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Abstract 

APPLICATION OF MARKOV PROGRAMMING 

by 

J. Wessels, Eindhoven 

The main topic of the paper is the relation between modelling and numerical 

analysis for Markov decision processes. It is demonstrated that the relation 

is very close, since numerical possibilities strongly depend on the structure 

of the model. This is even true for straightforward numerical techniques, but 

also for numerical analysis based on aggregation and/or decomposition. 

Examples amplify the arguments. 

1. Introduction 

Markov decision processes are interesting from a practical and from a theore­

tical point of view. Most attention has been paid to theoretical aspects. 

Besides more insight in the nature of the processes, the study of theoretical 

issues has lead to elegant numerical approaches, both for total reward and 

for average reward decision processes. 

Practically, Markov decision processes are interesting, since the concept does 

not put strong conditions on the analytic structures of process and criterion. 

The price to be paid, however, is expressed by the difficulties in analyzing 

the process. Solutions never take the form of explicit formulae and only sel­

domly the optimal strategies have a simple structure. These features would not 
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be too bad if optimal solutions could be found by simple standard algorithms. 

Regrettably, however, this is only the case for relatively small problems. 

And here we arrive at a new difficulty: problems with, say, 100 states may 

seem mediu~sized, but are relatively small. Namely, as in optimal control 

problems with an analytic structure, the state is usually expressed as a 

multi-dimensional variable. However, because of the lack of analytic struc­

ture, analysis of Markov decision processes has to be executed state by state 

and even a coarse grid gives 10.000 states in a 4-dimensional state space. A 

similar argument can be given for the decision variables. 

So, practical problems have a tendency to produce relatively large models and 

large models are difficult to handle. This is a short formulation of the pro­

blem to be considered in this paper. 

The treatment is as follows. In Section 2 a short description will be given 

of the models to be considered together with some properties and notations. 

In Sections 3, 4 and 5 numerical approaches will be described with their 

possibilities to handle large problems and to exploit the specific structure 

of the problem at hand. In Section 6 the three approaches are considered with 

respect to their possible use for aggregation and decomposition. 

As problem structure is one of the essential features for solvability and 

choice of method, it is not sensible to compare methods via randomly drawn 

models. A useful comparison can only be obtained by considering problems which 

are akin to reallife problems. 
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2. The models and some properties 

A process is observed at discrete time instants t = 0,1,2, ••• and the state 

the process is in at time t is denoted by the random variable It with values 

in N = {1, ••• tN}. After the observation of the state some action has to be 

chosen from a set A = {1, ••• ,A}. The action chosen at time t is denoted by 

the random variable At' If the process is at time t in state i € N and if 

action a € A is chosen, then P(i,j;a) denotes the probability to observe the 

state j at time t + 1. Moreover, a reward r(i;a) is cashed. 

The actions At are generated in cooperation by the process It and the decision 

rule or strategy of the decision maker. A strategy s is supposed to be a se-

quence (sO,sl"") of policies St' where St maps N into A; st(i) gives the 

action at time t if state i is observed. 

In this way only decision rules without much memory are introduced, however, 

well-known results show that usually more general strategies are not necessary 

(for a recent overview of this aspect, cf. van der Wal/Wessels [27J). 

If a strategy uses only one policy repeatedly, then it is called a stationa~ 

strategy. The term policy is also used deliberately for stationary strategies. 

For given strategy s and starting state i, the random process (It,At ), 

t = 0,1, ••• , is determined stochastically. Probabilities and expectations 

with respect to this process are denoted by P • and E . respectively; if the 
s~ S1 

index i is deleted, then the vector for subsequent starting states i = 1,2, •.. ,N 

is meant. 
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The most important criteria for choosing a strategy are expected total 

discounted rewards and average expected rewards. Formally, these criteria 

are represented respectively as 

(2.1 a) 

(2.1b) 

00 

v(s ;i) == E . S1 1: atr(It;At ) 
t==O 

(8 = discountfactor) 

g(s;i) == 
T 

l ' . f 1 \' 1E (I A) 1Tm~n T+T L si r t; t • 
-.- t=O 

* * So, the problem becomes the computation of v and g , respectively, which 

satisfy 

(2.2a) 

(2.2b) 

v*(i) = max v(s;i) 
S 

g*(i) = max g(s;i) 
s 

and to find strategies s' and s" satisfying 

(2.3a) * v == vest) 

(2.3b) * g == g(S") 

or 

or 

v(s') * :?! v - ee 

* v(sl!) :?! g - ee 

where € > 0 and e the N-vector consisting of ones only. The basic properties 

for finding these optima are the so-called optimality equations, which are 

respectively 

(2.4a) * * v = max {r(so) + S P(so)v } 
So 

1 
* {r(so) + P(so)w} g +w = max 

(2.4b) So 

* * g = max P(so)g • 
So 
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Here r(sO)' P(sO) are defined as vector and matrix satisfying 

If one tries to exploit these properties for finding v* and g* respectively, 

then a substantial reduction of (2.4b) can be obtained if one knows before-

* hand that g is a constant vector, namely in that case the second set of 

equations in (2.4b) can be deleted. Moreover, one extra condition on w can 

be added to make the system uniquely solvable. 

If solutions v* and g*,w to (2.4a) and (2.4b) respectively would be known, 

then the maximizing policies in (2.4a) and (2.4b) would constitute optimal 

stationary strategies. It is particularly the latter property together with 

the equations themselves which provides ample opportunities to construct nu-

merical algorithms. 
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3. Linear programming 

The sets of equations (2.4a) and (2.4b) can be viewed as sets of parametrized 

linear equations in which the parameter needs some maximization operation. 

Therefore, it is appealing to try a linear programming approach. This becomes 

even more appealing if one knows the following results of Hordijk [9J and 

Hordijk/Kallenberg [10J respectively: 

Lemma 1. 

* a. v is the smallest function (componentwize) satisfying 

for all policies So . 

b. g* is the smallest function (componentwize) for which there is some function 

w such that 

for aIle policies So . 

These properties lead directly to the following linear programs for the dis-

counted and average reward criterion respectively. 

a. min i ? v(i) 
L 

subject to 

v(i) ~ r(ija) + f3 L P(i,j ;a) v(j) 
j 

b. min i ? g (i) 
1. 

subject to 

g(i) +w(i) <':r(i;a) + LP(i,j;a)w(j) 
j 

g(i) <': L P(i,j ;a) g(j) 
j 

for all a € A, i € N • 

for all a € A, i € N . 
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In the latter program the wei), i € N, are also variables, although they 

don't appear in the objective function. 

The duals to these linear programs are, respectively 

a. max L r(i;a) x(i;a) 
i,a 

subject to 

L x(i;a) - e L x(jja)P(j,ija) =i 
a j ,a 

x(ija) ~ 0 for all a € A, i EN. 

b. max L r(ija) x(ija) 
i,a 

subject to 

L x(i;a) + L y(i;a) -
a a 

L y(jja)P(j,ija) =~ 
j ,a 

L xCi ;a) - I x(j ;a) P(j,i ;a) 0 
a j,a 

x(i;a), y(i;a) ~ 0 for all a € A, i EN. 

If g * is known to be a cons tant vector, then the primal and dual programs 

b simplify accordingly. The dual programs can also be developed directly 

when considering probabilistic properties of the decision process for given 

policies. In fact, in that way the linear programming approach for Markov 

decision processes has been developed originally (cf. [6J, [28J for the 

nondiscounted case). A good overview of the linear programming approach can 

be obtained from the monograph of Kallenberg [14]. 
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The dual forms are best suited for the simplex method, since they have N 

constraints and N * A variables (Le. in the simplified form for the average 

reward case). Nevertheless, for standard linear programming algorithms, 

these problems are already large for Markov decision problems of moderate 

size. 

For instance, a problem with N = 100, A = 30 gives a 100 x 3000 linear pro­

gramming problem and a problem with N = 500, A = 2 gives a 500 x 1000 linear 

programming problem. 

So. practically, the use of linear programming packages is not a solution 

for relatively large-sized problems. The only hope is that linear programming 

methods can be found which exploit the specific structure of the linear pro­

grams generated by Markov decision problems. The policy iteration technique, 

which is treated in the next section, can be viewed upon as such an approach. 

The only other approach in this style which is known to the author is based 

on the fact that linear programs describing the optimization of the flow in a 

processing network can be analyzed much more efficiently by adapted algorithms 

than by the standard simplex method. For recent developments on such adapted 

simplex algorithms, see Glover/Klingman [7J. It is very simple to formulate 

Markov decision problems as (generalized) network flow problems, namely by 

introducing distinct nodes to represent the state before the decision and 

before the chance move. This causes an increase in the number of states which 

can be quite considerable, namely amounting to N nodes representing states 

before the decision and N x A nodes respresenting states before the chance 

move. In the linear programming formulation the corresponding increase can 

be observed, leading from N to N(A + 1) restrictions and from NA variables to 
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N(N + 2)A variables. This is the general transformation. In practical si tua­

tions, however, quite often the structure of the original problem permits a 

special transformation leading to simpler networks. 

For instance, if each allowed decision amounts to a state transition, then 

it suffices to have N nodes to represent states before the chance move. 

Hence in this case the network only has 2N nodes instead of N(A+ 1). It is 

quite often possible to model decisions in such a way that they are represen­

ted by state transitions: as examples think of inventory problems (decisions 

should be new stock levels and not order sizes) and also maintenance and 

replacement problems. For a more precise account of this remodelling, see 

van der Wal/Wessels [26J. 

At this moment it is not yet known how the numerical effects of this approach 

can be, but it is worthwhile to be investigated and it is sure that the effects 

depend on the extra structure of the problems. 
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4. Policy iteration 

In the preceding section, the approach known as policy iteration was said 

to be a linear programming approach exploiting the particular structure of 

linear programs emerging from Markov decision problems. Indeed, the policy 

iteration method can be viewed upon as a linear programming method in which 

each iteration step consists of N exchanges of basisvariables in the dual 

linear programs (for the discounted case and the simplified undiscounted 

case). We will not treat this view extensively, since it does not help much 

in increasing numerical efficiency. For details" however, see [28] or [I4J. 

For obtaining an idea of the numerical possibilities, it is more inspiring 

to base the policy iteration method directly on the optimality equations 

(2.4a) and (2.4b). 

The main idea of the policy iteration method (Howard [II]) is the following: 

Take a policy which might be a maximizer in (2.4a) (or (2.4b», compute v(s) 

(or g(s), w(s» for s = (sO'sO"") and check whether this vector could be 

v* (or g*, ~) and if not try to find a better policy than So and start again. 

Worked out for the discounted case, this would lead to the following simple 

algorithm: 

1. (policy evaluation) 

compute v(s) from 

v(s) = res) + S peso) v(s) with s 

2. (policy improvement) 

compute max r(sa) + j3 pesO) v(s) 
s I 
a 

If So itself is a maximizer, then v* = v(s). Otherwise So is replaced by 

some maximizer and the procedure is repeated. 
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For the undiscounted version, the reader is referred to van der Wal [25J, 

however, in the simplified case the algorithm is essentially similar and 

only looks more complicated. 

Practical use of this method ~s hampered by the fact that the method requires 

solution of a N*N set of linear equations in each iteration step, although, 

usually the number of iteration steps is quite small. For really large N 

this is quite cumbersome. Therefore, usually the method can only be used 

for values of N up to a couple of hundreds. 

The amount of work can often be diminished by slight changes in both parts 

of the iteration step. For the first part (the policy evaluation) it seems 

a bit overdue to aim at exact or very precise solution of the equation set, 

estimates might do well. However, we will not treat these points here, since 

they fit quite naturally into the set-up of the next section where successive 

approximation methods are treated. 

But there is a set of problems, which can be solved very efficiently by the 

policy iteration method. Namely, the special structure of the problem may 

allow a very efficient execution of the policy evaluation step. 

For example, in several problems one knows beforehand that a so-called control­

limit policy will be optimal. It is often possible to solve the policy evalua­

tion equations very easily for control-limit policies. If it is possible to 

restrict attention to control-limit policies in the policy improvement step, 

this gives an extremely efficient algorithm. Well-known examples can be found 

in inventory-control problems, where {s,S)-policies are often optimal (cf. 

Johnson [13J). Other examples may be found in maintenance problems or in 

queue-control problems (cf. Johansen/Slidham [12J and van Nunen/Puterman [18]). 

Regrettably, however, there are no high-dimensional problems known which can 

be solved in this way. On the other hand, this method may be used for inter­

mediate problems in an aggregation or decomposition approach (cf. Section 6). 
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5. Successive approximations 

Linear programming and policy iteration seem to provide the more advanced 

approaches for the numerical analysis of Markov decision problems. The most 

direct and primitive approach, however, appears to give the best results in 

terms of efficiency until now (only in cases where the solution of the set 

of linear equations becomes trivial, the policy iteration approach wins, cf. 

the final remarks of Section 4). 

However, the successive approximation approach may be simple and effective, 

that does not imply that application is straightforward. There are very many 

variants of the successive approximation method and quite often only some of 

these variants are efficient. Moreover, it does not suffice to consider gene-

rally applicable variants, but it is also necessary to exploit the problem 

structure. 

In this paper we will not give a detailed account of all variants of the suc-

cessive approximation method. There are already reviewpapers where this topic 

is treated from different points of view (see van Nunen/Wessels [20J, [21J and 

Hendrikx/van Nunen/Wessels [8J). 

As said above, the approach is rather primitive and consists of guessing a 

solution va for (2.4a) and computing the maximization in the right-hand side 

* . of (2.4a) with va instead of the unknown v ; the result, v, say, is then con-

sidered to be a better guess and the procedure is repeated. 

For the undiscounte~ case the same is done with the first set of equations in 

(2.4b). This gives a procedure which is practically equal to the discounted 

case, at least in the simplifying situation. In this way we obtain the follo-
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wing structure for the n-th iteration step: 

n n n n 
1. Approximation of v(s ) by vn where s = (sO,sO"") is the stationary 

2. 

strategy which emerges from iteration step n- I. 

max L(s) v 
n s 

n+l 
leading to So 

where L(s) is some operator on JRN, for instance 

3. Stopping criterion. 

In the undiscounted case the v's have to be replaced by w's and S can be 

deleted. Not only the procedure is completely similar in the undiscounted 

case (particularly in the simplifying situation with guaranteed aperiodicity), 

but also the convergence properties are in practice the same. Namely, for 

theoretical convergence proofs a discountfactor B < t is of great help. How-

ever, numerically convergence would usually take a long time if it depended 

on the discounting. Both cases need the mixing properties of the underlying 

processes for numerical convergence in a reasonable time. We will come back 

to this aspect later in this section. 

By putting the structure of the iteration step as we have done, it is easy to 

characterize the variants by their choice of approximation in Part 1, choice 

of operator L(s) and choice of stopping criterion. 

For instance, if one takes v = v(sn), then one obtains a policy iteration 
n 

method. However, if one takes 

v = max L(s) vI' n n-s 

then one obtains the more standard form of a successive approximation method. 
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For obtaining an idea of all the possible choices we refer to the review 

papers mentioned. However, it is worthwhile to note, that it is not necessary 

to repeat the same iteration step over and over again. As argued in [8J, it 

might be attractive to alternate different variants in order to combine the 

advantages of these variants. For instance, the choice of L(s) based on the 

Gauss-Seidel idea quite often gives good convergence of the v to v*; regret­
n 

tably, however, the Gauss-Seidel idea does not give a good stopping criterion 

and, therefore, after a couple of Gauss-Seidel iterations a standard Jacobi 

iteration can be well in place (cf. [8J for more details), 

The last remark more strongly holds for the undiscounted case, since there 

only the Jacobi iteration is known to give a proper stopping criterion. The 

standard successive approximation method for the undiscounted case becomes: 

with a stopping criterion provided by 

min 
i 

{ (i) (i)} * { (i) 
w n+ 1 - w n e S g S max w n + 1 

(i) } w e 
n 

* where e is the N-vector of only ones. Note that g is constant in the simpli-

fying situation and then, indeed, also w I - w converges to a constant vec-
n+ n 

tor (if, at least, aperiodicity is guaranteed). 

So, in the undiscounted case, the operator can be replaced by a different one 

and also w may be some approximation of w(sn), but one needs a standard Jacobi n 

step now and then in order to obtain a stopping criterion. 
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Also in the discounted case v 1 - v provides a basis for a stopping n+ n 

criterion and also here convergence stems from the fact that vn+l - vn 

tends to become a constant vector. This is caused by the same mixing pro-

per ties of the process as in the undiscounted case and, usually, only slight-

1y accelerated by the discounting. In [23J one can find an example in which 

convergence has practically been completed after a number of iterations 

corresponding to a time-interval of two weeks, whereas the discounting with 

a realistic factor does not have a significant influence in such a time-

interval. This effect is rather a usual than an occasional phenomenon. 

The choice of a variant requires a lot of skill and experience, since the 

criteria remain vague. This is caused by the fact that several features are 

important and these features are influenced differently by one variant. Al-

ternate use of different variants can give a partial answer to this question. 

The situation is further complicated by the fact that a specific structure of 

the problem can make same variants more easy to use. In [8J it is demonstrated 

that some sort of separability of the problem can be very helpful. If one has 

P(i,j;a) = P(j;a) 

then 

13 t P(i,j ;a) v (j) = d (a) . n n 
J 

independent of i. And if, moreover, 

r(i;a) = rei) + pea) 

then 

max {r(i;a) + 13 I P(i,j;a) v (j)} = 
a j n 

rei) + max {pea) + d (a)} = 
a n 

= rei) + 0 (a) 
n 
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In this way a very substantial simplification of the computations in the 

policy improvement part (Part 2) of the algorithm can be obtained. By proper 

choice of the model, one can often obtain this sort of separability (take 

the new inventory level as possible action instead of order quantity). This 

approach also works quite often in high-dimensional problems. 

A lot more can be said about successive approximations, but we will stop here 

with the final observation that, practically, it is possible to solve problems 

with a couple of thousands states using the successive approximations. In 

specific cases we have experienced that also tens of thousands of states can 

be workable. So it is known (cf. [23J), that an extra dimension in the state 

space because of cyclically varying transition probabilities does not enlarge 

the numerical complexity. 
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6. Aggregation and decomposition 

A conclusion from the three preceding sections may be that the numerical 

treatment of relatively small Markov decision problems can easily be under­

taken by any of the three main approaches as sketched. For problems with an 

intermediate size, the successive approximatio approach often indicates the 

road to be taken, with policy iteration as a better choice in particular 

cases. For really large problems, however, the three approaches don't give 

the right cure. Although in very specific cases the successive approximation 

approach can still be used. Regrettably, large problems are the rule rather 

than the exception and therefore a numerical approach for large problems is 

necessary. 

Even for problems with an intermediate size, the exploitation of the particu­

lar problem structure is a necessity in order to obtain efficient procedures. 

Therefore, one cannot hope that for large problems one efficient standard 

method will present itself. 

It is a wide-spread belief that for really large Markov decision problems 

aggregation/disaggregation and decomposition/composition approaches point 

out the most promising ways for the analysis. Although there is quite some 

literature on aggregation in Markov decision processes (see, for instance, 

Whitt [29J), not much attention has been paid in the literature to numerical 

methods based on aggregation or decomposition. 

In this section a rough review will be given of attempts to exploit aggrega­

tion or decomposition for numerical purposes. Therefore, we first consider 

the linear progra~ng approach and afterwards aggregation or decomposition 

of the problem directly. 
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6.1. The linear programndng approach 

Decomposition and aggregation both have been worked out for linear programr 

ming problems. The oldest and most well-known are the decomposition/composition 

approaches of Dantzig/Wolfe [3] and of Benders [2]. The author does not know 

of any successful attempt to apply these approaches for the linear programs 

generated by Markov decision problems. The main difficulty in such an appli­

cation would be that the linear programs themselves (dual or primal) usually 

do not show much of the structure desirable for one of the decomposition 

approaches. Nevertheless, for a given feasible basis the part of the matrix 

corresponding to such a basis may have a better structure. Perhaps this feature 

might be used in some way to develop a decomposition/composition approach for 

the particular linear programs arising for Markov decision processes. In recent 

years also an aggregation/disaggregation approach has been worked out for linear 

programming problems (cf. Vakkutinskii/Dudkin/Ryvkin [22], Zipkin [30]). This 

approach is iterative in the sense that it starts with the solution of a highly 

aggregated problem and that this solution helps in defining a less aggregated 

prOblem etc. This approach has been specialized to the linear programs arising 

from Markov decision problems by Mendelssohn [17], By this approach the linear 

programming approach may be made somewhat more efficient, however, it is not 

to be believed that this approach will make linear programming the right method 

for large problems, unless there would be some device which would make it pos­

sible to stop the iteration process relatively soon. 
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6.2. Aggregation or decomposition of the model 

It seems to be much more sensible to consider aggregation or decomposition 

within the context of the model itself. Numerical approaches can then be 

chosen later. A simple example shows already that the choice of decomposition 

or aggregation does not only depend on the structure of the model, but also 

on the actual numbers. Consider, for instance, some simple one-machine/ 

multi-product production planning problem with random demands. The natural 

decomposition approach will lead to dealing with the individual products 

first and later try to solve capacity problems. In the natural aggregation 

approach one will aggregate the demand for all products and treat the capacity 

part first. It will be apparent that an aggregation approach will work best 

if capacity is a real bottleneck, otherwise decomposition is the best choice 

(cf. Bemelmans [IJ for this sort of comparison and van Nunen/Wessels [19J for 

a worked out example or this type of decomposition). 

Particularly in the area of multi-product and/or multi-stock production and 

inventory problems there have been several attempts recently using model aggre­

gation or decomposition (cf. Federgruen/Zipkin [5J). 

All attempts in this direction are heuristic. Usually, these attempts lead 

to rather efficient methods. However, there are no proofs of convergence or 

estimates of deviations from the optimal solution. 

Even for the simplest type of aggregation/disaggregation approach, namely via 

aggregation in the action space only, there is no efficient estimate of devia­

tions. However, particularly in that case it will be possible to find good 

estimates if transition probabilities and costs have a simple structure (e.g. 

inventory type models). This type of aggregation/disaggregation has been de-
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scribed in Veugen/van der Wal/Wessels [24J. In that paper it is also shown 

that usually aggregation in the action space is not necessary (see also 

Section 5). However, if old decisions have to be retained in the state 

description, then it is shown that this type of aggregation-disaggregation 

can be worthwhile. 

Finally, we want to mention a hybrid approach using a highly aggregate de­

cision model. This decision model is analyzed by one of the techniques of 

Sections 3-5. The detailed process is then simulated with the strategy re­

sulting from the optimization. The simulation results are used to redefine 

the aggregate decision model which is analyzed anew, etc. (cf. Lenssen/van 

der Wal/Wessels [15J, Demandt/van der Wal [4J). Although, again, a good theory 

for this type of approach is lacking, the experiences are quite promising. 
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