U2R, and

GAU for R2L attack categories.

Table 1. PD and FAR for various algorithms

 Probe DoS U2R R2L

PD 0.887 0.972 0.132 0.056
MLP

FAR 0.004 0.003 5E-4 1E-4

PD 0.902 0.824 0.228 0.096
GAU

FAR 0.113 0.009 0.005 0.001

PD 0.876 0.973 0.298 0.064
K-M

FAR 0.026 0.004 0.004 0.001

PD 0.888 0.971 0.022 0.034
NEA

FAR 0.005 0.003 6E-6 1E-4

PD 0.932 0.730 0.061 0.059
RBF

FAR 0.188 0.002 4E-4 0.003

PD 0.838 0.972 0.066 0.001
LEA

FAR 0.003 0.003 3E-4 3E-5

PD 0.848 0.972 0.083 0.010
HYP

FAR 0.004 0.003 9E-5 5E-5

PD 0.772 0.970 0.061 0.037
ART

FAR 0.002 0.003 1E-5 4E-5

PD 0.808 0.970 0.018 0.046
C4.5

FAR 0.007 0.003 2E-5 5E-5

It is reasonable to state that the set of pattern

recognition and machine learning algorithms tested on the

KDD data sets offered an acceptable level of misuse

detection performance for only two attack categories,

namely Probing and DoS. On the other hand, all nine

classification algorithms failed to demonstrate an

acceptable level of detection performance for the

remaining two attack categories, which are U2R and R2L.

Subsequent to the observation that for a given attack

category, certain subset of classifier algorithms offer

superior performance as empirically evidenced through

results in Table 1, a multi-classifier design, where

classifier components are selected among the best

performing ones for a given attack category justifiably

deserves further attention. This very issue will be

elaborated in the next section.

3. Multi-classifier model

Results in Section 2 suggest that the performance can

be improved if a multi-classifier model is built that has

sub-classifiers trained using different algorithms for each

attack category. Section 2 identified the best algorithms

for each attack category: MLP for probing, K-M for DoS

as well as U2R, and GAU for R2L. This observation can

be readily mapped to a multi-classifier topology as in

Figure 1. Table 2 shows the performance comparison of

the proposed multi-classifier model with others in

literature. Results in Table 2 suggest that the multi-

classifier model showed significant improvement in

detection rates for probing and U2R attack categories.

Also the FAR was reasonably small for all attack

categories.

Figure 1. Multi-classifier model

Table 2. Comparative detection performance of

Multi-classifier

 Probe DoS U2R R2L

PD 0.833 0.971 0.132 0.084 KDD Cup

Winner FAR 0.006 0.003 3E-5 5E-5

PD 0.833 0.971 0.132 0.084 KDD Cup

RunnerUp FAR 0.006 0.003 3E-5 5E-5

PD 0.73 0.969 0.066 0.107 Agarwal

and Joshi FAR 8E-5 0.001 4E-5 8E-4

PD 0.887 0.973 0.298 0.096 Multi-

Classifier FAR 0.004 0.004 0.004 0.001

A second measure, the cost per example, can also be

leveraged to elaborate further on the comparative

performance assessment. Winner of the KDD-99

intrusion detection competition, who used C5 decision

trees, obtained cost per example value of 0.2331.

R2L

Probe

KDD

record

Multilayer

Perceptron

K-means

Gaussian

DoS & U2R

Proposed multi-classifier model (created by selecting the

best algorithms that could achieve the highest detection

rates for each attack category) was able to achieve 0.2285

cost per example value on the KDD dataset test. This is

better than that achieved by the KDD’99 Cup winner.

4. Conclusions

A simulation study was performed to assess the

performance of a comprehensive set of machine learning

algorithms on the KDD 1999 Cup intrusion detection

dataset. Simulation results demonstrated that for a given

attack category certain classifier algorithms performed

better. Consequently, a multi-classifier model that was

built using most promising classifiers for a given attack

category was evaluated for probing, denial-of-service,

user-to-root, and remote-to-local attack categories. The

proposed multi-expert classifier showed improvement in

detection and false alarm rates for all attack categories as

compared to the KDD 1999 Cup winner. Furthermore,

reduction in cost per test example was also achieved using

the multi-classifier model. However, none of the machine

learning classifier algorithms evaluated was able to

perform detection of user-to-root and remote-to-local

attack categories significantly (no more than 30%

detection for U2R and 10% for remote-to-local category).

In conclusion, it is reasonable to assert that machine

learning algorithms employed as classifiers for the KDD

1999 Cup data set do not offer much promise for detecting

U2R and R2L attacks within the misuse detection context.

5. References

[1] W. Lee, S. J. Stolfo, K. W. Mok, “A Data Mining

Framework for Building Intrusion Detection Models”,

IEEE Symposium on Security and Privacy, Oakland,

California, 1999a, pp. 120-132.

[2] W. Lee, S. J. Stolfo, and K. W. Mok, “Mining in a
Data-Flow Environment: Experience in Network Intrusion
Detection”, In Proceedings of the 5

th
 ACM SIGKDD, San

Diego, CA, 1999b, pp. 114-124.

[3] KDD data set, 1999; http://kdd.ics.uci.edu/databases/-

kddcup99/kddcup99.html

[4] R. Agarwal, and M. V. Joshi, “PNrule: A New

Framework for Learning Classifier Models in Data

Mining”, Technical Report TR 00-015, Department of

Computer Science, University of Minnesota, 2000.

[5] I. Levin, “KDD-99 Classifier Learning Contest

LLSoft’s Results Overview”, SIGKDD Explorations,

ACM SIGKDD, January 2000, Vol. 1 (2), pp. 67-75.

[6] L. Ertoz, M. Steinbach, and V. Kumar, “Finding

Clusters of Different Sizes, Shapes, and Densities in

Noisy, High Dimensional Data”, Technical Report.

[7] D. Y. Yeung, and C. Chow, “Parzen-window Network

Intrusion Detectors”, Sixteenth International Conference

on Pattern Recognition, Quebec City, Canada, August

2002, pp. 11-15.

[8] K. Kendall, “A Database of Computer Attacks for the

Evaluation of Intrusion Detection Systems”, Master's

Thesis, MIT, Boston, MA, 1998.

[9] C. Elkan, “Results of the KDD’99 Classifier
Learning”, SIGKDD Explorations, ACM SIGKDD, Jan
2000.

[10] LNKnet software, http://www.ll.mit.edu/IST/lnknet/-
index.html. Cited November 2002.

[11] C4.5 simulator, Developer: http://www.rulequest-
.com; Download code from:
http://www.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5
/tutorial.html. Cited November 2002.

[12] P. Werbos, “Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences”, PhD
thesis, Harvard University, 1974.

[13] R. O. Duda, and P. E. Hart, “Pattern Classification
and Scene Analysis”, New York: Wiley, 1973.

[14] F. M. Ham, “Principles of Neurocomputing for
Science and Engineering”, McGraw Hill, 1991.

[15] J. A. Hartigan, “Clustering Algorithms”, New York:
John Wiley and Sons, 1975.

[16] B.G. Batchelor, “Pattern Recognition: Ideas in
Practice”, Plenum Press: New York, 1978.

[17] Y. Lee, “Classifiers: Adaptive Modules in Pattern
Recognition Systems”, Cambridge, MA: MIT, Dept. of
Electrical Engineering and Computer Science, 1989.

[18] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H.
Reynolds, & D. B. Rosen, “Fuzzy ARTMAP: A Neural
Network Architecture for Incremental Supervised
Learning of Analog Multidimensional Maps”, IEEE
Trans. on Neural Networks, 1992, Vol. 3, pp. 698 – 713.

