
REVIEW
published: 18 April 2019

doi: 10.3389/fmicb.2019.00827

Edited by:

Hongsheng Liu,

Liaoning University, China

Reviewed by:

Yen-Wei Chu,

National Chung Hsing University,

Taiwan

Mohamed Elhoseny,

Mansoura University, Egypt

*Correspondence:

Yuan Lin

linyuan1979@gmail.com

Quan Zou

zouquan@nclab.net

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 31 January 2019

Accepted: 01 April 2019

Published: 18 April 2019

Citation:

Qu K, Guo F, Liu X, Lin Y and

Zou Q (2019) Application of Machine

Learning in Microbiology.

Front. Microbiol. 10:827.

doi: 10.3389/fmicb.2019.00827

Application of Machine Learning
in Microbiology
Kaiyang Qu1, Fei Guo1, Xiangrong Liu2, Yuan Lin2,3* and Quan Zou4,5*

1 College of Intelligence and Computing, Tianjin University, Tianjin, China, 2 School of Information Science and Technology,

Xiamen University, Xiamen, China, 3 Department of System Integration, Sparebanken Vest, Bergen, Norway, 4 Institute

of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China,
5 Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China

Microorganisms are ubiquitous and closely related to people’s daily lives. Since they

were first discovered in the 19th century, researchers have shown great interest in

microorganisms. People studied microorganisms through cultivation, but this method

is expensive and time consuming. However, the cultivation method cannot keep a

pace with the development of high-throughput sequencing technology. To deal with

this problem, machine learning (ML) methods have been widely applied to the field of

microbiology. Literature reviews have shown that ML can be used in many aspects

of microbiology research, especially classification problems, and for exploring the

interaction between microorganisms and the surrounding environment. In this study,

we summarize the application of ML in microbiology.
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INTRODUCTION

Microorganisms first appeared approximately 3.5 billion years ago, making them one of the earliest
living things on Earth (Nannipieri et al., 2010). Microorganisms include bacteria, viruses, fungi,
some small protozoa, and microscopic algae. These organisms, which are closely related to human
beings (Ley et al., 2006a), have a wide range of beneficial and harmful uses, including in the food
(Cotter et al., 2005), medicine (Petrof et al., 2012; Yu et al., 2018), agriculture (Morris et al., 1986),
industrial (Souza, 2010), environmental protection and other fields (Reiff and Kelly, 2010).

Microbiology is a discipline that studies the structure and function of microbial groups,
the interrelationships and mechanisms of internal communities, and the relationships between
microorganisms and their environments or hosts (Alexander, 1962; Niel, 1966). The microbiome
is a collection of all microbial species and their genetic information and functions in a
given environment. Studies of the microbiome also include the interaction between different
microorganisms (DiMucci et al., 2018), the interaction between microorganisms and other
species (Xie et al., 2018), and the interaction between microorganisms and the environment
(Moitinho-Silva et al., 2017). Because of their small size, the microscope is an important tool
for studying microorganisms. However, microscopy analyses only allow observation and must
therefore be complemented by culture techniques to study the biological, physiological, genetic,
metabolic, pathogenic and other biological characteristics of microorganisms (Waldron, 2018).
During cultivation, researchers can also explore the interactions between microorganisms and
the environment, which reflect the breadth and diversity of microbial distribution. A variety of
microorganisms living in different environments or in different hosts formmicrobial communities,
which have extensive and complex interactions with the environment and the host and form various
types of ecosystems (Srinivasan et al., 2012; Xie et al., 2018).

With the development of microbial sequencing in recent years, the microbiome has become
increasingly popular in many studies. High-throughput sequencing technology has resulted in
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generation of an increasing amount ofmicrobial data. Traditional
methods using microscopes and biological cultures are expensive
and labor intensive; therefore, machine-learning methods have
been gradually applied to microbial studies (Huang Y. A. et al.,
2017; Huang Z. A. et al., 2017; Wang et al., 2017; Wei et al.,
2017a,b; Peng et al., 2018; Yang et al., 2018b; Zou et al., 2018a).
Here, we introduce the application of machine learning (ML) in
microbial analyses. Since ML is mainly applied to classification
and interaction problems, we focus on these two areas. Figure 1
shows the framework of this paper.

MACHINE LEARNING METHODS

Machine Learning is a multi-disciplinary subject involving many
disciplines including probability theory, statistics, approximation
theory, convex analysis, and algorithm complexity theory (Qu
et al., 2017; Zou et al., 2018b). ML methods can be divided
into two types (Zitnik et al., 2019), supervised learning and
unsupervised learning. Supervised learning (Stoter et al., 2019)
requires that the model be trained using a training set. The
training sets for supervised learning include features and results.
Common supervised learning algorithms include regression
analysis and statistical classification. Unsupervised learning, also
known as clustering, adopts k-means to establish a centriole
and reduce error through iteration and descent to achieve
classification. With the development of ML, more and more
fields have begun to use this technique for research (Chen W.
et al., 2016, Chen et al., 2017a,d, 2018a,b,e,f,g; Li et al., 2016;
Zou et al., 2016, 2017; Ding et al., 2017a,b; Feng et al., 2017a;
Yu et al., 2017a; Zeng et al., 2017a, 2018; Liu et al., 2018; Pan
et al., 2018; Wei et al., 2018a,b; Yang et al., 2018a; Zhao et al.,
2018b; He et al., 2019; Zhang et al., 2019), for example, drug
repositioning (Yu et al., 2016b, 2017b), disease-relatedmicroRNA
(Chen and Huang, 2017; Chen et al., 2017d, 2018b,e,g; Zhao
et al., 2018a,c) identification, and disease-related long non-coding
RNA identification (Chen and Yan, 2013; Chen et al., 2017e,
2018c; Hu et al., 2017, 2018). There are four main steps in
developing ML algorithms (Oudah and Henschel, 2018). The
first step is extraction of the features, which is critical to the
ML method (Liu et al., 2015). Then, the operational classification
units (OTU) table can be obtained by clustering. Next, important
features that can improve the accuracy and efficiency are selected.
Finally, a training dataset is used to train the model, after
which a test set is used to evaluate the model. The process is
summarized in Figure 2.

In microbial studies, according to the collected samples,
obtaining relevant OTU is an important step in the study
of microbial data. OTU is a type of similar microorganisms,
which are cluster according to the similarity DNA sequences
(Blaxter et al., 2005). In recent years, OTUs are always used
for microbial diversity, especially when analyzing small subunit
16S or 18S rRNA datasets (Schmidt et al., 2014). Sequences
can be clustered according to their similarity to one another,
and the researcher sets the similarity threshold. After OTU
clustering and species classification annotation for OTU, the
OTU table can be obtained, which contains the OTU types

and quantities for each sample, as well as species annotation
information for each OTU.

As we know, some microbes have higher data dimensions, so
feature dimensionality reduction is also an important part of data
processing. There are some common methods for reducing the
dimensionality and many studies are about how to reduce the
dimensionality. For example, the principal components analysis
(PCA) is a common reduction dimensionality method, which
is mainly to decompose the covariance matrix to obtain the
principal components and their weights (Jolliffe, 2002). PCA
is often used to reduce the dimensionality of dataset while
maintaining the feature that maximizes the contribution of the
variance in the data set. Principal co-ordinates analysis (PCoA)
is another common method. After sorting the feature values and
the feature vectors, PCoA selects the features, which are in the top
digits and the most significant coordinates in the distance matrix
can be found (Podani and Miklós, 2002). The result is a rotation
of the data matrix. It does not change the mutual positional
relationship between the sample points, but only changes the
coordinate system.

In microbial studies, supervised learning is always used,
especially the support vector machine (SVM) (Feng et al., 2013a,
2017b; Chen X. X. et al., 2016; Yang et al., 2016), and the
Naïve Bayes (NB) (Feng et al., 2013b,c), random forest (RF)
(Chen et al., 2018d), and k nearest neighbor (KNN) methods
(Chen et al., 2017c).

The SVM is a generalized linear classifier that can perform
binary classification of data employing a decision basis, according
to the maximum-margin hyperplane of the learning sample. The
SVM can classify non-linear data by the kernel methods (Drucker
et al., 2002). SVM is widely used in bioinformatics, such as the
prediction of proteins (Xu et al., 2018a,b,c). The NB method
(Meena and Chandran, 2009), which is a classification based
on Bayes’ theory and the independent assumption of features
that originate from classical mathematical theory (Rodríguez and
Kuncheva, 2007), has a solid mathematical foundation and stable
classification efficiency. The NB classifier, which requires only a
few parameters, is less sensitive to missing data and simpler than
other methods (Jordan, 2008). The RF is a classifier that contains
multiple decision trees and its output accords to the voting on
each decision tree (Svetnik et al., 2003). KNN (Cui et al., 2001)
is a theoretically mature method. The method infers the sample
category based on its neighbors. The main steps of the algorithm
are as follows (Liao and Vemuri, 2002). First, the distance, which
is between the test sample and each training sample, should be
calculated. Then, the nearest k training samples are found as the
nearest neighbors of the test sample. Finally, the test sample is
classified according to the categories of the k nearest neighbors.

CLASSIFICATION AND PREDICTION
IN MICROBIOLOGY

Prediction of Microbial Species
There are two main types of microorganisms (Maiden et al.,
1998), one of them with non-cellular morphology (Yeom and
Javidi, 2006), such as viruses, and the other with cellular
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FIGURE 1 | The framework of this paper.

morphology that can divided into two types, one of them
namely prokaryotes (Weinbauer, 2010), such as archaea and
eubacteria, and the other namely eukaryotes (Nowrousian, 2010),
such as fungi and unicellular algae. Different microorganisms
have different characteristics, so it is important to identify the
microorganisms properly. There are two main approaches to
the identification of microorganisms. In one, the species of
an unknown microorganism is determined with the goal of
classifying it based on its domain, kingdom, phylum, class,
order, family genus and species. In the other, the goal is to
determine whether an unknown microorganism belongs to a
specific species or not. For example, we can determine if an
unknown microorganism is a virus or not, or more specifically,
whether it is a certain virus. In this section, we will introduce
recent studies that have used machine-learning methods to
predict microorganisms.

In the study (Murali et al., 2018), the authors classified specific
species of microorganisms using the IDTAXA, which employed
the LearnTaxa and IdTaxa functions. Both of these functions are
part of the R package DECIPHER, which was released under the
GPLv3 license as part of the Bioconductor, which provides tools
for the analysis and comprehension of high-throughput genomic
data. The LearnTaxa function attempts to reclassify each training
sequence into its tagged taxon using a method known as tree
descent, which is similar to the decision tree, a commonly ML
algorithms. IdTaxa uses the objects returned by the LearnTaxa
and query sequences as input data. This system returns the
classification results for each sequence in the taxonomic form and

provides the relevant confidence for each level. If the confidence
does not reaches the required value, which indicates that the
classification cannot be accurately performed at that level. The
classification of IdTaxa may lead to different conclusions in
microbiological studies. Although the misclassification is small,
many of the remaining misclassifications may be caused by
the errors in the reference taxonomy. Fiannaca et al. (2018)
presented a method for identifying the 16S short-read sequences
based on k-mer and deep learning. According to their results,
the method can classify both 16S shotgun (SG) and amplicon
(AMP) data very well.

It is important to identify specific microbial sequences in
mixed metagenomics samples. At present, gene-based similarity
methods are popularly used to classify prokaryotic and host
organisms from mixed samples; however, these techniques
have major weakness. Therefore, many studies have been
conducted to identify better methods for identification of specific
microorganisms. Amgarten et al. (2018) proposed a tool known
as MARVEL for predicting double-stranded DNA bacteriophage
sequences in metagenomics. MARVEL uses the RF method, with
a training dataset composed of 1,247 phage and 1,029 bacterial
genomes and a test dataset composed of 335 bacteria and 177
phage genomes. The authors proposed six features to identify the
phages, then used random forests to select features and found
three features provided more information (Grazziotin et al.,
2017). Ren et al. (2017) developed VirFinder, which is a ML
method based on k-mer for virus overlap group identification
that avoids gene-based similarity searches. VirFinder trains the
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FIGURE 2 | The main steps of machine learning in microbiology.

MLmodel through known viral and non-viral (prokaryotic host)
sequences to detect the specificity of viral k-mer frequencies.
The model was trained with host and viral genomes prior
to January 1, 2014, and the test set consisted of sequences
obtained after January 1, 2014. VirSorter (Roux et al., 2015) is
based on reference dependence and reference independence in
different kinds of microbial sequence data to identify the viral
signal. Experimental results have shown that VirSorter has good

TABLE 1 | The available data and materials for prediction of microbial species.

Studies Availability of data and materials Reference

IDTAXA http://DECIPHER.codes Murali et al., 2018

Fiannaca et al. https://github.com/IcarPA-TBlab/

MetagenomicDC

Fiannaca et al., 2018

MARVEL https://github.com/

LaboratorioBioinformatica/MARVEL

Amgarten et al., 2018

VirFinder https://github.com/jessieren/VirFinder Ren et al., 2017

VirSorter https://github.com/simroux/VirSorter Roux et al., 2015

performance, especially for predicting viral sequences outside
the host genome.

The above methods specifically classify microorganisms
according to different needs. When we want to know the
taxonomy information of microorganisms, we can use the
method, which proposed by Murali et al. (2018). Moreover,
MARVEL, VirSort, and VirFinder can identify specific types of
microorganisms. According to the Amgarten et al. (2018), these
three methods have comparable performance on specificity, but
MARVEL has a better recall (sensitivity) performance. We have
compiled materials for implementation of the above methods,
which are shown in Table 1.

Prediction of Environmental
and Host Phenotypes
With the development of next-generation DNA and high-
throughput sequencing, a new area of microbiology has been
generated. The main research in this field is to link microbial
populations to phenotypes and ecological environments, which
can provide favorable support for disease outbreaks and precision
medicine (Atlas and Bartha, 1981). It is well known that
some microorganisms are parasitic and that the surrounding
environment and host cells have an important impact on
the microbial population. Differences in nutrient availability
and environmental conditions lead to differences in microbial
communities (Moran, 2015). Because microorganisms can
exchange information with the surrounding environment and
host cells, we can predict the environmental and host phenotypes
based on the microorganisms that are present (Xie et al.,
2018). This provides a more comprehensive understanding of
the environment and the host, so that we can better use the
environment and protect the host. Many studies have recently
been conducted to predict environmental and host phenotypes
usingmicroorganisms. In this section, we introduce these studies.

Asgari et al. (2018) used shallow subsample representation
based on k-mer and deep learning, random forests, and SVMs
to predict environmental and host phenotypes from 16S rRNA
gene sequencing using the MicroPheno system. They found that
the shallow subsample representation based on k-mer is superior
to OTU in terms of body location recognition and Crohn’s
disease prediction. In addition, the deep learning method is
better than the RF and SVM for large datasets. This method not
only can improve the performance, but also avoid overfitting.
Moreover, it can reduce the time of pretreatment. Statnikov
et al. (2013) used OTUs as an input feature and processed
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the data as follows. First, the authors sequenced the original
DNA, after which they removed the human DNA sequence and
defined the OTUs based on the microbial sequence. Next, they
quantified the relative abundance of all sequences belonging
to each OTU. The authors used SVM, kernel ridge regression,
regularized logistic regression, Bayesian logistic regression, the
KNN method, the RF method and probabilistic neural networks
with different parameters and kernel functions. Overall, they
investigated 18 ML methods. In addition, they used five feature
extraction methods. The experimental results revealed that the
RF, SVM, kernel-regression and Bayesian logic use Laplacian
prior regression provided better performance. Based on their
research, human skin microorganisms collected from objects
that have been touched can be used to identify the individual
from which they originated. In this work, the author used a
variety of classification and dimensionality reduction methods
to explore the effects of each method. It is very useful for
the next work, which provides a comprehensive comparison.
Schmedes et al. (2018) used themicrobial community for forensic
identification. In their study, they developed the hidSkinPlex,
a novel targeted sequencing method using skin microbiome
markers developed for human identification. In forensic science,
it is important to estimate the time of death. Johnson et al.
(2016) used KNN regression to predict the time interval after
death using datasets from nose and ear samples. This indicates
that skin microbiota can be an important tool in forensic
death investigation. Traditionally, marine biological monitoring
involves the classification and morphological identification of
large benthic invertebrates, which requires a great deal of time
and money. Cordier et al. (2017) used eDNA metabarcoding and
supervised ML to build a powerful prediction model of benthic
monitoring. Moitinho-Silva et al. (2017), studied the microbial
flora of sponges and their HMA-LMA status demonstrated
the applicability of ML to exploring host-related microbial
community patterns.

Due to the specificity of microbial communities, we can
better identify the environment and the host. Moreover, we can
judge the existing environmental conditions and host survival
status according to the existence of microbial community.
We summarize the available datasets and methods, which are
shown in Table 2.

Using Microbial Communities to
Predict Disease
Microbiomes are important to human health and disease (Bourne
et al., 2009). Indeed, there are many microbial communities
in the human body. Once a microbial community is out of
balance or foreign microorganisms invade, the human body is

TABLE 2 | The available data and materials for prediction of environmental and

host phenotypes.

Studies Availability of data and materials Reference

Asgari et al. https://llp.berkeley.edu/micropheno Asgari et al., 2018

Statnikov et al. https://link.springer.com/article/10.

1186/2049-2618-1-11

Statnikov et al., 2013

likely to get sick. For example, intestinal microbial communities
are associated with obesity (Ley et al., 2006b) and pulmonary
communities with pulmonary infection (Sibley et al., 2008).
Because of the complexity of these communities, it is difficult
to determine which kind of microbiome communities cause
of the disease. Recently, many studies have investigated use of
microbiome communities to predict diseases, especially bacterial
vaginosis (Srinivasan et al., 2012; Deng et al., 2018) and
inflammatory bowel disease (Gillevet et al., 2010). By analyzing
microbial communities, we can better understand the disease and
then make effective decisions regarding treatment. Therefore,
in this section, we discuss current studies investigating use of
microbiome communities to predict diseases.

Bacterial vaginosis (BV) is a disease associated with the vaginal
microbiome. Beck and Foster (2014) used the genetic algorithm
(GP), RF, and logistic regression (LR) to classify BV according
to microbial communities. There are two criteria for BV, the
Amsel standard, which accord to the discharge, whiff, clue
cells, and pH (Amsel et al., 1983), and Nugent score, which
dependents on counting gram-positive cells (Nugent et al., 1991).
The dataset in Beck et al. study was from Ravel et al. (2011) and
Sujatha et al. (2012). The method in the paper (Beck and Foster,
2014) first classifies BV according to vaginal microbiota and
related environmental factors, then identifies the most important
microbial community for predicting BV.

Hierarchical feature extraction is based on the classification
of microbes from kingdoms to species. The existing stratification
feature selection algorithm will lead to information loss, and the
stratification information of some 16S rRNA sequences is usually
incomplete, influencing the classification. Therefore, Oudah and
Henschel (2018) proposed a method known as hierarchical
feature engineering (HFE) to identify colorectal cancer (CRC).
To accomplish this, they used RF, decision trees and the NB
method to classify a dataset of Next Generation Sequencing based
16S rRNA sequences provided by metagenomics studies. This
method is good for processing datasets with high dimensional
features. Moreover, the available dataset and method are in https:
//github.com/HenschelLab/HierarchicalFeatureEngineering.

In another study (Wisittipanit, 2012), the author focused on
predicting inflammatory bowel disease. In that study, patients
with Crohn’s disease and ulcerative colitis were compared with
healthy controls to identify differences between the mucosa and
lumen in different intestinal locations. The author used the
Relief algorithm (Kira and Rendell, 1992) to select features, and
Metastats (White et al., 2009) to detect differential features.
Finally, the author used KNN and SVM as classifiers to perform
disease specificity and site specificity analysis.

In this section, we discuss using microorganisms to predict
different diseases. Beck and Foster (2014) predicted BV according
to the microorganisms and the diagnosis standard of BV. HFE
identified the CRC according to the OTU ID and the taxonomy
information. Wisittipanit proposed a method to predict Crohn’s
disease, based on OTU and feature selection method. The
above methods used different ideas to predict diseases by using
microorganisms and obtained good results. This indicates that
some diseases affect human colonies. According to these colony
changes, we can not only predict the disease, but also treat the
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disease according to the colony condition, which is a direction
for future research.

INTERACTION AND ASSOCIATION IN
MICROBIOLOGY

Interaction Between Microorganisms
The collective behavior of microbial ecosystems in biomes is
the result of many interactions between community members.
These interactions include metabolite exchange, signaling and
quorum sensing processes, as well as growth inhibition and
killing (Langille et al., 2013; DiMucci et al., 2018). Understanding
the interspecific interactions within microbial communities is
critical to understanding the functions of natural ecosystems
and the design of synthetic consortia (Mainali et al., 2017).
Therefore, in this section, we introduce the application of ML to
investigation of interactions between microorganisms.

DiMucci et al. (2018) showed how the microbial interaction
network can be combined with the characteristic level of
individual microbes to provide an accurate inference of the
missing edges in the network and a constructive mechanism
of the interaction. The same authors proposed the notion of
a composite vector that combined the generated trait vectors
and pairwise interactions. The training set for the model is
all observed interactions. The model was then used to predict
the unobserved interactions. If the random forest classifier
is used, feature contributions can be calculated. Microbial
interactions in the soil can affect crop yields; therefore, Chang
et al. (2017) used the random forest method to predict the
productivity based on the microorganisms. In this study, the
improved crop productivity differences were linked to the soil
microbial composition.

There are cooperative and competitive relationships within
the same microbial population. Moreover, there are eight
relationships between the different microbial populations,
which are neutralism, commensalism, synergism, mutua-
lism, competition, amensalism, parasitism and predation.
Understanding the interactions between microorganisms is
important for the study of microbial species and for microbial
applications. However, there are not many studies on ML in this
area, which will be an important research direction.

Microbiome-Disease Association
There are many kinds of microorganisms in human bodies,
and they are inseparable from human health. For example,
intestinal microbial disorders can cause intestinal inflammatory
diseases (Chen et al., 2017b), such as ulcerative colitis, CRC,
atherosclerosis, diabetes and obesity. Accordingly, it is necessary
to predict the microbial-disease association because this study
not only improves the diagnosis and prognosis of human
diseases, but also develops the new drugs (Yu et al., 2015,
2016a; Shi et al., 2016; Su et al., 2018; Fan et al., 2019).
However, few studies have investigated predictive analysis of
the microbial-disease association. Therefore, in this section, we
introduce the application of ML to the study of microbial-
disease association.

Fan et al. (2019) proposed a new approach to analyze the
microbial-disease association by integratingmultiple data sources
from the human microbe-disease consortium (MDPH_HMDA)
and path-based HeteSim scores. First, heterogeneity networks
were constructed. Microbe-disease pair weighting was conducted
according to the standardized HeteSim measurement method,
after which the microbe-disease-disease pathway and microbe-
microbe-disease pathway HeteSim scores were integrated.
Finally, the correlation scores of potential micro genome
associations were calculated. Xuezhong et al. (2014) proposed
a method based on the Human Disease Network (HSDN)
in which co-occurrence of disease/symptom terms based on
PubMed bibliographic records was used to calculate disease
similarity. KATZ (Katz, 1953) is a network based measurement
method that calculates the similarly of nodes in a heterogeneous
network, to solve the link prediction problem proposed by
Katz. The KATZ method has been applied in many fields,
including disease-gene association prediction (Xiaofei et al.,
2014) and IncRNA-disease association prediction (Chen et al.,
2015). Chen et al. (2017b) proposed a novel method based on
KATZ to predict associations of human microbiota with non-
infectious diseases (named KATZHMDA). The KATZHMDA
first constructs adjacency matrix A based on known microbial-
disease associations. The kernel similarity matrix KD and KM
are calculated based on the disease Gaussian interaction profile
and microbial Gaussian interaction profile, respectively. We
can construct the integrated matrix A∗ based on KM, KD
and known microbial-disease associations. Next, all walks of
different lengths are integrated to obtain a single microbe-
disease association measurement. Therefore, we can calculate
microbe-disease association probability in a matrix form. Shi
et al. (2018) proposed a prediction method based on binary
matrix completion named BMCMDA. The BMCMDA assumes
that the incomplete microbiome-disease association (MDA)
matrix is the sum of a potential parameterization matrix
and a noise matrix. Additionally, the BMCMDA assumes
that the independent subscripts of the items observed in
the MDA matrix follow the binomial model. Shi et al.
(2018) used the same dataset, which was collected from the
Human Microbe-Disease Association Database (HMDAD) and
included 292 microbes and 39 human diseases, to perform
comparisons. According to the study, BMCMDA is better
than the KATZHMDA in AUC. BMCMDA can be integrated
with other and independent microbial/disease similarities or
characteristics to enhance MDA prediction. Moreover, this
method can be applied to more prediction aspects. We
summarize the available datasets and methods, which are
shown in Table 3.

TABLE 3 | The available data and materials for microbiome-disease association.

Studies Availability of data and materials Reference

Zhou et al. https://www.nature.com/articles/

ncomms5212#supplementary-information

Xiaofei et al., 2014

KATZHMDA http://dwz.cn/4oX5mS. Chen et al., 2017b

BMCMDA https://github.com/JustinShi2016/ISBRA2017 Shi et al., 2018
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CONCLUSION

Microorganisms are involved in many life activities, and
affect their surrounding environment and other organisms.
Microorganisms play important roles in human heath,
crop growth, livestock farming, environmental management,
industrial chemical production and food production. In the
19th century, people first observed microbes using microscopes
and began to study them. However, the development of high-
throughput sequencing technology has led to generation of
large amounts of microbial related data. As a result, machine-
learning methods are now being applied to microbiological
research. Here, we discuss the current application of ML in
the microbiome. The results revealed that ML is widely used in
microbiological research, and that it has focused on classification
problems and analysis of interaction problems. However, many
problems remain unresolved and will require the cooperation
of researchers from different fields, such as biology, informatics
and medicine, to jointly promote the development and progress
of microbiological research. On the other hand, the recent
developed link prediction (Liu et al., 2016; Zeng et al., 2017b)
and computational intelligence methods (Cabarle et al., 2017;

Song et al., 2018), can be promising in discovering the
relationship between diseases and microbes.
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