
                          Anantrasirichai, P., Biggs, J., Albino, F., Hill, P., & Bull, D. (2018).
Application of Machine Learning to Classification of Volcanic
Deformation in Routinely-Generated InSAR data. Journal of
Geophysical Research: Solid Earth, 15(8), 6592-6606.
https://doi.org/10.1029/2018JB015911

Peer reviewed version

Link to published version (if available):
10.1029/2018JB015911

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via AGU at https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB015911 . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1029/2018JB015911
https://doi.org/10.1029/2018JB015911
https://research-information.bris.ac.uk/en/publications/183b7a3c-13d1-4c6f-a732-f8bf01591ac3
https://research-information.bris.ac.uk/en/publications/183b7a3c-13d1-4c6f-a732-f8bf01591ac3


Confidential manuscript submitted to <enter journal name here>

Application of Machine Learning to Classification of Volcanic1

Deformation in Routinely-Generated InSAR data2

N. Anantrasirichai1, J. Biggs2, F. Albino2, P. Hill1, D. Bull13

1Visual Information Laboratory, University of Bristol, UK4

2School of Earth Sciences, University of Bristol, UK5

Key Points:6

• We present a machine learning framework to detect volcanic ground deformation in7

wrapped interferograms using convolutional neural networks.8

• The classification model is initialised with Envisat dataset, then tested and retrained9

with Sentinel-1 dataset covering over 900 volcanoes.10

• This framework can reduce the number of interferograms for manual inspection from11

more than 30,000 to approximately 100.12
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Abstract13

Recent improvements in the frequency, type and availability of satellite images mean14

it is now feasible to routinely study volcanoes in remote and inaccessible regions, includ-15

ing those with no ground-based monitoring. In particular, Interferometric Synthetic Aper-16

ture Radar (InSAR) data can detect surface deformation, which has a strong statistical link17

to eruption. However, the dataset produced by the recently-launched Sentinel-1 satellite is18

too large to be manually analysed on a global basis. In this study, we systematically process19

>30,000 short-term interferograms at over 900 volcanoes and apply machine learning algo-20

rithms to automatically detect volcanic ground deformation. We use a convolutional neutral21

network (CNN) to classify interferometric fringes in wrapped interferograms with no atmo-22

spheric corrections. We employ a transfer learning strategy, and test a range of pretrained23

networks, finding that AlexNet is best suited to this task. The positive results are checked by24

an expert and fed back for model updating. Following training with a combination of both25

positive and negative examples, this method reduced the number of interferograms to ∼10026

which required further inspection, of which at least 39 are considered ’true positives’. We27

demonstrate that machine learning can efficiently detect large, rapid deformation signals in28

wrapped interferograms, but further development is required to detect slow or small defor-29

mation patterns which do not generate multiple fringes in short duration interferograms. This30

study is the first to use machine learning approaches for detecting volcanic deformation in31

large datasets, and demonstrates the potential of such techniques for developing alert systems32

based on satellite imagery.33

1 Introduction34

Globally 800 million people live within 100 km of a volcano [Loughlin et al., 2015].35

Improvements in monitoring and forecasting have been shown to reduce fatalities due to36

volcanic eruptions [Auker et al., 2013; Mei et al., 2013] but a significant proportion of the37

∼1500 holocene volcanoes have no ground-based monitoring. Interferometric Synthetic38

Aperture Radar (InSAR) is a satellite remote sensing technique used to measure ground dis-39

placement at the centimeter-scale over large geographic areas and has been widely applied40

to volcanology [e.g. Biggs and Pritchard, 2017; Pinel et al., 2014]. Furthermore, InSAR41

measurements of volcanic deformation have a significant statistical link to eruption [Biggs42

et al., 2014]. Modern satellites provide large coverage with high resolution signals, generat-43

ing large datasets. For example, the two-satellite constellation, Sentinel-1 A and B, offers a44

6 day repeat cycle and acquires data with a 250-km swath at a 5 m by 20 m spatial resolution45

(single look). This amounts to >10 TB per day or about 2 PB collected between its launch46

in 2014 and June 2017 [Fernández et al., 2017]. The explosion in data has brought major47

challenges associated with manual inspection of imagery and timely dissemination of infor-48

mation. Moreover, many volcano observatories lack the expertise needed exploit satellite49

datasets, particularly those in developing countries.50

Machine learning technologies have been widely implemented in the field of computer51

science, where the computers use statistical techniques to learn a specific and complex task52

from given data. In the Earth Sciences, machine learning has been employed in several appli-53

cations [Lary et al., 2016], such as predicting earthquake magnitudes [Adeli and Panakkat,54

2009], land surface classification [Li et al., 2014], vegetation indices [Brown et al., 2008],55

landslide susceptibility mapping [Yilmaz, 2010], etc. The techniques used previously include56

tree-based methods [Wei et al., 2013], artificial neural networks [Conforti et al., 2014], sup-57

port vector machines [Tien Bui et al., 2017] and Bayesian methods [Totaro et al., 2016].58

Here, we present a novel approach to detect volcanic ground deformation automati-59

cally from InSAR images. This approach brings together satellite-based volcano geodesy60

and machine learning algorithms to develop new ways of automatically searching through61

large volumes of InSAR images to detect patterns that may be related to volcanic activity.62

The proposed method works on ‘wrapped’ interferograms displayed as fringes each repre-63
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senting a set amount of displacement, equal to half the radar wavelength. However, these64

interferograms also contain artifacts associated with atmospheric conditions, and at volca-65

noes the effect of stratified atmospheric water vapour can be particularly difficult to distin-66

guish from ground deformation [e.g. Ebmeier et al., 2013b; Parker et al., 2015a]. In this67

paper, we extract the spatial characteristics of the interferograms using deep convolutional68

neural networks (CNN) – biologically-inspired architectures that comprise multiple layers of69

neural connections that have learnable weights and biases [Krizhevsky et al., 2012]. Similar70

approaches have been highly successful when applied to the analysis of visual imagery, im-71

age classification, object detection and tracking [LeCun et al., 2015], and could ultimately be72

used in near-real time to detect volcano deformation and inform the local volcano observato-73

ries.74

2 Background: Machine Learning Algorithms75

Machine learning is a generic term for the automatic discrimination of input patterns76

into learnt or defined classes, originally introduced in the 1950s [Samuel, 1959]. For the case77

of volcanic unrest classification, the input is InSAR interferograms and the output will be78

one of two classes: unrest or no unrest (or the likelihood of each). Machine learning tech-79

niques can be separated into two categories, supervised and unsupervised methods. Super-80

vised methods learn representations of the output classes using labelled ground truth ex-81

amples of those classes [Kotsiantis, 2007] (i.e. in this case volcanic unrest and no volcanic82

unrest), whereas unsupervised methods cluster together similar groups in the data without83

any ground truth [e.g. Zanero and Savaresi, 2004]. In this study, we focus on supervised84

methods, particularly deep Convolutional Neural Networks (CNNs) [Rumelhart et al., 1986;85

Krizhevsky et al., 2012; Szegedy et al., 2016] and Support Vector Machines (SVMs) [Chris-86

tianini and Shawe-Taylor, 2000].87

Support Vector Machines (SVMs) typically use hand-defined inputs such as intensity88

distributions and Gabor features extracted from the input images [Chang and Lin, 2011].89

SVMs classify using a "maximum margin" technique and are able to linearly distinguish two90

or more classes. However, using the "kernel trick" the input domain is projected into a (pos-91

sibly infinite) higher dimensional space to provide very effective non-linear classification92

[Burges, 1998]. The main advantages of SVMs are that the training process does not require93

a truly large dataset (large in this context can be considered to be on the order of 10,000 or94

more data points). The SVM process is also fast even for machines without a graphics pro-95

cessing unit (GPU). However, in many supervised classification problems with large ground96

truth datasets, deep networks such as CNNs often outperform shallow machine learning al-97

gorithms such as SVMs [Goodfellow et al., 2016].98

Convolutional Neural Networks (CNNs) are a class of neural networks that employ99

locally connected layers that apply convolution between a kernel (filter matrix) and an inter-100

nal signal and are most commonly used for image recognition and classification. The deep,101

hierarchical and densely connected nature of CNNs enable them, not only to classify, but102

also to generate discriminating features of progressive complexity from the input to the out-103

put layers [Jia et al., 2014]. For image based classification, the first layers convolve small104

spatial regions with learnt blocks of weights. These weight blocks can be considered to be105

feature extractors and often resemble early vision basis functions found in the human visual106

cortex (i.e. similar to 2D Gabor functions) [Matsugu et al., 2003]. The output of these lay-107

ers are often integrated (or "pooled") before connection to lower layers. The convolutional108

layers are commonly then connected to dense layers of fully connected neurons leading to109

a final classification (often using an output activation function such as softmax [Goodfellow110

et al., 2016]). All neurons within the convolutional and fully connected layers are defined by111

weights and a bias from the connected neurons one layer above. Depending on the architec-112

ture, all layers use activation functions such as tanh (the hyperbolic tangent) or ReLU (Rec-113

tified Linear Unit) to introduce non-linearity into the networks [Agostinelli et al., 2015]. The114

weights in all layers are initiated in training with non-zero random or pseudo-random values.115
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All weights are then modified using a batch based iterative back propagation method using116

a testing dataset with associated ground truth. To prevent overfitting, regularisation tech-117

niques such as "dropout" are used to ensure the network is able to effectively generalise [Sri-118

vastava et al., 2014]. The effective training of deep CNN networks is both extremely com-119

putationally expensive and requires very large training datasets [Simonyan and Zisserman,120

2014]. It is therefore common to pretrain convolutional layers in an unsupervised fashion,121

followed by supervised fine-tuning [Erhan et al., 2010]. Several high-performance pretrained122

models have been employed to serve a specific purpose, such as AlexNet [Krizhevsky et al.,123

2012] and ResNet [He et al., 2016]. Figure 1 illustrates the architecture of an example CNN124

(Alexnet). This figure shows the 2D convolution layers and the 1D output linear layers and125

how they are connected giving a hierarchical representation across all the layers. The input to126

Alexnet (as shown in the figure) is a 2D image of 224x224 pixels.127

Figure 1. AlexNet CNN for InSAR input. The first Block from the left is the input image with a size of

224×224. It is followed by five 2D convolutional layers (filter sizes of 11×11, 5×5, 3×3, 3×3 and 3×3) with

ReLU and max-pooling (filter size of 3×3). The last three are fully connected layers (linear layers generate

features with a length of 4096). The blue block shows the neighbouring pixels associated in each convolution

to produce one value for the next layer.

128

129

130

131

132

3 InSAR Dataset133

The first Sentinel-1 satellite (S1A) was launched in 2014 and the mission ensures134

Earth’s observations for the next 25 years with repeat intervals of 6-24 days globally. The135

data is freely-available in near real-time making it ideal for routine volcano monitoring. The136

global dataset used in this study consists of 30,249 interferograms covering ∼900 volcanoes137

in 2016-2017. The interferograms were processed with the automated InSAR processing sys-138

tem LiCSAR (http://comet.nerc.ac.uk/COMET-LiCS-portal/) developed by the Centre for139

Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET). Each ac-140

quisition is connected to the three preceding acquisitions, forming a trio of interferograms of141

increasing time-span. We crop the images to a region spanning 0.5◦ in latitude and longitude142

for each of the ∼900 volcanoes. We include volcanoes in temperate, tropical and arid envi-143

ronments with morphologies ranging from steep stratovolcanoes, to large calderas and small144

islands (Figure 2a). The dataset is weighted towards the European Volcanoes where images145

are acquired every 6 days and the LiCSAR system has been running the longest (2016-2017).146

Temporal baseline of the interferograms ranges from 6 to 120 days, including one third of the147

dataset with timespans of 6 and 12 days (Figure 2b).148

A major challenge for both manual and automated InSAR monitoring systems is dis-153

tinguishing deformation signals from atmospheric artifacts which can also generate concen-154

tric fringes around volcanoes, particularly those with steep topography [e.g. Ebmeier et al.,155

2013b; Pinel et al., 2014]. Several approaches have been proposed to correct these artifacts,156

with external data sources such weather models, or GPS tropospheric delays, or by apply-157
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Figure 2. (a) Worldmap showing the spatial distibution of the dataset: colour dots indicate the number of

Sentinel-1 interferograms calculated for each volcano. Notice that the number of data is largest for European

volcanoes. (b) Histogram showing the distribution of the temporal baseline (timespan between the master and

the slave acquisition) of our dataset.

149

150

151

152

ing statistical approaches to phase-elevation correlations or time-series [e.g. Bekaert et al.,158

2015; Li et al., 2005; Jolivet et al., 2014]. The quality of atmospheric correction is highly de-159

pendent on geographical location and is hence variable [Parker et al., 2015a]. Furthermore,160

atmospheric corrections can only be applied to unwrapped interferograms, and unwrapping161

is computationally expensive, slow and can introduce phase errors. For our initial, proof-of-162

concept study, we chose to use wrapped, uncorrected interferograms and test the ability of163

our approach to discriminate between deformation and atmospheric signals.164

To provide ground-truth information for training and verification of supervised clas-165

sification systems, it is necessary to manually identify a selection of interferograms where166

several fringes can be attributed to volcanic deformation. Even though there are >30,000167

interferograms in our Sentinel-1 dataset, the majority are short-duration inteferograms cover-168

ing volcanoes that are not deforming, or are deforming slowly. Identifying a sufficient num-169

ber of positive images in the Sentinel-1 dataset is challenging, so we pretrain the network170

using an older archive of interferograms from the European Space Agency’s Envisat satellite.171

Several possible datasets exist, including over the Main Ethiopian Rift [Biggs et al., 2011],172

the Kenyan Rift [Biggs et al., 2009], the Central Andes [Pritchard and Simons, 2004a] and173

the Southern Andes [Pritchard and Simons, 2004b]. All of these contain 1) multiple volcanic174

systems displaying persistent deformation at variable rates, and 2) areas which are not de-175

forming but show a range of features including incoherence and atmospheric artifacts (Figure176

3). We chose to use a dataset over the Main Ethiopian Rift (MER) for convenience. The En-177

visat background mission (2003-2010) acquired three to four images per year over the Main178

Ethiopian Rift, and has been used to identify deformation at 4 volcanoes previously consid-179

ered dormant: Alutu, Corbetti, Bora and Haledebi [Biggs et al., 2011]. These interferograms180

are a good test case The rates of deformation are several centimetres per year, which means181

that over the time period of the interofergrams (variable, but typically several months), the182

interferograms show several fringes of deformation.183
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Figure 3. Archive dataset over the Main Ethiopian Rift produced using the Envisat satellite. This is used

to increase the number of positive samples for training. (a) covering Bora, Alutu and Corbetti (20080827-

20100623), (b) showing uplift at Alutu (20071226-20081210). The bottom row shows ground deformation

signals at (c) Alutu (20040922-20080514), (d) Alutu (20071226-20090114), (e) Alutu (20071226-20081105),

(f) Alutu (20080514-20090114), (g) Alutu (20080827-20081210), (h) Corbetti (20080827-20100623), (i)

Bora (20080827-20100623) (j) Alutu (20081105-20100728) [Biggs et al., 2011]. Each colour cycle (fringe)

represents 2.8 cm of displacement in the satellite line-of-sight.
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Despite the small number of examples, it is important to train the network using some191

Sentinel-1 data to account for differences in processing strategy and atmospheric behaviour.192

A small dyke intrusion at Erte Ale volcano (Ethiopia) occurred in January 2017 associated193

with the overflow of the lava lake [Xu et al., 2017] and interferograms spanning this event194

shows 4 fringes of deformation (Figure 4 a). Interferograms of Etna volcano (Italy) spanning195

October 2016 show fringes potentially related to an intrusive event (Figure 4 b-c); the Na-196
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tional Institute of Geophysics and Volcanology (INGV) reported the openning of a new vol-197

canic vent on 7 August and an explosion at Bocca Nova on 10 October. Interferograms from198

other time periods at Erte Ale and Etna show multiple fringes that are atmospheric in ori-199

gin (Figure 4 e-f). Cerro Azul and Fernandina volcanoes (Galapagos) have been deforming200

during 2017 [Bagnardi, 2017] and typically show several fringes of deformation in a single201

interferogram. Several other volcanoes are known to be deforming slowly during this time202

period, for example, Medicine Lake, USA which has been subsiding for ∼60 years at ∼10203

mm/yr [Parker et al., 2015b] and Laguna del Maule, Chile [Singer et al., 2014] and Corbetti204

Ethiopia [Lloyd et al., 2018], which are uplifting at rates of >6 cm/yr. However, in short in-205

terferograms, these slow rates of deformation are not sufficient to produce multiple fringes206

of deformation, and we do not attempt to identify them in the current study. We use interfer-207

ograms spanning the intrusions at Erte Ale and Etna and to train the network (Figure 4 e-f),208

and include the Galapagos volcanoes in the test dataset to assess detection capability. For209

our initial runs, we do not flag interferograms with atmospheric artifacts as negative results,210

instead testing the ability of to distinguish deformation patterns based on positive examples211

alone.212
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Figure 4. (a-c): Volcanic ground deformation signals in Sentinel-1 inteferograms at a) Erta Ale (20170104-

20170209) [Xu et al., 2017], b) Etna (20161003-20161015) and c) Etna (20161003-20161021). (d-f): Atmo-

spheric signals at d) Erta Ale (20170925-20171031), e) Etna (20170916-20171010) and f) Etna (20170916-

20170928) . Each colour cycle (fringe) represents 2.8 cm of displacement in the satellite line-of-sight.

213

214

215

216

Table 1 shows the list of volcanoes used as positive samples in the training process217

(Section 4.2). The negative samples are generated from both non-deformation and back-218

ground as described in Section 4.1.219
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Table 1. List of volcanoes showing deformation and used in the training process. Note that the number

of interferograms is before applying data augmentation (which is the process of increasing the number of

positive samples to be balanced with that of the negative samples in the training dataset).

220

221

222

Training process Volcano name Type period # interferograms

Initial (Envisat)

Alutu Stratovolcano 2003-2010 158
Bora Pyroclastic cone 2003-2010 52

Corbetti Caldera 2003-2010 44
Haledebi Fissure vent 2003-2010 46

Retrained (Sentinel)

Etna Stratovolcano 2016 2
Ale Bagu Stratovolcano 2017 3
Bora Ale Stratovolcano 2017 3

Cerro Azul Shield 2017 8
Erta Ale Shield 2017 3

Hayli Gubbi Shield 2017 3
Sierra Negra Shield 2017 17

4 Method Development223

The proposed framework for using machine learning to identify volcanic deformation224

in interferograms is shown in Figure 5. For the training process, each image is processed as225

described in Section 4.1 and then fed into the CNN to learn ground deformation characteris-226

tics (positive class) against those of background, atmosphere and noise (negative class). We227

conducted initial tests on a range of pretrained CNNs and SVMs using small archive and test228

datasets from Envisat and Sentinel-1 respectively.229

4.1 Data preparation239

The values of wrapped interferograms vary between −π and π and they are typically240

displayed with colours (red, green, and blue intensities). For the purposes of machine learn-241

ing, we first convert the wrapped interferogram into grayscale image, i.e. the pixel value in242

the range of [−π, π] is scaled to [0, 255] or [−125, 125] if zero-centre normalisation is re-243

quired (Figure 6b). Subsequently, each training image is divided into patches equal to the244

input size the CNN (e.g. 224×224 pixels for AlexNet [Krizhevsky et al., 2012]). The patches245

overlap by half their size (Figure 6c).246

We then employ Canny edge detection [Canny, 1986], where a Gaussian filter is firstly247

applied to remove noise, then double thresholding is applied to the intensity gradients of the248

image. As the wrapped-phase interferograms shows strong edges where the phase jumps249

between -π and π, the Canny operator can straightforwardly extract fringes occurring from250

volcano deformation (Figure 6 c). As the number of background areas (negative samples) is251

significantly larger than those associated with volcano deformation (positive samples), only252

the patches in which strong edges have been detected are used. Since areas without strong253

edges are unlikely to contain volcanic deformation they are instantly defined as background254

without classification by the CNN.255

For machine learning, balancing the number of training samples between classes is264

very important but we have only 300 positive examples. There are over 100 times more265

negative patches containing strong edges than positive patches. Therefore, we increase the266

number positive patches for training using a data augmentation approach [Krizhevsky et al.,267

2012]. We generate more positive patches by i) shifting every 10 pixels around the volcano;268

ii) flipping horizontally and vertically; iii) rotation through angles of 22.5◦, 45◦, 67.5◦ and269
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Figure 5. Diagram of the proposed framework, showing (a) the training process and (b) the prediction pro-

cess. The training process starts with data with ground truth (labelled as "1" or "positive", where deformation

is present and "0" or "negative" in other areas, e.g. Figure 6a). Then, edge detection is applied so that only the

areas with large phase changes are considered. These areas are subsequently divided into 2 classes of patches

and fed to the CNN for training. For the prediction process, the new interferogram is divided into overlapping

patches and the patches with strong edges are tested with the trained CNN model, giving the probability P of

being ground deformation. The probabilities of all patches are merged with Gaussian weights. The highest

probability Pmax and its location are provided for the development of an alert system. Finally the expert

checks the result and the positives are employed to retrain the CNN for better performance.

230

231

232

233

234

235

236

237

238

90◦; and iv) distorting the shape of deformation by varying scales along the x and y axes270

of the affine transformation. This data augmentation technique increases the 300 positive271

samples initially identified in the Envisat dataset to approximately 10,000 positive patches272

(Figure 6d). We randomly select negative patches so that the numbers are balanced.273

4.2 Initial tests274

We employ a transfer learning strategy by fine-tuning a pretrained network. This ap-275

proach is faster and easier than training a network with randomly initialised weights from276

scratch (which could take months for training). Parameters and features of these networks277

have been learnt from a very large dataset of natural images thereby being applicable to nu-278

merous specific applications. The last two layers are replaced with a fully connected layer279

and a softmax layer to give a classification output related to volcanic unrest. The learning280

rates of the new layers are defined to be faster than the transferred layers. We set the maxi-281

mum number of epochs to 50 and the batch size to 100. The output of the softmax layer, the282

top layer of the CNN, is the probability P of the patch being a positive result. The probabili-283

ties for each patch are merged with Gaussian weights (µ = 0, σ = 1), where µ and σ are the284

mean and the standard deviation, respectively.285

Initially, we use the Envisat archive to test three popular pretrained CNN architectures:286

AlexNet [Krizhevsky et al., 2012], ResNet50 [He et al., 2016] and InceptionV3 [Szegedy287

et al., 2016]. We also test a support vector machine (SVM) classifier based on textural fea-288

tures following Anantrasirichai et al. [2013]. The objective results were evaluated using a289

receiver operating characteristic curve (ROC curve), which illustrates the performance of290

the identification method by comparing true positive rates (TPR) and false positive rates291

(FPR). The TPR (or sensitivity or recall) is the ratio between the number of positive samples292

correctly categorised as positive and the total number of actual positive samples. The false293

positive rate is calculated as the ratio between the number of negative samples wrongly cat-294

–9–



Confidential manuscript submitted to <enter journal name here>

Figure 6. Data preparation process, comprising (a) ground truth, labelled by the experts – the white and

the black areas are the positives and the negatives, respectively; (b) value scaling, where the phase varying be-

tween −π to π is converted to grayscale values between 0 to 255, which suit the CNN inputs; (c) overlapping

patches, generated by dividing the image with the size of the CNN input (e.g. 224×224 pixels) and position-

ing by overlapping by half this size (e.g. blue boxes in the figure). The patches without edges are defined to

be negatives instantly and will not be used for training; (d) data augmentation, where the number of positive

patches is increased to match that of the negative patches, which is done using rotations, flips, distortions and

pixel shifts.

256

257

258

259

260

261

262

263

egorized as positive and the total number of actual negative samples. The area under curve295

(AUC) is the integrated area under the ROC curve. Better performance results in higher296

AUC values (maximum = 1), achieved through a high TPR and low FPR, such that most true297

ground deformations are correctly identified and only a few backgrounds are falsely identi-298

fied as positive results.299

Figure 7 shows the ROC curve for a 2-fold cross validation, where half of the dataset300

is employed for training and the other half is used for testing, then they are swapped, and301

the results are averaged. We also calculate the accuracy and true negative rate (TNR), for302

comparison: the accuracy is the proportion of correctly predicted results amongst all testing303

samples, whilst the TNR measures the proportion of negative samples that are correctly iden-304

tified. AlexNet achieves 0.995, 0.925, 0.899 and 0.992 for AUC, accuracy, TPR and TNR305

respectively. It outperforms ResNet50, InceptionV3 and texture features with SVM by ap-306

proximately 8%, 5% and 11% on the average of these four metrics, respectively.307

Next, we employ the initial model based on the AlexNet CNN and the SVM, trained313

by Envisat described above, and retrain it by including a subset of the Sentinel-1 dataset. We314

use interferograms covering Erta Ale, Ethiopia, and Etna, Italy, which include both defor-315

mation and atmospheric signals as previously discussed (Figure 4). We evaluate these tests316

using 2-fold cross validation and compute the accuracy, TPR and TNR as before (Table 2).317

For both Erta Ale and Etna, the AlexNet CNN outperforms the SVM. The results for Erta318

Ale show exceptional performance, with an accuracy of 0.994 for the CNN, whilst those for319

the Etna area are less good (accuracy of 0.871), probably due to atmospheric interference.320
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AlexNet: AUC=0.995, Accuracy=0.925, TPR=0.899, TNR=0.992

ResNet50: AUC=0.989, Accuracy=0.828, TPR=0.759, TNR=0.994

InceptionV3: AUC=0.975, Accuracy=0.874, TPR=0.837, TNR=0.963

Texture Fts: AUC=0.968, Accuracy=0.802, TPR=0.732, TNR=0.969

Figure 7. ROC curves for the 2 folds of cross validation using Envisat dataset to train the networks. These

compare classification performances between AlexNet, ResNet50, InceptionV3 and texture features (Texture

Fts). Four metrics are also computed, namely the area under the curve (AUC), the accuracy, the true positive

rate (TPR), and the true negative rate (TNR). AlexNet achieves the best performance, followed by ResNet50,

InceptionV3 and texture features, respectively.

308

309

310

311

312

Table 2. The average results of 2-fold cross validation of the AlexNet and the SVM when trained with the

Envisat dataset and the Sentinel-1 dataset of Erta Ale, Ethiopia, and Etna, Italy.

321

322

Region methods Accuracy TPR TNR

Erta Ale
CNN 0.994 1.000 0.988
SVM 0.985 0.982 0.985

Etna
CNN 0.871 0.747 0.981
SVM 0.742 0.654 0.783

5 Application to the Global Dataset323

In the previous sections, we have demonstrated that deep learning with CNNs has sig-324

nificant potential to capture the characteristics of volcano deformation present in interfero-325

grams despite the challenges of large scale, heterogeneity, and non-stationary distribution326

that such problems typically present for deep learning [Chen and Lin, 2014]. In this section,327

we apply our pre-trained CNN to the global dataset of ∼900 volcanoes and 30,249 interfer-328

ograms described in section 3, using the framework illustrated in Figure 5. Following an329

initial run, we use expert analysis of the results to retrain the model and rerun it.330

The CNN-training process was run on a graphics processing unit (GPU) at the High331

Performance Computing facility (BlueCrystal) at the University of Bristol. The initial and re-332

trained models were completed in approximately 38 hours and 26 hours, respectively. The333

retraining process was faster, despite using a larger training dataset (Envisat dataset plus334

some positive results of Sentinel dataset), because the weights and biases of the network335

are initialised with values closer to the optimum. The prediction process for each 500×500336

pixel interferogram took ∼1.5 seconds (∼10 hours for 30,249 interferograms). In theory, the337

CNN model can be retrained whenever a new result is confirmed by an expert, a process that338

would likely focus on true positive and false negative results (i.e. if a real deformation event339

is missed). However, the training dataset requires balanced numbers of positive and negative340

samples, and since false positives occur more frequently than false negatives, care is required341

to augment the deformation samples, ensuring that data points are positioned to prevent over-342

fitting.343
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Table 3. Classification results of 30,249 interferograms showing the total number of predicted positives,

the numbers of confirmed true positives, confirmed false positives, and the number of results required further

analysis. This shows that the performances of the CNN model is improved from 2.85% to 37.5% in term of

the positive predictive value (PPV – the fraction of true positives among all retrieved positives) when the

model is retrained with the confirmed positives of the Sentinel-1 dataset.

374

375

376

377

378

Model # Positives # True Positives # False Positives # Unconfirmed

Initial 1369 39 894 435
Retrained 104 39 - 65

For each run, we calculate the number of total positive results (Positive), confirmed344

true positives (TP), confirmed false positive (FP) and results requiring further analysis (Un-345

confirmed) (Table 3). The initial model run identified 1368 positive results, of which 39 were346

considered to be true positives, including the examples at Sierra Negra and Cero Azul in the347

Galapagos that were included as a test, and additional interferograms showing deformation at348

Etna (Figure 8 a-c). These examples all have detection probabilities >0.999. Of the remain-349

ing 1329 "positive" interferograms, 894 were quickly identified as false positives, mostly350

small islands and turbulent atmospheric artifacts, which typically have detection probabilities351

less than 0.85 (Figure 8 d-f). The true positive and false positive results were then fed back352

to the CNN to retrain the model.353

The retrained model identified 104 positive results, including the 39 true positives354

identified initially. The other 65 examples all contained concentric fringes around the vol-355

cano, and even experts were unable to determine from a single inteferogram whether the356

fringes were caused by volcanic deformation or atmospheric artefacts. This includes Tamb-357

ora Indonesia, Alayta Ethiopia, Adwa Ethiopia and Etna Italy (Figure 9) which are all high358

relief stratovolcanoes. The merged probabilities assigned to these detections are 0.965, 0.867,359

0.733 and 0.953 respectively, slightly lower than those assigned to the true positives. By cal-360

culating the correlation between the phase and the elevation and looking at pair-wise logic in361

the time series [Ebmeier et al., 2013b], we finally conclude that these 65 signals were caused362

by atmospheric artifacts.363

The CNN identified over 30,000 negative results, but manually searching through all364

these for false negatives is not feasible. However, we have checked all scenes associated with365

reported eruptions during this time period [Global Volcanism Program, 2013]. The only ex-366

ample with a visible fringe pattern was detected at Ulawun, Papua New Guinea (20170604-367

20170722), which erupted between 11 June 2017 - 3 November 2017 (Fig. 10). The full in-368

terferogram and a zoomed-in version showing the fringes are shown in Figure 10c and 10d,369

respectively. Our framework did not detect this signal because the visible fringe area is rela-370

tively small compared to those in the training positive patches, and it is surrounded by noise.371

After applying several convolutions and pooling in the CNN, the features of the noise be-372

come dominant and it is classified as a negative result.373

6 Discussion397

The majority of volcanoes worldwide have little or no ground-based monitoring. Satel-398

lite systems, such as InSAR, have the potential to measure surface deformation at volcanoes399

globally, but until now the utility of these systems has been limited by the acquisition strat-400

egy and data policy of the space agencies. The launch of Sentinel-1 is providing unprece-401

dented data access, but poses new challenges, as more data is available than can be analysed402

by manual inspection. This paper demonstrates that machine learning using deep convolu-403

tional neural networks (CNNs) has the capability to identify rapid deformation signals from404
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Figure 8. Results of the initial model showing the original image (left) and overlaid with probability

of being volcanic deformation (right). Confirmed true positive results from (a) Cerro Azul, Galapagos

(20170320-20170401) Pmax =1, (b) Sierra Negra, Galapagos (20170519-20170718) Pmax =1, (c) Etna,

Italy (20161003-20161015) Pmax =0.999. Confirmed false positive results from (d) Dama Ali, Ethiopia

(20170511-20170710) Pmax=0.812, (e) Lipari, Italy (20170212-20170224) Pmax =0.824, (f) Prestahnukur,

Iceland (20170517-20170722) Pmax=0.815. The brighter yellow means higher probability. Areas inside dark

and bright green contours are where P>0.5 and P>0.8, respectively. Each colour cycle (fringe) represents 2.8

cm of displacement in the satellite line-of-sight.

379

380

381

382

383

384

385

386

a large dataset of interferograms. This is a proof-of-concept, and further development is still405

required to develop an operational global alert system for volcanic unrest based on satellite406

observations of surface deformation. In this section, we discuss the limitations of the current407

process and outline future developments that would lead to the development of an opera-408

tional system.409

The first component of any automated alert system is the automatic processing of satel-410

lite data. The currently available Sentinel-1 dataset has a relatively small number of interfer-411

ograms that show deformation, meaning a limited number of positive samples are available412

for training. For this initial test, we have resorted to using examples from Envisat and data413

augmentation approached to increase the number of available positive results for training.414

–13–



Confidential manuscript submitted to <enter journal name here>

117.81°E 118.00°E 118.19°E 117.81°E 118.00°E 118.19°E

8.13°S

8.25°S

8.38°S

40.39°E 40.57°E 40.76°E 40.39°E 40.57°E 40.76°E

13.01°N

12.89°N

12.76°N

)b()a(

40.65°E 40.84°E 41.03°E 40.65°E 40.84°E 41.03°E

10.20°N

10.07°N

9.95°N

15.19°W 15.00°W 14.81°W 15.19°W 15.00°W 14.81°W

37.87°N

37.75°N

37.62°N

)d()c(

- - /2 0 /2

Phase change [radian]

Figure 9. Unconfirmed positive results from the retrained model showing the original image (left) and over-

laid with probability of being volcanic deformation (right) of (a) Tambora, Indonesia (20170718-20170730)

Pmax=0.965, (b) Alayta, Ethiopia (20170329-20170528) Pmax=0.867, (c) Adwa, Ethiopia (20170516-

20170609) Pmax=0.733 (Note: Ayelu on the left of Adwa is not identified as deformed ground as P=0.06),

(d) Etna, Italy (20170922-20170928) Pmax=0.953. The brighter yellow means higher probability. Areas

inside dark and bright green contours are where P>0.5 and P>0.8, respectively. Each colour cycle (fringe)

represents 2.8 cm of displacement in the satellite line-of-sight.
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Figure 10. Three interferograms at Ulawan, Papua New Guinea, (a) 20170511-201705523, (b) 20170523-

20170604, (c) 20170604-20170722. The last one (c) shows possible deformation. (d) The zoom-in area of (c).

Each colour cycle (fringe) represents 2.8 cm of displacement in the satellite line-of-sight.
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However, these may not truly reflect the characteristics of global volcanic deformation. As415

the system continues running, more positive samples will become available and the model is416

retrained, the system performance will improve.417
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The European Space Agency posts raw Sentinel-1 data to their website within hours418

of acquisition, but limited bandwidth makes this data access route unsuitable for automated419

systems operating on a global scale. The LiCSAR system uses the archive held by the UK420

Centre for Environmental Data Analysis (CEDA) which typically has a latency period of421

a few weeks. This latency is well suited for routine surveys of ground deformation [e.g.422

Pritchard and Simons, 2004c; Biggs et al., 2011; Chaussard and Amelung, 2012; Ebmeier423

et al., 2013a], which can be used for motivating changes in long-term monitoring strategies,424

but would be too slow for crisis response [Ebmeier et al., 2018]. Automated processing of425

archived data could be supplemented by direct download for a limited number of volcanoes426

which are considered to be high threat because of changes in behavior identified by other427

methods, such as seismic swarms. Once trained, the CNN runs in a matter of seconds, and428

would not add noticeably to the time taken for data to be communicated. The retraining pro-429

cess is slower and could be undertaken periodically, or when particularly significant events430

are detected, such as a new type of deformation pattern.431

The current proof-of-concept study demonstrates the ability of CNNs to identify rapidly432

deforming systems that generate multiple fringes in wrapped interferograms. For a 12-day C-433

band interferogram this corresponds to a deformation rate of 1.8 m/yr. Such high rates are434

typically only observed for very short periods, and are often associated with dyke intrusions435

or eruptions [Biggs and Pritchard, 2017]. There are several possible adaptations that would436

enable a machine learning system to detect slower rates of deformation associated with sus-437

tained unrest. The first option is to generate long time-span interferograms, which will in-438

crease the number of fringes per image where deformation is sustained. For example, in a439

year-long interferogram, the average deformation rate required to generate two fringes is only440

6 cm/yr. The second option is to develop a machine learning approach capable of detecting441

deformation in unwrapped data. However, fringes are ideally suited to machine-learning ap-442

proaches because the high-frequency content is easy to identify using edge-detection meth-443

ods and provides strong features for distinguishing deformation from other signals. Anomaly444

detection techniques may be suitable for classifying unusual events in unwrapped data [e.g445

Gaddam et al., 2007], but care needs to be taken when scaling the unwrapped data to the446

settings of the pretrained network (e.g. 0-255), as clipping large magnitudes may loose infor-447

mation.448

For our initial tests, we have chosen to use wrapped interferograms, as although sev-449

eral unwrapping algorithms exist [e.g. Chen and Zebker, 2001; Goldstein et al., 1988], they450

are computationally expensive, particularly in areas of low or patchy coherence. Although451

the automatic processing of unwrapped interferograms on a global basis is challenging, there452

are several advantages. In general, stacking multiple short-time period interferograms will453

produce more coherent results than directly processing longer time-span interferograms [e.g.454

Biggs et al., 2007]. However, there are exceptions, particularly where the level of coherence455

is seasonally variable, for example, due to snowfall, and further analysis of global patterns456

of coherence is required in order to determine the most appropriate strategy for automating457

this. Once the interferogram has been unwrapped, it can be re-wrapped at any chosen inter-458

val, meaning that higher fringe rates can be artificially generated. The optimal fringe rate459

will depend on the ability of the CNN to distinguish the spatial patterns of fringes as increas-460

ing the rate will also increase the number of fringes associated with turbulent atmospheric461

artifacts. Using unwrapped interferograms also improved the ability to identify atmospheric462

signals, either by applying a direct correction or as a secondary stage. Weather models are463

available globally and services such as the Generic Atmospheric Correction Online Service464

(GACOS) exist, but are not yet routinely applied on a global basis [Yu et al., 2018]. A more465

efficient approach would be to use the weather models as a secondary stage, once the CNN466

has identified a smaller subset of ‘positive’ results.467

The final challenge is ensuring that information is provided to the appropriate au-468

thorities in a timely and useful manner. The proof-of-concept algorithm reduces the num-469

ber of interferograms that require manual inspection from >30,000 to 104, but expert anal-470
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ysis is still required to distinguish deformation from some types of atmospheric artifacts,471

and to interpret the deformation patterns in terms of source processes. Although there is472

a strong statistical link between satellite observations of deformation and eruptions, Biggs473

et al. [2014]’s global study found that only about half of deforming volcanoes erupted on a474

decadal timescale. Therefore, these alerts should be considered flags for further investiga-475

tion using complementary datasets, rather than indicators of impending eruption. The ability476

of volcano observatories to interpret InSAR data is highly variable between countries. The477

algorithms developed here provide a probability that a given interferogram contains surface478

deformation, but further capacity building will be required before many volcano observato-479

ries, particularly those in developing countries, are able to use this information to influence480

alert levels or long-term monitoring strategies. Identifying all volcanic ground deformation481

signals will expand our understanding of the behaviour of a wide range of magmatic systems,482

and improve eruption forecasting in the future.483

7 Conclusions484

This paper is the first to demonstrate the capability of machine learning algorithms for485

detecting volcanic ground deformation in large sets of InSAR data. The proposed method486

was developed using a current popular machine learning algorithm for image classification487

– convolutional neural network (CNN). Our classification model was initialised with archive488

data from the Envisat mission using the pretrained CNN, AlexNet. It was then applied to489

a Sentinel dataset consisting of over 30,000 images at 900 volcanoes. After an initial run,490

expert classification of the positive results were used to retrain the network and the classifi-491

cation performance was improved, increasing the proportion of correctly identified deforma-492

tions amongst all positive results from 2.85% to 37.5%. This retrained network reduced the493

number of interferograms that required manual inspection from >30,000 to ∼100 and more494

training is likely to improve the performance yet further. These results indicate that machine495

learning algorithms combined with automated processing systems have the potential to form496

an alert system for volcanic unrest in remote and inaccessible regions.497
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