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Pattern Recognition: An Analysis
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Abstract—Recently, it has been demonstrated that combining
the decisions of several classifiers can lead to better recognition
results. The combination can be implemented using a variety of
strategies, among which majority vote is by far the simplest, and
yet it has been found to be just as effective as more complicated
schemes in improving the recognition results. However, all the
results reported thus far on combinations of classifiers have
been experimental in nature. The intention of this research is
to examine the mode of operation of the majority vote method in
order to gain a deeper understanding of how and why it works, so
that a more solid basis can be provided for its future applications
to different data and/or domains. In the course of our research,
we have analyzed this method from its foundations and obtained
many new and original results regarding its behavior. Particular
attention has been directed toward the changes in the correct
and error rates when classifiers are added, and conditions are
derived under which their addition/elimination would be valid for
the specific objectives of the application. At the same time, our
theoretical findings are compared against experimental results,
and these results do reflect the trends predicted by the theoretical
considerations.

Index Terms— Character recognition, classifier combination,
decision combination, majority vote problem.

I. INTRODUCTION

I
N THE domain of OCR, there has been a recent movement

toward combining the decisions of several classifiers in

order to arrive at improved recognition results. The com-

bination can be implemented using a variety of strategies.

In [11] and [14], the combined decision is obtained by a

majority vote of the individual classifiers, while variations of

this scheme are implemented in [6], [11], and [15]. When

the individual classifiers produce ranked lists of decisions,

these rankings can be used to obtain combined decisions

[9]. Further developments in deriving a combined decision

include statistical approaches [4], [10], formulations based

on Bayesian and Dempster–Shafer theories of evidence [4],
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[15], and neural networks [12]. In all these cases, it was

found that using a combination of classifiers has resulted in

a remarkable improvement in the recognition results, and this

is true regardless of whether the classifiers are independent or

make use of orthogonal features.

Among all the combination methods, majority vote is by

far the simplest for implementation. It does not assume prior

knowledge of the behavior of the individual classifiers (also

called experts), and it does not require training on large quanti-

ties of representative recognition results from the experts. Yet,

in a very recent study [12], when five combination strategies

(majority vote, Bayesian, logistic regression, fuzzy integral,

and neural network) are employed on seven classifiers, the

results show that the majority vote is just as effective as the

other more complicated schemes in improving the recognition

rate for the data set used.

The last point deserves some attention, because all the

results reported thus far on the majority vote have been

experimental in nature—given a particular set of classifiers

on a certain database, certain results have been obtained.

Consequently, there is no assurance that similar improvements

can be obtained when a different database is used, or when

a different set of classifiers are combined. Therefore this

method requires a closer scrutiny, so that its behavior can be

better understood and used to advantage not only in character

recognition, but also in other pattern recognition areas where a

multiplicity of algorithms exist, each producing a set of well-

defined outcomes. Examples of these areas could be speech

recognition and other problems in computer vision where it

may not be realistic to expect large volumes of data for training

classifier combinations. For these applications, majority vote

is the most appropriate option.

This work is concerned with understanding how and why the

combination of expert opinions by majority vote can produce

improved recognition results, and the assumptions under which

this can be expected to happen. To achieve this purpose, we

will examine the topic starting from its logical foundations,

that is, from the classical voting problem. For this particular

problem, the binomial distribution has been used to determine

the probabilities of consensus, but only for an odd number of

voters. We will extend these results to even numbers of voters,

and compare their results with those for odd numbers so that

an ordering of probabilities can be obtained for combining

different numbers of experts.
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From this model, we will relax the assumptions of equal

probabilities among the experts and examine the effects to

the consensus created by the addition of new experts. This

problem is studied without assuming independence of the

experts whenever possible. With this assumption, conditions

are derived as to when these additions would improve the

results of the combination. Interestingly, these conditions

are related to the widely studied notion of the odds ratio.

Throughout the paper, we will compare our findings against

experimental results.

II. THE VOTING PROBLEM

In the rest of this paper, we assume that classifiers or

experts are deployed, and that for each input sample, each

expert produces a unique decision regarding the identity of the

sample. This identity could be one of the allowable classes,

or a rejection when no such identity is considered possible. In

the event that the decision can contain multiple choices, the

top choice would be selected. In combining the decisions of

the experts, the sample is assigned the class for which there

is a consensus, or when at least of the experts are agreed

on the identity, where

if is even

if is odd.

Otherwise, the sample is rejected. Since there can be more than

two classes, the combined decision is correct when a majority

of the experts are correct, but wrong when a majority of the

decisions are wrong and they agree. A rejection is considered

neither correct nor wrong, so it is equivalent to a neutral

position or an abstention. For the problem we are examining,

there is only one correct answer but many wrong ones for each

individual. Consequently, there will be cases where the group

has no consensus, leading to a rejection. This possibility of

a rejection by the group would exist whether each individual

has the rejection option or not, and so we include the reject

option for each expert for the sake of generality.

While each classifier has the possibilities of being correct,

wrong, or neutral, the combined (correct) recognition rate is

really the probability of the consensus being correct, assuming

each vote to have only two values—correct or not. In other

words, errors and rejections can be grouped together as the

other possibility when the correct rate is considered. However,

in this case, the overall error rate of the combination cannot

be calculated directly from the error rate of each classifier.

Due to the nature of consensus, the combined decision is

wrong only when a majority of the votes are wrong and they

make the same mistake. Of course, this is a strength of this

combination method—due to the large number of possible

mistakes, the majority would not often make the same one.

As a result of this need for consensus, we can only calculate

the probability of the consensus committing a particular error

from the individual probabilities of committing the same error.

To assess this particular (mistaken) probability of consensus,

we can also consider each vote to have only two values—it

makes this particular mistake or not.

To avoid confusion in dealing with our problem, we should

distinguish between the number of choices available to the

voter (expert), and the number of values his/her vote would

have. In the example of possible classes, the expert would

have choices for each classification. However, when

we consider the recognition rate of the consensus, each vote

would have only two values—correct or not. The probability

of this vote being correct would coincide with the recognition

rate of the expert, while the other option has probability

. Analogously, when we consider the probability of

the consensus making a particular mistake (misclassifying a

sample of “2” as “3,” for example), the two values of each

vote are whether the expert makes this particular mistake or

not, and these values have probabilities and , given that

the expert makes this misclassification with probability .

Consequently, both cases reduce to the problem of deter-

mining the probability of consensus when each vote has only

two alternatives, and so they can be considered as the same

problem with different parameters. With this situation of two

alternatives, the subject had been much studied as the classical

voting problem under the following assumptions:

A1: The number of voters is odd.

A2: Each voter has the same probability of voting one

way (for example, correctly).

A3: The individual decisions are independent.

Of these assumptions, A1 will be eliminated from the outset,

with interesting consequences. Then new results are obtained

from the cases when A2 is not assumed, and subsequently we

will examine the consequences when A3 is relaxed.

The different premises between the classical problem and

the current one are summarized in Table I, where is the

number of possible recognition classes for the current problem.

We will use and to denote the probabilities

of the consensus being correct and wrong respectively. One

consequence of the last difference shown in Table I lies in

the behavior of as changes, or vice versa. In

the original problem, , so they would

change in opposite directions, and maximizing one quantity

would minimize the other. This is no longer true when the

consensus has the reject option, since .

For this case, decreasing does not necessarily imply

that would increase correspondingly (since the reject

probability can increase). The nature and magnitude of the

changes are found to be related to whether is even or

odd. These are some of the aspects that will be presented

in Section III.

III. GENERAL RESULTS ON THE PROBABILITY OF CONSENSUS

If we assume that independent experts have the same

probability of being correct, then the probability of the

consensus being correct, denoted by , can be computed

using the binomial distribution as

where the value of is as defined in Section II. Condorcet

[3] is usually credited with first recognizing this fact, and his
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TABLE I
DIFFERENCES BETWEEN CLASSICAL AND CURRENT PROBLEMS

work became the basis of much modern research in voting

and decision making (for example, [1] and [7]). The following

theorem, attributed to him, has provided validity to the belief

that the judgment of a group is superior to those of individuals

provided the individuals have reasonable competence.

Theorem 0: Suppose is odd and . Then the

following are true:

1) If then is monotonically increasing in

and as

2) If then is monotonically decreasing in

and as

3) If then for all

The following recursive formula is given in [8], but the

derivation is unpublished.

Corollary to Theorem 0: If is odd and then

In the rest of this section, we will generalize the above

theorem to even as well as odd values of The following

theorem and corollaries apply when

Theorem 1:

and

Proof:

since

and

since
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TABLE II
VALUES OF PC(n) FOR DIFFERENT VALUES OF p AND n

The next three corollaries are direct consequences of The-

orem 1.

Corollary 1:

Proof: From Theorem 1,

since

We note that this conclusion coincides with that of Corollary

to Theorem 0 when the latter result has been simplified.

Corollary 2:

Corollary 3:

From the preceding results, we can deduce the following

remarks when

1) As immediate consequences of Theorem 1,

and

for all and

2) When even numbers of experts are combined,

is monotonically increasing if which is

true for all if Conversely, is monotonically

decreasing with if which is true for all

if When however, the behavior of

would depend on the relative magnitudes of and

Suppose Then since

while since

and since This represents a departure

from the odd cases, where is monotonically decreasing

for all These differences can be seen in Table II,
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TABLE III
(a) PERFORMANCES OF INDIVIDUAL EXPERTS ON CENPARMI
DATABASE AND (b) PERFORMANCES OF SOME COMBINATIONS

(a)

(b)

where values of are shown for different values of

and

3) When both even and odd numbers of experts are con-

sidered together, we know from Remark 1) that

and for all

The relation between and is given by

Corollary 3, from which it follows that

iff

and iff the reverse inequality

holds for Since is increasing and approaches

as for all

if

For example, when since

while the opposite holds for .

4) As a consequence of Remarks 1) and 2), we can conclude

that when

for all For example,

and these are shown by the results in Table II where

5) Remark 4) defines the ordering of for sufficiently

large values of We now consider small values of to

consider the probabilities of consensus errors. If the

following inequalities are true for all .

a) by Theorem 0;

b) by Corollary 2; and

c) by Theorem 1.

To obtain a complete ordering of these probabilities, it

remains to compare with . From

Theorem 1,

so when

which is true when

Since is monotonically increasing with a minimum value

when if is

below this value.

For these small values of the consensus probabilities are

ordered as

for all . For example, we would have

From Table II, it can be seen that this is true for but

not for which exceeds the threshold value

6) According to Theorem 1,

By considering the convergence of the

series we can conclude that as

for For

the sequence can be shown to

converge to 0 by comparison with Therefore

approaches the same limit as for all

values of in (0, 1).
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IV. APPLICATION TO PATTERN RECOGNITION

The discussion in Section III presents a mathematical model

for comparing the recognition rates obtained from the ma-

jority vote of independent experts when each expert has

recognition rate . We assume the experts to have reasonable

performance, so that is greater than the threshold given

above, in which case the ordering of the consensus probabil-

ities is stated in Remark 4). In particular, it follows that a

combination of an even number of experts would yield a

recognition rate that is lower than those obtained from both

and experts.

In pattern recognition applications, it is also an important

consideration that the results should have low error or substitu-

tion rates. For these error rates, we can consider the consensus

probabilities for small . If the probabilities of each expert

making a particular mistake are approximately equal to ,

then we can certainly assume that , in which case a

combination of an even number of experts would be less

likely to commit this error than the consensus of or

experts. With this assumption of approximate uniformity,

the same conclusion regarding the number of experts can be

applied to the overall substitution rates, which are after all the

summation of the probabilities of particular errors.

The assumption of equal probabilities has made possible the

computation of exact differences in the likelihoods of consen-

sus, whether it is the correct or wrong decision. Admittedly, the

assumption of equal probability, while convenient in theory,

is impossible to achieve in practice—different experts cannot

be expected to operate with equal probabilities in real-life

situations. For this reason, we will examine the consequences

of relaxing this condition in the next section. Actually, the

ordering of the probabilities derived in Remarks 4) and 5)

has been demonstrated in experiments where the performances

of experts do differ. The results of these experiments are

described below.

In the first experiment, six classifiers are applied to the

recognition of handwritten numerals from the CENPARMI

database. While the first four recognizers [14] had been

developed independently of one another, the last two experts

[5] are very similar in their behavior because they are adapted

to the same feature vector. The performances of the individual

methods are shown in Table III(a) and part of the combined

results are given in Table III(b). The results shown in these

tables differ to a certain extent from those presented in [5] for

two reasons. The substitution rate of E2 has been decreased,

and integer votes are used here. In the previous work, a fraction

of a vote is assigned to each candidate class of E1 when

this expert cannot differentiate between two or three classes,

whereas in the present context this would be considered to be

a rejection by this expert.

From these tables, it is clear that the performances of the

experts differ significantly, but the combined recognition and

substitution rates mostly follow the patterns stated in Remarks

5) and 6). For example, E2 6 produces lower recognition

and substitution rates than E2 3 6 or E2 5 6, while

E2 3 6 has higher rates than E2 3 4 6, which has

lower rates than E1 2 3 4 6, and so on.

TABLE IV
PERFORMANCES OF CEDAR CLASSIFIERS ON BS DATABASE

In the second experiment, the data consists of the recog-

nition results obtained by seven classification algorithms de-

veloped at CEDAR in Buffalo, NY. The test set BS contains

2711 handwritten numerals extracted from United States Postal

Service mailpieces, and these are contained on CEDAR CD-

ROM together with the recognition results. Fuller descriptions

of the classifiers are given in [12]. When only the top choice

is considered, the individual algorithms produce the results

shown in Table IV with no rejections, i.e., each input sample

is assigned its nearest class.

These classifiers have 120 possible combinations, whose

recognition results on the BS database are shown in Fig. 1,

where the scatter plot shows the recognition versus the substi-

tution rates. The two disjoint clusters of points (one resulting

from combinations of even numbers of experts and the other

from odd numbers) tend to illustrate the comments made

above. Combining the decisions of odd numbers of experts

produces higher correct as well as higher error rates, so the

corresponding points in Fig. 1 are positioned to the upper right,

while the even combinations result in points located to the left

and below (representing lower substitution and correct rates).

The tendencies of these combinations will be further developed

in the next section, in which we will consider the combinations

of experts with unequal probabilities of being correct (which

is the case for this example).

V. RELAXATION OF EQUAL PROBABILITY ASSUMPTION

In Section III of this paper, we have assumed equal proba-

bilities of correct classification, which has made possible the

determination of the exact differences between the consensus

probabilities. Since this assumption cannot be expected to be

true in practice, in this section we derive comparisons between

the consensus probabilities when the assumption of uniform

is relaxed. In particular, we will examine the differences

created by the addition of votes to a group of voters (even as

well as odd in number). Given the unequal probabilities, the

exact differences would depend on the individual probabilities,

but the sign of these differences can be easily determined when

one vote is added. When two votes are added, the change in the

consensus probabilities will be expressed precisely in terms of

the individual probabilities. Then, by using a theorem in Graph

Theory, the sign of this difference is found to depend on the
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Fig. 1. Combined results of CEDAR classifiers.

TABLE V
EFFECT OF ADDING ONE VOTE TO 2n VOTES

TABLE VI
EFFECT OF ADDING ONE VOTE TO 2n + 1 VOTES

familiar notion of the odds ratio. These results will be derived

and discussed below.

A. Addition of One Vote

We will first consider the effect (on the probability of the

group decision being correct or wrong) of adding one vote to

and votes respectively. In each case, the addition of

the new vote would make a difference only when the original

group decision had been split in a “marginal” way, so that the

new vote could tip the balance.

When the original group has voters, this would be the

case if of the votes had been in agreement—either they

are correct, or they make the same mistake. Depending on the

decision of the new vote, the possible changes are summarized

in Table V. When a change does occur, it is in the direction of

reducing the rejection rate, changing it into a correct decision

part of the time and an error in the other cases. In other words,

adding one vote to (which also changes the number of

voters from even to odd) has the effect of reducing the degree

of “indecision,” changing it into correct or wrong decisions.

On the other hand, the addition of one vote to

votes would change the group decision only if of the

original votes are in agreement, and the new vote disagrees,

thus changing the original majority to a lack of consensus.

These possibilities are summarized in Table VI. The end result

is that the rejection rate would increase, while both the correct

and error rates would decrease. We can consider this to be

a result of changing an odd number of voters into an even

number, when more “tied” votes may occur.
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TABLE VII
EFFECT OF ADDING TWO VOTES TO 2n VOTES

The trends shown in Tables V and VI are true regardless of

the values of the probabilities of the individual experts. The

individual probabilities, however, do determine the magnitudes

of the changes. If each expert is correct much more often than

(he/she is) wrong, then the probability of Case 1 is expected to

be greater than that of Case 2 whether the number of voters is

even or odd. Since no assumption on the independence of the

experts has been made, these results would always be valid.

B. Addition of 2 Votes to Votes

If we consider the addition of two votes to an even (or odd)

number of votes as the repeated addition of one vote, then it

is not clear what the net effect of the two additions would be,

since the second step appears to reverse the trend of the first.

For this reason, we have to examine the results when the two

votes are added together to an existing group.

Suppose the original voters have probabilities

of being correct, and for the new votes these probabilities

are and . The addition of the new votes would affect the

correct rate only in the cases shown in Table VII.

In Case 1, the two new correct votes would change the

original tied vote into a majority, while in Case 2 the new votes

would deprive the original decision of a majority. Since the

first case causes the correct rate to increase while the second

causes it to decrease, the net change to this rate depends on the

relative probabilities of the two cases. We will calculate the

probability of each case when the expert opinions are assumed

to be independent.

Let denote the set of vectors of the form

where for each ,

for terms

for the other terms

and let be the set of vectors of the form

where for each ,

for terms

for terms.

Then for every vector in , there exist exactly vectors

in that differ from at only one component. These

vectors of are obtained by replacing each of the

terms in by . Similarly, for each in there are

vectors in that differ from at only one component, each

of which is obtained by changing a in into Since

In order to determine the difference between the probabili-

ties of Case 1 and Case 2 in Table VII, we prove and use the

following result:

Theorem 2: There exists a one-to-one function from

into such that for every in and differ at only

one component.

Proof: Define to be a graph whose vertices are the set

of all vectors in and every vertex in is adjacent

to all vertices that differ from at only one component.

Then is a bipartite graph in which every vertex of is

adjacent to vertices in and every vertex of is adjacent

to vertices in The function corresponds to a

complete matching of to , and its existence reduces to

the well-known “marriage” problem.

By Hall’s Theorem, such a matching exists iff every subset

of vertices in must be collectively adjacent to at least

distinct vertices in . We now show that this condition is

satisfied in the present context. Suppose the subset of vertices

in is If we list all the vertices in

that is collectively adjacent to, we obtain vertices

by the comment in the last paragraph. We denote this set of

(not necessarily distinct) vertices by , and we need

to show that there are at least distinct vertices in .

If has less than distinct vertices, then at least one

vertex must appear in more than times, implying

that must be adjacent to more than vertices in

(since each occurrence of corresponds to an adjacent vertex

in ). This is a contradiction, and so the hypothesis of Hall’s

Theorem must be satisfied, or the function exists.

We now use this theorem to compare the probabilities of

Cases 1 and 2 in Table VII, which we denote by

and respectively. The net

increase in the correct rate would be

(5.1)

Given the existence of by Theorem 2, each term in the

second sum has a corresponding term in the first sum such

that the 2 terms differ at only one component. Hence

if

or

for all (5.2)

In other words, the addition of two votes to votes would

increase the correct rate if the product of the odds ratio of the

two new votes is not less than the odds ratio of any original

vote. Since the odds ratio of any expert should be greater

than one when the correct rate is considered, this condition is

easy to satisfy. In the event that all the probabilities are equal,
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TABLE VIII
EFFECT OF ADDING TWO VOTES TO 2n + 1 VOTES

this condition coincides with the one derived in Remark 2) of

Section III. Furthermore (5.2) is a sufficient, but not necessary,

condition. The correct rate is more likely to increase with the

addition of two votes, for the following reasons.

i) The first sum in (5.1) contains more terms than the

second, and

ii) Each term in the first sum is the product of

probabilities of being correct (and probabilities of being

wrong), while each term in the second sum is the product

of and such probabilities, respectively. Since the

probability of being correct is usually greater than that of being

wrong, the first sum is expected to be greater than the second.

In Example 5.2.1 below, it can be seen that the correct rate

increases when condition (5.2) is satisfied, even though the two

additional votes do not have better performance on their own.

Example 5.2.1: Suppose

and while and Then (5.2) is

satisfied for and in this case

while

We note that analogous arguments can be applied to consider

the change in the probability of making a mistake when we add

two votes to Suppose the original votes have probabilities

of making this mistake while the new votes

have probabilities and If we replace the notion of

“being correct” in the above discussion with that of “making

this mistake,” the same process of reasoning would yield the

result that the probability of making this mistake increases, or

if

for all (5.3)

If the probability of making a mistake is very small for each

expert, then inequality (5.3) would rarely be true. However,

(5.3) is a sufficient, but not necessary, condition. Actually,

the sign of

cannot be determined a priori, as it would depend on the

values of ’s and ’s. This is true due to the occurrence

of two opposing factors. In the expression for this difference

[analogous to condition (5.1)], the first sum contains more

terms than the second. At the same time, it is clear that the

individual terms in the first sum are smaller than those in the

second when the ’s and ’s are very small, since each term

in the first sum is the product of of these small values

while each term in the second is the product of only of

them. As a result, the sign of the difference has to depend on

the probabilities involved.

Therefore we can conclude that when two votes are added

to votes, it is much more probable for the correct rate to

increase, while the change in the error rate would depend on

the individual error rates.

C. Addition of Two Votes to Votes

There are two main differences between this case and that of

Section V-B. The first difference is in the changes of decisions

that can be caused by the addition of two votes in this instance,

and the second is in the conditions equivalent to (5.2) and

(5.3) that would apply in this case.

First, the addition of two votes to can cause a change

in the correct rate under the conditions of Table VIII.

As in Section V-B, we let and

denote the probabilities of being correct. Let be the set of

vectors of the form such that

for terms

for terms.

Analogously, we let represent the set of all vectors

of the form in which

for terms

for terms.

Then and have the same cardinality, and the change in

the correct rate is

(5.4)

which is positive, or the correct rate increases, when the odds

ratios satisfy the inequality

for all (5.5)

In the case of equal probabilities, this conclusion coincides

with conclusion 1) of Theorem 0. Furthermore, since and

contain the same number of vectors, we can also conclude

that the correct rate would decrease if inequality (5.5) were

reversed.

Example 5.3.1: Suppose

and while and Then

condition (5.5) is satisfied for and in this case

while
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Example 5.3.2: Suppose and

while Then

for

In fact, for this example, the probabilities of being correct are

0.8050 and 0.7971, respectively, before and after the addition

of the two new votes.

To consider the probability of making a mistake, we can let

and be the probabilities of making

the mistake as before. By similar reasoning, we can conclude

that the net change in the probability of making this mistake,

denoted by

is positive if

for all (5.6)

and the change is negative if the reverse inequality holds. Due

to the small values of the odds ratios of making a mistake,

condition (5.6) would rarely be true.

We now note the second difference between adding two

votes to and to votes. This lies in the values of

the changes in the correct rates. Suppose the condition for the

change being positive is satisfied, i.e., condition (5.5) is true.

Then a comparison of the expressions in (5.1) and (5.4) would

indicate the former to have a higher value when the ’s and

’s have similar values in both expressions. This is due to

the fact that the expression in (5.1) contains a number of extra

terms with positive signs. In other words, adding two votes

to votes would be more effective in increasing the correct

rate than the addition of two votes to , given similar

probabilities of being correct. This can be seen in the results

of Examples 1 and 2, where while

In the case of equal probabilities,

this can also be observed in Table II, where, for for

example, while

A difference also exists between the changes in the proba-

bilities of making a mistake when two votes are added to

and to votes. We have already made the observation that

the direction of the change in the first case would depend on

the values of s and s When two votes are added to an

odd number of votes, however, it is much more likely for the

error rate to decrease. In this instance,

is expressed as the

difference of two sums having an equal number of terms, and

the terms in the first sum should be smaller than those in the

second when the s and s are very small (as explained at the

end of Section V-B). It follows that

when two votes

are added to an odd number of votes, while this statement

cannot be made if the original number of votes is even.

This section can be summarized briefly as follows.

1) Adding one vote to an even number of votes increases

both the correct and error rates while reducing the rejection

rate. Exactly the opposite results are obtained when one vote

is added to an odd number.

2) Adding two votes to an even or odd number of votes

would increase the correct rate if the odds ratios satisfy

conditions (5.2) and (5.5), respectively. Furthermore, adding

two votes to an even number would be more effective in

increasing the correct rate than adding the votes to an odd

number, given similar probabilities. However, if reducing the

error rate is the objective, then more definite gains can be

obtained in the second case.

Interestingly, these conclusions can be observed in Fig. 1,

where results of combining the CEDAR classifiers are shown.

When one vote is added to an even number, the result moves

toward the upper right (higher correct as well as error rates),

while the movement is in the opposite direction when one more

vote is added. This “zigzag” effect agrees with statement 1)

above. At the same time, it is clear that the increase from two

to four, then to six experts results in mainly an upward trend

(increase in recognition rate). This is in marked contrast to the

leftward movement (decrease in substitution rate) produced by

increasing the number of experts from three to five and seven.

These results are reflections of comment 2) above, and they

are particularly noteworthy given that the independence of the

expert opinions cannot be taken for granted in the experiment.

VI. VARIATIONS ON MAJORITY VOTE

In the previous sections, we have derived many conclusions

about the expected behavior of the consensus. For example, it

is clear that the performance of the combined decision is an

increasing function of the number of experts, provided each

expert can perform at an appropriately high level. The number

of experts that can be used would naturally depend on practical

limitations, and adding new experts cannot always be readily

accomplished. For this reason, in this section we consider

means to combine the existing experts in more optimal ways,

and derive conditions as to which of the strategies would be

preferable for a given objective.

Suppose an odd number of experts are available and a higher

reliability is desired for the combination. This can be easily

accomplished in one of two ways: to eliminate one of the

experts from voting, or to double the vote of one of the experts

(i.e., assign a double weight to this vote). Either action would

change the number of votes from an odd to an even number,

so that the majority would produce more reliable results. Of

course, doubling one vote is equivalent to the addition of a

dependent vote, but it has been shown in Section V that adding

one vote to an odd number would decrease both the error and

correct rates regardless of independence. Analogously, when

an even number of votes are given, the same options can be

used to obtain an odd number of votes, when the recognition

rate would be higher.

An illustration of these results is given in Fig. 2, which

shows the substitution rates produced by all 56 combinations

of three and five CEDAR classifiers using majority vote,

together with the results obtained by doubling the best classi-

fier of each combination and eliminating the weakest before

voting. For clarity, the combinations are represented on the

axis in ascending order of their error rates by majority vote.
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Fig. 2. Substitution rates produced by odd combinations of CEDAR classifiers.

TABLE IX
EFFECT OF ELIMINATING v1 FROM 2n VOTES

TABLE X
EFFECT OF DOUBLING v2n AMONG 2n VOTES

Intuitively, one would double the “best” and eliminate

the “worst” algorithm, where these attributes are measured

according to the correct and error rates. For algorithms with no

rejections, the choice is obvious; otherwise the choice would

depend on the priority placed on higher recognition or lower

substitution rates. Apart from this consideration, it remains to

be resolved as to which alternative is better—to eliminate a

vote or to double one. In the rest of this section, we will derive

conditions to provide answers to this question.

A. The Even Case

As before, we suppose that the experts are independent

and they have correct probabilities For ease

of notation and without loss of generality, we suppose that

votes and are respectively the votes to be eliminated

and doubled. The elimination of would lead to increases in

both the correct and error rates in the cases shown in Table IX.

If we let the set of all vectors of the form

where for

for terms

for terms,

then the change in the correct rate resulting from the elimina-

tion of can be represented by

On the other hand, doubling the vote of would increase

both the correct and error rates in the cases indicated in

Table X.
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If we let the set of all vectors of the form

where for

for terms

for terms,

then the change in the correct rate when is doubled can

be given as

and therefore

In order to compare these two sums, we will define a 1-

1 function of onto . The set can be partitioned as

, where consists of all the elements in with

, and contains the rest.

If , then is also an element of , and we define

If then

where for for terms. Let

be the set of all such vectors and let be the set of

all vectors such that

for terms

for terms.

By rephrasing (in terms of transversal theory) the reasoning

used in the proof of Theorem 2, there exists a 1-1 function

of onto such that for every and differ

at exactly two entries. In other words, is obtained by

changing two of the ’s in into ’s.

Since every would have the form

with we can define We note

that is 1-1 because has this property, and is 1-1 on

since

It therefore follows that

if

for all

which is true if

(6.1)

If the reverse inequalities hold, then

Since changing rejects into correct classifications would

increase the recognition rate, we can conclude that when

conditions (6.1) are satisfied, eliminating would produce a

higher recognition rate than doubling , while the opposite

conclusion would be true if the inequalities were reversed.

Naturally, if we denote the odds ratio by , then

it is logical to consider these alternatives only when is

small and is large. In addition, when is doubled, then

larger values of should imply more improvement. On the

other hand, the elimination of should lead to better results

when is smaller. Therefore conditions (6.1) imply that the

significant entity is the product The ratios and

can vary in opposite directions without affecting the sign of the

difference

provided conditions (6.1) or their opposites are satisfied. It

also means that when is small enough compared to the

other odds ratios, a higher recognition rate can be obtained

from eliminating than doubling , while the reverse is

true when is relatively large.

If is the probability of expert making

a particular mistake, and we consider eliminating versus

doubling , then the same reasoning would lead to

if

and the statement would also be true if all the inequalities

were reversed.

Example 6.1.1: Suppose

and Then

for and we expect

which is true since the

former equals 0.0502 while the latter has value 0.0549.

For the special case of a two-class recognition problem

in which there are no rejections, and so

Therefore if the

inequalities are satisfied for the ’s, it would imply that

eliminating is better than doubling The opposite

conclusion follows when the inequalities are reversed.

In order to test the applicability of the theoretical results to

a practical situation where the independence of experts cannot

be assumed, we consider the combinations of four experts

from Table III(a). The choice of four experts ensures that

condition (6.1) or its reverse inequality will always be satisfied.

Since experts E5 and E6 are highly correlated, combinations

containing both of these experts are not considered. For each

of the remaining nine combinations, refers to the first

expert in the combination and the last, and the value of

is shown in Table XI together with the

recognition rates when the vote of the expert with the highest

(lowest) recognition rate is doubled (eliminated).

It is encouraging that the experimental results generally

coincide with the theoretical conclusion: when doubling

produces higher recognition rate than eliminating , and

vice versa. The exceptions are in combinations four and six,

in which has very small magnitudes. It would be more

illuminating if recognition results on much larger databases

can be used.

B. The Odd Case

Given experts, it is possible to obtain more reliable

results from the combination by eliminating vote or dou-

bling . These actions will create changes in the marginal

cases shown in Tables XII and XIII, respectively. In order to

compare with ,
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TABLE XI
RESULTS OF DOUBLING v4 VERSUS ELIMINATING v1

TABLE XII
EFFECT OF ELIMINATING v1 FROM 2n + 1 VOTES

TABLE XIII
EFFECT OF DOUBLING v2n+1 AMONG 2n + 1 VOTES

we determine the probabilities of occurrence of Case 1 in these

tables.

If the set of all vectors of the form

where for

for terms

for terms

then

Suppose the set of all vectors of the form

such that for

for terms

for terms.

Then

In this case By a reasoning

similar to that used in the even case, there exists a 1-1

function of into which allows us to conclude that

if

for all (6.2)

When this is the case, a higher correct rate should result from

doubling than from eliminating

Since contains more terms than , no conclusion can

be drawn when the reverse inequalities hold. However, this

difference in the number of terms also implies that it is more

likely in general to have a higher recognition rate when

is doubled than when is eliminated. In addition, when

conditions (6.2) are satisfied, the difference in the probabilities

between the two alternatives is expected to be greater in the

odd case than the even one, given similar ’s. This can be

seen by comparing the results of Examples 6.1.1 with those

of Example 6.2.1 given below.

Example 6.2.1: Suppose

and Then conditions

(6.2) are satisfied, and

while

Example 6.2.2: For an actual situation, we can consider the

five experts E1–E4 and E6 in Table III(a) of Section IV. The

odds ratios of these experts satisfy the condition

for so we expect doubling to produce a

higher recognition rate than eliminating , which is the case

experimentally since those results are 97.25% and 95.7%

respectively.
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Fig. 3. Performances of combinations of three classifiers.

Analogously, by applying the same reasoning to case 2

of Tables XII and XIII, we conclude that

if

for all

Therefore, when these conditions are satisfied, eliminating

would result in a lower error rate than doubling Again,

due to the different number of terms involved, it is more likely

that which

means the elimination of should produce a lower error rate

in general. This conclusion can also be observed in the odd

combinations of the classifiers shown in Fig. 2.

The results of this section can be summarized as follows.

1) From an odd (even) number of experts, an even (odd)

number of votes can be easily obtained by doubling

vote or eliminating vote When the majority vote is

taken, the recognition and error rates of the new combinations

would be both lower (higher) than those of the original, as

has been stated in Section V. The advantage in eliminating

versus doubling depends on the pairwise products of the

odds ratios. If

for all (6.3)

then doubling produces a higher recognition rate than

eliminating , for both even and odd values of .

2) When condition (6.3) is satisfied, the gain in recognition

rate is more significant for an odd number than for an even

number of experts, given that the experts have similar levels

of performance. This is due to the difference in the number of

terms involved in the calculation of the probabilities.

3) When is odd, doubling should result in a higher

recognition rate even when the inequalities are not completely

satisfied, because of the different number of terms. For the

same reason, however, eliminating should generally pro-

duce a lower error rate.

4) When the inequalities in (6.3) are reversed, eliminating

would produce a higher recognition rate than doubling

when is even. In the event that is odd, the outcome would

depend on the value of as well as the individual probabilities

of the experts.

VII. CONCLUDING REMARKS

The majority voting method has been used to combine the

results of classifiers for character recognition, and it has been

successful from an experimental point of view. The intention

of this study is to gain a deeper understanding of how this

method works, and to examine its mode of operation, so that

we can have confidence in its performance when applied to

different data and/or experts. By this detailed analysis, we have

largely achieved our objective of providing a more reliable

basis for using this method. This is especially true when the

decisions of the individual experts can be assumed to be

independent. However, we note that even in the absence of

this assumption, the experimental results do reflect the trends

predicted by the theoretical considerations.

In the course of our research, we have derived many

conclusions about the expected behavior of the consensus.

Nevertheless, a number of decisions remain with the user. For

example, the choice of an odd or even number of experts would

depend on the requirements of the specific application. The

former produces a higher recognition rate, and the consensus

of experts would outperform that of experts in this
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respect. However, it is often the case in pattern recognition

applications that errors are much more costly than rejections;

for example, in the precision index set by the Institute for

Post and Telecommunication Policy (IPTP) of Japan, the cost

of an error is ten times that of a rejection [16]. If this is an

important factor, then the performance of an even number of

experts would be more reliable, and their number should be

incremented also by an even number at each subsequent stage

of refinement. If only an odd number of experts are available,

then the relative merits of doubling the best and eliminating

the weakest can be considered.

It should be pointed out that combining the decisions

of experts is not exactly a substitute for designing better

classifiers. As has been remarked in [5], it is a truism that

combinations of better algorithms tend to produce better

results. This is graphically depicted here in Fig. 3, in which the

performances of all combinations of three CEDAR classifiers

are shown. The classifiers are ranked from one to seven

according to their performance, with rank 1 for the best

classifier, and so on. The values on the axis represent the

sum of the ranks for each combination, the recognition rate for

each combination is shown on the axis (on the left), and the

substitution rates are indicated on the axis on the right. From

the behavior of the recognition and error rates as functions of

the sum of ranks, it is obvious that the development of superior

classifiers should remain an important objective.

Two points that may be related to the present work would be

the analysis of the consensus when the experts’ decisions are

dependent, and the theoretical analysis of other combination

methods. When the independence assumption is not applicable,

a general theoretical analysis of the behavior of majority vote

would be far too complex to be feasible (due to the very large

number of variables whose interrelations are unknown), and it

remains beyond the scope of this article. If the experts provide

point estimates with a multivariate normal joint distribution of

errors, then it has been shown [2] that dependent experts are

worth the same as independent experts, where Under

these assumptions, the equivalent number of independent ex-

perts is a concave (down) function of and the upper limit for

(which depends on the common correlation ) is quite low.

For example, even if cannot exceed four for any

Other combination methods that are more specific and

empirical in nature would be less likely to yield general

theoretical analysis, which remains a difficult problem. Each

combination method may need to be examined from its own

perspective. A method which can be explored is the combina-

tion by neural networks, because this method is derived from

a conceptual and mathematical framework. Recently, a one-

layer perceptron (without hidden layers) has been designed in

[13] to utilize concepts like weight sharing and weight decay,

and it has the capabilities of eliminating redundant classifiers

and dynamically selecting classifiers. Further advances may

be possible in this direction.
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